

Background

"How are the fish in my lake doing?" We need this answer to set appropriate fishing regulations, to understand and correct any problems with fish habitat, and to guard against invasive species. A healthy fish population and fish community means we can all enjoy the benefits of sustainable fisheries and healthy ecosystems. A standard method of assessing the status of fish populations is necessary to allow comparisons of fish sustainability across the years at a lake, and to compare to other lakes. In Alberta, we use an accepted standard of index netting for lake fisheries assessment. This method provides the necessary data on fish abundance, biological data (such as age and sex), and species diversity to assess sustainability.

Fall Index Netting (FIN)

Alberta Environment and Parks monitor Walleye and Northern Pike populations using standardized index netting (Morgan, 2002). Fall index netting occurs during late summer and fall when water temperatures are 10-15 °C. Standardized multi-mesh gill nets are set at random locations between 2 and 15 metres deep, set for 21-27 hours (i.e., a net-night), and then reset in new random locations. At Kinnaird Lake in 2015, a half-length variation of the standard index net was used, balancing precision of the catch rates with reduced sampling effort. Information from Yellow Perch, Lake Whitefish, Burbot, minnow, and sucker species are also collected. The information collected from each fish includes length, weight, age, gender, and maturity. After sampling, if fish are appropriate for human consumption, Alberta biologists provide the fish to local Indigenous peoples or to persons on approved subsistence lists. Typically, a tiny proportion of the lake's fish population (usually less than 1 or 2%) are killed in this sampling.

How is this information used?

Catch rates (i.e., number of fish captured per net-night) of Walleye and Northern Pike are an index of the populations' abundance, with higher catch rates meaning there are more fish in the lake. The abundance of adult fish is compared to the standardized thresholds for 5 broad categories of risk to the long-term sustainability of the fish population, with higher densities of fish having lower risk (Table 1). The sizes and age of fish also tell us if problems with overharvest (e.g. too few fish living to old age) or habitat (e.g., poor spawning success) are a concern. Biologists use this information, as well as a variety of data on water quality, access, development, and habitat threats as part of Alberta's Fish Sustainability Index (FSI).

The Fisheries Management Objective for most Alberta fisheries is **long-term sustainability**, shown by the red lines on the graphs below. Achieving this objective uses the netting data and the FSI to determine the most appropriate sport fishing regulations for a lake. This landscape-level assessment allows for consistent, broad temporal comparisons of fish sustainability and status. For more information please see Alberta's FIN and FSI websites,

- http://aep.alberta.ca/fish-wildlife/fisheriesmanagement/fall-index-netting/default.aspx
- http://aep.alberta.ca/fish-wildlife/fisheriesmanagement/fish-sustainability-index/default.aspx

Table 1 – Alberta's Fish Sustainability Index risk thresholds for Walleye and Pike using the standardized Fall Index Net (FIN) method. **Note:** Thresholds align with species management frameworks.

Mature Walleyes / 1/2 net	Mature Pike / 1/2 net	Risk to Sustainability
>14.5	>10.9	Very Low
10.2-14.5	7.7-10.9	Low
7.3-10.1	5.5-7.6	Moderate
2.9-7.2	2.2-5.4	High
<2.9	<2.2	Very High

Results of the 2015 FIN at Kinnaird Lake

Kinnaird Lake (871 ha) is located approximately 29 km east from the town of Lac La Biche. This lake is directly connected to two other lakes (Jackson and Blackett). From September 28 to October 1, 2015, twelve ½ length nets captured 22 Cisco, 47 Northern Pike, 105 Walleye, and 48 Yellow Perch.

Walleye

The mean catch rate of Walleyes was 8.8/ $\frac{1}{2}$ net-night. The catch rates of mature (Figure 1) and immature Walleye were 7.8/ $\frac{1}{2}$ net-night and 1.0/ $\frac{1}{2}$ net-night, respectively. The corresponding FSI score for the current mature density of Walleye was assessed at moderate risk.

The length distribution, however, shows unstable and weak recruitment, with a moderate pulse of larger fish (Figure 2). Historically known as an excellent walleye lake, poor recruitment could be a result of past overfishing, rather than habitat issues.

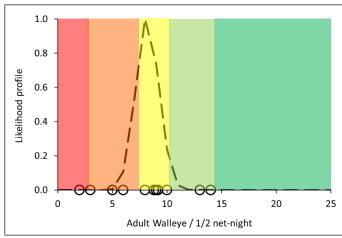


Figure 1 - The FIN catch rate of mature Walleyes from Kinnaird Lake, 2015. Dashed line is the mean likelihood catch rate (7.8 fish/½ net-night), with individual net data as hollow circles (n=12 nets).

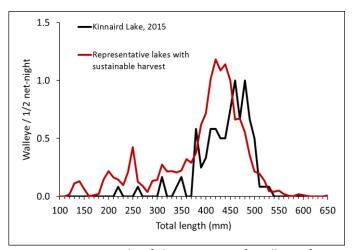


Figure 2 – FIN sample of showing size of Walleyes from Kinnaird Lake, 2015. The red line indicates the average length distribution of Walleye from 5 Alberta lakes supporting longterm sustainable harvests of Walleye.

The 2015 FIN sample represented approximately 1.3% of the estimated mature Walleye population size.

The mean catch rate of mature Northern Pike was 3.9/½ netnight (Figure 3), with a corresponding FSI assessment of high risk.

Northern Pike

The length distribution shows unstable recruitment of small Northern Pike, and a single pulse of larger fish, with severe truncation of Northern Pike larger than 590 mm (Figure 4).

The 2015 FIN sample represented approximately 0.3% of the estimated mature Northern Pike population size.

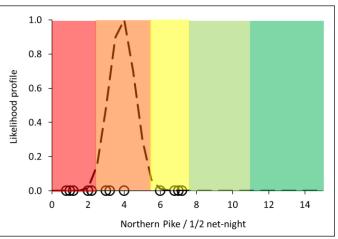


Figure 3 - The FIN catch rate of Northern Pike from Kinnaird Lake, 2015. Dashed line is the mean likelihood catch rate (3.7 fish/ $\frac{1}{2}$ net-night), with individual net data as hollow circles (n=12 nets).

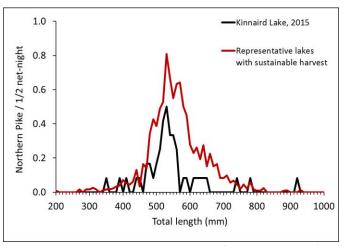


Figure 4 – FIN sample showing size of Northern Pike from Kinnaird Lake, 2015. The red line indicates the average length distribution of Pike from 6 Alberta lakes supporting long-term sustainable harvests of Pike.

Summary

As with Jackson Lake, the FINs at Kinnaird Lake (2005, 2010, 2015) showed a decline then an increase in status, to the current moderate risk. The unstable recruitment of Walleye may necessitate more carefully managed harvest to achieve long-term sustainability.

The FIN assessments for Pike show a decline from moderate risk to high risk. Conservation-focused management is therefore necessary to achieve long-term sustainability.

Literature

Morgan, G.E. 2002. Manual of Instructions-Fall Walleye Index Netting. Percid Community Synthesis, Diagnostics and Sampling Standards Working Group. Laurentian University, Sudbury Ontario.