Aberta Government

Ambient Air Quality Monitoring Assessment in the Lochend Area: August 2013

Jan 25, 2016

ISBN 978-1-4601-2687-5

Copyright in this publication, regardless of format, belongs to Her Majesty the Queen in right of the Province of Alberta. Reproduction of this publication, in whole or in part, regardless of purpose, requires the prior written permission of Alberta Environment and Parks.

© Her Majesty the Queen in right of the Province of Alberta, 2018

Summary

Alberta Environment and Parks performed a special air quality monitoring assessment in the Lochend area on August 27 and 28, 2013. In the Lochend area, located approximately 15 km northwest of Cochrane, hydraulic fracturing is used to extract oil and natural gas. Residents in the area are concerned about the effects of the flaring of hydraulic fracturing flow-back on local air quality.

In order to assess air quality during flaring events, Alberta Environment and Parks deployed the Mobile Air Monitoring Laboratory (MAML) downwind of two flares. The MAML measured carbon monoxide (CO), sulphur dioxide (SO₂), hydrogen sulphide (H₂S), total reduced sulphur (TRS), ozone (O₃), nitrogen oxide (NO), nitrogen dioxide (NO₂), nitrogen oxides (NO_x), ammonia (NH₃), methane (CH₄), non-methane hydrocarbon (NMHC), total hydrocarbon (THC), particulate matter with diameters less than 10 μ g (PM¹⁰), 2.5 μ g (PM^{2.5}), 1 μ g (PM¹), and polycyclic aromatic hydrocarbons (PAH). No exceedances of Alberta Ambient Air Quality Objectives (AAAQOs) were observed for the compounds measured by the MAML. At two out of seven monitored locations, the MAML detected levels of hydrocarbons that were higher than typical ambient background levels in Alberta, in part due to their close proximity to an active flare (<250m).

Air samples were also taken, via evacuated canister, at three of the seven MAML monitoring locations and were analyzed for volatile organic compounds (VOCs) and reduced sulphur compounds (RSCs). The concentrations of the compounds measured by the canisters were compared with the Alberta Ambient Air Quality Objectives (AAAQOs) and the Texas Commission on Environmental Quality (TCEQ) Effects Screening Levels (ESL). None of the measured concentrations exceeded the available guidelines for the compounds to which they apply. Two of the canisters sampled some nonmethane VOCs at concentrations higher than typical ambient background levels in Alberta. These VOCs isobutene, butane, isopentane, and pentane; all are common combustion products involved with burning natural gas. Similar to the MAML measurements, these non-methane VOCs were in higher concentrations at locations within close proximity to an active flare (<250m).

Results

Site	Date	Latitude	Longitude	Canister	Well location	Dist (m)	Dir	Site description
1	27 Aug	51.3546	-114.4237	No	14-25-27-4 W5M	1700	NNE	TWP Rd 280A
2	27 Aug	51.35002	-114.4236	No	14-25-27-4 W5M	1300	NNE	Along RR 40
3	27 Aug	51.34371	-114.4044	No	14-25-27-4 W5M	2200	E	TWP Rd 275 and TWP Rd 275A
4	27 Aug	51.34865	-114.4098	No	14-25-27-4 W5M	1900	NE	TWP Rd 257A
5	28 Aug	51.32195	-114.3768	Yes	4-21-27-3 W5M	400	SSE	RR 34
6	28 Aug	51.32027	-114.3768	Yes	4-21-27-3 W5M	250	SSE	RR 34
7	28 Aug	51.31958	-114.3768	Yes	4-21-27-3 W5M	150	SSE	RR 34

Table 1: List of measurement sites used during the air quality monitoring assessment survey. Dist = approximate distance of well from MAML. Dir = approximate direction of well relative to MAML.

Site	Date &	SM	WD	Т	P	RH	CO	SO	H₂S	TRS	03	NO	NO	NO	NH	СН	MN	ТН	ΡM	PM;	ΡM	PAH
#	Time							10		0,			N	Â	~	-	НС	0	10	2.5	_	-
Units		km/h	0	°C	hPa	%	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	µg/m³	µg/m³	µg/m³	ng/m ³
1-Hour AAAQO							13000	172	10		82		159		2000					80		
	27/08/201																					
1*	3 13:27:00	10.6	210.9	22.1	872.9	36.1	460	0.6	0	0	40	0	0.4	0.2	4.3	1800	10	1810	21.4	2.4	0.9	2.5
4+	27/08/201																					
1^	3 14:27:00	16.9	230.4	22.6	872.6	32.3	230	0	0	0	42.1	0	0.4	0	3.1	1790	0	1790	3.1	1.1	0.6	1.4
	27/08/201																					
2	3 15:45:00	13.3	243.6	23	870	31.3	530	0	0	0	42.8	0	0.5	0	2.4	1780	20	1810	2.7	1.1	0.6	1.4
0*	27/08/201																					
3*●	3 16:26:00																					
4*	27/08/201								_			_										
4"	3 17:45:00	15.5	215.1	22.7	870.3	32.6	320	0.4	0	0	42	0	0.4	0.1	1.5	1790	20	1810	11.4	2.2	0.9	1.4
1*-	27/08/201																					
4•	3 18:15:00																					
F	28/08/201	4.0	407.0			10.0	0.40									1000		4000	07.4		0.5	
Э	3 12:10:00	13	127.9	22.3	869.4	42.8	940	0.4	0.2	0	38.7	1.3	3.4	4.7	2.9	1800	90	1880	27.4	5.1	2.5	2.4
6	28/08/201	00.7	4 4 7 4	00 7	000.0	10.0	000	0.5			40 7			0.5		4050	000	0000	07.0	10.0	4.5	0.7
0	3 13:15:00	26.7	147.4	22.7	869.6	40.6	630	0.5	0.2	0	40.7	2.1	6.4	8.5	3.3	1950	300	2260	67.8	10.9	4.5	3.7
7	28/08/201	00 F	450.4	00.7	000.0	40.7	500				10.1	07				0070	500	0000	400.0		7.0	0.5
1	3 14:35:00	23.5	152.1	22.7	869.6	42.7	530	0.2	0	0	42.1	0.7	3	3.8	2.9	2070	560	2630	122.8	20.8	1.2	2.5

Table 2: MAML hourly average measurements. AAAQOs are listed. Date and time is the end-time of hourly average in MST. (WS = wind speed; WD = wind direction, T = temperature, P = pressure, RH = relative humidity.)

* Site located near gravel road, could lead to elevated PM.
Less than 45 minutes (75%) of valid data collected during the measurement period.

Table 3: Compounds that were detected in the canister samples, in ppb. For the c1c4 analysis of methane, the uncertainty is 39%. The method detection limit (MDL) for Freon-11 and Freon-12 is 0.2 ppb, while the MDL for the other VOC-PT compounds listed is 0.03 ppb. The uncertainties in the VOC compounds range from 4-28%.

Analysis	Compound	AAAQO (1-hour)	Short-Term Texas ESL	#3545 Site #5	#5362 Site #6	#1871 Site #7
c1c4	Methane			2.8x10 ³	1.9x10 ³	7.0x10 ³
VOC-PT	Freon-12		10000	0.98	0.549	0.159
VOC-PT	Isobutane		10000	0.357	12.6	24.1
VOC-PT	Butane		28000	0	34.3	67.7
VOC-PT	Isopentane		1300	2	11.2	22.3
VOC-PT	Freon-11		5000	0.132	0	0
VOC-PT	Acetone	2400	2500	5.2	0	0
VOC-PT	Pentane		1400	0	16.3	37.2
VOC-PT	Isoprene		20	0	0.404	0
VOC-PT	Methylene chloride		1100	0.001	0.001	0.001
VOC-PT	2-Methylpentane		850	0	0.249	0.666
VOC-PT	3-Methylpentane		1000	0	0	0.099
VOC-PT	Hexane	5960	1500	0	0.689	1.55