

Lindbergh SAGD Expansion Project: Aquatic Resources Baseline and Effects Assessment

December 2013

Prepared for:

Pengrowth Energy Corporation Calgary, Alberta

305, 1228 Kensington Rd. NW, Calgary, AB, Canada T2N 3P7 • Tel: 1.403.351.0191 • Toll Free: 1.866.926.3261 • Fax: 1.403.245.8866 • www.hatfieldgroup.com

LINDBERGH SAGD EXPANSION PROJECT: AQUATIC RESOURCES BASELINE AND EFFECTS ASSESSMENT

Prepared for:

PENGROWTH ENERGY CORPORATION 2100, 222 THIRD AVENUE SW CALGARY, AB T2P 0B4

Prepared by:

HATFIELD CONSULTANTS 305, 1228 KENSINGTON RD. NW CALGARY, AB T2N 3P7

DECEMBER 2013

MEMS1702.3

305, 1228 Kensington Rd. NW, Calgary, AB, Canada T2N 3P7 • Tel: 1.403.351.0191 • Toll Free: 1.866.926.3261 • Fax: 1.403.245.8866 • www.hatfieldgroup.com

TABLE OF CONTENTS

LIST	OF FIGURESiii
LIST	OF APPENDICESiv
LIST	OF ACRONYMSv
1.0	INTRODUCTION1
1.1	OVERVIEW1
1.2	TERMS OF REFERENCE
1.3	GOVERNMENT REGULATION AND POLICY 2
1.5	DATA SOURCES
2.0	SCOPE OF ENVIRONMENTAL ASSESSMENT
2.1	STUDY AREAS
2.1.1	Local Study Area
2.1.2	Regional Study Area
2.1.3 22	
2.3	VALUED ENVIRONMENTAL COMPONENTS
2.3.1	Variables Used to Characterize Valued Environmental Components
2.4	ASSESSMENT CASES
2.4.1	Baseline Case
2.4.3	Planned Development Case
3.0	AQUATIC RESOURCES BASELINE CASE
3.1	BASELINE CASE FOR LOCAL STUDY AREA7
3.1.1	Water Quality - LSA9
3.1.2	Fish Resources – LSA
3.2	BASELINE CASE FOR REGIONAL STUDY AREA
3.2.1	Water Quality - RSA21
3.2.2	Fish Resources - RSA
3.3	BASELINE CASE FOR ACID SENSITIVITY OF SURFACE AQUATIC RESOURCES
4.0	EFFECTS ASSESSMENT
4.1	EFFECTS ON AQUATIC HABITAT AND RESOURCES FROM SURFACE DISTURBANCE DURING CONSTRUCTION, OPERATION AND
111	RECLAMATION ACTIVITIES
4.1.2	Mitigation Measures to be Implemented
4.1.3	Impact Analysis
4.1.4	Residual Effects Classification25

i

4.2	EFFECTS ON SURFACE AQUATIC RESOURCES THROUGH INSTREAM	20
101	CONSTRUCTION ACTIVITIES	20
4.2.1	Mitigation Measures to be Implemented	20
4.2.2		
4.2.3	Inpact Analysis	
4.2.4		
4.3	IN SURFACE WATER QUALITY	28
4.3.1	Description of Effects and Assessment of Validity Impact Pathways	28
432	Mitigation Measures to be Implemented	29
4.3.3	Impact Analysis	30
4.3.4	Residual Effects Classification	
ΔΔ	EFFECTS ON SURFACE AQUATIC RESOURCES THROUGH CHANGES	
	TO SURFACE FLOW RATES AND LEVELS	31
441	Description of Effects and Assessment of Validity Impact Pathways	31
442	Mitigation Measures to be Implemented	32
443	Impact Analysis	32
4.4.0 4.4.4	Residual Effects Classification	33
л.т.т Л Б		
4.5		24
151	ALIERED ACCESS TO FIGH-BEARING WATERBODIES	24
4.5.1	Mitigation Measures to be Implemented	
4.5.2	Impact Analysis	
4.5.5	Residual Effects Classification	35
4.0.4		
4.0	CHANGES IN WATER QUALITY	
4.6.1	Description of Effects and Assessment of Validity of Impact Pathways	35
4.6.2	Mitigation Measures to be Implemented	36
4.6.3	Impact Analysis	37
4.6.4	Residual Effects Classification	37
4.7	EFFECTS ON SURFACE AQUATIC RESOURCES FROM ACIDIFYING	
	EMISSIONS	38
4.7.1	Description of Effects and Assessment of Validity of Impact Pathways	
4.7.2	Mitigation Measures	
4.7.3	Impact Analysis	
4.7.4	Residual Impact Classification	
5.0	ENVIRONMENTAL ASSESSMENT SUMMARY	. 40
5.1	SUMMARY OF MITIGATION MEASURES FOR AQUATIC RESOURCES	40
5.2		40
J. 5 2 1	Construction Monitoring	-+ /0
J.Z.I 5 2 2	Effects Monitoring	4 9 ⊿∆
J.Z.Z		49
6.0	CLOSURE	. 50
		-
7.0	REFERENCES	. 51

LIST OF TABLES

Table 1	Terms of Reference sections applicable to this assessment1
Table 2	Aquatic resource issues considered in this report4
Table 3	Variables used to characterize surface water quality5
Table 4	Summary of key indicator fish species6
Table 5	Summary of sampling conducted in the Local and Regional Study Area for aquatic resources
Table 6	Summary of water quality variables collected in 2011 to 2012.*10
Table 7	Summary of water quality variables collected in 2013.*14
Table 8	Summary of fish inventories conducted in 2011-2012 on
	watercourses and waterbodies within the Pengrowth LSA and RSA
Table 9	watercourses and waterbodies within the Pengrowth LSA and RSA
Table 9 Table 10	watercourses and waterbodies within the Pengrowth LSA and RSA
Table 9 Table 10 Table 11	watercourses and waterbodies within the Pengrowth LSA and RSA

LIST OF FIGURES

- Figure 1 Pengrowth Lindberg SAGD Expansion Project aquatic resources study area.
- Figure 2 Air quality study areas for acid sensitive lake analysis.
- Figure 3 Project footprint and sampling locations for aquatic resources, 2011-2013.
- Figure 4 Fish habitat in the project area.

LIST OF APPENDICES

- Appendix A1 Field Work Activities and Methodology Water Quality
- Appendix A2 Surface Water Quality Data
- Appendix A3 Aquatic Habitat Information

LIST OF ACRONYMS

AENV	Alberta Environment
AEPEA	Alberta Environmental Protection and Enhancement Act
ANC	acid neutralizing capacity
ASRD	Alberta Sustainable Resource Development
BPD	barrels per day
CCME	Canadian Council of Ministers of the Environment
COSEWIC	Committee on the Status of Endangered Wildlife
CPFs	central processing facilities
EIA	environmental impact assessment
ESRD	Alberta Environment and Sustainable Resource Development
FWMIS	Fish and Wildlife Management Information System
LSA	local study area
MEMS	Millennium EMS Solutions Ltd.
PAI	potential acid input
RAMP	Regional Aquatics Monitoring Program
RSA	regional study area
SAGD	steam-assisted gravity drainage
TCUs	true colour units
TOR	terms of reference
VEC	valued environmental component

v

1.0 INTRODUCTION

1.1 OVERVIEW

This report is an Environmental Impact Assessment (EIA) for aquatic resources (surface water quality, fish resources, and aquatic habitat) for the proposed Pengrowth Energy Corporation (Pengrowth) Lindbergh Steam-Assisted Gravity Drainage (SAGD) Expansion Project (the Project).

1.2 TERMS OF REFERENCE

The format and contents of this Project report are guided by the Final Terms of Reference (ToR) for the EIA report for the Project (ESRD 2013). The ToR outlines the format and contents for the entire regulatory application and EIA (i.e., all environmental disciplines). This report addresses specific components of the ToR that are relevant to surface water quality and aquatic ecology (Table 1).

This report is based on the Project design and activities described in the application (Pengrowth 2013), including the construction, operation, reclamation, and closure of the Project and related facilities.

Sectio	n in Final Terms of Reference for Project (ESRD 2013)	Report Section
3.4	Surface Water Quality	
3.4.1	Baseline Information	
	[A] Describe the baseline water quality of watercourses and waterbodies.	3.1.1
3.4.2	Impact Assessment	
	[A] Describe the potential impacts of the Project on surface water quality.	4.3
3.5	Aquatic Ecology	
3.5.1	Baseline Information	
	 [A] Describe and map the fish, fish habitat and aquatic resources (e.g., aquatic and benthic invertebrates) of the lakes, rivers, ephemeral water bodies and other waters. Describe the species composition, distribution, relative abundance, movements and general life history parameters of fish resources. Also identify any species that are: a) Listed as "at Risk, May be at Risk and Sensitive" in the <i>General</i> 	3.1
	Status of Alberta Wild Species (Alberta Environment and Sustainable Resource Development);	
	b) Listed in Schedule 1 of the federal Species at Risk Act,	
	c) Listed as "at risk" by COSEWIC; and	
	d) Traditionally used species.	
	[B] Describe and map existing critical or sensitive areas such as spawning, rearing, and over-wintering habitats, seasonal habitat use including migration and spawning routes.	3.1
	[C] Describe the current and potential use of the fish resources by Aboriginal, sport or commercial fisheries.	3.1

Table 1 Terms of Reference sections applicable to this assessment.

Table 1 (Cont'd.)

Sectio	n in F	inal Terms of Reference for Project ()	Report Section				
3.5.2	Impact Assessment						
	[A] hab	Describe and assess the potential impacts of the Project to fish, fish itat, and other aquatic resources, considering:					
	a)	Habitat loss and alteration;	4.1, 4.2				
	b)	Increased fishing pressures in the region that could arise from the increased human activity and improved access from the Project. Characterize the current use of local and regional fisheries resources to support the assessment of potential changes in angling pressure;	4.5				
	c)	Increased habitat fragmentation;	4.1				
	d)	Acidification;	4.6				
	e)	Groundwater-surface water interactions; and	4.4				
	f)	Entrapment and entrainment of fish at water intakes.	4.4				
	[B] proj	Identify the key aquatic indicators that the Proponent used to assess ect impacts. Discuss the rationale for their selection.	2.3				
	[C] hab prov a "N	Identify plans proposed to offset any loss in the productivity of fish itat. Indicate how environmental protection plans address applicable vincial and federal policies on fish habitat including the development of Io Net Loss" fish habitat objective.	4.8				

1.3 PROJECT LOCATION AND SCOPE

The Project will expand bitumen production of the Lindbergh SAGD Project (Phase 1) from 1,987 m^3/day (12,500 barrels per day (bpd)) to 4,770 m^3/day (30,000 bpd).

The Project is located approximately 24 km southeast of Bonnyville within St. Paul County No. 19 and the Municipal District of Bonnyville No. 87. All facilities will be located within Townships 58 and 59 and Ranges 4 and 5, West of the 4th Meridian.

Planned facilities include a number of well pads and well pairs, with associated infrastructure including roads, above-ground gathering and distribution pipeline systems. The Phase 2 expansion components for the central processing facility (CPF) will be built within the existing Phase 1 CPF footprint, which will not increase in physical size. The existing water source will be utilized for the Project.

Pengrowth has identified two development scenarios, the Initial Development footprint required to bring production up to the design capacity of 4,770 m³/day (30,000 bpd) and the Future Development required to sustain production for the life of the Project. The Project is expected to produce approximately 43.7 million m³ (275 million barrels) of bitumen over 25 years.

1.4 GOVERNMENT REGULATION AND POLICY

This report has been prepared in consideration of the following government laws, regulations, and standards:

- *Alberta Environmental Protection and Enhancement Act* (EPEA 2000), with associated regulations and amendments in force;
- Alberta Water Act (2000), with associated regulations and amendments in force, particularly the Alberta Code of Practice for Watercourse Crossings and the Code of Practice for Pipelines and Telecommunication Lines Crossing A Water Body;
- The *Canada Fisheries Act* (Minister of Justice 2010), with associated regulations and amendments in force;
- Surface Water Quality Guidelines for Use in Alberta (AENV 1999); and
- Canadian Council of Ministers of the Environment (CCME) Canadian Water Quality Guidelines (CWQG) (CCME 2007) and CCME Freshwater Sediment Quality Guidelines (CCME 2002).

1.5 DATA SOURCES

Data sources used in the preparation of this report include specific field studies undertaken in support of the Project and a review of the Fisheries and Wildlife Management Information System (FWMIS) maintained by Alberta Environment and Sustainable Resources Development (ESRD 2013).

2.0 SCOPE OF ENVIRONMENTAL ASSESSMENT

2.1 STUDY AREAS

2.1.1 Local Study Area

The Local Study Area (LSA) includes the watershed of all watercourses that are potentially affected by the Project footprint (Figure 1). It is the same LSA as for the hydrology component of this Application (nhc 2013). The rationale for this is that the LSA for hydrology was chosen to encompass the watersheds of any drainages that may be affected by Project activities. This could include direct disturbance of watercourses through construction activities as well as any potential changes in flow regime as a result of the project. Both direct disturbance or changes in flow have the potential to affect fish community or fish habitat and it was therefore deemed appropriate to set the LSA for aquatic resources to match that of the LSA for hydrology.

2.1.2 Regional Study Area

The Regional Study Area (RSA) includes all watersheds within the LSA plus any other watersheds that contributed flow to the watersheds within the LSA but which are not directly affected by the Project footprint (Figure 1). The RSA was also set to match that of the RSA for hydrology as it represents the area in which there is potential for alterations in flow to affect fish habitat.

2.1.3 Study Area for the Effects of Acidifying Emissions

Potential effects of acidifying emissions on aquatic resources were assessed on the lakes for which water quality data is available and which are also located within the Air Quality Regional Study Area (Figure 2).

2.2 AQUATIC RESOURCES ISSUES CONSIDERED

The surface aquatic resources issues considered in this assessment were developed from a review of:

- the scope and findings of environmental assessments and studies conducted elsewhere in the region; and
- findings of primary field data collection during aquatic resource baseline studies for the Project (Section 3.0 of this report).

The final list of issues considered in this report is summarized in Table 2.

Issue/Description of Potential Effect	Related Project Activities
Changes in fish habitat	 Construction, operation, reclamation and decommissioning Project activities giving rise to: surface disturbances and watercourse crossings; changes in surface water quality; physical changes in stream channel morphology or fragmentation of habitat; and changes in surface water flow rates which may affect habitat availability.
Changes in fish health and abundance	 Construction, operation, reclamation and decommissioning Project activities giving rise to: changes in fish habitat which can affect abundance; and modified access to and increased recreational angling in fish-bearing watercourses and waterbodies.
Changes in surface water quality	 Construction, operation, reclamation and decommissioning Project activities giving rise to: surface disturbances and increased sediment loading; accidental release or seepage of Project-affected water; accidental spills of chemicals and waste products; acidifying emissions from Project facilities and equipment; potential contamination of groundwater; and potential interactions between groundwater and surface water.

Table 2Aquatic resource issues considered in this report.

2.3 VALUED ENVIRONMENTAL COMPONENTS

The identification of key issues relevant to aquatic resources confirmed that surface water quality and fish resources are the Valued Environmental Components (VECs) to be considered in this assessment.

2.3.1 Variables Used to Characterize Valued Environmental Components

2.3.1.1 Surface Water Quality

The selection of variables used to characterize surface water quality for the Project (Table 3) was guided by a review of:

- requirements of the ToR for this EIA (ESRD 2013);
- water quality variables that have regulatory concern in the form of guidelines; and
- various water quality variables required for interpretation of effects on other aquatic components, particularly fish populations and human health.

Table 3Variables used to characterize surface water quality.

Group	Water Quality Variables
Conventional variables	Colour; total organic carbon; dissolved organic carbon; total dissolved solids; total suspended solids; pH; conductivity; total alkalinity; total hardness; dissolved oxygen; turbidity.
Major ions	Bicarbonate; calcium; chloride; magnesium; potassium; sodium; sulphate; sulphide.
Nutrients	Ammonia nitrogen; Nitrate+Nitrite; total Kjeldahl nitrogen; total phosphorus; chlorophyll a.
Organics and Hydrocarbons	Phenols; hydrocarbons (recoverable); naphthenic acids.
Total and dissolved metals	Aluminum; antimony; arsenic; barium; beryllium; boron; cadmium; chromium; cobalt; copper; iron; lead; lithium; manganese; ultra-trace mercury; molybdenum; nickel; selenium; silver; strontium; thallium; titanium; uranium; zinc.

2.3.1.2 Fish Resources

A set of key indicator species was developed to describe fish resources in the LSA and the RSA (Table 4). These key indicator species were selected with a review of:

- fish species presence and abundance including the suitability of respective habitats as determined during the 2011 to 2013 field programs for the baseline studies and stream crossing assessments;
- the fish species reasonably expected to be present in the types of stream orders within the LSA and RSA, as documented in the Fish and Wildlife Management Information System (FWMIS) database (ESRD 2013);
- importance of particular species as a traditional resource; and
- species designated as having a status of special concern (ASRD 2005) or a status of candidate wildlife species by a federal agency (COSEWIC 2010).

Fish Species	Fish Species Scientific Name		Recovered in FWMIS Database ¹	Historical Presence ²	Captured in Baseline Field Studies ³	Status of Special Concern ⁴
	Larç	ge-Bodied	Species			
Burbot	Lota lota	BURB		\checkmark		
Lake whitefish	Coregonus clupeaformis	LKWH		\checkmark		
Longnose sucker	Catostomus catostomus	LNSC	\checkmark		\checkmark	
Northern pike	Esox lucius	NRPK	\checkmark		\checkmark	
Walleye	Sander vitreus	WALL		\checkmark		
White sucker	Catostomus commersoni	WHSC		\checkmark		
Yellow perch	Perca flavescens	YLPR	\checkmark		\checkmark	
	Sma	all-Bodied	Species			
Brook stickleback	Culaea inconstans	BRST	\checkmark		\checkmark	
Fathead minnow	Pimphales promelas	FTMN	\checkmark		\checkmark	
Finescale dace	Phoxinus neogaeus	FNDC	✓			
lowa darter	Etheostoma exile	IWDR	✓			
Lake chub	Couesius plumbeus	LKCH	\checkmark		✓	
Longnose dace	Rhinichthys cataractae	LNDC			\checkmark	
Log perch	Percina caprodes	LGPR		\checkmark	\checkmark	
Spottail Shiner	Notropus hudsonius	SPSH	\checkmark	~	✓	

Table 4Summary of key indicator fish species.

¹ from ESRD (2013A)

² records older than 15 years from ESRD (2013A)

³ this report

⁴ from <u>http://www.cosewic.gc.ca/eng/sct3/index_e.cfm</u> assessment cases

2.4 ASSESSMENT CASES

2.4.1 Baseline Case

The Baseline Case consists of the existing and approved developments which may be influencing aquatic resources in the vicinity of the Project. The Baseline Case, described in Section 3.0 of this report, assumes that: (i) any effects of existing projects on aquatic resources are already reflected in the data gathered to establish the baseline conditions; and (ii) existing projects will not cause any different effects on aquatic resources in the future.

2.4.2 Application Case

The Application Case is an assessment of the incremental environmental effects of the Project to existing conditions as defined by the Baseline Case.

2.4.3 Planned Development Case

The Planned Development Case is an assessment of the incremental environmental effects of the combined Application and Baseline Cases with reasonably foreseeable or planned developments that have been publicly disclosed at least six months prior to submission of this report.

There are no additional planned projects located within the LSA and RSA. Therefore, the Planned Development Case is only assessed for possible effects on aquatic resources via changes in acidifying emissions within the Air Quality Local and Regional Study Areas.

3.0 AQUATIC RESOURCES BASELINE CASE

The aquatic resources baseline case first describes surface water quality, fish resources, and aquatic habitat for the watercourses and waterbodies within the LSA, followed by those within the RSA.

3.1 BASELINE CASE FOR LOCAL STUDY AREA

The location of sites for the baseline aquatic resources field program conducted in support of this EIA is provided in Table 5 and in Figure 3. Water quality collection, fish inventory and aquatic habitat assessment followed the requirements of the Standard Operating Procedures (SOPs) used in the Regional Aquatics Monitoring Program (RAMP)¹.

Baseline information was collected for different parts of the LSA in different years. Baseline field programs in 2011 and 2012 focused on Mooswa Creek and Garnier Creek and the lower reaches of their tributaries. There was a defined channel at most of the locations and water was present during the entire open water season. Numerous named lakes were also sampled, included Garnier Lakes, Michel Lake and Muriel Lake. Baseline studies conducted in 2013 focused on the upper reaches of tributaries to Garnier Creek and Muriel Lake, the main watercourses and waterbodies in a number of additional lease areas. These watercourses contained mostly poorly-defined and/or intermittent drainages with low potential for fish habitat. Beaver ponds were present along some of the drainages, but were generally not connected by defined channels. Lakes in this area were small, shallow and had poorly-defined shorelines.

¹ found at <u>http://ramp-alberta.org/UserFiles/File/RAMP_Design_&_Rationale.pdf</u>

Table 5 Summary of sampling conducted in the Local and Regional Study Area for aquatic resources.

Olto Onda	Cine and Name	Site Code Stream Name		e 12 NAD 83)	Season							
Site Code	Stream Name	Easting	Northing	Summer 2011	Fall 2011	Winter 2012	Spring 2012	Winter 2013	Spring 2013	Summer 2013		
Watercourses												
SC1-4	Unnamed	530061	5999690					dry	dry	dry		
SC1-3	Unnamed	528848	5998851					dry	dry	dry		
SG2-3	Unnamed	533159	5996415					Frozen	aifh	aif		
TRL1-1	Unnamed	535260	5996788					Frozen	ndc	ndc		
SC2-1	Unnamed	528198	6000186					Frozen	ndc	ndc		
SC1-2	Unnamed	526863	5996781					Frozen	ndc	ndc		
SG2-2	Unnamed	531346	5996858					Frozen	ndc	ndc		
SG21-1	Unnamed	533178	5995218					Frozen	ndc	ndc		
SG4-4	Unnamed	531470	5993295					Frozen	ndc	ndc		
SG4-2	Unnamed	528583	5991829					Frozen	aifh	aif		
SG4-3	Unnamed	530172	5990778					Frozen	ndc	ndc		
SC1-1	Unnamed	527071	5997554					ai	aifh	ai		
SG2-4	Unnamed	533984	5994680					Frozen	ndc	ndc		
SG4-5	Unnamed	533759	5991597					Frozen	ndc	ndc		
GAC-4	Unnamed	527765	5983546					ai	aifh	if		
SG7-1	Unnamed	526144	5987246		۸	^	ahi					
SM3b-1	Unnamed	522962	5984121	h	۸	^	ahi					
SM3a-1	Unnamed	522890	5982449	afhi	afhi	ai	afhi					
MOC-1	Moosewa Creek	523299	5968948	fh	afhi	^	afhi					
SL1-1	Unnamed	524238	5994429	٨	۸	^	ahi					
GAC-1	Garnier Creek	525489	5994514	afhi	afhi	ai	afhi					
GAC-2	Garnier Creek	525979	5991218	fh	f		fh					
GAC-3	Garnier Creek	527104	5988482	fh	f	^	fh					
SG2-1	Unnamed	527405	5993827	afhi	afi	^	afhi					
SG4-1	Unnamed	527271	5990857	ahi	afi	^	afhi					
SG5-1	Unnamed	524818	5989857		^	^	afhi					
SG8-1	Unnamed	527576	5986577	٨	۸	^	ahi					
SG9-1	Unnamed	527585	5986312	٨	۸	^	ahi					
MOC-2	Moosewa Creek	521460	5982100	afhi	afhi	ai	afhi					
Lakes												
MUL-1	Muriel Lake	523573	5995546	ahi	ai	ai	ahi					
MIL-1	Michel Lake	520486	5989305	ai	ai	ai	afhi					
GAL-1	Garnier Lake	527432	5987357	afhi	afi	ai	afhi					
DIL-1	Dion Lake	525092	5981708	ai	afhi	ai	afhi					
LC11-1	Unnamed Lake	530502	5998571					ai	ai			
LC11-2	Unnamed Lake	532157	5997939					ai		ai		
REL-1	Reita Lake	535404	5998348					Frozen	aifh	aif		
LG2-2	Unnamed Lake	529087	5995125					ai	aifh	aif		
LG2-1	Unnamed Lake	528562	5994485					Frozen	no access	i		
GAL-2	Garnier Lake	529181	5982602					ai	ai	ai		

a - analytical water quality, described in more detail in Section 3.1.1

i - in situ water quality, described in more detail in Section 3.1.1

^ - simple aquatic habitat survey, described in more detail in Section 3.1.2

h - detailed aquatic habitat survey, described in more detail in Section 3.1.3

f - fish inventory, described in more detail in Section 3.1.2

ndc - defined channel

dry - no water present

3.1.1 Water Quality - LSA

Appendix A1 contains quality assurance/quality control (QA/QC) analyses of surface water quality data obtained.

Detailed water quality information is provided in Appendix A2. A summary of surface water quality variables is provided in Table 6 (2011 and 2012) and Table 7 (2013). The tables include the frequency with which guidelines for each water quality variable (if applicable) were exceeded.

The waterbodies within the LSA are neutral to slightly alkaline (pH between 6.96 and 8.45) with the exception of summertime pH in Reita Lake which was 9.89. This value was verified by repeat measurement in the lab and is consistent with the field pH measured of 10.49. This value exceeds the upper limit of the Alberta guideline for the protection of aquatic life of 9.0. The shoreline of the lake appears to be receding, so elements may be concentrating in the lake, leading to the high pH. Sulphide concentrations were high in many of the samples, with over 50% of samples exceeding the guidelines (Table 6, Table 7).

Concentrations of water quality variables varied widely among the sites sampled. Sampled concentrations of total dissolved solids range from 127 mg/L (Michel Lake) to 2,210 mg/L (Garnier Lake), and concentrations of total suspended solids range from below the detection limit (<3 mg/L) to 120 mg/L. Water quality in the larger, named lakes (Muriel, Reita, Dion, Michel and Garnier Lakes) was indicative of eutrophic ecosystems with high total nitrogen (ranging from 1.6 to 3.7 mg/L) and total phosphorus (0.05 to 0.14 mg/L) The lakes are classified as eutrophic based on their summer phosphorus and nitrogen concentrations (Dodds et al. 1998).

Concentrations of phenols, total phosphorous, and total Kjeldhal nitrogen exceeded water quality guidelines for the protection of aquatic life at the majority of watercourse sites that were sampled over all four seasons (Table 6). Concentrations of sulphides were also above guideline values, particularly in the spring and at site SM3a-1 in all seasons. Concentrations of a number of metals were in exceedance of guidelines, including total iron, total aluminum, and total arsenic.

The concentration of dissolved oxygen was below the acute dissolved oxygen guidelines of Alberta for protection of aquatic life (5.0 mg/L) in most of the watercourses during the summer, and several of the sites in the fall (Table 4). The concentration of dissolved oxygen was generally above this guideline in the spring.

In the lakes, concentration of total Kjeldahl nitrogen was in exceedance of water quality guidelines at all sites during all seasons of sampling. Concentrations of phenols, sulfates, sulphides, and total phosphorous were also in exceedance at most sites during all seasons. Ammonia concentrations exceeded guidelines at site GAL-1 during the winter. Concentrations of a number of metals were in exceedance of guidelines, including total arsenic, total iron, and total aluminum. Dissolved oxygen concentrations were below acute concentrations (5.0 mg/L) at site DIL-1 during all season except spring, as well as at site MUL-1 during the winter.

Table 6 Summary of water quality variables collected in 2011 to 2012.*

Water Quality Veriable	Unito	Unite Regulatory Detection Limit			2011-2012 Data						
water Quality variable	Units	Guideline	Detection Linit	n	Min	Med	Max	No. Exceeded	Freq %		
Field Measurements											
Dissolved Oxygen	(mg/L)	5, 6.5 ¹	_2	42	0	7	14.2	14	33		
Conductivity	μS/cm	-	_2	39	76	467	2197				
рН	рН	6.5-9.0	_2	43	6.9	7.9	9.4	3	7		
Temperature	°C	-	_2	43	0	8	21.2				
Conventional Variables											
Alkalinity, Total (as CaCO ₃)	mg/L	-	5	43	76.9	285	1510				
Color, True	C.U.	-	2	43	5.5	38.5	339				
Conductivity (EC)	μS/cm	-	0.2	43	76	479	2197				
Dissolved Organic Carbon	mg/L	-	1	43	11	23	92.4				
Hardness (as CaCO ₃)	mg/L	-		43	68.2	274	1120				
Total Dissolved Solids	mg/L	-	10	43	127	356	2210				
Total Organic Carbon	mg/L	-	1	43	11.1	23.7	91				
Total Suspended Solids	mg/L	+10mg/L ^A	3	43	3	5	120				
Turbidity	NTU	-	0.1	33	0.24	3.58	57				
General Organics											
Hydrocarbons, Recoverable (I.R.)	mg/L	-	1	43	1	1	3				
Naphthenic Acids	mg/L	-	1	42	1	1	1.4				
Phenols (4AAP)	mg/L	0.004	0.001	43	0.0035	0.0108	0.0501	41	95		
Major Ions											
Bicarbonate (HCO ₃)	mg/L	-	5	43	93.9	326	1850				
Calcium (Ca)	mg/L		0.5	43	9.21	51.8	133				
Carbonate (CO ₃)	mg/L	-	5	43	5	5	193				
Chloride (Cl)	mg/L	640, 120 ^B	0.5	43	0.75	2.52	53.5	0	0		
Hydroxide (OH)	mg/L	-	5	43	5	5	5				
Magnesium (Mg)	mg/L	-	0.1	43	8.61	27.9	232				
Potassium (K)	mg/L	-	0.1	43	2.23	7.38	60				
Sodium (Na)	mg/L	-	1	43	1.4	11.1	337				
Sulfate (SO ₄)	mg/L	-	0.5	43	0.5	4.89	393	11	26		
Sulphide	mg/L	0.002 ^C	0.002	43	0.002	0.0022	5.11	24	56		

*See page 13 for General Notes.

Table 6 (Cont'd.)*

Water Quality Variable	Regulatory Detection Limit			2011-2012 Data						
	Units	Guideline	Detection Limit		Min	Med	Max	No. Exceeded	Freq %	
Nutrients and BOD										
Ammonia-N	mg/L	Variable ^D	0.05	43	0.05	0.05	2.04	2	5	
Biochemical Oxygen Demand	mg/L	-	2	41	2	2	18.2			
Nitrate (as N)	mg/L	13	0.05	43	0.05	0.05	0.106	0	0	
Nitrate and Nitrite as N	mg/L		0.071	43	0.071	0.071	0.106	0	0	
Nitrite (as N)	mg/L	0.06	0.05	43	0.05	0.05	0.05	0	0	
Phosphorus, Total	mg/L	0.05	0.01	43	0.001	0.0798	2.59	34	79	
Phosphorus, Total Dissolved	mg/L	-	0.01	43	0.001	0.0226	1.12	9	21	
Total Kjeldahl Nitrogen	mg/L	1	0.2	43	0.2	1.48	7.94	35	81	
Dissolved Metals										
Aluminum (Al)	mg/L	0.1	0.001	39	0.001	0.0063	0.0209	0	0	
Antimony (Sb)	mg/L	-	0.0001	39	0.0001	0.0001	0.0004	0	0	
Arsenic (As)	mg/L	0.005	0.0001	39	0.0004	0.00094	0.00938	3	8	
Barium (Ba)	mg/L	-	0.00005	39	0.000111	0.0454	0.125	0	0	
Beryllium (Be)	mg/L	-	0.0005	39	0.0005	0.0005	0.0005	0	0	
Bismuth (Bi)	mg/L	-	0.00005	39	0.00005	0.00005	0.00005			
Boron (B)	mg/L	29, 1.5 ^B	0.002	39	0.0119	0.035	0.444	0	0	
Cadmium (Cd)	mg/L	Variable ^E	0.00001	39	0.00001	0.00001	0.000143	0	0	
Chromium (Cr)	mg/L	0.0089	0.0001	39	0.0001	0.00012	0.0004	0	0	
Cobalt (Co)	mg/L	-	0.0001	39	0.0001	0.0001	0.00374	0	0	
Copper (Cu)	mg/L	Variable ^F	0.0001	39	0.0001	0.0006	0.00187	0	0	
Iron (Fe)	mg/L	0.3	0.01	39	0.01	0.027	2.39	2	5	
Lead (Pb)	mg/L	Variable ^G	0.00005	39	0.00005	0.00005	0.0001	0	0	
Lithium (Li)	mg/L	-	0.005	39	0.0047	0.0149	0.224	0	0	
Manganese (Mn)	mg/L	-	0.002	39	0.00028	0.002	2.89	0	0	
Molybdenum (Mo)	mg/L	0.073	0.00005	39	0.000062	0.000518	0.00279	0	0	
Nickel (Ni)	mg/L	Variable ^H	0.0001	39	0.0001	0.00039	0.0043	0	0	
Selenium (Se)	mg/L	0.001	0.0001	39	0.0001	0.00022	0.00063	0	0	
Silver (Ag)	mg/L	0.0001	0.00001	38	0.00001	0.00001	0.0002	1	3	
Strontium (Sr)	mg/L	-	0.0001	39	0.0121	0.122	0.596			
Thallium (TI)	mg/L	0.0008	0.00005	39	0.00005	0.00005	0.00005	0	0	
Tin (Sn)	mg/L	-	0.0001	39	0.0001	0.0001	0.0002			

* See page 13 for General Notes.

Table 6 (Cont'd.)*

Water Quality Variable	Units Regulatory		Dotoction Limit	2011-2012 Data							
	Units	Guideline	Detection Limit	n	Min	Med	Max	No. Exceeded	Freq %		
Titanium (Ti)	mg/L	-	0.0003	39	0.0003	0.0003	0.0015	0	0		
Uranium (U)	mg/L	0.033, 0.015 ^B	0.00001	38	0.00001	0.000481	0.00882	0	0		
Vanadium (V)	mg/L	-	0.0001	39	0.0001	0.00012	0.00072				
Zinc (Zn)	mg/L	0.03	0.001	39	0.001	0.0019	0.0074	0	0		
Total Metals											
Aluminum (Al)	mg/L	0.1	0.003	43	0.003	0.02	0.634	7	16		
Antimony (Sb)	mg/L	-	0.0001	43	0.0001	0.00018	0.0004	0	0		
Arsenic (As)	mg/L	0.005	0.0001	43	0.00042	0.00115	0.0127	6	14		
Barium (Ba)	mg/L	-	0.00005	43	0.0032	0.0487	0.208	0	0		
Beryllium (Be)	mg/L	-	0.0005	43	0.0005	0.0005	0.001	0	0		
Bismuth (Bi)	mg/L	-	0.00005	43	0.00005	0.00005	0.0002				
Boron (B)	mg/L	29, 1.5 ^B	0.01	43	0.0134	0.037	0.421	0	0		
Cadmium (Cd)	mg/L	Variable ^E	0.00001	43	0.00001	0.000121	0.0002	0	0		
Chromium (Cr)	mg/L	0.0089	0.0001	43	0.0001	0.00049	0.0013	1	2		
Cobalt (Co)	mg/L	-	0.0001	43	0.0001	0.0002	0.00402	0	0		
Copper (Cu)	mg/L	Variable ^F	0.0001	43	0.00016	0.001	0.0023	0	0		
Iron (Fe)	mg/L	0.3	0.01	43	0.01	0.431	9.44	23	53		
Lead (Pb)	mg/L	Variable ^G	0.00005	43	0.00005	0.0001	0.000849	0	0		
Lithium (Li)	mg/L	-	0.005	43	0.005	0.017	0.225	0	0		
Manganese (Mn)	mg/L	-	0.002	43	0.00156	0.062	2.96	0	0		
Mercury (Hg)-Trace	ug/L	5, 13 ¹	0.0005	41	0.5	1.13	3.9	0	0		
Molybdenum (Mo)	mg/L	0.073	0.00005	43	0.000078	0.0006	0.00296	0	0		
Nickel (Ni)	mg/L	Variable ^H	0.0001	43	0.00015	0.00048	0.44	1	2		
Selenium (Se)	mg/L	0.001	0.0001	43	0.0001	0.0004	0.00058	0	0		
Silver (Ag)	mg/L	0.0001	0.00001	43	0.00001	0.000071	0.0004	1	2		
Strontium (Sr)	mg/L	-	0.0001	43	0.0294	0.129	0.596				
Thallium (TI)	mg/L	0.0008	0.00005	43	0.00005	0.00005	0.0001	0	0		
Tin (Sn)	mg/L	-	0.0001	43	0.0001	0.0001	0.0004				
Titanium (Ti)	mg/L	-	0.0003	43	0.0003	0.005	0.0239	0	0		
Uranium (U)	mg/L	0.033, 0.015 ^B	0.00001	43	0.00001	0.0005	0.00838	0	0		
Vanadium (V)	mg/L	-	0.0001	43	0.0001	0.0005	0.00227				
Zinc (Zn)	mg/L	0.03	0.003	43	0.003	0.004	0.0149	0	0		

* See page 13 for General Notes.

Table 6 (Cont'd.)

General Notes:

Guidelines are CCME (2007), AENV (1999) unless otherwise noted

Values in **bold** indicate concentrations exceeding guidelines for the protection of aquatic life.

Detection limit exceeds guideline

- * Detection limit used for winter and spring data
- ** Detection limit used for fall data only
- ^A AENV guideline: TSS is not to be increased by more than 10 mg/L over background value.
- ^B CCME short- and long-term guidelines respectively
- ^c USEPA guideline for continuous concentration (USEPA 1999)
- ^D CCME Guidelines for Ammonia Total are based on temperature and pH as follows.

Tomp (°C)	рН									
Temp (C)	6	6.5	7	7.5	8	8.5	9	9.5	10	
0	231	73	23.1	7.32	2.33	0.749	0.25	7.32	0.042	
5	153	48.3	15.3	4.84	1.54	0.502	0.172	4.84	0.034	
10	102	32.4	10.3	3.26	1.04	0.343	0.121	3.26	0.029	

^E CCME cadmium guideline is hardness dependent = $10^{\{0.86[\log(hardness)]-3.2\}}$

^F CCME copper guideline is hardness dependent = 0.2*e^{0.8545[ln(hardness)]-1.465}

^G CCME lead guideline is hardness dependent: e^{1.273[In(hardness)]-4.705}

^H CCME nickel guideline is hardness dependent: = $e^{0.76[ln(hardness)]+1.06}$

¹ Draft AENV guidelines for chronic (5) and acute (13) total mercury concentrations

¹ Alberta Environment Guidelines for the Protection of Freshwater Aquatic Life (AENV 1999), unless otherwise specified

² Field measurements were taken *in situ* and therefore there is no detection limit

		Demulater	Detection			2013 E	Data		
Water Quality Variable	Units	Guideline	Limit	n	Min	Med	Max	No. Exceeded	Freq %
Field Measurements									
Dissolved Oxygen	(mg/L)	5, 6.5 ¹	_2	18	0	5.2	9	10	56
Conductivity	uS/cm	-	_2	20	216	452.5	1079		
рН	pН	6.5-9.0	_2	20	6.72	7.98	10.48	2	10
Temperature	°C	-	_2	20	0.1	20.2	22.2		
Conventional Variables									
Alkalinity, Total (as CaCO ₃)	mg/L	-	5	22	130	253	607		
Color, True	C.U.	-	2	22	9.9	59.45	222		
Conductivity (EC)	uS/cm	-	0.2	22	233	450	1080		
Dissolved Organic Carbon	mg/L	-	1	20	18.6	25.6	64.6		
Hardness (as CaCO ₃)	mg/L	-		22	116	233	541		
рН	pН	6.5-9.0	0.1	22	7.24	8.1	9.89	1	5
Total Dissolved Solids	mg/L	-	10	22	191	323.5	735		
Total Organic Carbon	mg/L	-	1	22	19.9	25.65	666		
Total Suspended Solids	mg/L	+10mg/L ^A	3	15	3	7	26	4	27
Turbidity	NTU	-	0.1	17	0.29	2.7	252		
General Organics									
Hydrocarbons, Recoverable (I.R.)	mg/L	-	1	22	<1.0	<1.0	<1.0		
Naphthenic Acids	mg/L	-	1	6	0.16	0.555	3.2		
Phenols (4AAP)	mg/L	0.004	0.001	22	0.0067	0.01095	0.362	22	100
Major Ions									
Bicarbonate (HCO ₃)	mg/L	-	5	22	52.1	259	740		
Calcium (Ca)	mg/L		0.5	22	18	37.05	118		
Carbonate (CO ₃)	mg/L	-	5	22	8	24.2	108		
Chloride (Cl)	mg/L	640, 120 ^B	0.5	22	0.32	1.88	9.61	0	0
Hydroxide (OH)	mg/L	-	5	22	<5.0	<5.0	<5.0		
Magnesium (Mg)	mg/L	-	0.1	22	15.8	27.75	84.5		
Potassium (K)	mg/L	-	0.1	22	3.2	7.645	32.9		
Sodium (Na)	mg/L	-	1	22	2.3	8.75	69.1		
Sulfate (SO ₄)	mg/L	-	0.5	22	0.61	6.09	176		
Sulphide	mg/L	0.002 ^C	0.002	22	0.0024	0.0057	3.67	17	77

Table 7Summary of water quality variables collected in 2013.*

* See page 17 for General Notes.

Table 7 (Cont'd.)*

		Regulatory	Detection			2013 E	Data		
Water Quality Variable	Units	Guideline	Limit	n	Min	Med	Max	No. Exceeded	Freq %
Nutrients and BOD									
Ammonia-N	mg/L	Variable ^D	0.05	22	0.062	0.531	5.39	3	14
Biochemical Oxygen Demand	mg/L	-	2	22	2.2	15.4	51.8		
Nitrate (as N)	mg/L	13	0.05	22	<0.071	<0.071	<0.071	0	0
Nitrate and Nitrite as N	mg/L		0.071	22	<0.050	<0.050	<0.050		
Nitrite (as N)	mg/L	0.06	0.05	22	<0.050	<0.050	<0.050	0	0
Phosphorus, Total	mg/L	0.05	0.01	22	0.0106	0.0941	2.1	14	64
Phosphorus, Total Dissolved	mg/L	-	0.01	20	0.0043	0.0647	1.96		
Total Kjeldahl Nitrogen	mg/L	1	0.2	22	1.06	1.655	7.43	22	100
Dissolved Metals									
Aluminum (Al)	mg/L	0.1	0.001	22	0.001	0.00255	0.0206	0	0
Antimony (Sb)	mg/L	-	0.0001	22	0.00017	0.000215	0.00026		
Arsenic (As)	mg/L	0.005	0.0001	22	0.00038	0.001045	0.023	1	5
Barium (Ba)	mg/L	-	0.00005	22	0.0209	0.04705	0.249		
Beryllium (Be)	mg/L	-	0.0005	22	<0.00050	<0.00050	<0.00050		
Bismuth (Bi)	mg/L	-	0.00005	15	0.013	0.013	0.013		
Boron (B)	mg/L	29, 1.5 ^B	0.002	22	0.0094	0.0225	0.119	0	0
Cadmium (Cd)	mg/L	Variable ^E	0.00001	22	0.107	0.107	0.107	0	0
Chromium (Cr)	mg/L	0.0089	0.0001	22	0.00015	0.00016	0.00041	0	0
Cobalt (Co)	mg/L	-	0.0001	22	0.00013	0.00022	0.007		
Copper (Cu)	mg/L	Variable ^F	0.0001	22	0.00011	0.0002	0.00058	0	0
Iron (Fe)	mg/L	0.3	0.01	19	0.011	0.062	57.8	5	26
Lead (Pb)	mg/L	Variable ^G	0.00005	22	0	<0.000050	0	0	0
Lithium (Li)	mg/L	-	0.005	22	0.0055	0.01245	0.0614		
Manganese (Mn)	mg/L	-	0.002	19	0.000233	0.3745	5.88		
Molybdenum (Mo)	mg/L	0.073	0.00005	19	0.000054	0.000224	0.00256	0	0
Nickel (Ni)	mg/L	Variable ^H	0.0001	17	0.00013	0.00061	0.00348	0	0
Selenium (Se)	mg/L	0.001	0.0001	5	0.00012	0.00019	0.00042	0	0
Silver (Ag)	mg/L	0.0001	0.00001	0	0	<0.000010	0	0	0
Strontium (Sr)	mg/L	-	0.0001	15	0.0724	0.127	0.355		
Thallium (TI)	mg/L	0.0008	0.00005	0	0	<0.000050	0	0	0

* See page 17 for General Notes.

Table 7 (Cont'd.)*

		Pogulatory	Detection			Data			
Water Quality Variable	Units	Guideline	Limit	n	Min	Med	Max	No. Exceeded	Freq %
Tin (Sn)	mg/L	-	0.0001	3	0.00012	0.00018	0.00127		
Titanium (Ti)	mg/L	-	0.0003	5	0.00032	0.00045	0.00177		
Uranium (U)	mg/L	0.033, 0.015 ⁸	0.00001	19	0.000011	0.000256	0.00169	0	0
Vanadium (V)	mg/L	-	0.0001	13	0.00015	0.00026	0.00468		
Zinc (Zn)	mg/L	0.03	0.001	13	0.001	0.0016	0.0039	0	0
Total Metals									
Aluminum (Al)	mg/L	0.1	0.003	20	0.0031	0.01125	0.113	1	5
Antimony (Sb)	mg/L	-	0.0001	5	0.0001	0.00012	0.00027		
Arsenic (As)	mg/L	0.005	0.0001	22	0.00041	0.00121	0.0212	1	5
Barium (Ba)	mg/L	-	0.00005	22	0.0212	0.0589	0.228		
Beryllium (Be)	mg/L	-	0.0005	0	0	<0.00050	0		
Bismuth (Bi)	mg/L	-	0.00005	0	0	<0.000050	0		
Boron (B)	mg/L	29, 1.5 ^B	0.01	21	0.012	0.023	0.145	0	0
Cadmium (Cd)	mg/L	Variable ^E	0.00001	0	<0.000010	<0.000010	<0.000010		
Chromium (Cr)	mg/L	0.0089	0.0001	13	0.00011	0.00022	0.00043	0	0
Cobalt (Co)	mg/L	-	0.0001	15	0.00011	0.00033	0.00705		
Copper (Cu)	mg/L	Variable ^F	0.0001	22	0.00012	0.000425	0.00106		
Iron (Fe)	mg/L	0.3	0.01	15	0.026	0.9175	56.8	9	60
Lead (Pb)	mg/L	Variable ^G	0.00005	22	0.000058	0.000089	0.000107		
Lithium (Li)	mg/L	-	0.005	20	0.0068	0.01555	0.0711		
Manganese (Mn)	mg/L	-	0.002	15	0.0049	0.354	7.23		
Mercury (Hg)-Trace	ug/L	5, 13 ^ı	0.0005	19	<0.0025	<0.0025	<0.0025	0	0
Molybdenum (Mo)	mg/L	0.073	0.00005	22	0.000063	0.000218	0.0026	0	0
Nickel (Ni)	mg/L	Variable ^H	0.0001	22	0.00011	0.00063	0.00345		
Selenium (Se)	mg/L	0.001	0.0001	22	0.0001	0.00012	0.00025	0	0
Silver (Ag)	mg/L	0.0001	0.00001	22	<0.000010	<0.000010	<0.000010	0	0
Strontium (Sr)	mg/L	-	0.0001	15	0.0725	0.126	0.353		
Thallium (TI)	mg/L	0.0008	0.00005	22	<0.000050	<0.000050	<0.000050	0	0
Tin (Sn)	mg/L	-	0.0001	22	0.00018	0.00021	0.00024		
Titanium (Ti)	mg/L	-	0.0003	2	0.00038	0.00087	0.00475		

* See page 17 for General Notes.

Table 7 (Cont'd.)*

	Units	Regulatory Guideline	Detection – Limit	2013 Data							
Water Quality Variable				n	Min	Med	Мах	No. Exceeded	Freq %		
Uranium (U)	mg/L	0.033, 0.015 ^B	0.00001	22	0.000012	0.0002775	0.00157	0	0		
Vanadium (V)	mg/L	-	0.0001	22	0.00014	0.00039	0.00489				
Zinc (Zn)	mg/L	0.03	0.003	22	0.0031	0.00625	0.0321	2	9		

General Notes:

Guidelines are CCME (2007), AENV (1999) unless otherwise noted

Detection limit exceeds guideline

- * Detection limit used for winter and spring data
- ** Detection limit used for fall data only
- ^A AENV guideline: TSS is not to be increased by more than 10 mg/L over background value.
- ^B CCME short- and long-term guidelines respectively
- ^c USEPA guideline for continuous concentration (USEPA 1999)
- ^D CCME Guidelines for Ammonia Total are based on temperature and pH as follows.

Tomp (°C)		рН									
Temp (C)	6	6.5	7	7.5	8	8.5	9	9.5	10		
0	231	73	23.1	7.32	2.33	0.749	0.25	7.32	0.042		
5	153	48.3	15.3	4.84	1.54	0.502	0.172	4.84	0.034		
10	102	32.4	10.3	3.26	1.04	0.343	0.121	3.26	0.029		

^E CCME cadmium guideline is hardness dependent = 10^{0.86[log(hardness)]-3.2}

^F CCME copper guideline is hardness dependent = 0.2*e^{0.8545[In(hardness)]-1.465}

^G CCME lead guideline is hardness dependent: e^{1.273[In(hardness)]-4.705}

- ^H CCME nickel guideline is hardness dependent: = $e^{0.76[ln(hardness)]+1.06}$
- ¹ Draft AENV guidelines for chronic (5) and acute (13) total mercury concentrations
- ¹ Alberta Environment Guidelines for the Protection of Freshwater Aquatic Life (AENV 1999), unless otherwise specified

² Field measurements were taken *in situ* and therefore there is no detection limit

3.1.2 Fish Resources – LSA

The Baseline Case for fish resources within the LSA was developed from a review of the area's fish resources as documented by the Fisheries and Wildlife Management Information System (FWMIS) database (ESRD 2013) in conjunction with fish inventory surveys conducted during the 2011-2012 and 2013 field programs in support of this EIA.

A review of the FWMIS database shows that brook stickleback, fathead minnow, lake chub, and finescale dace have been captured in the tributaries leading into Muriel Lake, with brook stickleback and fathead minnow being the most common. Records from the unnamed tributary leading into the North Saskatchewan River (Sites SM3b-1, SMB3a-1, and MOC-2) show that finescale dace, brook stickleback, longnose dace, and longnose sucker have been captured in these tributaries.

In Muriel Lake, recent surveys in the FWMIS database show that brook stickleback, fathead minnow, spottail shiner, yellow perch, Iowa darter, and longnose sucker have been captured in the past 15 years. Older records from the database indicate that lake whitefish, burbot, white sucker, walleye, and northern pike were once present in Muriel Lake, although they have not been captured in recent studies, including test netting conducted in September 2012 (ESRD 2013). Recent FWMIS records for Garnier Lake show that yellow perch, brook stickleback, northern pike, and logperch have been captured at the lake, while historic records show burbot as having also been captured in Garnier Lake. No FWMIS records are available for either Dion or Michel Lake. FWMIS information on Reita Lake is limited to surveys in 1977 and 1982 during which northern pike and white sucker were captured (ESRD 2013).

Sport fishing records are only available for Muriel Lake. The last reported creel survey was in 1986, which found a higher than provincial average catch of northern pike (Mitchell and Prepas 1990). More recent studies (AENV 2006) have found that the recreational fishery in Muriel Lake has been greatly affected by decreasing water levels and poor water quality.

Baseline fish inventories were conducted at fifteen locations in 2011 to 2012 (Table 8) and eight locations in 2013 (Table 9). A total of 1,564 fish were captured across all seasons, representing eleven different species: brook stickleback; finescale dace; yellow perch; fathead minnow; lake chub; northern pike; longnose dace; longnose sucker; pearl dace; log perch; and Iowa darter. Within the tributaries, brook stickleback was the most commonly-caught species (78%), followed by fathead minnow (12%) and finescale dace (7%). Within the lakes, fish were only caught at Garnier Lake, with yellow perch being the most commonly caught species (74%), followed by northern pike (16%). No fish were captured in the 2013 surveys.

		Sum	mer 2011			Fall 2011			Spring 2012			
Site	Gear Type	Sampling Effort	No. Fish Captured	Species	Gear Type	Sampling Effort	Species	Gear Type	Sampling Effort	No. Fish Captured	Species	
SM3a-1	MT	1.25 h	0	-	MT	3 h	-	MT	1 h	0	-	
MOC-1	EF	491 s	27	11 BRST, 14 FNDC, 2 LNDC	EF	212 s	2 LNDC, 2 LNSC	EF	570 s	14	BRST	
MOC-1	MT	0.4 h	24		MT	4.6 h	BRST	MT	4.3 h	174	BRST	
MIL-1	No f	ish inventory cor	nducted, water qu	uality only	No fi	sh inventory con water quality on	ducted, ly	MT	1.3 h	19	1 BRST, 18 FTMN	
GAC-1	MT	4.3 h	68	59 BRST, 9 FNDC	MT	19.4 h	7 LKCH, 4 BRST, 77 FTMN	MT	14.8 h	148	124 BRST, 24 FTMN	
								MT	4 h	1	BRST	
GAC-2	MT	1.75 h	0	-	MT	19.3 h	BRST	EF	1209 s	57	50 BRST, 7 FTMN	
GAC-3	MT	0.3 h	0	-	MT	19.3 h	BRST	MT	1 h	0	-	
SG2-1	MT	1 h	4	BRST	MT	1.25 h	BRST	MT	1.25 h	0	-	
SG4-1	MT	n/a	-	-	MT	1.1 h	-	MT	2.7 h	0	-	
SG5-1	Ν	lo fish inventory	conducted, dry c	hannel	No fi	sh inventory con dry channel	ducted,	EF	305 s	0		
GAL-1	GN	2.5 h	0	YLPR	GN	1.25 h	9 YLPR, 2 NRPK	GN	1.2 h	54	44 YLPR, 10 NRPK	
GAL-1	MT	4 h	4	3 BRST, 1 LGPR	МТ	2 h	-	MT	4.7 h	4	IWDR	
MOC-2	MT	5.3 h	75	56 FNDC, 19 BRST	MT	3.4 h	8 BRST, 1 FNDC	MT	2.7 h	705	630 BRST, 46 FTMN, 29 PRDC	
DIL-1	No f	ish inventory cor	nducted, water qu	uality only	MT	1.2 h		MT	1.7	0	-	
Total		20.9 h	202	5 species		75.9 h	8 species		44.2 h	1176	6 species	

Table 8Summary of fish inventories conducted in 2011-2012 on watercourses and waterbodies within the Pengrowth LSA
and RSA.

Table 9Summary of fish inventories conducted in 2013 on watercourses and waterbodies within the Pengrowth LSA and
RSA.

		Spring	g 2013		Summer 2013				
Site	Gear Type	Sampling Effort	No. Fish Captured	Species	Gear Type	Sampling Effort	No. Fish Captured	Species	
SC1-4		No define	d channel			No defined c	hannel		
SC1-3		No define	d channel			No defined c	hannel		
SG2-3	MT	64.5 h	0	-	MT	44 h	0	-	
TRL1-1		Insufficient wat	er for sampling		Insufficient water	for sampling			
SC2-1	MT	63 h	0	-	No fis	h inventory	0		
SC1-2		No define	d channel			No defined c	hannel		
SG2-2		No define	d channel			No defined c	hannel		
SG21-1		Insufficient wat	er for sampling			Insufficient water	for sampling		
SG4-4		No define	d channel			hannel			
SG4-2	MT	63 h	0	-	MT	36 h	0	-	
SG4-3		No define	d channel			No defined c	hannel		
SC1-1	MT	66 h	0	-	No fis	h inventory	0		
SG2-4		No define	d channel			No defined c	hannel		
SG4-5		No define	d channel			No defined c	hannel		
GAC-4		No fish i	nventory		MT	36 h		-	
LC11-1		No fish i	nventory			No fish inve	entory		
LC11-2	MT	66 h	0	-	No fis	h inventory	0		
REL-1		No fish i	nventory		MT	38 h		-	
LG2-2	MT	66 h	0	-	MT	38 h	0	-	
LG2-1		No fish i	nventory			No fish inve	entory		
GAL-2		No fish i	nventory			No fish inventory			
Total		388.5 h	0	-		192 h	0	-	

Pengrowth Aquatic Resources Baseline Study and Effects Assessment Report

3.1.3 Physical Aquatic Habitat - LSA

Physical habitat surveys were conducted for all aquatic sampling sites during at least one sampling season. Detailed habitat information is provided in Appendix A3.

Most of the watercourses within the LSA were small, unnamed tributaries draining into Moosewa Creek, Garnier Creek or Muriel Lake. The upper portions of the streams had no defined channel. The middle portion of the tributaries had poorly-defined channels with some beaver ponds that could possibly provide habitat for forage fish, although overwinter survival would likely be influenced by low winter dissolved oxygen levels. Water was present but generally not flowing at any time the baseline surveys were conducted. The lower portions of the unnamed tributaries close to the confluence with a given named waterbody had defined channels with some flow and habitat for forage fish that would be able to overwinter in the larger waterbody to which the tributary is connected. With the exception of a portion of Garnier Creek, all watercourses in the LSA are Class C with a restricted activity period of April 16 to June 30. The lower portion of Garnier Creek is a Class B habitat. This designation is due to use of this area for walleye spawning. Otherwise, no sensitive habitat is present in the study area.

In the watercourses that had defined channels and water present, the dominant substrate was organic material. Instream and overhead cover was generally abundant in all watercourses with values ranging from 20 to 100% coverage. Instream cover consisted mostly of instream vegetation and small woody debris, with lesser amounts of large woody debris, undercut banks, and deep pools providing cover. Overhead cover consisted mostly of overhanging grasses, shrubs, and debris. The riparian vegetation is comprised mostly of grasses, sedges, shrubs, and willow mixed forests.

3.2 BASELINE CASE FOR REGIONAL STUDY AREA

Moosewa Creek, a tributary to the North Saskatchewan River, was surveyed (site MOC-1) to collect surface aquatic resources information for the Baseline Case for the RSA (Figure 3). This site lies to the south and downstream of the Project, south of Highway 646. There was no flowing water at the site, or at the upstream culvert in the winter. Water quality at this location was sampled in spring, summer, and fall only. The Baseline Case for fish resources consists of FWMIS data for Moosewa Creek and the North Saskatchewan River, as well as data from the fish inventory conducted on Moosewa Creek during the baseline field studies.

3.2.1 Water Quality - RSA

Water quality at site MOC-1 (Appendix A2) on Moosewa Creek is similar to that in the watercourses of the LSA. Concentrations and levels of conventional variables such as conductivity, DOC, hardness, pH, and TDS measured for the RSA were similar to levels measured in the LSA, while colour measured within the RSA were lower and TSS concentrations were higher than in the watercourses of the LSA. Water quality variables with concentrations that exceeded water quality guidelines in the RSA were similar to those in the LSA (Table 6, Table 7), with concentrations of phenols, total phosphorous, total nitrogen, sulphides, total aluminum, and total iron occurring at concentrations above water quality guidelines.

3.2.2 Fish Resources - RSA

Fish species captured at site MOC-1 during baseline surveys consisted of brook stickleback, longnose dace, finescale dace, and longnose sucker, with finescale dace being the most abundant species captures (54%) (Table 8). The FWMIS database indicates that Brook stickleback and fathead minnow have been recorded in Moosewa Creek (ESRD 2013). Brook stickleback are also recorded in Moosewal Creek, a tributary to the North Saskatchewan River similar to Moosewa Creek, while walleye, northern pike, sauger, and goldeye have been recorded in the North Saskatchewan River within 2 km of the outflow of Moosehill and Moosewa Creeks within the past ten years (ESRD 2013). While longnose sucker, shorthead redhorse, white sucker, and quillback have also been recorded at this location in the North Saskatchewan River, there are no records for these species since 1997 (ESRD 2013).

3.3 BASELINE CASE FOR ACID SENSITIVITY OF SURFACE AQUATIC RESOURCES

Acid-sensitive lakes occur in areas with little or no capacity to neutralize acidic deposition. This capacity is determined by basin soil characteristics (e.g., soil chemistry, composition, and depth), extent and type of vegetation cover, and drainage patterns (Holowaychuk and Fessenden 1987, Lucas and Cowell 1984). Typically, these lakes occur in areas of moderate to high elevation and high relief, with severe, short-term changes in hydrology, small drainage systems, and minimal contact between drainage waters and basin soils or geologic materials.

Acid-sensitive surface waters typically exhibit low pH (<6.5), low concentrations of all major ions (i.e., specific conductance is $<25 \ \mu$ S/cm), low organic acid concentrations (i.e., DOC concentration is typically less than 3 to 5 mg/L), and low acid neutralizing capacity (i.e., ANC <200 μ eq/L) (Sullivan 2000).

Chemical characteristics of the lakes within the AQLSA are shown in Table 10. Lakes in the AQLSA are all ranked as low sensitivity to acidifying emissions according to Saffron and Trew (1996). Using the alkalinity-based classification system developed by Saffran and Trew (1996), critical load of each of the lakes was calculated. Critical load is greater than the baseline PAI input in all lakes sampled in the AQLSA (Table 10).

The maximum predicted PAI in the Baseline Case for the entire AQRSA is 0.18 keq H+/ha/yr which occurs in the vicinity of an operator near Marie Lake to the north of the Project. Most of the AQRSA has a predicted PAI of less than

0.1 keq H+/ha/yr (MEMS 2013a). The maximum value of 0.18 keq H+/ha/yr is less than 0.22 keq H+/ha/yr, which is the target load for the most sensitive soils and aquatic systems as outlined by CASA (AENV 1999b).

Lake ID	pH (pH units)	Alkalinity (mg/L)	Conductivity (µS/cm)	TDS (mg/L)	DOC (mg/L)	Critical Load ¹	Baseline Case PAI ¹
DIL-1	7.48	246	318	335	36.88	1.99	0.04
GAL-1	8.74	625	771	953	30.05	1.60	0.04
MIL-1	8.52	155	287	182	12.13	0.77	0.03
MUL-1	9.31	1075	1688	1723	46.57	6.75	0.03
LC11-1	7.55	202	372	288	30.30	0.51	0.03
LC11-2	7.39	197	365	254	23.00	0.95	0.03
LG2-2	7.68	337	598	392	25.50	0.93	0.03
GAL-2	8.90	361	922	643	24.55	1.58	0.04
REL-1	9.52	269	486	397	39.65	0.91	0.03

Table 10Acid-sensitivity of sampled lakes in the Air Quality Local Study Area.

¹ keq H⁺/ha/ yr.

Critical Loads calculated based on the relationship between acid neutralizing capacity (ANC), base cation concentrations, and annual catchment runoff using Henriksen's steady state water chemistry model (CNRL 2002, RAMP 2005b).

PAI values from MEMS (2013a).

4.0 EFFECTS ASSESSMENT

4.1 EFFECTS ON AQUATIC HABITAT AND RESOURCES FROM SURFACE DISTURBANCE DURING CONSTRUCTION, OPERATION AND RECLAMATION ACTIVITIES

4.1.1 Description of Effects and Assessment of Validity of Impact Pathways

Surface disturbance and construction activities will take place within the LSA during the Project and may result in an increase in sediment loading in watercourses and waterbodies. These activities may have consequent effects on water quality, aquatic habitat and fish populations and include:

- vegetation clearing, soil salvage and construction for access roads and utility corridor construction, borrow pit development, and well pad construction;
- management of soil stockpiles;
- dismantling of all Project facilities; and
- grading, decompaction, soil replacement and re-vegetation of reclamation areas.

These Project disturbances will be located within tributary watersheds that are part of the Moosewa Creek and Muriel Lake watersheds (nhc 2013). Sediment from surface disturbances therefore has the potential to enter watercourses and the linkage between surface disturbance and construction activities and potential changes in sediment yield is assessed as valid.

4.1.2 Mitigation Measures to be Implemented

The Project will implement a number of widely-used best management practices that have been established to reduce erosion from exposed surfaces and prevent sediment from migrating from construction sites into watercourse (TAC 2005). These mitigation measures will effectively prevent, or reduce to acceptable levels, the effects from surface disturbance activities. A range of different measures will be implemented including:

- a sediment control plan will be developed;
- a 100 m setback will be applied to all waterbodies with fish habitat potential, while a 50 m setback will be applied at all defined channels with no fish habitat. Measures at stream crossings are described below. sediment control measures such as those described in the *Alberta Code of Practice for Watercourse Crossings* (AENV 2000) and associated guidelines will be implemented for earthworks which take place within or in close proximity to watercourses. These measures may include, as required: the use of cutoff trenches, silt fences, flow barriers, temporary and/or permanent sediment control ponds and/or traps, and ditches to minimize or eliminate sediment transport from exposed soil areas into receiving watercourses and waterbodies;
- whenever possible, surface disturbance activities in close proximity to watercourses will be carried out during periods of relatively low surface runoff in late fall, winter and early spring (from October to April);
- the time interval between clearing/grubbing and subsequent earthworks will be minimized, particularly at or in the vicinity of watercourses or in areas susceptible to erosion;
- where relevant, slope grading and stabilization techniques will be adopted. Slopes will be contoured to produce moderate slope angles to reduce erosion risk. Other stabilization techniques used to control erosion may include: ditching above the cutslope to channel surface runoff away from the cutslope, leaving buffer (vegetation) strips between the disturbance area and a watercourse, placing large rock rip rap to stabilize slopes;

- progressive disturbance and reclamation will be undertaken to reduce the amount of disturbed area at any given time. During reclamation, permanent plant cover and re-vegetation will be established as soon as possible following earth works. Soil erosion will be reduced by minimizing the time that reclaimed surfaces are left bare; and
- where necessary, interim erosion/sediment control measures will be utilized until long-term protection can be effectively implemented.

4.1.3 Impact Analysis

With strict implementation of the mitigation measures summarized above and other measures described in detail for this Project, potential impacts of surface disturbance activities are predicted to be low for the following reasons:

- impacts from construction activities which have been identified as potentially adverse are mitigable using best management practices adopted by all levels of government to control sediment and erosion. This will include measures to reduce the potential for erosion at the source such as those described in Alberta Transportation (2011), preparation of site-specific sediment and erosion control plans and monitoring of the measures put in place to ensure they function as intended;
- potential adverse effects associated with sedimentation will be localized, that is, they will occur mainly during periods of construction and reclamation and will be confined to the immediate and downstream areas of the surface disturbance activities;
- with the exception of crossings, a minimum 100 m buffer will be maintained from the edge of all fish bearing waterbodies and a minimum 50 m buffer will be maintained from the edge of the stream bank for all watercourses with defined channels;
- surface run-off from active areas such as well pads and roads will be managed in a manner in which erosion from surface water runoff will be minimized. Ditches will be designed to direct water away from the road to undisturbed areas to minimize erosion. Culverts will be installed along the access roads to ensure that flows will be maintained across drainages and wetlands; and
- construction of well pads and associated infrastructure will be phased with progressive reclamation in order to minimize the amount of area disturbed at any one time.

4.1.4 Residual Effects Classification

The residual (after mitigation) effects of the Project on aquatic resources through surface disturbance and construction activities are assessed as *Low Impact* in the LSA:

- Magnitude magnitude of effects will be *Low*. With the effective application of well-accepted and regulated mitigation measures, changes are expected to be within established protective standards and to cause no detectable change in surface water or aquatic habitat quality beyond occasional, local effects;
- **Geographic Extent** effects will be *Local*, within the LSA;
- Duration of Impact effects will be *Long*, occurring over the life of the Project from development and ongoing reclamation through to decommissioning;
- **Frequency** effects will be *Occasional*, occurring intermittently and sporadically over assessment period;
- **Ability for Recovery** effects will be *reversible in the short-term* and will diminish upon cessation of activities;
- Project Contribution Negative, there will be some localized, periodic negative effects on surface water quality from Project surface disturbance activities;
- **Confidence Rating** *High*, the mitigation measures to be applied are well-accepted and there is good evidence from previous studies that the effective application of these measures in accordance with operating procedures will mitigate any effects of surface disturbance activities; and
- **Probability of Occurrence** *High*, based on experience from previous similar projects.

Because the residual effects of the Project on surface aquatic resources through surface disturbance and construction activities are assessed as *Low Impact* in the LSA, these residual effects: these residual effects are also assessed as *Low Impact* for the RSA. The residual effects are also summarized in Table 12.

4.2 EFFECTS ON SURFACE AQUATIC RESOURCES THROUGH INSTREAM CONSTRUCTION ACTIVITIES

4.2.1 Description of Effects and Assessment of Validity on Impact Pathways

Direct changes and physical loss of aquatic habitat may occur during instream construction works, such as watercourse crossing sites (roads or utilities) by the direct disturbance of the streambed, banks or riparian areas. Direct habitat effects can include alteration or loss of specific habitat features, such as pools, aquatic vegetation and bed materials. This could ultimately lead to loss or impairment of habitat functions, such as overwintering, spawning and rearing. The specific effects will depend on the type of habitat at the crossing site, the type of crossing method used and the timing of the construction period. There are 19 potential watercourse crossings in the Project area (nhc 2013). Eighteen of the crossings are for access roads and all but one of the crossings is on a watercourse identified as having no fish habitat potential based on undefined or poorly defined channels and lack of flow. The one watercourse with fish habitat is Garnier Creek, which has a proposed clear span crossing downstream of Garnier Lakes (Figure 3). Garnier Creek provides habitat for sport fish, including northern pike, as well as forage fish habitat. The linkage between instream construction activities and effects on surface aquatic resources is therefore assessed as valid.

4.2.2 Mitigation Measures to be Implemented

Most of the crossings are on drainages with no defined channel and no fish habitat. For these a culvert would be sufficient to maintain drainage (NHC 2013) and there would be no impacts on fish habitat. For the crossing of Garnier Creek, a clear span bridge would be used to avoid instream works. Mitigation measures for road crossings of streams are documented in Alberta Transportation (2011). The measures that will be adopted for the Project include:

- instream construction activities at all watercourses with a defined channel and/or fish habitat will be carried out during periods of relatively low surface runoff whenever possible; and
- all watercourse crossings, including the crossing of Garnier Creek with a clear span bridge will be designed and constructed in compliance with the *Alberta Code of Practice for Watercourse Crossings* (AENV 2000), associated guidelines, the *Fish Habitat Manual* (Alberta Transportation 2001) and the *Measures to Avoid Causing Harm to Fish and Fish Habitat* (DFO 2013). For watercourse crossings these requirements include: aquatic and biological assessments; watercourse crossing design and construction; post-construction clean-up and reclamation; contingency measures; and watercourse crossing site monitoring. Implementation of appropriate mitigation measures means that all stream crossings constructed and operated for the Project will meet regulatory requirements for the protection of fish resources and aquatic habitat and will subsequently mitigate against effects on surface water quality.

4.2.3 Impact Analysis

Only one of the proposed crossings has the potential to affect fish habitat. The use of a clear span bridge for this one crossing will substantially reduce the amount of instream activity required and with the application of the mitigation measures summarized in Section 4.2.2, the potential impacts of instream construction activities are predicted to be low.

4.2.4 Residual Effects Classification

The residual (after mitigation) effects of the Project on aquatic resources through in-stream construction activities are assessed as *Low Impact* in the LSA:

- Magnitude magnitude of effects will be *Low*. With the effective application of well-accepted and regulated mitigation measures, changes are expected to be within established protective standards and to cause no detectable change in aquatic habitat quality beyond occasional, local effects;
- **Geographic Extent** effects will be *Local*, within the LSA;
- Duration of Impact effects will be *Long*, occurring over the life of the project from development and ongoing reclamation through to decommissioning;
- **Frequency** effects will be *Occasional*, occurring intermittently and sporadically over assessment period;
- **Ability for Recovery** effects will be *reversible in the short-term* and will diminish upon cessation of activities;
- Project Contribution Negative, there will be some localized, periodic negative effects on surface water quality from Project surface disturbance activities;
- **Confidence Rating** *High*, the mitigation measures to be applied are well-accepted and there is good evidence from previous studies that the effective application of these measures in accordance with operating procedures will mitigate any effects of in-stream construction activities; and
- **Probability of Occurrence** *High*, based on experience from previous similar projects.

Because the residual effects of the Project on surface aquatic resources through in-stream construction activities are assessed as *Low Impact* in the LSA, these residual effects are also assessed as *Low Impact* for the RSA. The residual effects are also summarized in Table 12.

4.3 EFFECTS ON SURFACE AQUATIC RESOURCES THROUGH CHANGES IN SURFACE WATER QUALITY

4.3.1 Description of Effects and Assessment of Validity Impact Pathways

The following Project activities may negatively affect surface water quality, and may give rise to resultant changes to aquatic habitat and fish populations:

- discharge of Project-affected water to natural watercourses;
- accidental spills of hydrocarbons, chemicals and waste products used and stored within the project development area; and
- changes in shallow groundwater quality.

The linkage between these Project activities and potential changes in surface water quality is considered valid.

4.3.2 Mitigation Measures to be Implemented

Discharge of Project-affected waters: Project water will be recycled as much as possible and the waste stream of concentrated brine from the evaporation-distillation process will be disposed of at one of Pengrowth's two approved and functional disposal wells or other disposal wells that may be developed or to a government approved disposal facility. No planned discharges of Project-affected waters will take place, hence impact to natural watercourses is considered low and no mitigation measures are proposed.

Surface water run-off from the plant site will be directed to a storm water runoff pond constructed in accordance with relevant regulations. All surface runoff will be collected in the storm water runoff pond and returned to the CPF for use as plant makeup water. It is anticipated that occasionally, depending upon site and operating conditions, the surface runoff collected in the storm water runoff pond may be released to the surrounding watershed if it meets the quality requirements outlined in the operating approval.

All storage tanks, except boiler feed water and source water tanks, will be equipped with secondary containment and leak detection equipment to minimize the occurrence of product leaks, hence under normal operating conditions, surface run-off from the plant to the storm water runoff pond is not anticipated to contain any process related chemicals.

The storm water runoff pond will function as a sedimentation pond and will settle particulates to reduce levels of any sediment. To mitigate against potential adverse impacts, the runoff pond water will always be tested prior to discharge and will only be released in accordance with the terms and conditions of the operating approval. Based on the anticipated management of runoff waters and the controlled rate of water releases from the storm water runoff pond, the release of runoff waters on nearby surface waters is predicted to have a negligible effect on water quality.

Accidental spills: The facilities or locations where potentially contaminating materials are handled, transferred or stored include the well pad during drilling of production wells and the CPF.

Management and disposal of drilling waste will be in accordance with all regulations and will be implemented under the Project's waste management plan. The oil content in the drilling fluids after drilling the bitumen sections is expected to be too high for onsite or offsite disposal. The rig will be equipped with centrifuges and linear motion shakers. The oil contaminated cuttings will be mixed with wood fibre and stored in steel containers on site, and then hauled to a certified Class II Landfill. The oil contaminated liquid mud will be hauled to certified Class II Salt Cavern for disposal or other approved facility.

A range of potentially contaminating materials are handled or stored within the CPF. All storage tanks, except boiler feed water and source water tanks, will be equipped with secondary containment and leak detection equipment to mitigate
against product leaks. Pengrowth will develop an Emergency Response Plan (ERP) for the Project construction and operation phases that will set out procedures to deal with emergency situations. The ERP will address unplanned releases to the environment. Collectively, the secondary containment and leak detection measures, along with management and response plans will minimize the risk of substance release into watercourses and waterbodies and resultant negative impacts to aquatic resources.

4.3.3 Impact Analysis

With strict implementation of the mitigation measures summarized in Section 4.3.2, potential impacts to aquatic resources through changes in surface water quality and discharge of Project-affected water into natural watercourses are predicted to be low for the following reasons:

- no planned discharges of Project-affected waters will take place;
- occasional releases from the storm water runoff pond may take place, but water will always be tested prior to discharge and will only be released in strict accordance with the terms and conditions of the operating approval;
- design features, management practices, mitigation plans and emergency response procedures will minimize the potential for accidental release of substances into waterbodies or watercourses; and
- shallow groundwater quality is not expected to be significantly impacted by Project activities; therefore resultant changes to surface water are not expected (MEMS 2013b).

4.3.4 Residual Effects Classification

The residual (after mitigation) effects of the Project on aquatic resources due to changes in surface water quality are assessed as *Low Impact* in the LSA:

- Magnitude magnitude of effects will be Low to Moderate. There may be changes in surface water quality as a result of accidental releases, but the nature of most of the watercourses in the LSA means that the effect on the aquatic environment would be limited. With the effective application of well-accepted and regulated mitigation measures and contingency plans, these changes are expected to be generally within established protective standards and to cause no detectable change in surface water quality beyond occasional, local effects. However, under upset conditions, it is predicted that some disturbances may cause shortterm detectable changes in background ecological parameters;
- **Geographic Extent** effects will be *Local*, within the LSA;
- Duration of Impact effects will be *Long*, occurring over the life of the Project from development and ongoing reclamation through to decommissioning;

- **Frequency** effects will be *Occasional to accidental*, occurring intermittently and sporadically or rarely over assessment period;
- **Ability for Recovery** effects will be *reversible in the short-term* and will diminish upon cessation of activities;
- Project Contribution Negative, there will be some localized, occasional negative effects on surface water quality from Project activities;
- **Confidence Rating** *High,* the management practices and mitigation measures to be applied are well-accepted and there is good evidence from previous studies that the effective application of these measures will mitigate any effects of Project activities on surface water quality. The level of confidence in the groundwater assessment is dependent of the reliability and robustness of the hydrogeological analyses of Project effects as described in MEMS (2013b); and
- **Probability of Occurrence** *Medium,* possible based on experience from previous similar projects.

Because the residual effects of the Project on surface aquatic resources through changes in surface water quality are assessed as *Low Impact* in the LSA, these residual effects are also assessed as *Low Impact* for the RSA. The residual effects are also summarized in Table 12.

4.4 EFFECTS ON SURFACE AQUATIC RESOURCES THROUGH CHANGES TO SURFACE FLOW RATES AND LEVELS

4.4.1 Description of Effects and Assessment of Validity Impact Pathways

Changes in stream flow can affect:

- spawning, rearing, feeding, migration and overwintering habitats of fishbearing streams and rivers through reduced stream area and shallow depth, reducing dissolved oxygen under the ice;
- watercourse productivity and availability of food for fish (e.g., benthic invertebrates); and
- the presence of macrophytes, which provide cover, spawning material or food for fish.

Changes to surface water flow rates could result from:

- surface disturbance activities altering natural run-off and drainage patterns;
- surface water withdrawal activities required to meet water requirements for the Project;
- release of Project-affected waters to natural waterbodies; and
- changes in the amount of shallow groundwater reporting to surface water.

The linkage between these Project activities and potential changes in surface water flow rates is considered valid.

4.4.2 Mitigation Measures to be Implemented

Changes to natural run-off and drainage patterns due to surface disturbance activities: Mitigation measures to minimize potential impacts include diverting runoff from disturbed areas into the natural environment, away from the existing stream networks. During construction and operation surface drainage will be maintained with the use of drainage structures (i.e., ditches, culverts, bridges). Reclamation activities will be phased such that they commence before the entire Project is developed restoring drainage patterns.

Changes to surface water flow rates due to release of Project-affected water: The full CPF has already been constructed for the Phase 1 Project along with the storm water runoff pond. No additional surface runoff will report to the storm water runoff pond. No planned discharges of Project-affected waters will take place. Occasional releases may take place from the storm water runoff pond to the environment. Such releases will be undertaken at a controlled rate, in strict accordance with the terms and conditions of the operating approval, in order to mitigate against adverse impacts to surface water flow rates.

Changes to surface water flow rates due to changes in the amount of groundwater reporting to surface water: No Project activities have been identified (e.g., excavation works) that are expected to impact on shallow groundwater/surface water interactions. The Project will not use any groundwater is the stream generation process. Therefore no impact to the amount of shallow groundwater reporting to surface water is expected.

4.4.3 Impact Analysis

Potential impacts to aquatic resources through changes in surface water flow rates are predicted to be low:

- only small increases in surface water runoff volumes are predicted as a result of surface disturbances. The Hydrology assessment (nhc 2013) predicts maximum changes in average runoff volume of between 1.2% and 6.1% above Baseline Case conditions in the unnamed watercourses in the LSA. Minor changes in peak annual flows and low flow rates are anticipated in streams in the LSA;
- no planned discharges of Project-affected waters will take place and therefore no consequent changes to surface water flow rates are expected;
- occasional releases from the storm water runoff pond may take place, but water will be released at a controlled rate in accordance with the terms and conditions of the operating approvals; and

 shallow groundwater levels are not expected to be affected by Project activities and therefore no resulting changes to surface water flow rates are expected.

4.4.4 Residual Effects Classification

The residual (after mitigation) effects of the Project on surface aquatic resources due to changes in surface water flow rates are assessed as *Low Impact* in the LSA:

- Magnitude magnitude of effects will be *Low*. Changes are expected to be generally within established protective standards and to cause no detectable change to surface water flow rates beyond occasional, local effects;
- **Geographic Extent** effects will be *Local*, within the LSA;
- Duration of Impact effects will be *Long*, occurring over the life of the Project from development and ongoing reclamation through to decommissioning;
- **Frequency** effects will be *Occasional to Seasonal*, occurring intermittently and sporadically over assessment period, and in the case of changes to water flows and levels due to surface disturbance;
- Ability for Recovery effects to water flows and levels due to surface disturbance will be *reversible in the long-term*, all other effects will be *reversible in the short-term* and will diminish upon cessation of activities;
- Project Contribution Negative, there will be some localized, occasional, minor negative effects on surface water flow rates from Project activities;
- **Confidence Rating** *High,* The level of confidence in this assessment is dependent of the reliability and robustness of the hydrological and hydrogeological analyses of Project effects as described in nhc (2013) and MEMS (2013b); and
- **Probability of Occurrence** *High,* based on experience from previous similar projects.

Because the residual effects of the Project on surface aquatic resources through changes in surface water flow rates are assessed as *Low Impact* in the LSA, these residual effects: are also assessed as *Low Impact* for the RSA. The residual effects are also summarized in Table 12.

4.5 EFFECTS ON SURFACE AQUATIC RESOURCES FROM IMPROVED OR ALTERED ACCESS TO FISH-BEARING WATERBODIES

4.5.1 Description of Effects and Assessment of Validity of Impact Pathways

Improved access and increased workforce in the area as a result of the Project could increase fishing pressure and fish harvest in local fish-bearing lakes. This could, in turn, result in a decreased abundance of sportfish if fishing pressure and/or fish harvest were not appropriately managed.

The linkage between these altered access and potential increases in fishing pressure is considered valid.

4.5.2 Mitigation Measures to be Implemented

Pengrowth will work closely with ESRD to ensure the fisheries resources in the study area, particularly the lakes, do not become over-exploited as a result of increased sportfishing. Possible initiatives include:

- raising awareness among the Project workers of the existing ESRD regulations for the species found in the study area lakes;
- educating the Project workforce on the benefits of the practice of catchand-release angling; and
- discouraging fishing by Project employees within the LSA while at work.

4.5.3 Impact Analysis

There are limited angling opportunities with the LSA. The streams contain forage fish and juveniles of larger bodied species. Only the two larger lakes (Garnier and Muriel) are known to contain sport fish, but recent surveys on Muriel lake have concluded that the sport fish population has been extirpated, likely as a result of declining water levels and poor water quality (ESRD 2013b). The limited sport fishing opportunities mean that any increase in access to the lakes in the LSA will not impact the aquatic resources within the LSA and the effects of angling on LSA populations is expected to be low.

With no good, local fishing opportunities, it is possible that the additional personnel may look to the Cold Lake and Lac La Biche areas for fishing opportunities. Construction of the Project is expected to require 540 person years of labour over a two year period, or roughly 270 additional people per year. It is likely that this workforce will be drawn from the regional area and therefore fishing pressure would largely remain unchanged as those individuals that fish would do so regardless of their location within the region.

The Project is expected to result in a local population increase of approximately 60 people. This will likely result in an additional five anglers in the region which is a negligible change in fishing pressure.

4.5.4 Residual Effects Classification

The residual (after mitigation) effects of the Project on aquatic resources from improved or altered access to fish bearing watercourses are assessed as *Low Impact* in the LSA:

- Magnitude magnitude of effects will be *Low*. With the effective application of mitigation and management measures, changes to fisheries resources are expected to be well within established or accepted protective standards;
- **Geographic Extent** effects will be *Local*, within the LSA;
- Duration of Impact effects will be *Long*, occurring over the life of the Project from development and ongoing reclamation through to decommissioning;
- **Frequency** effects will be *Occasional*, occurring intermittently and sporadically over the assessment period;
- **Ability for Recovery –** effects will be *reversible in the short-term*, being reversible and diminishing upon cessation of activities;
- Project Contribution Negative, there may be a net loss to fish resources;
- **Confidence Rating** *High,* the mitigation and management measures to be applied are well-accepted and there is good evidence from previous studies that the effective application of these measures will ensure the potential for over-fishing is minimized; and
- **Probability of Occurrence** *Low,* due to the poor nature of fishing in the area.

Because the residual effects of the Project on surface aquatic resources through improved or altered access to fish-bearing watercourses are assessed as *Low Impact* in the LSA, these residual effects are also assessed as *Low Impact* for the RSA given the migratory patterns of sportfish in the watershed. The residual effects are also summarized in Table 12.

4.6 EFFECTS ON FISH HEALTH, INCLUDING FISH TAINTING THROUGH CHANGES IN WATER QUALITY

4.6.1 Description of Effects and Assessment of Validity of Impact Pathways

Changes in water quality have the potential to affect the health of fish and other aquatic organisms and the linkage between potential changes in water quality and fish health for this Project is assessed as valid.

4.6.2 Mitigation Measures to be Implemented

Section 4.1.2, Section 4.2.2 and Section 4.3.2 outline mitigation measures to address potential contamination of surface waters; the mitigation measures that are also applicable to the issue of fish tainting are summarized below:

- No planned discharges of Project-affected waters will take place, hence impact to natural watercourses is considered low and no mitigation measures are proposed.
- Surface water run-off from the plant site will be directed to a storm water runoff pond constructed in accordance with relevant regulations and returned to the CPF for use as plant makeup water. The surface runoff collected in the storm water runoff pond may be released to the surrounding watershed if it meets the quality requirements outlined in the operating approval.
- All storage tanks, except boiler feed water and source water tanks, will be equipped with secondary containment and leak detection equipment to minimize the occurrence of product leaks, hence under normal operating conditions, surface run-off from the plant to the storm water runoff pond is not anticipated to contain any process related chemicals.
- The storm water runoff pond will function as a sedimentation pond and will settle particulates to reduce levels of any sediment. To mitigate against potential adverse impacts, the runoff pond water will always be tested prior to discharge and will only be released in accordance with the terms and conditions of the operating approval. Based on the anticipated management of runoff waters and the controlled rate of water releases from the storm water runoff pond, the release of runoff waters on nearby surface waters is predicted to have a negligible effect on water quality.
- Management and disposal of drilling waste will be in accordance with all regulations and will be implemented under the Project's waste management plan.
- A range of potentially contaminating materials are handled or stored within the CPF. All storage tanks, except boiler feed water and source water tanks, will be equipped with secondary containment and leak detection equipment to mitigate against product leaks. Pengrowth will develop an Emergency Response Plan (ERP) for the Project construction and operation phases that will set out procedures to deal with emergency situations. The ERP will address unplanned releases to the environment. Collectively, the secondary containment and leak detection measures, along with management and response plans will minimize the risk of substance release into watercourses and waterbodies and resultant negative impacts to aquatic resources.

4.6.3 Impact Analysis

No ongoing release of water is anticipated and with implementation of the mitigation measures, the potential impacts to fish health through potential changes in water quality are predicted to be low.

4.6.4 Residual Effects Classification

The residual (after mitigation) effects of the Project on fish health through changes in water quality are assessed as *Low Impact* in the LSA:

- Magnitude magnitude of effects will be *Low*. With the effective application of well-accepted and regulated mitigation measures, changes are expected to be well within established protective standards and to cause no detectable change in fish health;
- **Geographic Extent** effects will be *Regional* given the migratory behavior of some fish species documented in the LSA;
- Duration of Impact effects will be *Long*, occurring over the life of the Project from development and ongoing reclamation through to decommissioning;
- **Frequency** effects will be *Occasional to Accidental*, occurring intermittently and sporadically or rarely over the assessment period;
- **Ability for Recovery** effects will be *Reversible in the short-term* and will diminish upon cessation of activities;
- **Project Contribution** *Negative,* as release of process-affected water could cause fish tainting;
- **Confidence Rating** *High*, the mitigation measures to be applied are well-accepted and there is good evidence from previous studies that the effective application of these measures in accordance with operating procedures will mitigate effects of in-stream construction activities such that they are *Low Impact*; and
- **Probability of Occurrence** *Low*, given the mitigation measures to be put in place (Section 4.6.2).

Because the residual effects of the Project on surface aquatic resources on fish health are assessed as *Low Impact* in the LSA, these residual effects are also assessed as *Low Impact* for the RSA. The residual effects are also summarized in Table 12.

4.7 EFFECTS ON SURFACE AQUATIC RESOURCES FROM ACIDIFYING EMISSIONS

4.7.1 Description of Effects and Assessment of Validity of Impact Pathways

Activities associated with the Project will result in the release of acidifying emissions as described in the Air Quality Assessment (MEMS 2013a). Therefore, the potential for acidifying emissions from the Project to affect surface aquatic resources in the Air Quality RSA is considered a valid impact pathway.

4.7.2 Mitigation Measures

A series of mitigation measure are described in the Air Quality Assessment Report (MEMS 2013a) that will minimize acidifying emissions related to Project activities.

4.7.3 Impact Analysis

4.7.3.1 Application Case

The predicted PAI for the Baseline and Application cases (MEMS 2013a) for lakes in the AQLSA is presented in Table 11. Predicted PAI values at all lakes in the AQLSA for the Application Case are below Alberta's Clean Air Strategic Alliance (CASA) target load for sensitive grid cells of 0.22 keq H⁺/ha/yr (AEP 1999b), and are also below the critical load for those lakes. The target load is a value set below the critical load of 0.25 keq H⁺/ha/yr in order to confer additional protection given the level of uncertainty currently associated with model predictions and the receptor sensitivity databases (AENV 199b). In addition, the predicted PAI in the Application Case for the entire AQRSA is also less than target load for sensitive grid cells of 0.22 keq H⁺/ha/yr (MEMS 2013a).

4.7.3.2 Planned Development Case

The predicted PAI for the Planned Development Case (MEMS 2013a) for lakes in the AQLSA is presented in Table 11. Predicted PAI values at all lakes for the Planned Development Case in the AQLSA are below the CASA target load for sensitive grid cells of 0.22 keq H⁺/ha/yr (AEP 1999b), and are also below the critical load for those lakes. In addition, the predicted PAI in the Planned Development Case for the entire AQRSA is less the target load (as defined in Section 4.7.3.1) of 0.22 keq H⁺/ha/yr, (MEMS 2013a).

4.7.4 Residual Impact Classification

The residual (after mitigation) effects of the Project in the Application Case and Planned Development Cases on surface aquatic resources through acidifying emissions are assessed as *Low Impact*:

Magnitude – magnitude of the effects of the Project will be *Low*, as there are predicted to be no lakes that exceed the critical load value in the Application Case but not the Baseline Case, as well as no lakes that

exceed the critical load value in the Planned Development Case but that do not exceed the critical load value in the Application Case and/or Baseline Cases;

- **Geographic Extent** effects will be *Regional*;
- Duration of Impact effects will be *Long*, occurring over the life of the Project from development and during operation of the facility;
- **Frequency** effects will be *Continuous*, occurring continually over assessment periods;
- **Ability for Recovery** effects will be *reversible in the long-term*, they will remain after cessation of activities but will diminish with time;
- **Project Contribution** *Negative*, there will be some net loss to the quality of aquatic resources;
- Confidence Rating Moderate, predictions of impacts to aquatic resources resulting from Project related acidifying emissions are subject to uncertainty because of uncertainty in the estimation of critical loads. Uncertainty arises from an incomplete understanding of chemical and physical processes in lakes and calculation of critical loads based on limited data. The relationship between acidic deposition and acidification of surface waters depends in part on complex interactions between various chemical constituents of the drainage basin and surface waters, and variability in these interactions over space and time. Lack of scientific knowledge and understanding regarding these phenomena is reflected in the inability to quantitatively assess impacts of acidifying emissions on surface water chemical characteristics. Instead, current scientific understanding permits only the identification of potential impacts; and
- **Probability of Occurrence** *High*, based on experience from previous and similar projects.

The Project's residual effects of changes in acidifying emissions on surface aquatic resources are assessed as *Low Impact* for both the Application and Planned Development Cases (Table 12).

Table 11Comparison of estimated PAI inputs in baseline, application and
planned development cases and critical load for AQLSA lakes.

	Annual	Average PAI (ked	q/ha/yr)	
Lake ID	Baseline Case	Application Case	Planned Development Case	Critical Load
DIL-1	0.04	0.04	0.04	1.99
GAL-1	0.04	0.05	0.05	1.60
MIL-1	0.03	0.04	0.04	0.77
MUL-1	0.03	0.04	0.04	6.75
LC11-1	0.03	0.04	0.04	0.51
LC11-2	0.03	0.04	0.04	0.95
LG2-2	0.03	0.04	0.04	0.93
GAL-2	0.04	0.04	0.04	1.58
REL-1	0.03	0.04	0.04	0.91

Note: Critical loads calculated based on the relationship between ANC, base cation concentrations, and annual catchment runoff using Henriksen's steady state water chemistry model (RAMP 2011). PAI values from MEMS (2013a).

Note: Shaded values denote PAI values that exceed the critical load for the lake.

5.0 ENVIRONMENTAL ASSESSMENT SUMMARY

A summary of the environmental impact assessment is provided in Table 12. With mitigation, monitoring and adaptive management, described above, it is anticipated the Project will have a low impact on surface aquatic resources within the Local and Regional Study Areas.

5.1 SUMMARY OF MITIGATION MEASURES FOR AQUATIC RESOURCES

It is recommended that Pengrowth undertake the following mitigation measures to eliminate and/or reduce to acceptable levels, potential effects on surface aquatic resources:

- a sediment control plan will be developed;
- a 100 m setback will be applied to all waterbodies with fish habitat potential (Figure 4), while a 50 m setback will be applied at all defined channels with no fish habitat. These setbacks will not apply at stream crossings;
- sediment control measures such as those described in the *Alberta Code of Practice for Watercourse Crossings* (AENV 2000) and associated guidelines will be implemented for earthworks which take place within or in close proximity to watercourses. These measures may include, as required: the use of cutoff trenches, silt fences, flow barriers, temporary and/or permanent sediment control ponds and/or traps, and ditches to

minimize or eliminate sediment transport from exposed soil areas into receiving watercourses and waterbodies;

- whenever possible, surface disturbance activities in close proximity to watercourses will be carried out during periods of relatively low surface runoff in late fall, winter and early spring (from October to April);
- the time interval between clearing/grubbing and subsequent earthworks will be minimized, particularly at or in the vicinity of watercourses or in areas susceptible to erosion;
- where relevant, slope grading and stabilization techniques will be adopted. Where possible, slopes will be contoured to produce moderate slope angles to reduce erosion risk. Other stabilization techniques used to control erosion may include: ditching above the cutslope to channel surface runoff away from the cutslope, leaving buffer (vegetation) strips between the disturbance area and a watercourse, placing large rock rip rap to stabilize slopes;
- where required, surface runoff collection and treatment systems will be used to direct surface runoff from both disturbed areas and constructed areas (well pads and roads) into settling impoundments/sumps for removal of settleable solids;
- progressive disturbance and reclamation will be undertaken to reduce the amount of disturbed area at any given time. During reclamation, permanent plant cover and re-vegetation will be established as soon as possible following earth works. Soil erosion will be reduced by minimizing the time that reclaimed surfaces are left bare;
- where necessary, interim erosion/sediment control measures will be utilized until long-term protection can be effectively implemented;
- whenever possible, instream construction activities will be carried out during periods of relatively low surface runoff in late fall, winter and early spring (from October to April);
- all watercourse crossings including the crossing of Garnier Creek with a clear span bridge will be designed and constructed in compliance with the Alberta Code of Practice for Watercourse Crossings (AENV 2000) and associated guidelines. For watercourse crossings these requirements include: aquatic and biological assessments; watercourse crossing design post-construction clean-up and construction; and reclamation; contingency measures; and watercourse crossing site monitoring. Implementation of appropriate mitigation measures means that all stream crossings constructed and operated for the Project will meet regulatory requirements for the protection of fish resources and aquatic habitat and will subsequently mitigate against effects on surface water quality;

- surface water run-off from the plant site will be directed to a storm water runoff pond constructed in accordance with relevant regulations. All surface runoff will be collected in the storm water runoff pond and returned to the CPF for use as plant makeup water. It is anticipated that occasionally, depending upon site and operating conditions, the surface runoff collected in the storm water runoff pond may be released to the surrounding watershed if it meets the quality requirements outlined in the operating approval;
- all storage tanks, except boiler feed water and source water tanks, will be equipped with secondary containment and leak detection equipment to minimize the occurrence of product leaks, hence under normal operating conditions, surface run-off from the plant to the storm water runoff pond is not anticipated to contain any process related chemicals;
- the storm water runoff pond will function as a sedimentation pond and will settle particulates to reduce levels of any sediment-associated chemicals, such as metals, nutrients and organics. To mitigate against potential adverse impacts to surrounding watercourses, runoff pond water will always be tested prior to discharge and will only be released in accordance with the terms and conditions of the operating approval. Based on the anticipated management of runoff waters and the controlled rate of water releases from the storm water runoff pond, the release of runoff waters on nearby surface waters is predicted to have a negligible effect on water quality;
- the facilities or locations where potentially contaminating materials are handled, transferred or stored include the well pad during drilling of production wells and the CPF;
- management and disposal of all drilling waste will be in accordance with all regulations and will be implemented under the Project's waste management plan. The oil content in the drilling fluids after drilling the bitumen sections is expected to be too high for onsite or offsite disposal. The rig will be equipped with centrifuges and linear motion shakers. The oil contaminated cuttings will be mixed with wood fibre and stored in steel containers on site, and then hauled to a certified Class II Landfill. The oil contaminated liquid mud will be hauled to certified Class II Salt Cavern for disposal;
- all storage tanks, except boiler feed water and source water tanks, will be equipped with secondary containment and leak detection equipment to mitigate against product leaks. Additionally, an Integrated Environmental Health and Safety Management Plan will be prepared for the Project. This Plan will include an Emergency Response Plan; a Substance Release Control and Monitoring Plan and a Loss Control and Environmental Compliance Program which will describe the contingency plans for responses to accidental releases. Collectively, the secondary

containment and leak detection measures, along with management and response plans will minimize the risk of substance release into watercourses and waterbodies and resultant negative impacts to aquatic resources;

- diverting runoff from disturbed areas into the natural environment, away from the existing stream networks and phasing reclamation activities such that they commence before the entire Project is developed;
- water requirements for the Project will be met through an existing approved source on the North Saskatchewan River. There is a license to withdraw up to 8,000 m³/day from the North Saskatchewan River, which is sufficient to meet demands for the Project at its full capacity;
- no planned discharges of Project-affected waters will take place from the Project. Occasional releases may take place from the storm water runoff pond to the environment. Such releases will be undertaken at a controlled rate, in strict accordance with the terms and conditions of the operating approval, in order to mitigate against adverse impacts to surface water flow rates;
- Pengrowth will work closely with ESRD to ensure the fisheries resources in the study area, particularly the lakes, do not become over-exploited as a result of increased sportfishing. Possible initiatives include:
 - raising awareness among the Project workers of the existing ESRD regulations for the species found in the study area lakes;
 - educating the Project workforce on the benefits of the practice of catch-and-release angling; and
 - o discouraging fishing by Project employees within the LSA.
- A series of mitigation measure are described in the Air Quality Assessment Report (MEMS 2013a) that will minimize acidifying emissions related to Project activities.

This page intentionally left blank for printing purposes.

VEC	Nature of Potential Effect	Mitigation/ Protection Plan	Type of Effect	Geographical Extent of Effect ¹	Duration of Effect ²	Frequency of Effect ³	Ability for Recovery from Effect ⁴	Magnitude of Effect ⁵	Project Contribution ⁶	Confidence Rating ⁷	Probability of Effect Occurrence ⁸	Significance ⁹
NOTE:	VEC 1: Water Quality,	; VEC 2: Fish Resources										
VEC 1 and VEC 2	 C1 Changes to aquatic habitat and C2 resources from surface disturbance during construction, operation and reclamation activities C2 The surface disturbance during construction, operation and reclamation activities C2 The surface disturbance during construction, operation and reclamation activities C2 The surface disturbance during construction, operation and reclamation activities C2 The surface disturbance during construction, operation and reclamation activities C3 The surface disturbance during construction, operation and reclamation activities C3 The surface disturbance during construction, operation and reclamation activities C3 The surface during construction disturbance during construction, operation and reclamation activities C3 The surface during construction during construction and reclamation activities C3 The surface during construction during construction and reclamation activities C3 The surface during construction during construction and reclamation activities C4 The surface during construction during construction and reclamation activities C5 The surface during construction during construction and reclamation activities C5 The surface during construction activit		Application and Planned Development	Local	Long	Occasional	Reversible in short term	Low	Negative	High	High	Low Impact
		 disturbed areas; 4) Adopt slope stabilization techniques and progressive reclamation techniques where needed; and 5) Apart from watercourse crossings, avoid construction activities within 100 m of fish bearing streams. 										
VEC 2	Changes to fish and fish habitat due to instream construction activities.	 Watercourse crossings to comply with Alberta Code of Practice for Watercourse Crossings; Comply with Alberta Transportation's Fish Habitat Manual; and Observe restricted activity period. 	Application and Planned Development	Local	Long	Occasional	Reversible in short term	Low	Negative	High	High	Low Impact
VEC 1	Changes to fish and fish habitat due to changes in surface water quality.	 Surface water runoff from the plant site will returned to the CPF for use as plant makeup water. If site and operating conditions warrant, the surface runoff from the pond may be released to the surrounding watershed if it meets the quality requirements outlined in the operating approval; Handle and dispose of drilling waste and chemicals in accordance. with management plans; and Comply with integrated Environmental Health and Safety Management Plan and contingency plans for responses to accidental releases. 	Application and Planned Development	Local	Long	Occasional to accidental	Reversible in short term	Low to Moderate	Negative	High	Medium	Low Impact
 Local, F Short, L Continu Reversi Nil, Low Neutral Low, Mag 	Regional, Provincial, Natio ong, Extended, Residual. ious, Isolated, Periodic, O ble in short term, Reversit /, Moderate, High. , Positive, Negative. oderate, High.	nal, Global. ccasional (Accidental, Seasonal). ole in long term, Irreversible – Rare.										

Table 12Summary of impact rating on VECs for aquatic resources.

⁸ Low, Medium, High.
 ⁹ No Impact, Low Impact, Moderate Impact, High Impact.

Table 12 (Cont'd.)

VEC	Nature of Potential Effect	Mitigation/ Protection Plan	Type of Effect	Geographical Extent of Effect ¹	Duration of Effect ²	Frequency of Effect ³	Ability for Recovery from Effect ⁴	Magnitude of Effect ⁵	Project Contribution ⁶	Confidence Rating ⁷	Probability of Effect Occurrence ⁸	Significance ⁹
NOTE:	VEC 1: Water Quality	r; VEC 2: Fish Resources										
VEC 2	Changes to surface water flow rates and levels	 Discharge runoff into natural environment, away from streams; Phase reclamation activities prior 	Application	Local	Local Long Occasional to Reversible in the long Low seasonal term		Low	Negative	High	High	Low Impact	
		to Project completion; 3) Return Project area to natural state when Project completed; and	Planned Development	No change expected from Application Case	Long	Occasional	Reversible in short term	Low	Negative	High	Medium to High	Low Impact
		 Discharge from storm water runoff pond at a controlled rate in accordance with operating approval. 										
VEC1	Changes local fish populations due to changes in angling pressure	 Raising awareness among the Project workers of the existing ASRD regulations for the species found in the lakes and watercourses in the LSA; 	Application and Planned Development	Local	Long	Occasional	Reversible in short term	Low	Negative	High	Low	Low Impact
		 Educating the Project workforce on the benefits of the practice of catch-and-release angling; and 										
		 Discourage fishing by Project employees within the LSA. 										
VEC 2	Changes to fish health, including fish tainting	1) Sediment and erosion control mitigation measures as outlined in <i>Surface Disturbance and In-</i> <i>Stream Construction Activities</i> section above; and	Application and Planned Development	Regional	Long	Occasional to accidental	Reversible in short term	Low	Negative	High	Low	Low Impact
		 Mitigation measures and management practices as outlined in <i>Changes in surface</i> water quality section above. 										
VEC 1 and VEC 2	Changes to surface aquatic resources from acidifying emissions	 Specific process design and project operations to minimize acidifying emissions. 	Application and Planned Development	Local and Regional	Long	Continuous	Reversible in long term	Low	Negative	Moderate	High	Low Impact
¹ Local, F	Regional, Provincial, Natio	onal, Global.										
² Short, L	ong, Extended, Residual											
⁴ Deven	ious, Isolated, Periodic, C	Occasional, Accidental, Seasonal.										
	ue in snort term, Revers	idie in long term, irreversible – Kare.										
⁶ Neutral	⁶ Neutral. Positive. Negative.											
⁷ Low, M	oderate, High.											

⁸ Low, Medium, High.

⁹ No Impact, Low Impact, Moderate Impact, High Impact.

5.2 ENVIRONMENTAL MONITORING

5.2.1 Construction Monitoring

Contractors will be required to submit environmental management plans as part of construction agreements that will outline proposed methods for each activity as well as for the post-construction period. Routine audits and associated surface aquatic resources monitoring will be conducted during construction periods. In particular, suspended sediments will be routinely monitored (upstream and downstream) for all instream works occurring in flowing water.

5.2.2 Effects Monitoring

Pengrowth will conduct monitoring at specific locations in specific drainages to assess how surface aquatic resources (water quality, fish, and fish habitat) are changing with the Project implementation and to ensure environmental quality guidelines are being met. Monitoring requirements will be carried out in accordance with the terms and conditions of all approvals.

6.0 **CLOSURE**

We trust the above information meets your requirements. If you have any questions or comments, please contact the undersigned.

HATFIELD CONSULTANTS:

Approved by:

December 11, 2013 Chris Briggs Date Project Manager

Approved by:

Eterl. McName

December 11, 2013

Peter McNamee **Project Director**

Date

7.0 REFERENCES

- [AENV] Alberta Environment. 1999. Surface water quality guidelines for use in Alberta. November 1999. Environmental Assurance Division, Science and Standards Branch, Edmonton, AB.
- AENV. 2000. Code of Practice for Watercourse Crossings. Accessed at <u>http://www.qp.alberta.ca/570.cfm? search by=alpha&letter=C</u> (including 2001 and 2003 amendments.)
- AENV. 2006. Cold Lake-Beaver River Basin, Groundwater Quality State of the Basin Report," in partnership with the Lakeland Industry and Community Association, and the Cold Lake-Beaver River Basin Advisory Committee, " Accessed Nov 2013 from: <u>http://beaverriverwatershed.ca/uploads/Publications/GW%20Quality%20</u> <u>Feb%2014_06-s.pdf</u>
- [ESRD] Alberta Environment and Sustainable Resource Development. 2012. Species Assessed by Alberta's Endangered Species Conservation Committee: Short List. Alberta Sustainable Resource Development, Fish and Wildlife Service. Edmonton, AB.
- ESRD. 2013a. Fisheries and Wildlife Management Information System (FWMIS). Accessible through Alberta Sustainable Resource Development, Fish & Wildlife Division, Fisheries Management Branch, Edmonton, AB.
- ESRD. 2013b. Muriel Lake Fall Walleye Index Netting, 2012. Prepared by Fisheries Management Waterways/Lac La Biche, Cold Lake.
- [AEP] Alberta Environment Protection. 1997. Alberta water quality guideline for the protection of freshwater aquatic life: dissolved oxygen. Standards and Guidelines Branch, Environmental Assessment Division, Environmental Regulatory Service, Pub. No. T/391. 80 pp.
- [ASRD] Alberta Sustainable Resource Development. 2005. The General Status of Alberta Wild Species 2005. Alberta Sustainable Resource Development, Fish and Wildlife Service. Edmonton, AB.
- Alberta Transportation. 2001. Fish Habitat Manual. Guidelines and Procedures for Watercourses Crossings in Alberta. Revised 2009. Available at : http://www.transportation.alberta.ca/Content/docType245/Production/C omplete_Fish_Habitiat_Manual.pdf Alberta Transportation. 2011. Erosion and Sediment Control Manual. Available at: http://www.transportation.alberta.ca/4626.htm
- [BC MOE] B.C. Ministry of Environment. 2003. Ambient water quality guidelines for boron.

- BC MOE. 2006. A compendium of working water quality guidelines for British Columbia. 35pp. Updated August 2006. http://www.env.gov.bc.ca/wat/wq/BC guidelines/working.html.
- [CCME] Canadian Council of Ministers of the Environment. 2001. Canadianwide standards for petroleum hydrocarbons (PHCs) in soil: scientific rationale. Supporting technical document.
- CCME. 2002. Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Canadian Council of Ministers of the Environment, Winnipeg, MB.
- CCME. 2007. Canadian Water Quality Guidelines for the Protection of Aquatic Life. Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment, 1999. Updated 2001, 2002, 2003, 2005, 2006 and 2007.
- [COSEWIC] Committee on the Status of Endangered Wildlife in Canada. Candidate Wildlife Species. Part 3. Canadian Species at Risk, Updated March 8, 2010. Canadian Wildlife Service, Environment Canada. Ottawa, ON. Accessed at: <u>http://www.cosewic.gc.ca/eng/sct3/index_e.cfm</u>
- [DFO] Fisheries and Oceans Canada. 2013. Measures to Avoid Causing Harm to Fish and Fish Habitat. Accessed December 2013 from http://www.dfompo.gc.ca/pnw-ppe/measures-mesures/index-eng.html
- Dodds WK, Jones JR, Welch EB. 1998. Suggested classification of stream trophic status: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research, 32: 1455-1462.
- [EPEA] Environmental Protection and Enhancement Act. 2000. Alberta Environmental Protection and Enhancement Act. Revised Statutes of Alberta 2000 Chapter E-12, November 1, 2010.
- Holowaychuk N, Fessenden RJ. 1987. Soil sensitivity to acid deposition and the potential of soil and geology to reduce the acidity of acidic inputs. Alberta Research Council. Earth Sciences Report 87-1. Edmonton, AB.
- Lucas AE, Cowell DW. 1984. Regional assessment of sensitivity to acidic deposition for Eastern Canada. In: Acid Precipitation Series 7. O.P. Bricker. Butterworth. Boston, MA. 113-129 pp.
- [MEMS] 2013a. Lindbergh SAGD Expansion Project.: Air Quality Baseline and Effects Assessment. Prepared for Pengrowth Energy.
- [MEMS] 2013b. Lindbergh SAGD Expansion Project.: Hydrogeology Baseline and Effects Assessment. Prepared for Pengrowth Energy.

- Minister of Justice, Canada. 2010. Fisheries Act. R.S., Chapter F-14, s.1. Current to March 10, 2010.
- Mitchell P, Prepas E. 1990. The Atlas of Alberta Lakes. The University of Alberta Press. Edmonton, Alberta. 675 p
- [nhc]. Northwest Hydraulic Consultants. 2013. Lindbergh SAGD Expansion Project.: Hydrology Baseline and Effects Assessment. Prepared for Pengrowth Energy.
- RAMP. 2011. RAMP 2010 Technical Report, Final. Prepared for the RAMP Steering Committee by Hatfield Consultants, Kilgour and Associates Ltd., and Western Resource Solutions. April 2010.
- Saffran KA, Trew DO. 1996. Sensitivity of Alberta Lakes to Acidifying Deposition: an Update of Sensitivity Maps with Emphasis on 109 Northern Lakes. Special report prepared by Water Sciences Branch, Water Management Division, Alberta Environmental Protection.
- Sullivan TJ, Driscoll CT, Gherini SA, Munson RK, Cook RB, Charles DF, Yatsko CP. 1989. Influence of aqueous aluminum and organic acids on measurements of acid neutralizing capacity in surface waters. Nature 338: 408-410.
- [TAC] Transportation Association of Canada. 2005. National Guide to Erosion and Sediment Control on Roadway Projects, Ottawa, Ontario.
- [U.S. EPA] United States Environmental Protection Agency. 1999. National Recommended Water Quality Criteria – Correction. Office of Water 4304, United States Environmental Protection Agency. EPA 822-Z-99-001; 25pp.

FIGURES

Figure 1 Pengrowth Lindberg SAGD Expansion Project aquatic resources study area.

K:\Data\Project\MEMS1702_MXD_EIA\MEMS1702_EIA_01_AquaticRes_LSARSA_20131210.mxd

Figure 2 Air quality study areas for acid sensitive lake analysis.

K:\Data\Project\MEMS1702_MXD_EIA\MEMS1702_EIA_02_ASL_20131206.mxd

Figure 3 Project footprint and sampling locations for aquatic resources, 2011-2013.

K:\Data\Project\MEMS1702_MXD_EIA\MEMS1702_EIA_03_AquaticRes_LSA_20131210.mxd

Fish habitat in the project area. Figure 4

Drainages Without ~^ **Defined Channels**

Project Footprint

K:\Data\Project\MEMS1702_MXD_EIA\MEMS1702_EIA_04_FishHabitat_LSA_20131206.mxd

B

APPENDICES

Appendix A1

Field Work Activities and Methodology – Water Quality

A1.0 FIELD WORK ACTIVITIES AND METHODOLOGY – WATER QUALITY

RAMP Standard Operating Procedures (SOPs, RAMP 2009) were used as the water quality sampling protocols. Water sampling involved collection of single grab samples by submerging sample bottles to a depth of approximately 30 cm (where possible), uncapping and filling the bottle, recapping at depth.

In situ measurements of pH, dissolved oxygen, temperature and conductivity were collected using a Hanna multi pen. Dissolved oxygen titrations were performed in the field using a LaMotte Winkler titration kit (Code 5860). Winter sampling required drilling a hole through the ice with a Stihl BT 121 ice auger to provide a measure of ice thickness.

Samples were collected, preserved, and shipped according to protocols specified by consulting laboratories. Standard water quality variables and organics/hydrocarbons were analyzed by ALS Laboratory Group (ALS) Edmonton. A field blank, trip blank, and field duplicate were also collected for QA/QC purposes in each water quality sampling season. Due to the different years of collection, detection limits for some of the parameters were different. These are noted in the table where applicable.

QA/QC analyses for water quality are provided in Table A1.1 to Table A1.3 and are discussed in Section A1.2. Results of analytical and in situ water quality testing are provided in Appendix A2.

A1.1 QUALITY ASSURANCE AND QUALITY CONTROL FOR WATER QUALITY DATA

The quality assurance (QA) procedures that were used in the gathering and analysis of water samples followed the QA procedures used in the Regional Aquatics Monitoring Program (RAMP 2011).

Quality control (QC) procedures are used to estimate potential contamination of samples during collection, handling, and transport with field blanks and trip blanks. Field blanks were used to assess potential contamination from sample handling, and were prepared in the field by filling sample bottles with deionized water provided by the analytical laboratory. Trip blanks are also comprised of deionized water and were prepared in the analytical laboratory prior to sampling. These samples were kept sealed for the duration of the sampling trip, and were used to evaluate potential contamination from the sample container and the efficacy of sample preservation and storage conditions. Field blanks and trip blanks were analyzed for the same variables as the actual samples. Field blanks were labeled with dummy-style codes to ensure "blind" laboratory analysis. Trip blanks were labeled as "Trip Blank". Field and trip blank analytical results were compared to analytical detection limits. Water quality variable concentrations that are greater than five times the detection limit in the blank samples may demonstrate potential contamination of samples during sample collection or analysis or analytical error. Blanks with water quality variable concentrations below or near detection limits represent samples that were collected, handled, and analyzed without contamination or potential errors.

QC procedures used to assess analytical precision of the laboratory involved the collection of a split sample in which a single sample was "split" into two separate samples. Analytical results for the split samples were compared, and relative percent difference (difference between data values/average of data values, multiplied by 100%) was calculated for each water quality variable. Relative percent differences of greater than 20% were noted as potentially unacceptable levels of precision. However, because precision decreases as the water quality variable concentration approaches the detection limit, relative percent differences greater than 20% were greater than five times the detection limit.

A1.2 QUALITY CONTROL ANALYSIS RESULTS

A1.2.1 Field and Trip Blanks

Concentrations of water quality variables in the field and trip blanks are shown in Table A1.1. A field blank and trip blank were collected during each of the three field trips when analytical water samples were collected in support of the Project. The results were:

- Concentrations of all physical variables, nutrients, ions, and organics/ hydrocarbons were less than five times the detection limits in trip blanks in all sampling seasons; and
- Concentrations of all physical variables, nutrients, ions, and organics/ hydrocarbons were less than five times the detection limits in field blanks in all sampling seasons except for total and dissolved tin in the Fall 2011 and Spring 2012 and total selenium in the Winter 2012. Neither tin, nor selenium were present in the samples in the same concentration as the field blanks indicating accidental contamination as the likely source.

Table A1.1 Water quality QA/QC results: field and trip blanks.

Water Quality Variable	Unit	Detection Limit	Field Blank Summer 2011	Trip Blank Summer 2011	Field Blank Fall 2011	Trip Blank Fall 2011	Field Blank Winter 2012	Trip Blank Winter 2012	Field Blank Spring 2012	Trip Blank Spring 2012	Field Blank Winter 2013	Trip Blank Winter 2013	Field Blank Spring 2013	Trip Blank Spring 2013	Field Blank Summer 2013	Trip Blank Summer 2013
Conventional Variables																
Alkalinity, Total (as CaCO ₃)	mg/L	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-
Color, True	T.C.U.	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	13.1	<2.0	<5.0	<5.0	<2.0	-
Conductivity (EC)	µS/cm	0.2	0.87	0.52	0.3	<0.20	621	0.81	<0.20	<0.20	1.07	<0.20	<3.0	<3.0	0.64	-
Dissolved Organic Carbon	mg/L	1	<1.0	<1.0	<1.0	1	<1.0	<1.0	1.1	<1.0	1.2	1.1	<1.0	<1.0	<1.0	-
Hardness (as CaCO ₃)	mg/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-
pH	pН	0.1	5.95	5.63	6.06	5.6					6.00	5.64	6.99	6.49	6.95	-
Total Dissolved Solids	mg/L	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<20	<20	<10	-
Total Organic Carbon	mg/L	1	<1.0	<1.0	1.2	<1.0	<1.0	<1.0	1	1.1	1.0	<1.0	<1.0	<1.0	<1.0	-
Total Suspended Solids	mg/L	3	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<4.0	<4.0	<3.0	-
Turbidity	NTU	0.1	<0.10	<0.10	-	-	<0.10	<0.10	<0.10	<0.10	0.12	<0.10	<0.10	<0.10	<0.10	-
General Organics																
Hydrocarbons, Recoverable (I.R.)	mg/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.6	<1.0	<1.0	-
Naphthenic Acids	ma/L	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<1.0	-
Phenols (4AAP)	ma/L	0.001	<0.0010	<0.0010	0.0018	< 0.0010	<0.0010	< 0.0010	< 0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	< 0.001	-
Maior lons	5															
Bicarbonate (HCO₂)	ma/L	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-
Calcium (Ca)	ma/L	0.05	<0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	<0.50	<0.50	<0.50	<0.020	<0.020	< 0.50	-
Carbonate (CO ₂)	ma/L	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-
Chloride (Cl)	ma/l	0.05	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.10	<0.10	<0.50	-
Hydroxide (OH)	ma/L	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-
Magnesium (Mg)	ma/l	0.1	<0.10	<0.10	<0.10	<0.10	<0.0	<0.10	<0.10	<0.0	<0.0	<0.10	0.0057	< 0.005	<0.10	-
Potassium (K)	ma/l	0.5	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.050	< 0.05	<0.10	
Sodium (Na)	ma/l	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.051	< 0.05	<1.0	
Sulfate (SQ ₄)	ma/l	0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Sulphide	ma/l	0.002	<0.0020	<0.00	<0.00	<0.00	<0.000	<0.000	<0.00	<0.00	<0.002	<0.00	<0.002	<0.002	<0.00	
Nutrients and BOD	ilig/E	0.002	-0.0020	-0.0020	-0.0020	-0.0020	-0.0020	-0.0020	-0.0020	-0.0020	-0.002	-0.002	-0.002	-0.002	-0.002	
Ammonia-N	ma/l	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.05	<0.05	<0.05	<0.05	<0.05	-
Biochemical Oxygen Demand	ma/l	2	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	27	<2.0	<2.0	<2.0	<2.0	-
Nitrate (as N)	ma/l	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.05	<0.05	< 0.05	< 0.05	<0.05	
Nitrate and Nitrite as N	mg/L	0.071	<0.071	<0.000	<0.000	<0.000	<0.000	<0.000	<0.000	<0.000	<0.071	<0.071	< 0.071	< 0.071	<0.071	_
Nitrite (as N)	ma/l	0.05	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.05	<0.05	<0.05	<0.05	<0.05	
Phosphorus Total	mg/L	0.001	<0.000	<0.000	<0.000	<0.000	<0.000	<0.000	<0.000	<0.000	<0.001	<0.001	<0.001	<0.001	<0.001	_
Phosphorus, Total Dissolved	mg/L	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	
Total Kieldahl Nitrogen	mg/L	0.001	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	-
Dissolved Metals	ilig/L	0.2	-0.20	-0.20	-0.20	-0.20	40.20	-0.20	-0.20	-0.20	-0.20	-0.20	0.20	0.20	-0.20	
	ma/l	0.01.0.001*			<0.010	<0.010	0.0035	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	
Antimony (Sb)	mg/L	0.01, 0.001	-	-	<0.010	<0.010	<0.0035	<0.0010	<0.0010	<0.0010	<0.001	<0.001	<0.001	<0.001	<0.001	-
Arconio (Ac)	mg/L	0.0004, 0.0001	-	-	<0.00040	<0.00040	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-
Alsellic (As)	mg/L	0.0004, 0.0001	-	-	<0.00040	<0.00040	<0.00010	<0.00010	<0.00010		<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-
Danum (Da)	mg/L	0.0001, 0.00005*	-	-	10.00014	~0.00010			0.000082	~0.000050	×0.00005	~0.00005	<0.00005	~0.00005	<0.00005	-
Deryillulli (De)	mg/L	0.0005	-	-	<0.000050	<0.00050	<0.00050	<0.00050		<0.00050	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	-
Bismum (B)	mg/L	0.00005	-	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00005	<0.00005	-	-	<0.00005	-
	mg/L	0.002	-	-	0.0033	0.0033	<0.0020	0.0028	0.0024	<0.0020	0.0040	-	NU.U IU	NU.U IU	0.0027	-
	mg/L	0.0001, 0.00001*	-	-	<0.00010	<0.00010	<0.000010	<0.000010	<0.000010	<0.000010	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	-
Chromium (Cr)	mg/L	0.0004, 0.0001*	-	-	<0.00040	<0.00040	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-

Table A1.1 (Cont'd.)

Water Quality Variable	Unit	Detection Limit	Field Blank Summer 2011	Trip Blank Summer 2011	Field Blank Fall 2011	Trip Blank Fall 2011	Field Blank Winter 2012	Trip Blank Winter 2012	Field Blank Spring 2012	Trip Blank Spring 2012	Field Blank Winter 2013	Trip Blank Winter 2013	Field Blank Spring 2013	Trip Blank Spring 2013	Field Blank Summer 2013	Trip Blank Summer 2013
Cobalt (Co)	mg/L	0.0001	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-
Copper (Cu)	mg/L	0.0006, 0.0001*	-	-	<0.00060	<0.00060	0.00025	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-
Iron (Fe)	mg/L	0.01	-	-	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-
Lead (Pb)	mg/L	0.0001, 0.00005*	-	-	<0.00010	<0.00010	<0.000050	<0.000050	<0.000050	<0.000050	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	-
Lithium (Li)	mg/L	0.003, 0.005*	-	-	<0.0030	<0.0030	<0.0050	<0.0050	<0.0050	<0.0050	<0.005	< 0.005	< 0.005	<0.005	<0.005	-
Manganese (Mn)	mg/L	0.002, 0.00005*	-	-	<0.0020	<0.0020	0.000103	<0.000050	0.000087	<0.000050	<0.002	< 0.002	<0.002	<0.002	< 0.002	-
Molybdenum (Mo)	mg/L	0.0001, 0.00005*	-	-	<0.00010	<0.00010	<0.50	<0.000050	<0.000050	<0.000050	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	-
Nickel (Ni)	mg/L	0.0001	-	-	0.00034	0.00017	<0.000050	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	-
Selenium (Se)	mg/L	0.0004, 0.0001*	-	-	<0.00040	<0.00040	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	-
Silver (Ag)	mg/L	0.0002, 0.0001**,	-	-	<0.00010	<0.00010		<0.050	<0.000010	<0.000010	<0.00001	< 0.00001	<0.00001	<0.00001	<0.00001	-
Strontium (Sr)	ma/L	0.0001*	-	-	0.00038	<0.00010	<0.000010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	-	-	<0.0001	-
Thallium (TI)	ma/L	0.00005	-	-	<0.000050	<0.000050	<0.00010	<0.000050	<0.000050	<0.000050	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	-
Tin (Sn)	ma/L	0.0002. 0.0001*	-	-	0.00116	<0.00020	<0.000050	< 0.00010	0.00189	< 0.00010	< 0.0001	-	< 0.0001	< 0.0001	< 0.0001	-
Titanium (Ti)	ma/L	0.0003	-	-	< 0.00030	<0.00030	0.00494	<0.00030	< 0.00030	< 0.00030	< 0.0003	<0.0003	< 0.0003	< 0.0003	< 0.0003	-
Uranium (U)	ma/L	0.0001. 0.00001*	-	-	<0.00010	<0.00010	<0.00030	<0.000010	<0.000010	<0.000010	<0.00001	<0.00001	< 0.00001	< 0.00001	<0.00001	-
Vanadium (V)	ma/L	0.0001	-	-	<0.00010	< 0.00010	<0.000010	< 0.00010	< 0.00010	< 0.00010	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-
Zinc (Zn)	ma/L	0.001	-	-	<0.0010	< 0.0010	< 0.00010	<0.0010	< 0.0010	< 0.0010	<0.001	< 0.001	<0.001	<0.001	< 0.001	-
Total Metals	g.=															
Aluminum (Al)	mg/L	0.02, 0.003*	<0.020	<0.020	<0.020	<0.020	0.0036	<0.0030	<0.0030	<0.0030	< 0.003	< 0.003	<0.003	<0.003	< 0.003	-
Antimony (Sb)	mg/L	0.0004, 0.0001*	<0.00040	<0.00040	<0.00040	<0.00040	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-
Arsenic (As)	ma/L	0.0004. 0.0001*	<0.00040	<0.00040	<0.00040	<0.00040	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-
Barium (Ba)	ma/L	0.0002. 0.00005*	<0.00020	<0.00020	< 0.00020	<0.00020	<0.000050	<0.000050	<0.000050	<0.000050	< 0.00005	< 0.00005	<0.00005	< 0.00005	< 0.00005	-
Bervllium (Be)	ma/L	0.001. 0.0005*	<0.0010	<0.0010	<0.0010	<0.0010	< 0.00050	<0.00050	< 0.00050	<0.00050	<0.0005	<0.0005	<0.0005	< 0.0005	< 0.0005	-
Bismuth (Bi)	ma/L	0.0002.0.00005*	< 0.00020	< 0.00020	< 0.00020	<0.00020	<0.000050	<0.000050	<0.000050	<0.000050	< 0.00005	< 0.00005	-	-	< 0.00005	-
Boron (B)	ma/L	0.02. 0.002*	< 0.020	<0.020	<0.020	<0.020	0.0031	<0.0020	< 0.0020	<0.0020	<0.010	<0.010	<0.010	<0.010	< 0.010	-
Cadmium (Cd)	ma/L	0.0002. 0.00001*	<0.00020	<0.00020	<0.00020	<0.00020	<0.000010	<0.000010	<0.000010	<0.000010	<0.00001	<0.00001	<0.00001	<0.00001	< 0.00001	-
Chromium (Cr)	ma/L	0.0008. 0.0001*	<0.00080	<0.00080	<0.00080	<0.00080	< 0.00010	< 0.00010	< 0.00010	<0.00010	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-
Cobalt (Co)	ma/L	0.0002.0.0001*	< 0.00020	<0.00020	< 0.00020	<0.00020	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	-
Copper (Cu)	ma/l	0.001_0.0001*	<0.0010	<0.0010	<0.0010	<0.0010	0.00021	<0.00010	0.00029	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-
Iron (Fe)	ma/l	0.01	<0.010	<0.010	<0.0010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	-	-	<0.010	-
Lead (Pb)	ma/l	0.0001_0.00005*	<0.00010	<0.00010	<0.00010	<0.00010	<0.000050	<0.000050	<0.000050	<0.000050	<0.00005	<0.00005	<0 00005	<0.00005	<0.00005	-
Lithium (Li)	ma/l	0.006_0.005*	<0.0060	<0.0060	<0.0060	<0.0060	<0.0050	<0.0050	<0.0050	<0.0050	<0.005	<0.005	<0.005	<0.005	<0.005	-
Manganese (Mn)	ma/l	0.002_0.00005*	<0.0000	<0.0020	<0.0000	<0.0000	0.000097	<0.00050	0.000104	<0.000050	<0.000	<0.000	-0.000	-0.000	<0.000	-
Mercury (Hg)-Trace	ng/L	1	<1.0	<1.0	<1.0	<1.0	<0.050	<0.50	0.000101	<0.50	<0.0005	<0.0002	<0.0005	<0.0005	<0.0002	
Molybdenum (Mo)	ma/l	0.0001.0.00005*	<0.00010	<0.00010	<0.00010	<0.00010	<0.000	<0.00	<0.000050	<0.000	<0.00005	<0.00005	<0.00005	<0.00005	<0.00005	
Nickel (Ni)	ma/l	0.0001, 0.00003	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.000030	<0.0000000	<0.0000000	<0.00000	<0.00000	<0.00003	<0.00000	<0.00003	
Selenium (Se)	mg/L	0.0002, 0.0001*	<0.00020	<0.00020	<0.00020	<0.00020	0.281	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	_
Silver (Ag)	mg/L	0.0004, 0.0001	<0.00040	<0.00040	<0.00040	<0.00040	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Strontium (Sr)	mg/L	0 0001*	<0.00040	<0.00040	<0.00010	<0.00010	<0.000010	<0.00010	<0.000010	<0.000010	<0.00001	<0.00001	-0.00001	-0.00001	<0.00001	_
Thallium (TI)	mg/L	0.0002, 0.0001	<0.00020	<0.00020	<0.00020	<0.00020	<0.00010	<0.00010	<0.00010	<0.00010	<0.0001	<0.0001	<0.00005	<0.00005	<0.0001	-
	mg/L	0.0001, 0.00003	<0.00010	<0.00010	~0.00010	<0.00010	~0.000050	<0.000030	0.000000	<0.000030	<0.00003	<0.00005	<0.00003	<0.00003	<0.00003	-
Titanium (Ti)	mg/L	0.0004, 0.0001	<0.00299		<0.0014		<0.00430	<0.00010	<0.00000	<0.00010	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	-
	mg/L	0.0003, 0.0003"	<0.0000	<0.0000	~0.00010			~0.00030			<0.0003	~0.0003	<0.00004	~0.0003	<0.0003	-
	mg/L	0.0001, 0.00001*	<0.00010	<0.00010	~0.00010	~0.00010	~0.000010	<0.00010	<0.000010	<0.000010	~0.00001	~0.00001	<0.00001	<0.00001	<0.00001	-
Zinc (Zn)	mg/L	0.004, 0.003*	<0.00050	<0.00050	<0.00050	<0.00050	<0.00010	<0.00010	<0.00010	<0.0030	<0.0001	<0.0001	<0.0001	< 0.0001	0.0084	-

< = value is below detection limit

value is > 5 times the detection limit

A1.2.2 Field Duplicates

Concentrations of water quality variables in the field duplicates are shown in Table A1.2 and Table A1.3. The relative percent difference in concentrations was greater than 20% for several total and dissolved metals in all seasons; TSS and sulphide in most seasons, and many of the nutrients in spring 2012.

There were a eleven water quality variables with concentrations greater than five times the detection limit with a relative percent difference greater than 20%. Four of these occurred in winter 2012 and three occurred in Spring 2013. Other than that, there appeared to be no pattern to the differences.

Table A1.2	Water qua	lity QA/QC	results: field	I duplicates.

		Dotoction Limit		Summer 2	011		Fall 2011			Winter 2012		Spring 2012		
water Quality variable	Units	Detection Limit	MUL-1	Duplicate	% Difference	GAC-1	Duplicate	% Difference	DIL-1	Duplicate	% Difference	DIL-1	Duplicate	% Difference
Conventional Variables														
Alkalinity, Total (as CaCO ₃)	mg/L	5	995	991	0.40	499	496	0.60	460	464	0.87	144	141	2.11
Color. True	T.C.U.	2	13	14	7.41	30.8	30.7	0.33	186	219	16.30	76.8	79.3	3.20
Conductivity (EC)	uS/cm	0.2	2160	2160	0.00	837	834	0.36	350	350	0.00	276	275	0.36
Dissolved Organic Carbon	ma/L	1	41	39	5.00	16.7	17.2	2.95	68.2	65.8	3.58	21.6		
Hardness (as CaCO ₃)	ma/L		779	769	1.29	403	426	5.55	416	422	1.43	124	127	2.39
pH	Ηa	0.1	9.16	9.15	0.11	8.35	8.36	0.12	7.88	7.88	0.00			
Total Dissolved Solids	mg/L	10	1630	1620	0.62	526	525	0.19	645	674	4.40	182	193	5.87
Total Organic Carbon	mg/L	1	45.4	44.3	2.45	16.7	16.7	0.00	68.4	71.5	4.43	22.6	22.2	1.79
Total Suspended Solids	mg/L	3	31	42	30.14	<3.0	4	28.57	120	31	117.88	5	3	50.00
Turbidity	NTU	0.1	16.6	18.2	9.20				20.6	11.5	56.70	2.08	2.1	0.96
General Organics				-										
Hydrocarbons, Recoverable (I.R.)	mg/L	1	<1.0	<1.0	0.00	<1.0	<1.0	0.00	<1.0	<1.0	0.00	<1.0	<1.0	0.00
Naphthenic Acids	mg/L	1	<1.0	<1.0	0.00	<1.0	<1.0	0.00	1.4	1.6	13.33	<1.0	<1.0	0.00
Phenols (4AAP)	mg/L	0.001	0.0112	0.0115	2.64	0.0048	0.0049	2.06	0.026	0.0259	0.39	0.0099	0.0247	85.55
Major Ions	0													
Bicarbonate (HCO ₃)	mg/L	5	854	825	3.45	588	582	1.03	561	566	0.89	175	172	1.73
Calcium (Ca)	ma/L	0.05	15.3	15.6	1.94	90.2	95.3	5.50	78.4	79.1	0.89	23.2	24.1	3.81
Carbonate (CO ₃)	mg/L	5	177	189	6.56	10	11.3	12.21	<5.0	<5.0	0.00	5	5	0.00
Chloride (CI)	mg/L	0.05	37.3	37.1	0.54	2.96	2.97	0.34	7.18	7.14	0.56	5.22	3.68	34.61
Hydroxide (OH)	mg/L	5	<5.0	<5.0	0.00	<5.0	<5.0	0.00	<5.0	<5.0	0.00	<5.0	<5.0	0.00
Magnesium (Mg)	mg/L	0.1	154	158	2.56	43.1	45.7	5.86	53.6	54.6	1.85	16.2	16.7	3.04
Potassium (K)	mg/L	0.5	40.5	40.7	0.49	5.22	5.75	9.66	18.7	19.1	2.12	7.76	8.14	4.78
Sodium (Na)	mg/L	1	228	230	0.87	25.3	27.3	7.60	15.8	15.4	2.56	4.9	5.1	4.00
Sulfate (SO ₄)	mg/L	0.5	347	347	0.00	6.27	6.32	0.79	<0.50	<0.50	0.00	1.65	0.86	62.95
Sulphide	mg/L	0.002	0.0059	<0.0020	98.73	<0.0020	<0.0020	0.00	0.0255	0.0164	43.44	0.005	<0.0053	5.83
Nutrients and BOD														
Ammonia-N	mg/L	0.05	0.213	0.223	4.59	<0.050	<0.050	0.00	1.25	1.28	2.37	0.05	0.05	0.00
Biochemical Oxygen Demand	mg/L	2	3.4	2.6	26.67	2	<2.0	0.00	18.1	17	6.27	4.5	4.1	9.30
Nitrate (as N)	mg/L	0.05	<0.050	<0.050	0.00	<0.050	<0.050	0.00	<0.050	<0.050	0.00	0.091	<0.050	58.16
Nitrate and Nitrite as N	mg/L	0.071	<0.071	<0.071	0.00	<0.071	<0.071	0.00	<0.071	<0.071	0.00	0.091	<0.071	24.69
Nitrite (as N)	mg/L	0.05	<0.050	<0.050	0.00	<0.050	<0.050	0.00	<0.050	<0.050	0.00	<0.050	<0.050	0.00
Phosphorus, Total	mg/L	0.001	0.0902	0.0941	4.23	0.0828	0.0826	0.24	0.419	0.384	8.72	0.0718	0.0765	6.34
Phosphorus, Total Dissolved	mg/L	0.001	0.0212	0.0227	6.83	0.0291	0.0281	3.50	0.0935	0.105	11.59	0.0226	0.0213	5.92
Total Kjeldahl Nitrogen	mg/L	0.2	3.38	2.91	14.94	1.35	1.28	5.32	7.94	6.12	25.89	1.54	1.43	7.41
Dissolved Metals														
Aluminum (Al)	mg/L	0.01, 0.001*	-	-	n/a	0.012	<0.010	18.18	0.0031	0.0025	21.43	0.0011	<0.001	9.52
Antimony (Sb)	mg/L	0.0004, 0.0001*	-	-	n/a	<0.00040	<0.00040	0.00	<0.00010	<0.00010	0.00	<0.00010	<0.00010	0.00
Arsenic (As)	mg/L	0.0004, 0.0001*	-	-	n/a	0.00448	0.00451	0.67	0.00166	0.00171	2.97	0.00054	0.00055	1.83
Barium (Ba)	mg/L	0.0001, 0.00005*	· ·	-	n/a	0.0663	0.066	0.45	0.118	0.122	3.33	0.0245	0.0235	4.17
Beryllium (Be)	mg/L	0.0005	· ·	-	n/a	<0.00050	<0.00050	0.00	<0.00050	<0.00050	0.00	<0.00050	<0.00050	0.00
Bismuth (Bi)	mg/L	0.00005	-	-	n/a	<0.000050	<0.000050	0.00	<0.000050	<0.000050	0.00	<0.000050	<0.000050	0.00
Boron (B)	mg/L	0.002	-	-	n/a	0.0957	0.0946	1.16	0.0479	0.0472	1.47	0.0231	0.0229	0.87
Cadmium (Cd)	mg/L	0.0001, 0.00001*	· ·	-	n/a	<0.00010	<0.00010	0.00	<0.000010	<0.000010	0.00	<0.00001	<0.00001	0.00
Chromium (Cr)	mg/L	0.0004, 0.0001*	· ·	-	n/a	<0.00040	<0.00040	0.00	<0.00010	<0.00010	0.00	<0.00010	<0.00010	0.00
Cobalt (Co)	mg/L	0.0001	· ·	-	n/a	<0.00010	<0.00010	0.00	0.00012	0.00013	8.00	<0.00010	<0.00010	0.00
Copper (Cu)	mg/L	0.0006, 0.0001*	-	-	n/a	<0.00060	<0.00060	0.00	<0.00010	<0.00010	0.00	<0.00010	<0.00010	0.00
Iron (Fe)	mg/L	0.01	· ·	-	n/a	0.015	0.017	12.50	1.05	1.23	15.79	0.048	0.034	34.15
Lead (Pb)	mg/L	0.0001, 0.00005*	· ·	-	n/a	<0.00010	<0.00010	0.00	<0.000050	<0.000050	0.00	<0.00005	<0.00005	0.00
Lithium (Li)	mg/L	0.003, 0.005*	· ·	-	n/a	0.0503	0.0495	1.60	0.0367	0.0363	1.10	0.0116	0.0114	1.74
Manganese (Mn)	mg/L	0.002, 0.00005*	· ·	-	n/a	0.0029	0.003	3.39	0.863	0.927	7.15	0.000872	0.000754	14.51
Molybdenum (Mo)	mg/L	0.0001, 0.00005*		-	n/a	0.00105	0.00108	2.82	0.00079	0.000779	1.40	0.000424	0.000418	1.43

Table A1.2 (Cont'd.)

Water Quality Variable	Vatar Quality Variable Units Detection Limit			Summer 2	D11		Fall 2011			Winter 2012		Spring 2012		
	Units	Detection Limit	MUL-1	Duplicate	% Difference	GAC-1	Duplicate	% Difference	DIL-1	Duplicate	% Difference	DIL-1	Duplicate	% Difference
Nickel (Ni)	mg/L	0.0001	-	-	n/a	0.00052	0.00055	5.61	0.00025	0.00027	7.69	0.00012	0.00015	22.22
Selenium (Se)	mg/L	0.0004, 0.0001*	-	-	n/a	<0.00040	<0.00040	0.00	0.0001	0.00012	18.18	<0.00010	<0.00010	0.00
Silicon (Si)	mg/L	0.05							20.3	20.2	0.49	<3.60000	<3.55000	1.40
Silver (Ag)	mg/L).0002, 0.0001**, 0.00001	-	-	n/a	<0.00010	<0.00010	0.00	<0.000010	<0.000010	0.00	<0.00001	<0.00001	0.00
Strontium (Sr)	mg/L	0.0001	-	-	n/a	0.415	0.417	0.48	0.326	0.321	1.55	<0.0924	<0.0906	1.97
Thallium (TI)	mg/L	0.00005	-	-	n/a	<0.000050	<0.000050	0.00	<0.000050	<0.000050	0.00	<0.00005	<0.00005	0.00
Tin (Sn)	mg/L	0.0002, 0.0001*	-	-	n/a	<0.00020	<0.00020	0.00	<0.00010	<0.00010	0.00	<0.0001	< 0.0001	0.00
Titanium (Ti)	mg/L	0.0003	-	-	n/a	<0.00030	<0.00030	0.00	<0.00030	<0.00030	0.00	<0.00030	<0.00030	0.00
Uranium (U)	mg/L	0.0001, 0.00001*	-	-	n/a	0.00058	0.00058	0.00	0.000057	0.000036	45.16	<0.0000	<0.0000	8.70
Vanadium (V)	mg/L	0.0001	-	-	n/a	0.00014	0.00013	7.41	0.00013	<0.00010	26.09	<0.00010	<0.00010	0.00
Zinc (Zn)	mg/L	0.001	-	-	n/a	0.0023	0.0018	24.39	0.0019	0.002	5.13	0.0014	0.002	35.29
Total Metals														
Aluminum (Al)	mg/L	0.02, 0.003*	0.028	0.022	24.00	<0.020	<0.020	0.00	0.183	0.0343	136.86	0.0193	0.0134	36.09
Antimony (Sb)	mg/L	0.0004, 0.0001*	<0.00040	<0.00040	0.00	<0.00040	<0.00040	0.00	<0.00010	<0.00010	0.00	<0.00010	<0.00010	0.00
Arsenic (As)	mg/L	0.0004, 0.0001*	0.00862	0.00862	0.00	0.00663	0.00661	0.30	0.00182	0.00167	8.60	0.00055	0.00054	1.83
Barium (Ba)	mg/L	0.0002, 0.00005*	0.00576	0.00568	1.40	0.0698	0.0682	2.32	0.145	0.138	4.95	0.0248	0.0245	1.22
Beryllium (Be)	mg/L	0.001, 0.0005*	<0.0010	<0.0010	0.00	<0.0010	<0.0010	0.00	<0.00050	<0.00050	0.00	<0.0005	<0.0005	0.00
Bismuth (Bi)	mg/L	0.0002, 0.00005*	<0.00020	<0.00020	0.00	<0.00020	<0.00020	0.00	<0.000050	<0.000050	0.00	<0.00005	<0.00005	0.00
Boron (B)	mg/L	0.02, 0.002*	0.34	0.341	0.29	0.095	0.097	2.08	0.046	0.0434	5.82	0.0221	0.0215	2.75
Cadmium (Cd)	mg/L	0.0002, 0.00001*	<0.00020	<0.00020	0.00	<0.00020	<0.00020	0.00	0.000027	<0.000010	91.89	<0.00001	<0.00001	0.00
Chromium (Cr)	mg/L	0.0008, 0.0001*	<0.00080	<0.00080	0.00	<0.00080	<0.00080	0.00	0.00038	0.00025	41.27	<0.00013	<0.00012	8.00
Cobalt (Co)	mg/L	0.0002, 0.0001*	<0.00020	<0.00020	0.00	<0.00020	<0.00020	0.00	0.00026	0.00016	47.62	<0.00010	<0.00010	0.00
Copper (Cu)	mg/L	0.001, 0.0001*	<0.0010	<0.0010	0.00	<0.0010	<0.0010	0.00	0.00083	0.00045	59.38	<0.0003	<0.0002	8.00
Iron (Fe)	mg/L	0.01	0.482	0.466	3.38	0.455	0.46	1.09	1.73	1.6	7.81	0.127	0.126	0.79
Lead (Pb)	mg/L	0.0001, 0.00005*	<0.00010	<0.00010	0.00	<0.00010	<0.00010	0.00	0.000279	0.00011	86.89	<0.00005	<0.00005	0.00
Lithium (Li)	mg/L	0.006, 0.005*	0.167	0.165	1.20	0.0488	0.0481	1.44	0.0364	0.0365	0.27	0.0122	0.0122	0.00
Manganese (Mn)	mg/L	0.002, 0.00005*	0.0288	0.0291	1.04	0.0686	0.069	0.58	0.949	0.944	0.53	0.0646	0.0646	0.00
Mercury (Hg)-Trace	ng/L	1	1.7	1.6	6.06	<1.0	<1.0	0.00	<0.50	<0.50	0.00	0.88		200.00
Molybdenum (Mo)	mg/L	0.0001, 0.00005*	0.0015	0.00148	1.34	0.00115	0.00113	1.75	0.000897	0.000803	11.06	0.000465	0.000464	0.22
Nickel (Ni)	mg/L	0.0002, 0.0001*	0.00031	0.00029	6.67	0.00055	0.00047	15.69	0.00061	0.00041	39.22	0.00016	0.00014	13.33
Selenium (Se)	mg/L	0.0004, 0.0001*	<0.00040	<0.00040	0.00	<0.00040	<0.00040	0.00	0.00018	0.00012	40.00	<0.00010	<0.00010	0.00
Silicon (Si)	mg/L	0.05							20.4	19.9	2.48	<4.06000	<4.11000	1.22
Silver (Ag)	mg/L).0004, 0.0001**, 0.00001	<0.00040	<0.00040	0.00	<0.00010	<0.00010	0.00	<0.000010	<0.000010	0.00	<0.00001	<0.00001	0.00
Strontium (Sr)	mg/L	0.0002, 0.0001*	0.0426	0.0422	0.94	0.421	0.419	0.48	0.327	0.322	1.54	0.0912	0.0913	0.11
Thallium (TI)	mg/L	0.0001, 0.00005*	<0.00010	<0.00010	0.00	<0.00010	<0.00010	0.00	<0.000050	<0.000050	0.00	<0.00005	<0.00005	0.00
Tin (Sn)	mg/L	0.0004, 0.0001*	<0.00040	<0.00040	0.00	<0.00040	<0.00040	0.00	<0.00010	<0.00010	0.00	<0.00010	<0.00010	0.00
Titanium (Ti)	mg/L	0.005, 0.0003*	<0.0050	<0.0050	0.00	<0.0050	<0.0050	0.00	0.00511	0.00107	130.74	<0.0003	<0.0003	0.00
Uranium (U)	mg/L	0.0001, 0.00001*	0.00135	0.00133	1.49	0.00059	0.00058	1.71	0.0001	0.000046	73.97	0.000013	0.000012	8.00
Vanadium (V)	mg/L	0.0005, 0.0001*	0.00053	0.00054	1.87	<0.00050	<0.00050	0.00	0.00051	0.00015	109.09	0.0001	0.0001	0.00
Zinc (Zn)	mg/L	0.004, 0.003*	<0.0040	<0.0040	0.00	0.0058	<0.0040	36.73	0.0133	0.0066	67.34	<0.0055	<0.0049	11.54

Analytes differ by >20% between sample and split but 1 or both concentrations are <5 times the detection limit

Analytes differ by >20% between sample and both concentrations are >5 times the detection limit
Table A1.3	Water quality QA/QC results: field duplicates 2013.	
------------	---	--

		Detection		Winter 201	3		Spring 201	3		Summer 201	3
Water Quality Variable	Units	Limit	LG2-2	Duplicate	% Difference	SG4-2	Duplicate	% Difference	SG4-2	Duplicate	% Difference
Conventional Variables											
Alkalinity, Total (as CaCO ₃)	mg/L	5	450	450	0.00	186	186	0.00	218	219	0.46
Color, True	T.C.U.	2	62.1	64.3	3.48	56.8	56.8	0.00	52.9	53.3	0.75
Conductivity (EC)	µS/cm	0.2	813	814	0.12	332	332	0.00	383	377	1.58
Dissolved Organic Carbon	mg/L	1	26.2	25.9	1.15	18.6	20.6	10.20	21.2	20.1	5.33
Hardness (as CaCO ₃)	mg/L	-	409	401	1.98	192	188	2.11	208	212	1.90
pН	pН	0.1	7.64	7.69	0.65	8.15	8.17	0.25	7.38	7.39	0.14
Total Dissolved Solids	mg/L	10	499	502	0.60	238	241	1.25	278	272	2.18
Total Organic Carbon	mg/L	1	26.6	26.3	1.13	20.8	20.8	0.00	21.5	20.7	3.79
Total Suspended Solids	mg/L	3	17	18.0	5.71	7	<3.0	80.00	<4.0	<4.0	0.00
Turbidity	NTU	0.1	64.2	69.4	7.78	-	-	-	6.58	6.51	1.07
General Organics											
Hydrocarbons, Recoverable (I.R.)	mg/L	1	<1.0	<1.0	0.00	<1.0	<1.0	0.00	<1.0	1.5	40.00
Naphthenic Acids	mg/L	1	<1.0	<1.0	0.00	<1.0	<1.0	0.00	0.16	0.39	83.64
Phenols (4AAP)	mg/L	0.001	0.0078	0.0070	10.81	0.0094	0.0095	1.06	0.0104	0.0091	13.33
Major Ions											
Bicarbonate (HCO ₃)	mg/L	5	548	549	0.18	227	226	0.44	266	267	0.38
Calcium (Ca)	mg/L	0.05	94.5	88.9	6.11	45.2	44.4	1.79	47.4	47.2	0.42
Carbonate (CO ₃)	mg/L	5	<5.0	<5.0	0.00	<5.0	<5.0	0.00	<5.0	<5.0	0.00
Chloride (CI)	mg/L	0.05	5.93	5.83	1.70	0.54	<0.5	7.69	0.63	0.57	10.00
Hydroxide (OH)	mg/L	5	<5.0	<5.0	0.00	<5.0	<5.0	0.00	<5.0	<5.0	0.00
Magnesium (Mg)	mg/L	0.1	42	39.0	7.41	19.2	18.8	2.11	22.8	22.5	1.32
Potassium (K)	mg/L	0.5	7.21	6.77	6.29	6.83	6.63	2.97	4.39	4.25	3.24
Sodium (Na)	mg/L	1	20.9	20.8	0.48	2.3	2.4	4.26	2.48	2.53	2.00
Sulfate (SO ₄)	mg/L	0.5	2.26	2.24	0.89	<0.5	<0.5	0.00	<0.50	<0.50	0.00
Sulphide	mg/L	0.002	0.011	0.0088	21.32	0.002	0.004	47.62	<0.002	0.0025	22.22
Nutrients and BOD											
Ammonia-N	mg/L	0.05	1.44	1.44	0.00	<0.050	<0.050	0.00	<0.05	<0.05	0.00
Biochemical Oxygen Demand	mg/L	2	13.4	12.3	8.56	2	<2.0	0.00	<2.0	<2.0	0.00
Nitrate (as N)	mg/L	0.05	<0.05	<0.05	0.00	<0.050	<0.050	0.00	<0.050	<0.050	0.00
Nitrate and Nitrite as N	mg/L	0.071	<0.071	<0.071	0.00	<0.071	<0.071	0.00	<0.071	<0.071	0.00
Nitrite (as N)	mg/L	0.05	<0.05	<0.05	0.00	<0.050	<0.050	0.00	<0.050	<0.050	0.00
Phosphorus, Total	mg/L	0.001	0.511	0.593	14.86	0.0297	0.0409	31.73	0.117	0.123	5.00
Phosphorus, Total Dissolved	mg/L	0.001	0.582	0.520	11.25	0.144	0.14	2.82	0.0215	0.0211	1.88
Total Kjeldahl Nitrogen	mg/L	0.2	2.28	2.47	8.00	1.11	1.09	1.82	1.1	1.03	6.57
Dissolved Metals											
Aluminum (Al)	mg/L	0.001	0.004	0.0049	22.73	<0.001	<0.001	0.00	<0.001	0.0013	26.09
Antimony (Sb)	mg/L	0.0001	<0.00010	<0.00010	0.00	<0.00010	<0.00010	0.00	<0.00010	<0.00010	0.00
Arsenic (As)	mg/L	0.0001	0.001	0.00108	1.87	0.001	0.001	7.09	0.001	0.00096	4.08
Barium (Ba)	mg/L	0.00005	0.111	0.111	0.00	0.047	0.046	2.59	0.076	0.0742	2.53
Beryllium (Be)	mg/L	0.0005	<0.0005	<0.0005	0.00	<0.0005	<0.0005	0.00	<0.0005	<0.0005	0.00
Bismuth (Bi)	mg/L	0.00005	<0.00005	<0.00005	0.00	<0.00005	<0.00005	0.00	-	-	-
Boron (B)	mg/L	0.002	0.0355	0.0342	3.73	0.0225	0.0196	13.78	0.015	0.015	0.00

Table A1.3 (Cont'd.)

		Detection		Winter 201	3		Spring 201	3	:	Summer 201	3
Water Quality Variable	Units	Limit	LG2-2	Duplicate	% Difference	SG4-2	Duplicate	% Difference	SG4-2	Duplicate	% Difference
Cadmium (Cd)	mg/L	0.00001	<0.00001	<0.00001	0.00	<0.00001	<0.00001	0.00	<0.00001	<0.00001	0.00
Chromium (Cr)	mg/L	0.0001	0.0002	0.00019	17.14	<0.0001	<0.0001	0.00	<0.00010	<0.00010	0.00
Cobalt (Co)	mg/L	0.0001	0.0004	0.00038	2.67	<0.0001	<0.0001	0.00	0.0003	0.00030	9.52
Copper (Cu)	mg/L	0.0001	<0.0001	<0.0001	0.00	<0.0001	<0.0001	0.00	<0.0001	<0.0001	0.00
Iron (Fe)	mg/L	0.01	6.4700	6.53	0.92	0.1100	0.0790	32.80	0.1850	0.187	1.08
Lead (Pb)	mg/L	0.00005	<0.00005	<0.00005	0.00	<0.00005	<0.00005	0.00	<0.00005	<0.00005	0.00
Lithium (Li)	mg/L	0.005	0.0128	0.0124	3.17	0.0057	0.0055	3.57	0.0056	0.0054	3.64
Manganese (Mn)	mg/L	0.002	1.2400	1.26	1.60	<0.002	<0.002	0.00	0.4540	0.404	11.66
Molybdenum (Mo)	mg/L	0.00005	0.00011	0.000108	0.93	0.0003	0.0003	0.77	0.0001	0.000079	5.19
Nickel (Ni)	mg/L	0.0001	0.0004	0.00041	4.76	0.0007	0.0007	4.51	0.0008	0.00087	4.71
Selenium (Se)	mg/L	0.0001	0.00012	0.00011	8.70	<0.00010	<0.00010	0.00	<0.0001	<0.0001	0.00
Silver (Ag)	mg/L	0.00001	<0.00001	<0.00001	0.00	<0.00001	<0.00001	0.00	<0.00001	<0.00001	0.00
Strontium (Sr)	mg/L	0.0001	0.263	0.263	0.00	0.0926	0.0928	0.22	-	-	-
Thallium (TI)	mg/L	0.00005	<0.00005	<0.00005	0.00	<0.00005	<0.00005	0.00	<0.000050	<0.000050	0.00
Tin (Sn)	mg/L	0.0001	0.00012	<0.0001	18.18	<0.0001	<0.0001	0.00	<0.00010	<0.00010	0.00
Titanium (Ti)	mg/L	0.0003	0.00070	0.00047	39.32	<0.0003	< 0.0003	0.00	<0.00030	<0.00030	0.00
Uranium (U)	mg/L	0.00001	0.00013	0.000126	0.79	0.000025	0.000024	4.08	0.000017	0.000019	11.11
Vanadium (V)	mg/L	0.0001	0.00043	0.00044	2.30	<0.0001	<0.0001	0.00	<0.0001	<0.00010	0.00
Zinc (Zn)	mg/L	0.001	<0.001	<0.001	0.00	<0.001	<0.001	0.00	0.0024	0.002	46.15
Total Metals	0										
Aluminum (Al)	mg/L	0.003	0.007	0.0072	1.38	0.042	0.005	161.62	0.0049	0.0041	17.78
Antimony (Sb)	mg/L	0.0001	<0.0001	<0.0001	0.00	<0.0001	<0.0001	0.00	<0.0001	<0.0001	0.00
Arsenic (As)	ma/L	0.0001	0.001	0.00121	0.82	0.00149	0.00120	21.56	0.00134	0.00138	2.94
Barium (Ba)	ma/L	0.00005	0.135	0.130	3.77	0.0782	0.0647	18.89	0.0809	0.0829	2.44
Bervllium (Be)	ma/L	0.0005	< 0.0005	< 0.0005	0.00	< 0.0005	< 0.0005	0.00	< 0.0005	<0.0005	0.00
Bismuth (Bi)	ma/L	0.00005	< 0.00005	<0.00005	0.00	<0.00005	< 0.00005	0.00	-	-	-
Boron (B)	ma/L	0.01	0.037	0.035	5.56	0.019	0.019	0.00	0.020	0.019	5.13
Cadmium (Cd)	ma/L	0.00001	<0.00001	<0.00001	0.00	<0.00001	<0.00001	0.00	<0.00001	<0.00001	0.00
Chromium (Cr)	ma/L	0.0001	0.00026	0.00026	0.00	0.00042	0.00025	50.75	< 0.0001	<0.0001	0.00
Cobalt (Co)	ma/L	0.0001	0.00040	0.00040	0.00	0.00078	0.00050	43.75	0.00072	0.00068	5.71
Copper (Cu)	ma/L	0.0001	0.00043	0.00030	35.62	0.00059	0.00047	22.64	0.00012	0.00016	28.57
Iron (Fe)	ma/L	0.01	7.78	7.67	1.42	2.80	1.74	46.70	-	-	-
Lead (Pb)	ma/L	0.00005	<0.00005	<0.00005	0.00	0.000073	<0.00005	37.40	<0.00005	<0.00005	0.00
Lithium (Li)	ma/L	0.005	0.0208	0.0196	5.94	<0.005	<0.005	0.00	0.0068	0.0057	17.60
Manganese (Mn)	ma/L	0.002	1.23	1.22	0.82	0.71	0.423	50.66	-	-	_
Mercury (Hg)-Trace	na/L	0.0025	< 0.001	<0.001	0.00	<0.0005	< 0.0005	0.00	<0.0025	<0.0025	0.00
Molvbdenum (Mo)	ma/L	0.00005	0.000	0.000127	2.33	0.00036	0.00031	15.84	0.000093	0.000098	5.24
Nickel (Ni)	ma/L	0.0001	0.000	0.00051	8.16	0.00099	0.00088	11.76	0.00090	0.00092	2.20
Selenium (Se)	ma/l	0.0001	0.000	0.00010	0.00	0.00010	<0.00010	0.00	0.00011	0.00010	9.52
Silver (Ag)	ma/l	0.00001	<0.00001	<0.00001	0.00	<0.00001	<0.00001	0.00	<0.00001	<0.00001	0.00
Strontium (Sr)	ma/l	0.0001	0.272	0 254	6.84	0.0915	0.0943	3.01	-	-	-
Thallium (TI)	ma/l	0.00005	<0.00005	<0.00005	0.00	<0.00005	<0.00005	0.00	<0.00005	<0.00005	0.00
Tin (Sn)	g/⊏ ma/l	0.0001	<0.00010	<0.00000	0.00	<0.00010	<0.000000	0.00	0.00021	0.00022	4 65
Titanium (Ti)		0.0003	0.001	0.00105	19 74	0.00180	0.00038	133 04	<0.0002	<0.00022	0.00
Uranium (U)	ma/l	0.00001	0.000	0.000142	0 70	0.00004	0.00003	11 43	0.000010	0.000018	5 41
Vanadium (V)	g/∟ ma/l	0.0001	0.001	0 00070	9.64	0.0000-	0.00017	61 22	0 00010	0.000010	14 63
Zinc (Zn)	mg/L	0.003	< 0.0030	<0.0030	0.00	0.00910	0.00730	21.95	< 0.005	< 0.005	0.00

Analytes differ by >20% between sample and split but 1 or both concentrations are <5 times the detection limit Analytes differ by >20% between sample and both concentrations are >5 times the detection limit

Appendix A2

Surface Water Quality Data

Table A2.1Water quality data by size and season.

		Bogulatory						Summ	or 2011								Fall	1 2011			
Water Quality Variable	Units	Guideline	Detection Limit	SM3a-1	GAC-1	SG2-1	SG4-1	MOC-1	MOC-2	MUL-1	MIL-1	GAL-1	DIL-1	SM3a-1	GAC-1	SG2-1	SG4-1	MOC-1	MOC-2	MUL-1	MIL-1
Field Measurements																					
Dissolved Oxygen	(mg/L)	5, 6.5 ¹	_2	1.8	2.6	1.2	1.8	5.7	-	6.8	7	6.6	4.7	1.7	7	1.1	3.2	6.8	6.9	9.2	7.5
Conductivity	uS/cm	-	_2	207	548	-	380	621	-	803	-	813	272	338	777	583	467	357	552	2065	257
pН	pН	6.5-9.0	_2	6.96	7.9	7.75	7.62	8.06	8.13	9.3	8.7	9	7.69	7.09	8.45	7.07	7.07	7.74	7.83	9.4	8.62
Temperature	°C	-	_2	16	18.2	16.9	16.8	17.1	17	21.2	19.6	20.4	18.9	3.8	7.4	4.7	5.9	5.8	7.9	10.8	10.6
Conventional Variables																					
Alkalinity, Total (as CaCO3)	mg/L	-	5	134	364	286	215	306	268	995	139	351	164	196	499	361	286	321	316	1030	147
Color, True	T.C.U.	-	2	11	75	77	96	68	51	13	10	10	100	110	30.8	36.4	33.9	45.1	21.1	8.3	7.5
Conductivity (EC)	uS/cm	-	0.2	257	639	494	389	621	410	2160	221	848	315	367	837	628	503	357	554	2065	257
Dissolved Organic Carbon	mg/L	-	1	28.3	23.1	26.9	25.4	23	17.1	41	11.6	23.5	26.3	37.8	16.7	21.6	21.7	24.6	13.9	44.5	11.4
Hardness (as CaCO3)	mg/L	-		121	338	242	187	279	237	779	122	349	136	181	403	309	266	281	278	744	121
Total Dissolved Solids	mg/L	-	10	211	436	356	282	441	317	1630	172	582	228	296	526	397	321	397	344	1660	166
Total Organic Carbon	mg/L	-	1	30.5	24	27	25.1	23.7	18	45.4	15	24.7	29.1	42.3	16.7	21.4	21.7	24.7	14.4	45.9	13.7
Total Suspended Solids	mg/L	+10mg/L ^A	3	7	3	5	<3.0	12	5	31	37	11	<3.0	<3.0	<3.0	65	<3.0	36	4	4	15
Turbidity	NTU	-	0.1	2.49	1.83	7.66	2.12	7.8	7.3	16.6	25.6	1.48	0.45	-	-	-	-	-	-	-	-
General Organics																					
Hydrocarbons, Recoverable (I.R.)	mg/L	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthenic Acids	mg/L	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Phenols (4AAP)	mg/L	0.004	0.001	0.0142	0.0098	0.0096	0.0141	0.0102	0.0058	0.0112	0.0036	0.0084	0.0139	0.0136	0.0048	0.0061	0.0046	0.0067	0.0035	0.0091	0.0042
Major Ions																					
Bicarbonate (HCO3)	mg/L	-	5	163	444	349	262	351	326	854	154	318	201	239	588	441	349	388	386	868	176
Calcium (Ca)	mg/L		0.05	23.8	73.2	55.1	41.5	59.2	62.6	15.3	25.8	17	24.1	40.7	90.2	69.3	61.4	57.5	71.4	9.21	26.7
Carbonate (CO3)	mg/L	-	5	<5.0	<5.0	<5.0	<5.0	10.8	<5.0	177	7.6	54.2	<5.0	<5.0	10	<5.0	<5.0	<5.0	<5.0	193	<5.0
Chloride (CI)	mg/L	640, 120 ^B	0.05	1.49	1.57	1.06	0.93	9.71	0.85	37.3	2.47	8.27	2.52	1.14	2.96	1.32	0.75	10.4	1.65	39.7	0.98
Hydroxide (OH)	mg/L	-	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Magnesium (Mg)	mg/L	-	0.1	13.3	30.8	25	19.5	31.9	19.1	154	14	74.7	17.4	19.2	43.1	33	27.4	33.3	24.2	175	13.3
Potassium (K)	mg/L	-	0.5	4.4	3.46	4	5.8	5.59	2.23	40.5	10.8	15.4	9.01	7.38	5.22	5.48	7.85	5.51	3.03	46.9	10.1
Sodium (Na)	mg/L	-	1	5	15.6	10.5	2.4	28.7	6.5	228	3.9	43.3	5.2	4.5	25.3	15.9	3.1	23.7	9	268	3.5
Sulfate (SO4)	mg/L	-	0.5	<0.50	5.72	<0.50	<0.50	43.7	0.97	347	<0.50	137	<0.50	<0.50	6.27	<0.50	<0.50	24.5	2.43	361	<0.50
Sulphide	mg/L	0.002 ^C	0.002	0.0055	<0.0020	0.0057	<0.0020	0.0021	<0.0020	0.0059	<0.0020	<0.0020	0.0021	0.0063	<0.0020	0.0033	<0.0020	0.0059	<0.0020	<0.0020	<0.0020
Nutrients and BOD																					
Ammonia-N	mg/L	Variable ^D	0.05	<0.050	<0.050	<0.050	0.065	0.057	<0.050	0.213	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.131	<0.050
Biochemical Oxygen Demand	mg/L	-	2	<2.0	2.6	<2.0	<2.0	3	2.6	3.4	5.1	<2.0	<2.0	<2.0	2	<2.0	<2.0	<2.0	<2.0	<2.0	4.5
Nitrate (as N)	mg/L	13	0.05	<0.050	<0.050	<0.050	0.106	<0.050	<0.050	<0.050	<0.050	<0.050	0.102	<0.050	<0.050	<0.050	<0.050	0.092	<0.050	<0.050	<0.050
Nitrate and Nitrite as N	mg/L		0.071	<0.071	<0.071	<0.071	0.106	<0.071	<0.071	<0.071	<0.071	<0.071	0.102	<0.071	<0.071	<0.071	<0.071	0.092	<0.071	<0.071	<0.071
Nitrite (as N)	mg/L	0.06	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Phosphorus, Total	mg/L	0.05	0.001	0.143	0.107	0.21	0.282	0.113	0.0605	0.0902	0.132	0.0147	0.0509	0.0996	0.0828	0.001	0.0789	0.11	0.0555	0.0434	0.0968
Phosphorus, Total Dissolved	mg/L	-	0.001	0.113	0.058	0.0409	0.18	0.0421	0.0172	0.0212	0.0079	0.0053	0.0242	0.0994	0.0291	0.001	0.0144	0.0219	0.0073	0.0235	0.0042
Total Kjeldahl Nitrogen	mg/L	1J	0.2	1.54	1.18	1.2	1.54	1.49	0.8	3.38	1.48	1.48	1.61	3.1	1.35	0.2	1.16	2.31	0.68	3.17	1.73
Dissolved Metals***																					
Aluminum (Al)	mg/L	0.1	0.01, 0.001*	<0.010	-	<0.010	<0.010	-	-	-	<0.010	<0.010	<0.010	<0.010	0.012	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Antimony (Sb)	mg/L	-	0.0004, 0.0001*	<0.00040	-	<0.00040	<0.00040	-	-	-	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040
Arsenic (As)	mg/L	0.005	0.0004, 0.0001*	0.00044	-	0.00252	0.00161	-	-	-	0.00059	0.00132	0.00061	0.00083	0.00448	0.00094	0.00081	0.00143	0.00059	0.00798	0.00058
Barium (Ba)	mg/L	-	0.0001, 0.00005*	0.0299	-	0.0778	0.0584	-	-	-	0.0149	0.0149	0.0476	0.0415	0.0663	0.0702	0.0453	0.0946	0.113	0.00073	0.0282
Beryllium (Be)	mg/L	-	0.0005	<0.00050	-	<0.00050	<0.00050	-	-	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth (Bi)	mg/L	-	0.00005	<0.000050	-	<0.000050	<0.000050	-	-	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron (B)	mg/L	29, 1.5 ^B	0.002	0.0169	-	0.0405	0.0182	-	-	-	0.0277	0.0869	0.0398	0.0119	0.0957	0.033	0.021	0.0611	0.0265	0.404	0.0295
Cadmium (Cd)	mg/L	Variable ^E	0.0001, 0.00001*	<0.00010	-	<0.00010	<0.00010	-	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Chromium (Cr)	mg/L	0.0089	0.0004, 0.0001*	<0.00040	-	<0.00040	<0.00040	-	-	-	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040
Cobalt (Co)	mg/L	-	0.0001	<0.00010	-	0.0002	0.00037	-	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.0001	0.00017	0.00011	<0.00010	<0.00010	<0.00010
Copper (Cu)	mg/L	Variable ^F	0.0006, 0.0001*	<0.00060	-	<0.00060	<0.00060	-	-	-	<0.00060	<0.00060	<0.00060	<0.00060	<0.00060	<0.00060	<0.00060	<0.00060	<0.00060	<0.00060	<0.00060
Iron (Fe)	mg/L	0.3	0.01	0.047	-	0.079	0.236	-	-	-	<0.010	<0.010	0.048	0.037	0.015	0.023	0.022	0.043	0.01	0.013	<0.010
Lead (Pb)	mg/L	Variable ^G	0.0001, 0.00005*	<0.00010	-	<0.00010	<0.00010	-	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Lithium (Li)	mg/L	-	0.003, 0.005*	0.0085	-	0.0146	0.0047	-	-	-	0.0057	0.0545	0.0129	0.0091	0.0503	0.0249	0.0075	0.0293	0.0129	0.196	0.0058

Water Quality Variable	Unite	Regulatory	Detection Limit					Summe	r 2011								Fal	l 2011			
	Units	Guideline	Detection Limit	SM3a-1	GAC-1	SG2-1	SG4-1	MOC-1	MOC-2	MUL-1	MIL-1	GAL-1	DIL-1	SM3a-1	GAC-1	SG2-1	SG4-1	MOC-1	MOC-2	MUL-1	MIL-1
Manganese (Mn)	mg/L	-	0.002, 0.00005*	<0.0020	-	0.398	0.308	-	-	-	<0.0020	0.0083	0.0047	0.0451	0.0029	0.267	0.098	<0.0020	0.158	0.0147	<0.0020
Molybdenum (Mo)	mg/L	0.073	0.0001, 0.00005*	<0.00010	-	0.00047	0.00078	-	-	-	<0.00010	0.00019	0.0009	<0.00010	0.00105	0.00011	0.00031	0.00091	0.00059	0.00189	<0.00010
Nickel (Ni)	mg/L	Variable ^H	0.0001	0.00027	-	0.00059	0.00123	-	-	-	0.0001	0.00011	0.00015	0.00031	0.00052	0.00039	0.00105	0.00153	0.00032	0.00014	<0.00010
Selenium (Se)	mg/L	0.001	0.0004, 0.0001*	<0.00040	-	<0.00040	<0.00040	-	-	-	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040
Silicon (Si)	mg/L	-	0.05																		
Silver (Ag)	mg/L	0.0001	.0002, 0.0001**, 0.0000 [,]	<0.00020	-	<0.00020	<0.00020	-	-	-	<0.00020	<0.00020	<0.00020	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Strontium (Sr)	mg/L	-	0.0001	0.0832	-	0.189	0.0933	-	-	-	0.0692	0.0569	0.111	0.114	0.415	0.216	0.122	0.279	0.154	0.0121	0.0686
Thallium (TI)	mg/L	0.0008	0.00005	<0.000050	-	<0.000050	<0.000050	-	-	-	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Tin (Sn)	mg/L	-	0.0002, 0.0001*	<0.00020	-	<0.00020	<0.00020	-	-	-	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Titanium (Ti)	mg/L	-	0.0003	<0.00030	-	<0.00030	<0.00030	-	-	-	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	0.00046	0.00039	<0.00030	0.00038	<0.00030
Uranium (U)	mg/L	0.033, 0.015 ^B	0.0001, 0.00001*	<0.00010	-		0.00012	-	-	-	<0.00010	0.00071	<0.00010	<0.00010	0.00058	<0.00010	0.00015	0.00078	0.00035	0.00149	<0.00010
Vanadium (V)	mg/L	-	0.0001	<0.00010	-	<0.00010	0.00011	-	-	-	0.00012	0.00017	<0.00010	<0.00010	0.00014	<0.00010	<0.00010	0.0004	<0.00010	0.00045	0.00011
Zinc (Zn)	mg/L	0.03	0.001	0.0022	-	<0.0010	0.0043	-	-	-	<0.0010	0.001	<0.00150	0.0044	0.0023	<0.0010	0.0051	0.0045	0.0021	<0.0010	<0.0010
Total Metals																					
Aluminum (Al)	mg/L	0.1	0.02, 0.003*	0.04	<0.020	<0.020	0.021	0.067	<0.020	0.028	0.086	<0.020	<0.020	<0.020	<0.020	0.054	<0.020	0.187	<0.020	0.047	<0.020
Antimony (Sb)	mg/L	-	0.0004, 0.0001*	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040
Arsenic (As)	mg/L	0.005	0.0004, 0.0001*	0.00042	0.0127	0.00454	0.00182	0.00218	0.00121	0.00862	0.00064	0.00124	0.00064	0.00083	0.00663	0.00369	0.00103	0.00223	0.00102	0.00828	0.00058
Barium (Ba)	mg/L	-	0.0002, 0.00005*	0.029	0.0736	0.0898	0.0657	0.0977	0.12	0.00576	0.0301	0.015	0.0478	0.0419	0.0698	0.103	0.0487	0.106	0.121	0.00766	0.03
Beryllium (Be)	mg/L	-	0.001, 0.0005*	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Bismuth (Bi)	mg/L	-	0.0002, 0.00005*	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Boron (B)	mg/L	29, 1.5 ⁸	0.02, 0.002*	<0.020	0.098	0.038	<0.020	0.07	0.028	0.34	0.03	0.094	0.037	<0.020	0.095	0.032	<0.020	0.058	0.023	0.407	0.027
Cadmium (Cd)	mg/L	Variable ^E	0.0002, 0.00001*	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Chromium (Cr)	mg/L	0.0089	0.0008, 0.0001*	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080	<0.00080
Cobalt (Co)	mg/L	-	0.0002, 0.0001*	<0.00020	<0.00020	0.00024	0.00069	0.00027	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	0.00021	0.00034	0.00049	<0.00020	<0.00020	<0.00020
Copper (Cu)	mg/L	Variable ^F	0.001, 0.0001*	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Iron (Fe)	mg/L	0.3	0.01	0.13	0.539	2.14	0.719	0.431	1.39	0.482	0.194	<0.010	0.067	0.044	0.455	4.84	0.534	0.929	1.25	0.452	<0.010
Lead (Pb)	mg/L	Variable ^G	0.0001, 0.00005*	<0.00010	<0.00010	<0.00010	<0.00010	0.00013	<0.00010	<0.00010	0.00011	<0.00010	<0.00010	<0.00010	<0.00010	0.00011	<0.00010	0.00037	<0.00010	<0.00010	<0.00010
Lithium (Li)	mg/L	-	0.006, 0.005*	0.0086	0.0276	0.0161	<0.0060	0.029	0.0095	0.167	<0.0060	0.0615	0.0144	0.0084	0.0488	0.0231	0.0065	0.0271	0.0114	0.182	<0.0060
Manganese (Mn)	mg/L	-	0.002, 0.00005*	0.161	0.0644	0.688	0.713	0.0624	0.144	0.0288	0.0333	0.0082	0.0221	0.0609	0.0686	0.605	0.273	0.112	0.249	0.0315	0.0104
Mercury (Hg)-Trace	ng/L	5, 13 ¹	1, 0.5	2	1.3	1.7	2.3	2.3	1.3	1.7	1.2	1.6	1.7	1.1	<1.0	<1.0	<1.0	1.9	<1.0	<1.0	<1.0
Molybdenum (Mo)	mg/L	0.073	0.0001, 0.00005*	0.00011	0.00138	0.00048	0.00074	0.00092	0.00062	0.0015	<0.00010	0.00022	0.00096	<0.00010	0.00115	0.00011	0.00032	0.00089	0.00061	0.00187	<0.00010
Nickel (Ni)	mg/L	Variable ^H	0.0002, 0.0001*	0.00043	0.00056	0.00061	0.00139	0.00116	0.00036	0.00031	0.0003	<0.00020	<0.00020	0.00035	0.00055	0.00055	0.00111	0.00198	0.00029	0.00031	<0.00020
Selenium (Se)	mg/L	0.001	0.0004, 0.0001*	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040
Silicon (Si)	mg/L	-	0.05																		
Silver (Ag)	mg/L	0.0001	.0004, 0.0001**, 0.0000 [.]	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Strontium (Sr)	mg/L	-	0.0002, 0.0001*	0.0805	0.339	0.198	0.0975	0.289	0.136	0.0426	0.0704	0.0604	0.115	0.118	0.421	0.228	0.121	0.285	0.155	0.0511	0.0681
Thallium (TI)	mg/L	0.0008	0.0001, 0.00005*	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Tin (Sn)	mg/L	-	0.0004, 0.0001*	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040
Titanium (Ti)	mg/L	-	0.005, 0.0003*	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	0.0055	<0.0050	<0.0050	<0.0050
Uranium (U)	mg/L	0.033, 0.015 ^B	0.0001, 0.00001*	<0.00010	0.0005	<0.00010	0.00012	0.00088	0.00034	0.00135	<0.00010	0.00112	<0.00010	<0.00010	0.00059	<0.00010	0.00014	0.00081	0.00035	0.00143	<0.00010
Vanadium (V)	mg/L	-	0.0005, 0.0001*	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.00085	< 0.00050	0.00053	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	< 0.00050	0.00124	< 0.00050	0.00071	<0.00050
ZINC (ZN)	mg/L	0.03	0.004, 0.003*	0.0047	<0.0040	<0.0040	0.0099	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	0.0041	0.0058	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040

Water Quality Variable Field Measurements Dissolved Oxygen Conductivity pH Temperature Conventional Variables Alkalinity, Total (as CaCO3) Color, True Conductivity (EC) Dissolved Organic Carbon Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity Conventional Carbon	GAL-1 9 800 8.53 8.9 361 9 800 22.3 369 573 25.6	DIL-1 4.5 385 6.9 7.9 214 84 385 31.4 196 285	SM3a-1 0.0 76 7.99 0.0 638 271 76 92.4 604	GAC-1 5.0 926 8.24 0.0 591 10.7 926	MOC-2 7.6 615 7.79 0.0 365 11	MUL-1 0.0 - 8.86 0.0 394	MIL-1 9.8 305 8.81 0.0	GAL-1 8.3 872 8.65 0.0	DIL-1 0.8 350 7.88 0.0	8.8 722 7.8 3.3	SM3b-1 10.0 383 8.09	SM3a-1 7 136	SL1-1 3.2	GAC-1 8.4	SG2-1	SG4-1	SG5-1	SG8-1	SG9-1	MOC-1	MOC-2	MUL-1	MIL-1	GAL-1	DIL-1
Field Measurements Dissolved Oxygen Conductivity pH Temperature Conventional Variables Alkalinity, Total (as CaCO3) Color, True Conductivity (EC) Dissolved Organic Carbon Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity Convention	9 800 8.53 8.9 361 9 800 22.3 369 573 25.6	4.5 385 6.9 7.9 214 84 385 31.4 196 285	0.0 76 7.99 0.0 638 271 76 92.4 604	5.0 926 8.24 0.0 591 10.7 926	7.6 615 7.79 0.0 365 11	0.0 - 8.86 0.0 394	9.8 305 8.81 0.0	8.3 872 8.65 0.0	0.8 350 7.88 0.0	8.8 722 7.8 3.3	10.0 383 8.09	7 136	3.2	8.4	2.2	8	0.2	44					0.7	11.8	
Dissolved Oxygen Conductivity pH Temperature Conventional Variables Alkalinity, Total (as CaCO3) Color, True Conductivity (EC) Dissolved Organic Carbon Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity	9 800 8.53 8.9 361 9 800 22.3 369 573 25.6	4.5 385 6.9 7.9 214 84 385 31.4 196 285	0.0 76 7.99 0.0 638 271 76 92.4 604	5.0 926 8.24 0.0 591 10.7 926	7.6 615 7.79 0.0 365 11	0.0 - 8.86 0.0 394	9.8 305 8.81 0.0	8.3 872 8.65 0.0	0.8 350 7.88 0.0	8.8 722 7.8 3.3	10.0 383 8.09	7 136	3.2	8.4	2.2	8	0.2						0.7	11.8	
Conductivity pH Temperature Conventional Variables Alkalinity, Total (as CaCO3) Color, True Conductivity (EC) Dissolved Organic Carbon Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity Consert Occasion	800 8.53 8.9 361 9 800 22.3 369 573 25.6	385 6.9 7.9 214 84 385 31.4 196 285	76 7.99 0.0 638 271 76 92.4 604	926 8.24 0.0 591 10.7 926	615 7.79 0.0 365 11	- 8.86 0.0 394	305 8.81 0.0	872 8.65 0.0	350 7.88 0.0	722 7.8 3.3	383 8.09	136				0	0.2	11	9.8	8.8	9.1	14.2	9.7	11.0	7.4
pH Temperature Conventional Variables Alkalinity, Total (as CaCO3) Color, True Conductivity (EC) Dissolved Organic Carbon Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity	8.53 8.9 361 9 800 22.3 369 573 25.6	6.9 7.9 214 84 385 31.4 196 285	7.99 0.0 638 271 76 92.4 604	8.24 0.0 591 10.7 926	7.79 0.0 365 11	8.86 0.0 394	8.81 0.0	8.65 0.0	7.88 0.0	7.8 3.3	8.09		209	479	379	175	668	405	514	497	322	2197	300	598	263
Temperature Conventional Variables Alkalinity, Total (as CaCO3) Color, True Conductivity (EC) Dissolved Organic Carbon Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity Converting	8.9 361 9 800 22.3 369 573 25.6	7.9 214 84 385 31.4 196 285	0.0 638 271 76 92.4 604	0.0 591 10.7 926	0.0 365 11	0.0	0.0	0.0	0.0	3.3		7.73	7.11	7.85	7.32	7.8	7.6	7.63	8.13	8.24	7.92	9.23	7.93	8.78	7.45
Conventional Variables Alkalinity, Total (as CaCO3) Color, True Conductivity (EC) Dissolved Organic Carbon Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity	361 9 800 22.3 369 573 25.6	214 84 385 31.4 196 285	638 271 76 92.4 604	591 10.7 926	365 11	394					10.0	10.3	7.3	7.5	4.6	9.5	4.5	11.3	4	8.6	6.8	8.6	11.8	8	9.9
Conventional Variables Alkalinity, Total (as CaCO3) Color, True Conductivity (EC) Dissolved Organic Carbon Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity	361 9 800 22.3 369 573 25.6	214 84 385 31.4 196 285	638 271 76 92.4 604	591 10.7 926	365 11	394																			
Alkalinity, Total (as CaCO3) Color, True Conductivity (EC) Dissolved Organic Carbon Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity	361 9 800 22.3 369 573 25.6	214 84 385 31.4 196 285	638 271 76 92.4 604	591 10.7 926	365 11	394																			
Color, True Conductivity (EC) Dissolved Organic Carbon Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity	9 800 22.3 369 573 25.6	84 385 31.4 196 285	271 76 92.4 604	10.7 926	11		175	1510	460	426	152	76.9	125	227	223	108	364	257	285	261	199	1200	159	278	144
Conductivity (EC) Dissolved Organic Carbon Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity	800 22.3 369 573 25.6	385 31.4 196 285	76 92.4 604	926		8.2	8.8	36.3	186	85.7	168	96.4	339	47.5	44.6	47.1	81.9	36.2	63.1	38.5	38	7	14.2	5.5	76.8
Dissolved Organic Carbon Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity	22.3 369 573 25.6	31.4 196 285	92.4 604		615	1010	305	872	350	722	383	136	209	479	379	175	668	405	300	497	322	2197	514	598	263
Hardness (as CaCO3) Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity	369 573 25.6	196 285	604	11.5	11	26.3	14.2	55.4	68.2	30.3	45.5	20.2	60.9	17.2	18.3	14.5	23.6	13.1	25.2	19.9	15.5	54.2	11.3	19	21.6
Total Dissolved Solids Total Organic Carbon Total Suspended Solids Turbidity	573 25.6	285		523	336	409	147	1120	416	419	195	68.2	127	216	194	95.7	377	274	295	244	178	871	133	290	124
Total Organic Carbon Total Suspended Solids Turbidity	25.6		907	670	418	677	219	2210	645	537	356	127	261	304	256	129	533	281	394	348	227	1880	170	447	182
Total Suspended Solids Turbidity	_	30.9	91	11.9	12	27.3	16.5	64.1	68.4	32.7	45.6	20.7	60	17.4	17.7	13.5	23.5	12.7	25.6	19.5	15.7	53.2	11.1	19.1	22.6
Turbidity	7	4	53	6.0	13	<3.0	8	83	120	<3.0	7	<3.0	<3.0	<3.0	8	<3.0	<3.0	<3.0	<3.0	5	5	4	<3.0	4	5
Conorol Organias	-	-	39.3	8.33	44.5	1.23	10.8	57	20.6	0.59	1.4	0.59	1.99	4.69	6.95	3.58	1.31	0.24	0.26	5.4	5	1.8	5.64	0.8	2.08
General Organics																									
Hydrocarbons, Recoverable (I.R.)	<1.0	<1.0	1.8	<1.0	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthenic Acids	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Phenols (4AAP)	0.0076	0.0128	0.0316	0.0046	0.02	0.008	0.0052	0.0108	0.026	0.0326	0.0373	0.0169	0.0377	0.0501	0.0198	0.0191	0.0067	0.0063	0.019	0.0382	0.0191	0.0109	0.0201	0.0077	0.0099
Major lons																									
Bicarbonate (HCO3)	361	261	779	721	445	417	213	1850	561	520	185	93.9	153	277	272	132	428	314	348	309	243	1090	193	303	175
Calcium (Ca)	19.7	36.3	133	127	85.4	24.3	32.5	77.1	78.4	97.1	56.6	17.3	31.3	53.9	51.8	25.1	104	63.7	74.4	57.9	49.3	12.9	30.3	18.8	23.2
Carbonate (CO3)	38.9	<5.0	<5.0	<5.0	<5.0	31.6	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	7.8	<5.0	<5.0	<5.0	<5.0	188	<5.0	18	<5.0
Chloride (Cl)	8.3	3.66	8.7	2.69	2.52	9.98	1.32	53.5	7.18	1.38	8.76	5.33	1.06	3.6	2.86	0.98	1.16	1.49	2.16	9.09	1.93	47.3	1.15	6.81	5.22
Hvdroxide (OH)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Magnesium (Mg)	77.7	25.7	66	50.1	29.8	84.5	16	226	53.6	51.1	19.2	8.61	17.1	25.5	23.4	11.4	47.2	27.9	36	28.5	16.4	232	14	63.1	16.2
Potassium (K)	17.8	8.49	16.2	5.4	3.47	19.2	12.5	53	18.7	5.3	8.97	12.1	13.4	5.41	6.6	5.43	5.77	5.12	7.3	6.86	4.29	60	10.5	13.2	7.76
Sodium (Na)	44.9	6.9	17.4	33.2	11.3	54.7	4.5	337	15.8	15.3	10.3	2.8	1.4	13	11.1	1.5	20.4	5.4	6.1	20.3	5.6	329	3.6	32.4	4.9
Sulfate (SO4)	136	0.63	<0.50	22.7	4.89	159	<0.50	346	<0.50	56.9	63.4	< 0.50	1.56	34.5	7.7	<0.50	86.9	20.3	49.1	38.2	1.89	393	<0.50	112	1.65
Sulphide <	<0.0020	0.0036	0.0101	<0.0020	<0.0020	<0.0020	<0.0020	5.11	0.0255	0.0043	0.0295	0.0038	0.034	0.0041	0.0051	0.002	0.0073	<0.0020	0.0022	0.0058	<0.0020	0.0027	<0.0020	0.107	0.005
Nutrients and BOD								••••																	
Ammonia-N	<0.050	<0.050	2.04	0.703	0.485	0.269	0.542	1.51	1.25	<0.050	<0.050	<0.050	<0.050	<0.050	0.195	<0.050	0.058	<0.050	<0.050	<0.050	<0.050	<0.050	0.14	<0.050	<0.050
Biochemical Oxygen Demand	<2.0	<2.0	16.6	<2.0	<2.0	2.5	3.3	18.2	18.1	<2.0	8	<2.0	5.8	21	3.3	24	<2.0	<2.0	<2.0	<2.0	<2.0	2.9	34	<2.0	4.5
Nitrate (as N)	<0.050	<0.050	<0.050	0.054	<0.050	<0.050	0.074	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0.097	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	0 091
Nitrate and Nitrite as N	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	0.074	<0.071	<0.071	<0.071	<0.000	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	0.097	<0.071	<0.071	<0.071	<0.071	<0.071	<0.000	0.091
Nitrite (as N)	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Phosphorus Total	0.0636	0.029	2 59	0.0738	0 102	0.0253	0.0956	0.000	0.419	0.0546	0.0798	0.233	0.493	0.0757	0 188	0.000	0.0706	0.0351	0.0446	0.0565	0 111	0.0478	0.0523	0.0223	0.0718
Phosphorus, Total Dissolved	0.0066	0.0157	1.12	0.0426	<0.0010	0.0061	0.0058	0.0194	0.0935	0.0454	0.0561	0.204	0.452	0.0212	0.0276	0.0464	0.04	0.027	0.0399	0.012	0.0136	0.0204	0.0067	0.0067	0.0226
Total Kieldahl Nitrogen	1.93	2.28	5.37	1.22	0.81	1.94	1.88	6.09	7.94	1.47	2.41	1.08	2.96	1.13	1.4	0.86	1.17	0.66	0.96	1.11	0.9	3.46	1.2	1.23	1.54
Dissolved Metals																									
Numinum (Al)	<0.010	<0.010	0.0205	0.0014	<0.0010	0.0016	<0.0010	0.003	0.0031	0.0034	0.0028	0.0116	0.0209	<0.0010	<0.0010	<0.0010	0.0014	<0.0010	0.0019	<0.0010	<0.0010	0.0063	0.0012	0.0012	0.0011
Antimony (Sb)	<0.00040	<0.00040	< 0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00016	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	< 0.00010	<0.00010	<0.00010	0.00022	<0.00010	<0.00010	<0.00010
Arsenic (As)	0.00129	0.00071	0.00233	0.00274	0.00059	0.00146	0.00068	0.00841	0.00166	0.00083	0.00102	0.0005	0.00097	0.00227	0.00096	0.00061	0.00079	0.0004	0.00054	0.00111	0.00054	0.00938	0.00058	0.00098	0.00054
Barium (Ba)	0.0173	0.0458	0.0834	0.0965	0.125	0.0179	0,000111	0.0276	0.118	0,0685	0.0454	0.0123	0.0257	0.0453	0.0536	0.0303	0.0541	0.0548	0.0592	0.0839	0.0783	0.00184	0.0124	0.0134	0.0245
Bervilium (Be)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth (Bi)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00005
Boron (B)	0.102	0.0345	0.0175	0.131	0.0288	0.115	0.0347	0.444	0.0479	0.0691	0.0142	0.0163	0.035	0.0575	0.0455	0.0163	0.0593	0.0305	0.0423	0.0444	0.023	0.411	0.0258	0.0702	0.0231
Cadmium (Cd)	<0.00010	<0.0010	<0.000010		<0.000010	<0.00010	<0.00010	<0.000010		<0.00010		<0.000010	0.000046			<0.000010	<0.000010	0 000143		<0.000010	<0.00010	<0.000010	<0.000010		
Chromium (Cr)	<0.00040	<0.00010	0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.00010	<0.000010	0.000040	<0.000010	<0.000010	<0.000010	<0.000010	<0.000140	<0.000010	<0.000010	<0.000010	0.000010	<0.000010	<0.000010	<0.000010
	<0.00040		0.00023	~0.00010		<0.00010		~0.00010 0.00016	~0.00010 0.00012	0.00010	0.00012		0.00030	<0.00010			~0.00010	<0.00010		0.00010		<0.00033			<0.00010
			0.003/4	0.00019		0.00010			<0.00012	0.00010	0.00010	~0.00010	0.00013	~0.00010		~0.00010	0.0001	~0.000 IU	~0.00010	0.0001					~0.00010
			0.00017	0.00011	NU.00010	<0.00035	~0.00010	NUUUUU	NU.UUU IU	0.00038	0.00040	0.00077	0.0018/	0.0001	~0.00010	0.00017	0.00023	<0.0105	0.00109	0.00027	~0.00010	NU.00010	<0.00010	~0.00010	~0.00010
	~U.UIU	0.031	2.39	0.015	0.017			0.09	1.05	0.09	0.144	0.029		0.0/1		0.233	0.111		0.012		0.108				0.048
	~0.00010	<0.00010	~0.000000	0.00000	VCUUUU50	~0.000050		~U.UUUUUU	~0.0000-		VCUUUU.U~	~0.000050	VC000050	NOUUUUUU	VCUUUU.U~	VC000050		~0.000050	~0.00000		~0.000050			VCUUUU.U~	~0.00005L

Water Quality Variable	Fall 2011	(Cont'd.)				Winter 2012											Spri	ng 2012							
water quality variable	GAL-1	DIL-1	SM3a-1	GAC-1	MOC-2	MUL-1	MIL-1	GAL-1	DIL-1	SG7-1	SM3b-1	SM3a-1	SL1-1	GAC-1	SG2-1	SG4-1	SG5-1	SG8-1	SG9-1	MOC-1	MOC-2	MUL-1	MIL-1	GAL-1	DIL-1
Manganese (Mn)	<0.0020	<0.0020	2.89	0.655	0.523	0.00352	0.000952	0.182	0.863	0.00256	0.000475	0.00138	0.00336	0.000646	0.00124	0.0004	0.00175	0.00028	0.000432	0.000336	0.000449	0.00324	0.000297	0.000352	0.000872
Molybdenum (Mo)	0.0002	0.00052	0.000088	0.00279	0.000518	0.0002	0.000065	0.000486	0.00079	0.0018	0.00128	0.000093	0.000124	0.00197	0.00104	0.000429	0.00111	0.000566	0.00135	0.00108	0.000862	0.00216	0.000062	0.000153	0.000424
Nickel (Ni)	0.00013	0.00013	0.00336	0.00044	0.00026	0.00017	0.0001	0.00047	0.00025	0.00155	0.00096	0.0043	0.00164	0.00064	0.00053	0.00074	0.00101	0.0009	0.00164	0.00083	0.00033	0.00039	<0.00010	0.00012	0.00012
Selenium (Se)	<0.00040	<0.00040	0.00016	<0.00010	<0.00010	<0.00010	<0.00010	0.00011	0.0001	0.00022	0.00015	<0.00010	0.00027	<0.00010	<0.00010	<0.00010	0.00011	0.00063	0.00055	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Silicon (Si)			25.6	12.7	9.85	1.36	3.43	15.8	20.3	4.67	5.94	0.272	3.97	3.16	2.42	1.75	3.95	3.41	4.66	2.74	4.86	1.22	2.45	0.514	3.6
Silver (Ag)	<0.00010	<0.00010	<0.000010	<0.000010	0.000019	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Strontium (Sr)	0.0621	0.15	0.348	0.596	0.187	0.0736	0.0592	0.313	0.326	0.332	0.131	0.0378	0.0608	0.197	0.147	0.0444	0.286	0.151	0.187	0.227	0.0931	0.0258	0.0608	0.055	0.0924
Thallium (TI)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Tin (Sn)	<0.00020	<0.00020	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)	<0.00030	<0.00030	0.0015	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	0.00034	0.0003	0.00042	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
Uranium (U)	0.00099	<0.00010	0.00002	0.00161	0.000459	0.00127	0.000013	0.00139	0.000057	0.00826	0.00178	<0.000010	0.000037	0.00125	0.000893	0.000092	0.0032	0.00186	0.00882	0.00127	0.000503	0.00182	0.000022	0.000928	0.000012
Vanadium (V)	0.00024	<0.00010	0.00072	<0.00010	<0.00010	0.00016	<0.00010	0.00015	0.00013	0.00037	0.00036	<0.00010	0.00023	0.00014	<0.00010	0.00015	0.00015	0.0002	0.00032	0.00027	<0.00010	0.00039	<0.00010	0.00012	<0.00010
Zinc (Zn)	<0.0010	0.0054	0.0043	0.0056	0.0026	0.0074	0.0016	<0.0010	0.0019	0.0024	0.0048	0.0027	0.006	<0.0010	<0.0010	0.0014	0.0019	0.0038	0.0016	0.0019	<0.0010	0.0016	<0.0010	0.0016	0.0014
Total Metals																									
Aluminum (Al)	0.031	<0.020	0.634	0.0121	0.0071	0.0121	0.0233	0.126	0.183	0.0134	0.0093	0.0165	0.0631	0.0269	0.169	0.029	0.0312	0.0127	<0.0030	0.11	0.0183	0.066	0.18	0.0104	0.0193
Antimony (Sb)	<0.00040	<0.00040	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00018	<0.00010	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00021	<0.00010	<0.00010	<0.00010
Arsenic (As)	0.00126	0.00077	0.00269	0.00422	0.00112	0.00137	0.00064	0.00922	0.00182	0.00085	0.00102	0.00055	0.00098	0.00387	0.00235	0.00079	0.00115	0.00042	0.00055	0.00125	0.00098	0.00859	0.00057	0.00094	0.00055
Barium (Ba)	0.0164	0.0485	0.208	0.0997	0.161	0.0207	0.0356	0.0565	0.145	0.0691	0.0437	0.0125	0.0276	0.0468	0.0748	0.032	0.0595	0.0544	0.0595	0.0812	0.0837	0.0032	0.0225	0.0137	0.0248
Beryllium (Be)	<0.0010	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth (Bi)	<0.00020	<0.00020	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron (B)	0.094	0.033	0.0152	0.13	0.0275	0.109	0.0307	0.421	0.046	0.0723	0.0134	0.016	0.0321	0.0596	0.0468	0.016	0.065	0.0312	0.0413	0.0462	0.0238	0.384	0.0241	0.069	0.0221
Cadmium (Cd)	<0.00020	<0.00020	0.000012	<0.000010	0.00001	0.000012	<0.000010	0.000012	0.000027	<0.000010	<0.000010	<0.000010	0.000148	<0.000010	<0.000010	<0.000010	<0.000010	0.000121	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0.000011	<0.000010
Chromium (Cr)	<0.00080	<0.00080	0.0013	0.00024	0.00013	<0.00010	0.00011	0.00038	0.00038	<0.00010	0.00013	<0.00010	0.00029	0.0002	0.00049	0.00015	0.00012	0.00013	<0.00010	0.00026	0.00021	0.00043	0.00031	0.00013	0.00013
Cobalt (Co)	<0.00020	<0.00020	0.00402	0.0002	0.0001	<0.00010	<0.00010	0.00033	0.00026	0.00028	0.00019	<0.00010	0.0008	0.00013	0.00026	0.00016	0.0004	<0.00010	<0.00010	0.00022	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Copper (Cu)	<0.0010	<0.0010	0.00125	0.00025	0.00016	0.00054	0.00033	0.00046	0.00083	0.00044	0.00056	0.00017	0.0023	0.00037	0.00048	0.00041	0.0003	0.00111	0.00104	0.00082	0.00022	0.00029	0.0004	0.0002	0.00026
Iron (Fe)	0.05	0.053	9.44	0.961	4.69	0.018	0.058	0.548	1.73	0.173	0.174	0.049	0.039	0.776	2.4	0.99	0.663	0.013	0.013	0.37	1.85	0.125	0.192	0.018	0.127
Lead (Pb)	<0.00010	<0.00010	0.000454	0.000849	<0.000050	0.000056	<0.000050	0.000171	0.000279	<0.000050	<0.000050	<0.000050	0.000102	0.000076	0.000134	0.000157	<0.000050	<0.000050	<0.000050	0.000113	<0.000050	0.00008	0.000054	<0.000050	<0.000050
Lithium (Li)	0.0567	0.017	0.0306	0.0635	0.0155	0.0659	0.0062	0.225	0.0364	0.0425	0.0076	<0.0050	<0.0050	0.0179	0.0161	<0.0050	0.0349	0.0163	0.0198	0.0244	0.0078	0.199	0.0052	0.0451	0.0122
Manganese (Mn)	0.0106	0.0209	2.96	0.645	0.576	0.0141	0.0129	0.208	0.949	0.042	0.00397	0.0346	0.383	0.062	0.235	0.0339	0.16	0.00544	0.00156	0.0391	0.106	0.0152	0.0268	0.00958	0.0646
Mercury (Hg)-Trace	<1.0	<1.0	<0.50	2.04	1.75	2.55	2.6	<0.50	<0.50	1.25	1.13	1.36	3.9	0.83	0.7	0.76	1.28		2.07	0.77	0.66	0.58		0.5	0.88
Molybdenum (Mo)	0.00019	0.0006	0.000109	0.00296	0.000529	0.000215	0.000078	0.000451	0.00061	0.002	0.0014	0.000118	0.000202	0.00207	0.0011	0.000445	0.0012	0.000597	0.00128	0.00112	0.000999	0.00197	0.000123	0.000167	0.000465
Nickel (Ni)	0.00021	<0.00020	0.00408	0.00048	0.00029	0.00024	0.00016	0.00087	0.44	0.00155	0.00101	0.00025	0.00155	0.00074	0.00085	0.00078	0.00102	0.00093	0.00155	0.00087	0.00041	0.00042	0.00029	0.00015	0.00016
Selenium (Se)	<0.00040	<0.00040	0.00018	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.00018	0.00021	0.00013	<0.00010	0.00028	<0.00010	<0.00010	<0.00010	0.00013	0.00058	0.00048	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Silicon (Si)			26.2	13.1	10.4	1.42	3.34	16.5	20.4	5.6	6.6	0.346	4.43	3.76	3.29	1.92	5.01	3.93	4.38	3.4	5.64	1.38	2.79	0.622	4.06
Silver (Ag)	<0.00010	<0.00010	0.000071	0.00001	0.000111	0.000037	<0.000010	0.000046	<0.000010	<0.000010	<0.000010	<0.000010	0.000012	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Strontium (Sr)	0.0597	0.158	0.348	0.596	0.196	0.0716	0.0828	0.376	0.327	0.347	0.129	0.0388	0.0623	0.199	0.154	0.0449	0.298	0.156	0.185	0.231	0.0995	0.0294	0.0688	0.0577	0.0912
Thallium (TI)	<0.00010	<0.00010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Tin (Sn)	<0.00040	<0.00040	<0.00010	<0.00010	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)	<0.0050	<0.0050	0.0239	0.00079	0.00049	0.00037	0.00086	0.00799	0.00511	0.00058	0.00042	0.0007	0.00092	0.00094	0.00785	0.00045	0.00043	<0.00030	<0.00030	0.00282	0.00068	0.00067	0.00231	<0.00030	<0.00030
Uranium (U)	0.00094	<0.00010	0.000044	0.00159	0.000473	0.00116	0.000015	0.00129	0.0001	0.00838	0.00187	<0.000010	0.000041	0.00125	0.000928	0.000092	0.00343	0.0019	0.00827	0.00128	0.000554	0.00182	0.000093	0.000881	0.000013
Vanadium (V)	< 0.00050	<0.00050	0.00227	0.00014	0.00029	0.00018	0.00011	0.00054	0.00051	0.00042	0.00039	< 0.00010	0.00031	0.00036	0.00067	0.00032	0.00024	0.00024	0.00035	0.00067	0.00027	0.00037	0.00032	0.00014	< 0.00010
	<u><u></u><0.0040</u>	<0.0040	0.0115	0.004	×0.0030	0.0083	<0.0030	0.0048	0.0133	<0.0030	0000.0	0.0078	0.0149	0.0127	0.0057	0.0082	×0.0030	0.000	×0.0030	0.0040	0.0041	0.0047	0.0038	0.0032	0.0000

Table A2.1 (Cont'd.)															
Water Quality Variable	Units	Regulatory	Detection Limit		1 0 11 2	Wir	nter 2013	CAC 4			10111	801.1	CAC 4	Spring 2013	
Field Managements		Guideime		LGTI-T	LCTI-2	301-1	LG2-2	GAC-4	GAL-2	GAL-2	LGTI-I	301-1	GAC-4	LG2-2	REL-I
	(ma/L)	5.65 ¹	_2	13	1.8	0	_	0	57	6.7	52	6.8	6.2	3.6	74
	(iiig/2)	5, 0.5	2	634	383	1059	828	1079	080	472	216	311	0.2	423	/ .4
	uS/cm	-	- 2	7 1 1	303	7.45	7.46	6.70	909	472	7.98	0.25	7.50	423	401
рн	рн	6.5-9.0	-	7.11	0.0	7.15	7.40	0.72	0.00	9.04	7.90	6.35	7.50	7.00	0.50
l'emperature	C	-	-	0.5	0.5	0.4	0.5	0.1	0.2	17.5	21.9	20	17	21	21.1
			-	200	0.07	540	450	co 7	070	075	100	404	200	050	004
Alkalinity, Total (as CaCO3)	mg/L	-	5	322	207	546	450	607	373	375	130	794	209	259	291
	C.U.	-	2	145	34.5	90.9	02.1	222	19.0	9.9	44.9	77.9	105	00.0	50.5
	uS/cm	-	0.2	600	398	911	813	1080	1010	878	233	338	485	456	527
Dissolved Organic Carbon	mg/L	-	1	48.1	25.4	51.5	26.2	64.6	25.8	-	20.6	27	-	24.1	34.6
Hardness (as CaCO3)	mg/L	-		277	180	490	409	541	426	396	116	190	253	246	262
рН	рН	6.5-9.0	0.1	7.6	7.24	7.52	7.64	7.25	8.42	8.75	8.1	8.3	7.99	8.3	8.57
Total Dissolved Solids	mg/L	-	10	439	266	595	499	735	670	611	191	252	342	305	382
Total Organic Carbon	mg/L	-	1	49.5	25.6	666	26.6	68.9	25.7	23.3	20.9	26.6	29	23.8	34.5
Total Suspended Solids	mg/L	+10mg/L ^	3	<3.0	8	<5.0	17	8	<3.0	4	26	18	18	5	<3.0
Turbidity	NTU	-	0.1	2.76	2.92	252	64.2	6.69	0.29	0.95	0.96	8.51	2.35	-	-
General Organics															
Hydrocarbons, Recoverable (I.R.)	mg/L	-	1	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthenic Acids	mg/L	-	1	<1.0	<1.0	<1.0	<1.0	3.2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Phenols (4AAP)	mg/L	0.004	0.001	0.0143	0.0145	0.0184	0.0078	0.362	0.0067	0.0067	0.0079	0.01	0.017	0.0093	0.0131
Major lons															
Bicarbonate (HCO3)	mg/L	-	5	393	252	52.1	548	740	439	407	158	236	329	315	332
Calcium (Ca)	mg/L		0.5	35.7	48.9	111	94.5	118	31.1	30	20.3	38.4	54.1	54.2	28.4
Carbonate (CO3)	mg/L	-	5	<5.0	<5.0	108	<5.0	<5.0	8	25.1	<5.0	<5.0	<5.0	<5.0	11.3
Chloride (CI)	mg/L	640, 120 ^B	0.5	3.29	1.88	1.41	5.93	5.96	9.61	8.12	<0.50	<0.50	<0.50	1.67	3.26
Hydroxide (OH)	mg/L	-	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Magnesium (Mg)	mg/L	-	0.1	22	37.6	51.7	42	59.9	84.5	78	15.8	22.8	28.7	26.8	46.4
Potassium (K)	mg/L	-	0.1	20.9	25.3	7.49	7.21	15	24.8	20.8	11.4	6.84	6.44	5.34	29.6
Sodium (Na)	mg/L	-	1	6.7	9.8	7.7	20.9	34.7	69.1	63.8	5.3	4.9	17.8	11.3	16.8
Sulfate (SO4)	mg/L	-	0.5	<0.50	<0.50	<0.50	2.26	6.09	176	152	<0.50	<0.50	0.61	<0.50	3.83
Sulphide	mg/L	0.002 ^C	0.002	<0.0020	<0.0020	0.003	0.011	3.670	<0.0020	0.006	0.005	0.007	0.227	0.010	0.010
Nutrients and BOD															
Ammonia-N	mg/L	Variable ^D	0.05	1.55	0.531	1.09	1.44	5.39	0.266	<0.050	<0.050	0.102	0.062	<0.050	0.158
Biochemical Oxygen Demand	mg/L	-	2	18.5	27.6	21.7	13.4	51.8	3.5	2.2	2.3	2.6	17.4	<2.0	<2.0
Nitrate (as N)	mg/L	13	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Nitrate and Nitrite as N	mg/L		0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071
Nitrite (as N)	mg/L	0.06	0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
Phosphorus, Total	mg/L	0.05	0.01	0.43	0.0312	2.1	0.511	0.879	0.0106	0.0172	0.0243	0.108	0.117	0.0591	0.118
Phosphorus, Total Dissolved	mg/L	-	0.01	0.449	0.016	1.96	0.582	0.839	0.0092	-	0.008	0.0578	-	0.0271	0.103
Total Kieldahl Nitrogen	ma/L	1	0.2	3.19	1.45	3.33	2.28	7.43	1.82	1.68	1.37	1.94	2.02	1.32	3.17
Dissolved Metals	Ū.														
Aluminum (Al)	ma/L	0.1	0.001	0.001	<0.0010	0.021	0.004	0.012	<0.0010	<0.0010	0.001	0.003	0.003	<0.0010	0.005
Antimony (Sb)	mg/L	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.000
Arsenic (As)	mg/L	0.005	0.0001	0.001	0.000	0.023	0.001	0.001	0.001	0.001	0.000	0.002	0.001	0.001	0.003
Barium (Ba)	ma/L	-	0.00005	0.103	0.067	0.249	0.111	0,130	0.026	0.021	0.028	0.050	0.061	0.060	0.046
Bervllium (Be)	ma/L	-	0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050
Bismuth (Bi)	ma/L	-	0.00005	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.013	<0.000050	<0.000050	<0.000050	<0.000050
Boron (B)	ma/L	29. 1.5 ^B	0.002	0.0136	0.0094	0.0158	0.0355	0.0319	0,105	<0.000010	<0.000050	0.0182	0.0183	0.0249	0.0893
Cadmium (Cd)	ma/l	Variable ^E	0.00001	<0.000010	<0.000010	<0.000010	<0.000010	<0.00010	<0.000010	0 1070	<0.000010	<0.000010	<0.000010	<0.00010	<0.000010
Chromium (Cr)	ma/l	0 0089	0 0001	<0.00010	<0.00010	0 0004	0.0002	0.0002	<0.00010	0.0002	<0.00010	<0.00010	0.0004	<0.00010	<0.00010
		0.0000	0.0001	0.00010	0.00010	0.0004	3.0002	0.0002	5.00010	3.0002	5.00010	5.00010	3.0004	5.00010	0.00010

0.0001

mg/L

-

Cobalt (Co)

<0.00010

<0.00010

0.0070

0.0004

0.0004

<0.00010

<0.00010

<0.00010

0.0002

<0.00010

0.0002

<0.00010

	SG2-3	SG4-2	LC11-2
	5.2	-	5.2
	270	-	216
	8.15	-	7.98
	21.4	-	21.9
	159	186	186
	63.7	56.8	56.8
	284	332	332
	19.5	18.6	20.6
	160	192	188
	8.3	8.15	8.17
	203	238	241
	19.9	20.8	20.8
	3	7	<3.0
	-	-	-
	<1.0	<1.0	<1.0
	<1.0	<1.0	<1.0
	0.0088	0.0094	0.0095
	194	227	226
	34.7	45.2	44.4
	<5.0	<5.0	<5.0
	<0.50	0.54	<0.50
	<5.0	<5.0	<5.0
	17.7	19.2	18.8
	6.78	6.83	6.63
	4.2	2.3	2.4
	<0.50	<0.50	<0.50
	0.004	0.002	0.004
	-0.050	-0.050	10.050
	<0.050	<0.050	<0.050
	<2.0	<2.0	<2.0
)	<0.050	<0.050	<0.050
	<0.071	<0.071	<0.071
)	<0.050	<0.050	<0.050
	0.0897	0.0297	0.0409
	0.0716	0.144	0.14
	1.00		1.00
	0.001	<0.0010	<0.0010
	<0.00010	<0.00010	<0.00010
	0.001	0.001	0.001
	0.036	0.047	0.046
50	<0.00050	<0.00050	<0.00050
50	<0.000050	<0.000050	<0.000050
3	0.0309	0.0225	0.0196
10	<0.000010	<0.000010	<0.000010
0	<0.00010	<0.00010	<0.00010
0	<0.00010	<0.00010	<0.00010

		Regulatory				Win	ter 2013							Spring 2013				
Water Quality Variable	Units	Guideline	Detection Limit	LC11-1	LC11-2	SC1-1	LG2-2	GAC-4	GAL-2	GAL-2	LC11-1	SC1-1	GAC-4	LG2-2	REL-1	SG2-3	SG4-2	LC11-2
Copper (Cu)	mg/L	Variable ^F	0.0001	<0.00010	0.0002	0.0002	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.0003	<0.00010	<0.00010	0.0002	0.0001	<0.00010	<0.00010
Iron (Fe)	mg/L	0.3	0.01	3.1600	0.0300	57.8000	6.4700	1.2100	<0.010	0.0110	0.0110	0.0590	0.4210	0.0270	0.0230	0.0140	0.1100	0.0790
Lead (Pb)	mg/L	Variable ^G	0.00005	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Lithium (Li)	mg/L	-	0.005	0.0103	0.0084	0.0095	0.0128	0.0209	0.0432	0.0538	0.0088	0.0104	0.0141	0.0148	0.0349	0.0124	0.0057	0.0055
Manganese (Mn)	mg/L	-	0.002	1.2400	0.4470	5.8800	1.2400	0.7580	<0.0020	<0.0020	<0.0020	<0.0020	0.3020	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020
Molybdenum (Mo)	mg/L	0.073	0.00005	0.0001	<0.000050	0.0012	0.0001	<0.000050	0.0002	0.0002	0.0001	0.0007	<0.000050	0.0004	0.0020	0.0002	0.0003	0.0003
Nickel (Ni)	mg/L	Variable ^H	0.0001	<0.00010	<0.00010	0.0035	0.0004	0.0009	<0.00010	0.0002	<0.00010	0.0008	0.0004	0.0005	0.0004	0.0005	0.0007	0.0007
Selenium (Se)	mg/L	0.001	0.0001	<0.00010	<0.00010	0.0003	0.0001	0.0004	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.0001	<0.00010	<0.00010	<0.00010
Silver (Ag)	mg/L	0.0001	0.00001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Strontium (Sr)	mg/L	-	0.0001	0.169	0.111	0.307	0.263	0.355	0.136	0.127	0.0724	0.113	0.169	0.152	0.125	0.103	0.0926	0.0928
Thallium (TI)	mg/L	0.0008	0.00005	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Tin (Sn)	mg/L	-	0.0001	<0.00010	0.001	<0.00050	0.000	<0.00010	0.000	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)	mg/L	-	0.0003	<0.00030	<0.00030	0.002	0.001	0.000	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030	0.000	<0.00030	<0.00030	<0.00030
Uranium (U)	mg/L	0.033, 0.015 ^B	0.00001	<0.000010	<0.000010	0.000	0.000	0.000	0.001	0.001	<0.000010	0.001	0.000	0.000	0.001	0.000	0.000	0.000
Vanadium (V)	mg/L	-	0.0001	<0.00010	<0.00010	0.002	0.000	0.000	0.000	0.000	<0.00010	0.000	0.000	<0.00010	0.001	0.000	<0.00010	<0.00010
Zinc (Zn)	mg/L	0.03	0.001	0.002	0.003	0.002	<0.0010	<0.0010	<0.0010	<0.0010	0.001	0.001	0.002	<0.0010	0.001	0.001	<0.0010	<0.0010
Total Metals																		
Aluminum (AI)	mg/L	0.1	0.003	<0.0030	0.012	0.034	0.007	0.035	<0.0030	0.011	0.009	0.087	0.025	0.007	0.030	0.003	0.042	0.005
Antimony (Sb)	mg/L	-	0.0001	<0.00010	<0.00010	<0.00010	<0.00010	0.000	<0.00010	<0.00010	<0.00010	0.000	0.000	<0.00010	0.000	<0.00010	<0.00010	<0.00010
Arsenic (As)	mg/L	0.005	0.0001	0.001	0.000	0.021	0.001	0.001	0.001	0.001	0.000	0.003	0.001	0.001	0.003	0.001	0.001	0.001
Barium (Ba)	mg/L	-	0.00005	0.106	0.0734	0.228	0.135	0.134	0.0244	0.0235	0.0306	0.0545	0.0633	0.0697	0.052	0.0401	0.0782	0.0647
Beryllium (Be)	mg/L	-	0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth (Bi)	mg/L	-	0.00005	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron (B)	mg/L	29, 1.5 ^B	0.01	0.015	0.012	0.018	0.037	0.031	0.130	0.145	0.014	0.016	0.015	0.023	0.089	0.026	0.019	0.019
Cadmium (Cd)	mg/L	Variable ^E	0.00001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Chromium (Cr)	mg/L	0.0089	0.0001	<0.00010	0.000	0.000	0.000	0.000	<0.00010	<0.00010	0.000	0.000	0.000	<0.00010	0.000	<0.00010	0.000	0.000
Cobalt (Co)	mg/L	-	0.0001	<0.00010	<0.00010	0.007	0.000	0.001	<0.00010	<0.00010	<0.00010	0.000	0.000	0.000	0.000	0.000	0.001	0.001
Copper (Cu)	mg/L	Variable ^F	0.0001	0.001	0.000	0.001	0.000	0.000	0.001	0.000	0.001	0.001	0.000	0.000	0.000	0.000	0.001	0.000
Iron (Fe)	mg/L	0.3	0.01	3.25	0.073	56.8	7.78	1.36	<0.010	0.026	0.037	1.15	0.685	0.491	0.107	0.097	2.8	1.74
Lead (Pb)	mg/L	Variable ^G	0.00005	<0.000050	0.000089	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0.000097	0.000058	<0.000050	0.000097	<0.000050	0.000073	<0.000050
Lithium (Li)	mg/L	-	0.005	0.0176	0.0106	0.0151	0.0208	0.0336	0.0639	0.0711	0.0101	0.0111	0.0185	0.0135	0.0358	0.0112	<0.0050	<0.0050
Manganese (Mn)	mg/L	-	0.002	1.25	0.452	7.23	1.23	0.772	0.0049	0.0136	0.0208	0.137	0.354	0.0669	0.0453	0.0444	0.71	0.423
Mercury (Hg)-Trace	ug/L	5, 13 ¹	0.0005	<0.00050	<0.0010	<0.00050	<0.0010	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	-	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Molybdenum (Mo)	mg/L	0.073	0.00005	0.000	0.000	0.001	0.000	<0.000050	0.000	0.000	0.000	0.001	0.000	0.000	0.002	0.000	0.000	0.000
Nickel (Ni)	mg/L	Variable ^H	0.0001	0.000	0.000	0.003	0.000	0.001	<0.00010	0.000	0.000	0.001	0.001	0.001	0.000	0.001	0.001	0.001
Selenium (Se)	mg/L	0.001	0.0001	<0.00010	<0.00010	0.000	0.000	0.000	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.000	<0.00010	0.000	<0.00010
Silver (Ag)	mg/L	0.0001	0.00001	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Strontium (Sr)	mg/L	-	0.0001	0.172	0.101	0.302	0.272	0.353	0.126	0.135	0.0725	0.124	0.175	0.158	0.125	0.106	0.0915	0.0943
Thallium (TI)	mg/L	0.0008	0.00005	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Tin (Sn)	mg/L	-	0.0001	<0.00010	0.000	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	0.000	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Titanium (Ti)	mg/L	-	0.0003	<0.00030	0.000	0.003	0.001	0.002	<0.00030	0.000	0.000	0.004	0.001	0.001	0.001	0.001	0.002	0.000
Uranium (U)	mg/L	0.033, 0.015 ^B	0.00001	<0.000010	<0.000010	0.000	0.000	0.000	0.001	0.001	0.000	0.001	0.000	0.000	0.001	0.000	0.000	0.000
Vanadium (V)	mg/L	-	0.0001	0.001	0.000	0.002	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.002	0.000	0.000	0.000
Zinc (Zn)	mg/L	0.03	0.003	0.004	0.032	0.004	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	0.003	<0.0030	0.009	0.007

				Summer 2013										Seasons Where Frequencies
Water Quality Variable	SG4-2	LC11-1	SG2-3	REL-1	LG2-2	GAL-2	SC1-1	n	Min	Med	Max	# Exceeded	Freq %	Were Observed
Field Measurements														
Dissolved Oxygen	3.1	-	6.1	-	2.5	9	0.6	18	0	5.2	9	10	56	Wnter, Spring, Summer
Conductivity	459	-	310	415	612	1015	404	20	216	452.5	1079			
pН	7.27	-	8.3	10.48	7.73	9	8.52	20	6.72	7.98	10.48	2	10	Spring, Summer
Temperature	19.5	-	22.2	20.4	20.4	21.3	21.8	20	0.1	20.2	22.2			
Conventional Variables														
Alkalinity, Total (as CaCO3)	218	155	186	247	302	334	186	22	130	253	607			
Color, True	52.9	47.4	67.7	55.5	76	11.8	93.7	22	9.9	59.45	222			
Conductivity (EC)	383	282	331	444	525	878	335	22	233	450	1080			
Dissolved Organic Carbon	21.2	22.2	22.2	44.7	26.2	23.3	31.6	20	18.6	25.6	64.6			
Hardness (as CaCO3)	208	132	174	220	283	375	178	22	116	233	541			
pН	7.38	7.46	7.87	9.89	7.73	8.7	8.1	22	7.24	8.1	9.89	1	5	Summer
Total Dissolved Solids	278	234	260	412	372	648	274	22	191	323.5	735			
Total Organic Carbon	21.5	22.4	22.6	44.8	27.5	22.1	32.1	22	19.9	25.65	666			
Total Suspended Solids	<4.0	6	6	5	5	<4.0	8	15	3	7	26	4	27	Winter, Spring
Turbidity	6.58	0.87	2.66	2.7	2.52	0.69	4.25	17	0.29	2.7	252			
General Organics														
Hydrocarbons, Recoverable (I.R.)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	22	<1.0	<1.0	<1.0			
Naphthenic Acids	0.16	<0.10	0.38	0.54	0.57	0.69	<0.10	6	0.16	0.555	3.2			
Phenols (4AAP)	0.0104	0.0115	0.0115	0.0162	0.0144	0.0083	0.0125	22	0.0067	0.01095	0.362	22	100	Wnter, Spring, Summer
Major Ions														
Bicarbonate (HCO3)	266	189	227	115	368	360	228	22	52.1	259	740			
Calcium (Ca)	47.4	22.6	34.4	18	62.7	26	30.4	22	18	37.05	118			
Carbonate (CO3)	<5.0	<5.0	<5.0	91.6	<5.0	23.3	<5.0	22	8	24.2	108			
Chloride (CI)	0.63	1.49	0.32	2.59	0.9	8.8	0.56	22	0.32	1.88	9.61	0	0	
Hydroxide (OH)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	22	<5.0	<5.0	<5.0		-	
Magnesium (Mg)	22.8	18.7	21	44.9	32.4	78	26.6	22	15.8	27 75	84.5			
Potassium (K)	4 39	12.6	7.38	32.9	32	20	7.8	22	3.2	7 645	32.9			
Sodium (Na)	2 48	6.32	4 86	19.5	12.5	64.8	6.41	22	2.3	8 75	69 1			
Sulfate (SO4)	<0.50	<0.50	<0.50	6.33	<0.50	160	1.99	22	0.61	6.09	176			
Sulphide	<0.0020	<0.0020	0.005	0.006	0.009	0.004	0.004	22	0.0024	0.0057	3 67	17	77	Water Spring Summer
Nutrients and BOD	-0.0020	-0.0020	0.000	0.000	0.000	0.001	0.004		0.0024	0.0007	0.07			Whiter, opining, outlinion
Ammonia-N	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	22	0.062	0.531	5 39	3	14	Winter Spring
Biochemical Oxygen Demand	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	22	2.2	15.4	51.8	Ŭ		rinker, opinig
Nitrate (as N)	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	22	<0.071	<0.071	<0.071	0	0	
Nitrate and Nitrite as N	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	<0.071	22	<0.050	<0.050	<0.050	Ŭ	0	
Nitrite (as N)	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	22	<0.050	<0.050	<0.050	0	0	
Phosphorus Total	0 117	0.0256	0 144	0.0985	0.0749	0.0116	0 154	22	0.0106	0.0941	2 1	14	64	Water Spring Summer
Phosphorus, Total Dissolved	0.0215	0.0085	0 116	0.0386	0.0265	0.0043	0.0868	20	0.0043	0.0647	1.96		0.	rinter, opinig, cuiniter
Total Kieldahl Nitrogen	1 1	1.3	15	4 28	1.63	1 49	2 15	22	1.06	1 655	7 43	22	100	Water Spring Summer
Dissolved Metals		1.0	1.0	1.20	1.00	1.40	2.10		1.00	1.000	7.40		100	Whiter, opining, outlinion
	<0.0010	<0.0010	0.003	0.001	0.001	0.001	0.004	22	0.001	0 00255	0 0206	0	0	
Antimony (Sh)	<0.0010	<0.0010	<0.00010	0.000	<0.001	<0.0010	<0.0010	22	0.0017	0.000200	0.00026	Ŭ	0	
Arsenic (As)	0.001	0.001	0.001	0.005	0.001	0.001	0.003	22	0.00017	0.001045	0.00020	1	5	Winter
Barium (Ba)	0.076	0.045	0.043	0.047	0.081	0.007	0.036	22	0.0209	0.04705	0.249	. 	0	
Beryllium (Be)	<0.070	<0.045	<0.040	<0.047		<0.022	<0.000	22	<0.0203	<0.04700	<0.243			
Bismuth (Bi)	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	-0.00000	15	0.00000	0.00000	0.00000			
Boron (B)	0.015	-	-	-	-	- 0 110	<0.010	22	0.010	0.010	0.013	0	0	
	<0.010		0.02 I <0.00010	<0.003	<0.020	<0.119		22	0.0094	0.0225	0.119	0	0	
Chromium (Cr)	<0.000010	<0.000010			<0.00010	<0.000010	<0.00010	22	0.107	0.107	0.107	0	0	
Cobalt (Co)	0.0003	<0.00010	0.0001	0.0002	<0.00010	<0.00010	0.0002	22	0.00013	0.00022	0.007	5	U	

Table A2.1 (Cont'd.)
--------------	----------

				Summer 2013										Seasons Where Frequencies
Water Quality Variable	SG4-2	LC11-1	SG2-3	REL-1	LG2-2	GAL-2	SC1-1	n	Min	Med	Max	# Exceeded	d Freq %	Were Observed
Copper (Cu)	<0.00010	<0.00010	<0.00010	0.0006	0.0001	<0.00010	0.0002	22	0.00011	0.0002	0.00058	0	0	
Iron (Fe)	0.1850	0.0250	0.0620	-	0.0530	<0.010	0.2160	19	0.011	0.062	57.8	5	26	Wnter, Spring, Summer
Lead (Pb)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	22	0	<0.000050	0	0	0	
Lithium (Li)	0.0056	0.0110	0.0118	0.0391	0.0165	0.0614	0.0125	22	0.0055	0.01245	0.0614			
Manganese (Mn)	0.4540	0.0020	0.0451	-	0.0023	0.0002	0.0501	19	0.000233	0.3745	5.88			
Molybdenum (Mo)	0.0001	0.0001	0.0002	0.0026	0.0002	0.0001	0.0002	19	0.000054	0.000224	0.00256	0	0	
Nickel (Ni)	0.0008	<0.00010	0.0006	0.0006	0.0006	0.0001	0.0008	17	0.00013	0.00061	0.00348	0	0	
Selenium (Se)	<0.00010	<0.00010	<0.00010	0.0002	<0.00010	<0.00010	<0.00010	5	0.00012	0.00019	0.00042	0	0	
Silver (Ag)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0	0	<0.000010	0	0	0	
Strontium (Sr)	-	-	-	-	-	-	-	15	0.0724	0.127	0.355			
Thallium (TI)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	0	0	<0.000050	0	0	0	
Tin (Sn)	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	3	0.00012	0.00018	0.00127			
Titanium (Ti)	<0.00030	<0.00030	<0.00030	0.000	<0.00030	<0.00030	<0.00030	5	0.00032	0.00045	0.00177			
Uranium (U)	0.000	0.000	0.000	0.002	0.000	0.001	0.000	19	0.000011	0.000256	0.00169	0	0	
Vanadium (V)	<0.00010	<0.00010	0.000	0.005	<0.00010	0.000	0.000	13	0.00015	0.00026	0.00468			
Zinc (Zn)	0.002	0.001	0.002	<0.0050	0.002	<0.0010	0.004	13	0.001	0.0016	0.0039	0	0	
Total Metals														
Aluminum (Al)	0.005	0.010	0.021	0.018	0.006	0.003	0.113	20	0.0031	0.01125	0.113	1	5	Summer
Antimony (Sb)	<0.00010	<0.00010	<0.00010	0.000	<0.00010	<0.00010	<0.00010	5	0.0001	0.00012	0.00027			
Arsenic (As)	0.001	0.000	0.001	0.004	0.001	0.001	0.003	22	0.00041	0.00121	0.0212	1	5	Winter
Barium (Ba)	0.0809	0.0435	0.0473	0.0469	0.0951	0.0212	0.0424	22	0.0212	0.0589	0.228			
Beryllium (Be)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	0	0	<0.00050	0			
Bismuth (Bi)	-	-	-	-	-	-	-	0	0	<0.000050	0			
Boron (B)	0.020	0.016	0.027	0.059	0.033	0.127	<0.010	21	0.012	0.023	0.145	0	0	
Cadmium (Cd)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	0	<0.000010	<0.000010	<0.000010			
Chromium (Cr)	<0.00010	<0.00010	0.000	<0.00010	0.000	<0.00010	0.000	13	0.00011	0.00022	0.00043	0	0	
Cobalt (Co)	0.001	<0.00010	0.000	0.000	0.000	<0.00010	0.000	15	0.00011	0.00033	0.00705			
Copper (Cu)	0.000	0.000	0.000	0.001	0.000	0.000	0.001	22	0.00012	0.000425	0.00106			
Iron (Fe)	-	-	-	-	-	-	-	15	0.026	0.9175	56.8	9	60	Winter, Spring
Lead (Pb)	<0.000050	<0.000050	<0.000050	0.000089	<0.000050	<0.000050	0.000107	22	0.000058	0.000089	0.000107			
Lithium (Li)	0.0068	0.0117	0.0129	0.0325	0.016	0.0648	0.0129	20	0.0068	0.01555	0.0711			
Manganese (Mn)	-	-	-	-	-	-	-	15	0.0049	0.354	7.23			
Mercury (Hg)-Trace	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	19	<0.0025	<0.0025	<0.0025	0	0	
Molybdenum (Mo)	0.000	0.000	0.000	0.003	0.000	0.000	0.000	22	0.000063	0.000218	0.0026	0	0	
Nickel (Ni)	0.001	<0.00010	0.001	0.001	0.001	0.000	0.001	22	0.00011	0.00063	0.00345			
Selenium (Se)	0.000	<0.00010	<0.00010	0.000	0.000	<0.00010	<0.00010	22	0.0001	0.00012	0.00025	0	0	
Silver (Ag)	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	22	<0.000010	<0.000010	<0.000010	0	0	
Strontium (Sr)	-	-	-	-	-	-	-	15	0.0725	0.126	0.353			
Thallium (TI)	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	22	<0.000050	<0.000050	<0.000050	0	0	
Tin (Sn)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	22	0.00018	0.00021	0.00024			
Titanium (Ti)	<0.00030	0.000	0.001	0.001	<0.00030	<0.00030	0.005	2	0.00038	0.00087	0.00475			
Uranium (U)	0.000	0.000	0.000	0.002	0.000	0.001	0.000	22	0.000012	0.0002775	0.00157	0	0	
Vanadium (V)	0.000	0.000	0.001	0.005	0.000	0.000	0.001	22	0.00014	0.00039	0.00489			
Zinc (Zn)	<0.0050	0.005	<0.0050	<0.0050	<0.0050	<0.0050	0.030	22	0.0031	0.00625	0.0321	2	9	Winter, Summer

G

General Notes:

Guidelines are CCME (2007), AENV (1999) unless otherwise noted

Values in **bold** indicate concentrations exceeding guidelines for the protection of aquatic life.

Detection limit exceeds guideline

* Detection limit used for winter and spring data

** Detection limit used for fall data only

*** Guidelines for dissolved metals are the guidelines for total metals.

^A AENV guideline: TSS is not to be increased by more than 10 mg/L over background value. ^B CCME short- and long-term guidelines respectively

С

USEPA guideline for continuous concentration (USEPA 1999) D CCME Guidelines for Ammonia - Total are based on temperature and pH as follows.

рΗ Temp (°C) 6 6.5 7 7.5 8.5 8 7.32 0.749 0 231 73 23.1 2.33 0.25 153 48.3 15.3 4.84 1.54 0.502 0.172 5 32.4 10.3 3.26 1.04 0.343 102 0.121 10

^H CCME nickel guideline is hardness dependent: $= e^{0.76[ln(hardness)]+1.06}$ ¹ Draft AENV guidelines for chronic (5) and acute (13) total mercury concentrations.

^E CCME cadmium guideline is hardness dependent = 10^{0.86[log(hardness)]-3.2}

CCME lead guideline is hardness dependent: e^{1.273[in(hardness)]-4.705}

F CCME copper guideline is hardness dependent = $0.2^*e^{0.8545[in(hardness)]-1.465}$

^J There is no guideline for TKN. The listed guideline is the guideline for total nitrogen applied to TKN.

1 Alberta Environment Guidelines for the Protection of Freshwater Aquatic Life (AENV 1999), unless otherwise specified

² Field measurements were taken *in situ* and therefore there is no detection limit

Appendix A3

Aquatic Habitat Information

Referen	cing Inf	ormation			
Site Code:	_C11-1				
Date Assessed:	17 Jun	8 Ai	ug	21 Mar	
	2013	201	3	2013	
	16:45	15:4	40 50005	14:55	
UTM (NAD83, Zone 12):		530502E,	59985	571N	
Access:		Iruc	k/Argo		
Seaso	nal Info	rmation			
	Spring	Summer	Fall	Winter	
Temperature (°C):	21.9	-	-	0.3	
Dissolved Oxygen (mg/L):	5.2	-	-	1.3	
pH:	7.98	-	-	7.11	
Conductivity (µS/cm):	216	-	-	634	
Wetted Width (m):	-	-	-	-	
Average Depth (m):	-	-	-	>1.5	
Physical De	escripti	on of Rea	ach		
Channel Width (m):	-	-	-	-	
Channel Slope:	-	-	-	-	
Stream Bank Slope	-	-	-	-	
Stream Bank Slope	-	-	-	-	
Substrate	,				
Composition - Organics:	J	-	-	-	
Composition - Fines:	V	-	-	-	
Composition - Gravel	-	_	-	-	
Composition - Boulder:	_	_	_	-	
Instream cover (presence/	absend	;e)			
Small Woody Debris:	-	-	-	-	
Large Woody Debris:	-	-	-	-	
Detritus:	-	-	-	-	
Substrate:	-	-	-	-	
Undercut Banks:	-	-	-	-	
Instream vegetation:	-	-	-	-	
Overhead cover (presence	e/ absen	ce)			
Undercut banks:	-	-	-	-	
Overhanging trees.	-	-	-	-	
Overhanging shrubs:	-	-	-	-	
Overhead litter >150 mm	-	-	-	-	
Overhead litter <150 mm:	-	_	-	-	
Riparian Vegetation:	Gras	ses, sedge	es shru	bs/willows	
Channel N	lornhol	ogy 0 m l	IS		
Deminent Red Meterial					
Sub Dominant Red Material			-		
Morphology:	•		-		
Pattern [.]			_		
Islands/Bars:			_		
	Notes				
	110100				
Lake is almost entirely emer	gent veg	getation wi	ith a sn	nall area of	
open water. No defined inlet or outlet was observed.					

LC11-1 open water, June 17, 2013

LC11-1, June 17, 2013

LC11-1, August 8, 2013

Referen	icing Info	rmation		
Site Code:	LC11-2			
Date Assessed:	18 Jun	7 Aug	-	21 Mar
	2013	2013		2013
TIME ASSESSED:	10.15	12.20 5201575 5	-	12:30
UTM (NAD83, Zone 12):		552157E, 5 Truck/	997938 Arao	11N
Access:		TTUCK/	Argo	
Seaso	nal Inforr	mation		
	Spring	Summer	Fall	Winter
Temperature (°C):	-	19.7	-	0.3
Dissolved Oxygen (mg/L):	-	3.5	-	1.8
pH: Conductivity (uS/cm):	-	7.35	-	6.80
Wetted Width (m):	-	264	-	383
Average Depth (m):	-	_	-	0.3
Physical D	escrintio	n of Reach	h	
Channel Width (m)	-	-	· _	
Channel Slope:	_	_	_	_
Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate				
Composition - Organics:	-	\checkmark	-	\checkmark
Composition - Fines:	-	-	-	-
Composition - Sand:	-	-	-	-
Composition - Graver.	-	-	-	-
Instream cover (presence	/ absence)		
Small Woody Debris:	-	-	-	-
Large Woody Debris:	-	-	-	-
Detritus:	-	-	-	-
Substrate:	-	-	-	-
Undercut Banks:	-	-	-	-
Overhead cover (presence	- e/ absence	- -	-	-
Undercut banks:	-	-	-	-
Overhanging trees:	-	-	-	-
Overhanging grasses:	-	-	-	-
Overhanging shrubs:	-	-	-	-
Overhead litter >150 mm:	-	-	-	-
Overhead litter <150 mm:	- Chaub	-	-	-
Riparian Vegetation:	Shrub	s, seages, g fore	grasses st	s, mixea
Channel	Iorpholo			
Dominant Rod Motorial		9, 0 III 00		
Sub Dominant Pod Material			-	
Morphology:			-	
Pattern:			-	
Islands:			-	
	Notes			
Lake only has small area of	open wate	er within a w	vetland	Water
depth prevented access for	water sam	ipling in Jur	ie 2013).

LC11-2, June 18, 2013

LC11-2, August 7, 2013

LC11-2, August 7, 2013

Refere	encing In	formation	1	
Site Code:	REL-1			
Date Assessed:	18 Jun	7 Aug	-	21 Mar
Time Assessed	2013 12·10	2013 16·20	_	2013 11·15
UTM (NAD83, Zone 12)	12.10	535404F	599834	48N
Access:		Truc	k/Argo	
Seas	onal Inf	ormation	-	
	Spring	Summor	Fall	Wintor
Temperature (°C)	21 1		Fall	winter
Dissolved Oxygen (mg/L):	7.4	- 20.4	_	-
pH:	8.56	10.48	-	-
Conductivity (µS/cm):	481	415	-	-
Wetted Width (m):	-	-	-	-
Average Depth (m):	-	0.4	-	-
Physical	Descript	tion of Rea	ach	
Channel Width (m):	-	-	-	-
Channel Slope:	-	-	-	-
Stream Bank Slope	-	-	-	-
Substrate	-	-	-	-
Composition - Organics:	-	-	-	-
Composition - Fines:	\checkmark	\checkmark	-	-
Composition - Sand:	-	\checkmark	-	-
Composition - Gravel:	-	\checkmark	-	-
Composition - Boulder:	<i>,</i>	1	-	-
Instream cover (present	e/ absen	ce)		
Jarge Woody Debris:	-	-	-	-
Detritus:	_	_	_	_
Substrate:	-	-	-	-
Undercut Banks:	-	-	-	-
Instream vegetation:	-	-	-	-
Overhead cover (presen	ce/ abse	nce)		
Ondercut banks:	-	-	-	-
Overhanging trees.	-	-	-	-
Overhanging shrubs:	-	-	-	-
Overhead litter >150 mm:	-	-	-	-
Overhead litter <150 mm:	-	-	-	-
Riparian Vegetation:	Gras	ses, sedge	s, shrul	bs/willows
Channel	Morpho	logy 0 m	US	
Dominant Bed Material:			-	
Sub-Dominant Bed Mater	ial:		-	
Morphology:			-	
Pattern:			-	
Islands/Bars:			-	
	Notes	S		
Shallow littoral zone with	abundant	macrophyt	es. Lak	e has
receded in recent times a	nd former	lake bed is	s now g	rassland
with cattle grazing. Creek	flowing in	ito lake hac	l no def	ined
cnannei.				

Reita Lake/REL-1, June 18, 2013

Reita Lake/REL-1, August 7, 2013

Macrophyte cover on Reita Lake/ REL-1, August 7, 2013

Referen	icing Info	rmation		
Site Code:	SC1-4			
Date Assessed	17 Jun	8 Aug	-	21 Mar
	2013	2013		2013
Time Assessed:	15:55		-	15:35
UTM (NAD83, Zone 12):	:	530061E, 5	999690	N
Access:		I ruck/A	Argo	
Seaso	nal Inforr	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	-	-	-	-
Dissolved Oxygen (mg/L):	-	-	-	-
pH:	-	-	-	-
Conductivity (µS/cm):	-	-	-	-
Wetted Width (m):	-	-	-	-
Average Depth (m):	-	-	-	-
Physical D	escriptio	n of Reach		
Channel Width (m):	-	-	-	-
Channel Slope:	-	-	-	-
Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate				
Composition - Ciganics.	-	-	-	-
Composition - Sand	_	_	_	_
Composition - Gravel:	-	_	_	-
Composition - Boulder:	-	-	-	-
Instream cover (presence	/ absence)		
Small Woody Debris:	-	-	-	-
Large Woody Debris:	-	-	-	-
Detritus:	-	-	-	-
Substrate:	-	-	-	-
Undercut Banks:	-	-	-	-
Overhead cover (presence	- al absonce	-	-	-
Undercut banks:	-	-	-	-
Overhanging trees:	-	-	-	-
Overhanging grasses:	-	-	-	-
Overhanging shrubs:	-	-	-	-
Overhead litter >150 mm:	-	-	-	-
Overhead litter <150 mm:	-	-	-	-
Riparian Vegetation:		-		
Channel M	<i>lorpholo</i>	gy 0 m US		
Dominant Bed Material:			-	
Sub-Dominant Bed Material	l:		-	
Morphology:			-	
Pattern:			-	
Islands/Bars:			-	
	Notes			
No water or defined channel	el at assess	sment locati	on. Def	ined
channel was found along ot	her portion	ns of the wa	tercours	se. Flow
is intermittent along most of	the water	course.		

SC1-4, June 17, 2013

SC1-4, August 8, 2013

SC1-4, March 21, 2013

Referen	Referencing Information					
Site Code:	SC1-3					
Data Assessed	17 Jun	9 Aug	-	21 Mar		
Dale Assessed.	2013	2013		2013		
Time Assessed:	15:40	8:00	-	15:53		
UTM (NAD83, Zone 12):	į	528848E, 5	998851	N		
Access:		Truc	k			
Seaso	nal Inforn	nation				
	Spring	Summer	Fall	Winter		
Temperature (°C)		-	-	-		
Dissolved Oxygen (mg/L):	_	_	_	_		
nH·			_			
Conductivity (uS/cm):	_	_	_	_		
Wetted Width (m)	_	_	_	_		
Average Depth (m):	_	_	_	_		
Physical D	escription	n of Reach				
Channel Width (m):	000110101					
Channel Slope:	-	-	-	_		
Stream Bank Slope (LDB)	_	_	_	_		
Stream Bank Slope (BDB):	_	_	-	_		
Substrate						
Composition - Organics:	-	-	-	-		
Composition - Fines:	-	-	-	-		
Composition - Sand:	-	-	-	-		
Composition - Gravel:	-	-	-	-		
Composition - Boulder:	-	-	-	-		
Instream cover (presence/	absence					
Small Woody Debris:	-	-	-	-		
Large Woody Debris:	-	-	-	-		
Detritus:	-	-	-	-		
Substrate.	-	-	-	-		
Instream vegetation:		-	-	_		
Overhead cover (presence	/ absence	2)				
Undercut banks:	-	-, -	-	-		
Overhanging trees:	-	-	-	-		
Overhanging grasses:	-	-	-	-		
Overhanging shrubs:	-	-	-	-		
Overhead litter >150 mm:	-	-	-	-		
Overhead litter <150 mm:	-	-	-	-		
Riparian Vegetation:		-				
Channel M	lorpholog	gy 0 m US				
Dominant Bed Material			-			
Sub-Dominant Bed Material			-			
Morphology:			-			
Pattern:			-			
Islands/Bars:			-			
	Notes					
Ne well define distance i M	flander	atan duntu				
No well defined channel. No	o tiowing w	ater during	assess	ments.		

SC1-3, June 17, 2013

SC1-3, August 9, 2013

SC1-3, March 21, 2013

Referer	icing Info	rmation		
Site Code:	SG2-3			
Date Assessed	18 Jun	7 Aug	-	21 Mar
Bute / lobelood.	2013	2013		2013
Time Assessed:	12:55	16:08	-	10:25
UTM (NAD83, Zone 12):	Ę	533159E, 59	996415	N
Access:		Truck/A	Argo	
Seaso	nal Inforn	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	21.4	22.2	-	-
Dissolved Oxygen (mg/L)	52	61	-	-
nH [.]	8 15	8.30	_	_
Conductivity (uS/cm):	270	310	_	_
Wetted Width (m):	-	-	-	-
Average Depth (m):	-	-	_	-
Physical D	escription	n of Reach		
Channel Width (m):			_	_
Channel Slope:	-	-	-	_
Stream Bank Slope (LDB)		_	_	_
Stream Bank Slope (RDB):	-	-	-	_
Substrate				
Composition - Organics:	J	J	-	1
Composition - Fines:	-	-	-	-
Composition - Sand:	\checkmark	-	-	-
Composition - Gravel:	J	-	-	-
Composition - Boulder:	-	-	-	-
Instream cover (presence	/ absence))		
Small Woody Debris:	-	-	-	-
Large Woody Debris:	-	-	-	-
Detritus:	-	-	-	-
Substrate:	-	-	-	-
Undercut Banks:	-	-	-	-
Instream vegetation:	-	-	-	-
Overnead cover (presence	e/ absence	?)		
Ondercul banks:	-	-	-	-
Overhanging grasses:	-	-	-	-
Overhanging shrubs:		-	-	-
Overhead litter >150 mm	_	_	_	_
Overhead litter <150 mm	-	-	-	_
Riparian Vegetation:	Shrub	s. sedaes. c	rasses	. mixed
p		fores	st	,
Channel M	Norpholog	ay 0 m US		
Dominant Bed Material			-	
Sub-Dominant Bed Materia	l:		-	
Morphology:			-	
Pattern:			-	
Islands/Bars:			-	
	Notes			
Otto in hereita in t	4 Nic - 70	in million - 1		
Site is beaver impoundmen Winter water depth not suff	t. No suffic	ient water fl ampling.	owing a	at outlet.

SG2-3, June 18, 2013

SG2-3, August 7, 2013

SG2-3, March 21, 2013

Referen	ncing Info	rmation		
Site Code:	TRL1-1			
Date Assessed:	18 Jun 2013	7 Aug 2013	-	21 Mar 2013
Time Assessed:	12:35	15:20	-	10:50
LITM (NAD83, Zone 12)		535260F 59	996788	N
Access:	·	Truck/A	Arao	
Access.			"go	
Seaso	nal Inforr	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	21.4	-	-	-
Dissolved Oxygen (mg/L):	5.2	-	-	-
pH:	8.15	-	-	-
Conductivity (µS/cm):	270	-	-	-
Wetted Width (m):	-	-	-	-
Average Depth (m):	-	-	-	-
Physical D	escriptio	<mark>n of Reac</mark> h		
Channel Width (m):	-	-	-	-
Channel Slope:	-	-	-	-
Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate				
Composition Einos	-	-	-	-
Composition - Sand	-	-	-	-
Composition - Gravel	_	_	_	_
Composition - Boulder:	-	_	-	-
Instream cover (presence	/ absence)		
Small Woody Debris:	-	-	-	-
Large Woody Debris:	-	-	-	-
Detritus:	-	-	-	-
Substrate:	-	-	-	-
Undercut Banks:	-	-	-	-
Instream vegetation:			-	-
Overhead cover (presenc	e/ absence	e)		
Undercut banks:	-	-	-	-
Overhanging trees.	-	-	-	-
Overhanging shrubs:	-	-	-	-
Overhead litter >150 mm	_	_	_	_
Overhead litter <150 mm	-	-	_	_
Riparian Vegetation:		-		
Channel I	Jornholo			
Chainer		yy 0 111 03		
Dominant Bed Material:			-	
Sub-Dominant Bed Materia	1:		-	
worphology:			-	
FalleIII.			-	
131011U3/Da13.			-	
	Notes			
No channel present, site is present. No water was four	a wetland. nd during v	No defined	chann ing.	el

TRL1-1, June 18, 2013

TRL1-1, August 7, 2013

TRL1-1, March 21, 2013

Referer	Referencing Information						
Site Code:	LG2-2						
Date Assessed	18 Jun	7 Aug	-	20 Mar			
Bute / lobelood.	2013	2013		2013			
Time Assessed:	15:00	14:20	-	12:35			
UTM (NAD83, Zone 12):	į	529087E, 59	995125	N			
Access:		Truck/A	Argo				
Seaso	nal Inforn	nation					
	Spring	Summer	Fall	Winter			
Temperature (°C):	21.0	20.4	-	0.5			
Dissolved Oxygen (mg/L):	3.6	2.5	-	-			
pH:	7.86	7.73	-	7.46			
Conductivity (µS/cm):	423	612	-	828			
Wetted Width (m):	-	-	-	-			
Average Depth (m):	-	>1.5	-	>1.5			
Physical D	escriptio	n of Reach					
Channel Width (m):	-	-	-	-			
Channel Slope:	-	-	-	-			
Stream Bank Slope (LDB):	-	-	-	-			
Stream Bank Slope (RDB):	-	-	-	-			
Substrate							
Composition - Organics:	\checkmark	\checkmark	-	\checkmark			
Composition - Fines:	\checkmark	\checkmark	-	-			
Composition - Sand:	-	-	-	-			
Composition - Gravel:	-	-	-	-			
Composition - Boulder:	-	-	-	-			
Instream cover (presence	absence)					
Small Woody Debris:	-	-	-	-			
Large woody Debris:	-	-	-	-			
Dell'Ilus. Substrate:	-	-	-	-			
Undercut Banks	_	-	-	_			
Instream vegetation:	_	-	-	_			
Overhead cover (presenc	e/ absence	2)					
Undercut banks:	-	-	-	-			
Overhanging trees:	-	-	-	-			
Overhanging grasses:	-	-	-	-			
Overhanging shrubs:	-	-	-	-			
Overhead litter >150 mm:	-	-	-	-			
Overhead litter <150 mm:	-	-	-	-			
Riparian Vegetation:	Shrub	s, sedges, g	grasses	, mixed			
		fores	st				
Channel I	Morpholog	gy 0 m US					
Dominant Bed Material:			-				
Sub-Dominant Bed Materia	l:		-				
Morphology:			-				
Pattern:			-				
Islands/Bars:			-				
	Notes						
Beaver pond at assessmen	t location. I	Defined cha	nnel up	ostream			
and downstream is meande	ering with n	o observabl	e flow.				

LG2-2-open water, June 18, 2013

LG2-2 open water, August 7, 2013

Referen	cing Info	rmation		
Site Code:	LG2-1			
Date Assessed:	18 Jun	8 Aug	-	20 Mar
	2013	2013		2013
Time Assessed:	-	11:45 5005005 50	-	11:03
UTM (NAD83, Zone 12):		528562E, 5	994485	N
Access:		I ruck/A	Argo	
Seaso	nal Inforr	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	-	20.0	-	0.4
Dissolved Oxygen (mg/L):	-	4.8	-	-
pH:	-	7.70	-	7.24
Conductivity (µS/cm):	-	478	-	2075
Wetted Width (m):	-	-	-	-
Average Depth (m):	-	-	-	-
Physical D	escriptio	n of Reach		
Channel Width (m):	-	-	-	-
Channel Slope:	-	-	-	-
Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate				
Composition - Organics:	-	-	-	-
Composition - Fines:	-	-	-	-
Composition - Sand:	-	-	-	-
Composition - Gravel:	-	-	-	-
Composition - Boulder:	-	-	-	-
Instream cover (presence	/ absence)		
Small Woody Debris:	-	-	-	-
Large Woody Debris:	-	-	-	-
Detritus:	-	-	-	-
Substrate:	-	-	-	-
Undercut Banks:	-	-	-	-
Instream vegetation:	- - (- h h h h h h h h h h h h h h h h h h -	-	-	-
Undergut banks:	e/ absenc	e)		
Overhanging trees:	-	-	-	-
Overhanging grasses:			_	_
Overhanging shrubs	_	_	_	_
Overhead litter >150 mm	_	_	_	_
Overhead litter <150 mm	_	-	-	-
Riparian Vegetation:	Shrub	s. sedaes. c	rasses	. mixed
		fores	st	,
Channel M	/lorpholo	gy 0 m US		
Dominant Bed Material			-	
Sub-Dominant Bed Material	ŀ		-	
Morphology:			-	
Pattern:			-	
Islands/Bars:			-	
	Notes			
0 1 (1 1 1 1	Hotes		<i>c</i> :	
Series of beaver ponds with defined. No visible flow at the	n meander ne times of	ing channels f assessmer	s, often nt.	poorly

LG2-1 wetland, August 8, 2013

LG2-1 wetland, August 8, 2013

Referen	Referencing Information					
Site Code:	SC2-1					
Date Assessed:	17 Jun	7 Aug	-	18 Mar		
Date Assessed.	2013	2013		2013		
Time Assessed:	15:15	15:00	-	19:10		
UTM (NAD83, Zone 12):	ţ	528198E, 6	000186	N		
Access:		Truc	k			
Seaso	nal Inforn	nation				
	Spring	Summer	Fall	Winter		
Temperature (°C):		-	-	-		
Dissolved Oxygen (mg/L):	_	_	_	_		
nH [.]	_	_	_	_		
Conductivity (uS/cm):		_	_	_		
Wetted Width (m)	_	_	_	_		
Average Depth (m):	_	-	-	-		
Physical D	escription	n of Reach				
Channel Width (m)	00010101					
Channel Slope	_	-	-	-		
Stream Bank Slope (LDB)	_	-	_	-		
Stream Bank Slope (RDB):	-	-	_	_		
Substrate						
Composition - Organics:	-	-	-	-		
Composition - Fines:	-	-	-	-		
Composition - Sand:	-	-	-	-		
Composition - Gravel:	-	-	-	-		
Composition - Boulder:	-	-	-	-		
Instream cover (presence/	absence					
Small Woody Debris:	-	-	-	-		
Large Woody Debris:	-	-	-	-		
Detritus:	-	-	-	-		
Substitute.	-	-	-	-		
Instream vegetation:	_	-	-	-		
Overhead cover (presence	/ absence	2)				
Undercut banks:	-	-, -	-	-		
Overhanging trees:	-	-	-	-		
Overhanging grasses:	-	-	-	-		
Overhanging shrubs:	-	-	-	-		
Overhead litter >150 mm:	-	-	-	-		
Overhead litter <150 mm:	-	-	-	-		
Riparian Vegetation:		-				
Channel N	lorpholog	gy 0 m US				
Dominant Red Material			-			
Sub-Dominant Bed Material	:		-			
Morphology:			-			
Pattern:			-			
Islands/Bars:			-			
	Notes					
No de Caradal de La d		4 14				
No defined channel or water	r present a	it site.				

SC2-1, June 17, 2013

SC2-1, August 7, 2013

SC2-1, March 18, 2013

Referencing Information				
Site Code:	SC1-2			
Date Assessed	17 Jun	7 Aug	-	18 Mar
	2013	2013		2013
Time Assessed:	14:20	15:30	-	18:30
UTM (NAD83, Zone 12):	:	526863E, 59	996781	N
Access:		Truck/A	Argo	
Seaso	nal Inforr	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	-	-	-	-
Dissolved Oxygen (mg/L):	-	-	-	-
pH:	-	-	-	-
Conductivity (µS/cm):	-	-	-	-
Wetted Width (m):	-	-	-	-
Average Depth (m):	-	-	-	-
Physical D	escriptio	n of Reach		
Channel Width (m):	_	-	-	-
Channel Slope:	-	-	-	-
Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate				
Composition - Organics:	-	-	-	-
Composition - Fines:	-	-	-	-
Composition - Sand:	-	-	-	-
Composition - Gravel:	-	-	-	-
Composition - Boulder:	-	-	-	-
Instream cover (presence	/absence)			
Siliali Woody Debris:	-	-	-	-
Detritus:	_	-	-	_
Substrate	_	_	_	_
Undercut Banks	-	-	_	_
Instream vegetation:	-	-	-	-
Overhead cover (presenc	e/absence	e)		
Undercut banks:	-	-	-	-
Overhanging trees:	-	-	-	-
Overhanging grasses:	-	-	-	-
Overhanging shrubs:	-	-	-	-
Overhead litter >150 mm:	-	-	-	-
Overhead litter <150 mm:	-	-	-	-
Riparian Vegetation:		-		
Channel I	Morpholo	gy 0 m US		
Dominant Bed Material:			-	
Sub-Dominant Bed Materia	I:		-	
Morphology:			-	
Pattern:			-	
Islands/Bars:			-	
	Notes			
Poorly defined channel No	water obe	erved during	any of	the
assessments.			, any O	

SC2-1, June 17, 2013

SC2-1, August 7, 2013

SC2-1, March 18, 2013

Referencing Information				
Site Code:	SG2-2			
Date Assessed	19 Jun	8 Aug	-	19 Mar
T. A. I	2013	2013		2013
Time Assessed:	11:15	14:04	-	15:30
UTM (NAD83, Zone 12):		531346E, 59	996858	N
Access:		Truck/A	Argo	
Seaso	nal Inform	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	-	-	-	-
Dissolved Oxygen (mg/L):	-	-	-	-
pH:	-	-	-	-
Conductivity (µS/cm):	-	-	-	-
Wetted Width (m):	-	-	-	-
Average Depth (m):	-	-	-	-
Physical D	escriptio	n of Reach		
Channel Width (m):	-	-	-	-
Channel Slope:	-	-	-	-
Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate				
Composition - Organics:	-	-	-	-
Composition - Fines:	-	-	-	-
Composition - Sand:	-	-	-	-
Composition - Gravel:	-	-	-	-
Instream cover (presence	- /ahsence)	-	-	-
Small Woody Debris	-	_	_	_
Large Woody Debris:	_	_	_	-
Detritus:	-	-	-	-
Substrate:	-	-	-	-
Undercut Banks:	-	-	-	-
Instream vegetation:	-	-	-	-
Overhead cover (presence	e/absence	e)		
Undercut banks:	-	-	-	-
Overnanging trees:	-	-	-	-
Overhanging shubs:	-	-	-	-
Overhead litter >150 mm	-	_	-	-
Overhead litter <150 mm	-	_	_	_
Riparian Vegetation:		-		
Channel N	Iorpholo			
		99 0 11 03		
Dominant Bed Material:	ı.		-	
Sub-Dominant Bed Material	Ι.		-	
Pattern			-	
Islands/Bars			-	
	Mater			
	Notes			
Poorly defined channel at a winter. Only shallow, surfac	ssessmen e pools du	t location. N Iring open w	o water ater se	⁻ in ason.

SG2-2, June 19, 2013

SG2-2, August 8, 2013

SG2-2, March 19, 2013

Referencing Information				
Site Code:	SG21-1			
Date Assessed:	19 Jun	8 Aug	-	19 Mar
	2013	2013		2013
TIME ASSESSED:	11.20	13.22 5221705 51	-	13.43 N
		555176⊑, 5 Truck//	990210 Vrao	IN
ALLESS.		TIUCK/F	NYU	
Seaso	nal Inform	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	-	-	-	-
Dissolved Oxygen (mg/L):	-	-	-	-
pH: Conductivity (uS/cm):	-	-	-	-
Wetted Width (m)	-	-	-	-
Average Depth (m):	-	-	-	-
Physical D	escriptio	n of Reach		
Channel Width (m):	-	-	-	-
Channel Slope:	-	-	-	-
Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate				
Composition - Organics:	-	-	-	-
Composition - Fines.	-	_	-	-
Composition - Gravel:	_	_	_	_
Composition - Boulder:	-	-	-	-
Instream cover (presence	/absence)			
Small Woody Debris:	-	-	-	-
Large Woody Debris:	-	-	-	-
Detritus:	-	-	-	-
Substrate:	-	-	-	-
Instream vegetation:		-	-	-
Overhead cover (presence	e/absence)		
Undercut banks:	-	, _	-	-
Overhanging trees:	-	-	-	-
Overhanging grasses:	-	-	-	-
Overhanging shrubs:	-	-	-	-
Overhead litter >150 mm:	-	-	-	-
Overnead litter <150 mm: Rinarian Vegetation:	-	-	-	-
Channel I	A such a las	-		
	1010100	y u m US		
Dominant Bed Material:			-	
Sub-Dominant Bed Material	l:		-	
Pattern			-	
Islands/Bars:			-	
	Notes			
No defined channel. Culvor	t under out	line has inc	ufficient	t flow for
sampling, leads to small pond with beaver dam downstream.				

Other surrounding area is marsh. No water was found in winter season.

SG21-1, June 19, 2013

Small beaver pond at SG21-1, August 8, 2013

Culvert under cutline at SG21-1, August 8, 2013

Culvert under cutline, SG21-1, August 8, 2013

Referencing Information				
Site Code:	SG4-4			
Date Assessed:	19 Jun	8 Aug	-	19 Mar
Date Assessed.	2013	2013		2013
Time Assessed:	11:40	11:32	-	13:20
UTM (NAD83, Zone 12):	ţ	531470E, 5	993295	N
Access:		Truck/A	Argo	
Seaso	nal Inforn	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):		_	_	_
Dissolved Oxygen (mg/L)	_	-	-	_
nH [.]	_	_	_	_
Conductivity (uS/cm)	-	-	-	_
Wetted Width (m):	_	-	-	-
Average Depth (m):	-	-	-	-
Physical D	escriptio	n of Reach		
Channel Width (m)	-	-	_	-
Channel Slope:	_	-	_	-
Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate				
Composition - Organics:	-	-	-	-
Composition - Fines:	-	-	-	-
Composition - Sand:	-	-	-	-
Composition - Gravel:	-	-	-	-
Composition - Boulder:		-	-	-
Instream cover (presence/	absence)			
Small Woody Debris:	-	-	-	-
Large Woody Debris.	-	-	-	-
Substrate	-	-	-	-
Undercut Banks	_	_	_	_
Instream vegetation	_	-	-	-
Overhead cover (presence	absence)		
Undercut banks:	-	-	-	-
Overhanging trees:	-	-	-	-
Overhanging grasses:	-	-	-	-
Overhanging shrubs:	-	-	-	-
Overhead litter >150 mm:	-	-	-	-
Overhead litter <150 mm:	-	-	-	-
Riparian Vegetation:		-		
Channel M	lorpholog	gy 0 m US		
Dominant Bed Material			_	
Sub-Dominant Bed Material			-	
Morphology:			-	
Pattern:			-	
Islands/Bars:			-	
	Notes			
No defined alternation of		4 - 14		
No defined channel or water	r present a	it site or cul	vert.	

Culvert at SG4-4, June 19, 2013

Culvert at SG4-4, August 8, 2013

SG4-4, March 19, 2013

Referencing Information				
Site Code:	SG4-2			
Date Assessed	19 Jun	8 Aug	-	19 Mar
	2013	2013		2013
Time Assessed:	12:15	9:10	-	12:25
UTM (NAD83, Zone 12):	ę	528583E, 59	991829	N
Access:		Truck/A	Argo	
Seaso	nal Inforn	nation		
	Sprina	Summer	Fall	Winter
Temperature (°C):	19.0	19.5	_	_
Dissolved Oxygen (mg/L)	4.4	3.1	-	-
nH [.]	7.35	7 27	-	-
Conductivity (uS/cm)	306	459	-	-
Wetted Width (m):	-	-	-	-
Average Depth (m):	-	-	-	-
Physical D	escriptio	n of Reach		
Channel Width (m)	_	-	-	_
Channel Slope	_	-	-	-
Stream Bank Slope (LDB):	-	-	_	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate				
Composition - Organics:	\checkmark	J	-	-
Composition - Fines:	-	-	-	-
Composition - Sand:	-	-	-	-
Composition - Gravel:	-	-	-	-
Composition - Boulder:	-	-	-	-
Instream cover (presence	/absence)			
Small Woody Debris:	-	-	-	-
Large Woody Debris:	-	-	-	-
Detritus:	-	-	-	-
Substrate:	-	-	-	-
Undercut Banks:	-	-	-	-
Instream vegetation:	- -	, -	-	-
Overnead cover (presence	e/absence)		
Ordercut banks.	-	-	-	-
Overhanging grasses:	-	-	-	-
Overhanging shrubs:	-	-	-	-
Overhead litter >150 mm	_	_	_	_
Overhead litter <150 mm	-	-	-	-
Riparian Vegetation:	Aquati	c plants se	daes a	rasses
Channel			agee, g	140000.
		<u>y un 05</u>		
Dominant Bed Material:			-	
Sub-Dominant Bed Material	:		-	
worphology:			-	
Pattern:			-	
ISIdHUS/Bars.			-	
	Notes			
Slow moving channel with e	xtensive m	nacrophyte	growth	along
margins. Ice thickness prev	ented winte	er sampling		

SG4-2, June 19, 2013

SG4-2, August 8, 2013

SG4-2, March 19, 2013

Referen	Referencing Information				
Site Code:	SG4-3				
Date Assessed	19 Jun	8 Aug	-	19 Mar	
	2013	2013		2013	
Lime Assessed:	13:45	11:53	-	12:00	
UTM (NAD83, Zone 12):		530172E, 59	990778	N	
Access:		I ruck/A	Argo		
Seaso	nal Inforr	nation			
	Spring	Summer	Fall	Winter	
Temperature (°C):	-	-	-	-	
Dissolved Oxygen (mg/L):	-	-	-	-	
pH:	-	-	-	-	
Conductivity (µS/cm):	-	-	-	-	
Wetted Width (m):	-	-	-	-	
Average Depth (m):	-	-	-	-	
Physical D	escriptio	<mark>n of Reac</mark> h			
Channel Width (m):	-	-	-	-	
Channel Slope:	-	-	-	-	
Stream Bank Slope (LDB):	-	-	-	-	
Stream Bank Slope (RDB):	-	-	-	-	
Substrate					
Composition - Organics.	-	-	-	-	
Composition - Sand	-	-	-	-	
Composition - Gravel	_	_	_	_	
Composition - Boulder:	-	_	-	-	
Instream cover (presence	/absence)				
Small Woody Debris:	- '	-	-	-	
Large Woody Debris:	-	-	-	-	
Detritus:	-	-	-	-	
Substrate:	-	-	-	-	
Undercut Banks:	-	-	-	-	
Instream vegetation:	-	· -	-	-	
Overnead cover (presence	e/absence	?)			
Ordercul banks.	-	-	-	-	
Overhanging drasses:	_	_	_	_	
Overhanging shrubs:	-	-	_	-	
Overhead litter >150 mm:	-	-	-	-	
Overhead litter <150 mm:	-	-	-	-	
Riparian Vegetation:		-			
Channel M	Aorpholo	qy 0 m US			
Dominant Red Material			_		
Sub-Dominant Bed Materia	ŀ		-		
Morphology:			-		
Pattern:			-		
Islands/Bars:			-		
	Notes				
Poorly defined channel with	seasonal	flow. Only s	hallow	isolated	
pools at time of assessmen	ts.		nunow,		

SG4-3, June 19, 2013

SG4-3, August 8, 2013

SG4-3, March 19, 2013

Referencing Information				
Site Code:	SC1-1			
Date Assessed:	17 Jun	7 Aug	-	21 Mar
T:	2013	2013		2013
	14:40		- 007554	8:25
UTM (NAD83, Zone 12):	(52707 IE, 53	997554 \rae	IN
Access:		TTUCK/F	Argo	
Seaso	nal Inforn	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	20.0	21.8	-	0.4
Dissolved Oxygen (mg/L):	6.8	0.6	-	-
pH:	8.35	8.52	-	7.15
Conductivity (µS/cm):	311	404	-	1059
Wetted Width (m):	-	-	-	-
Average Depth (m).	-	-	-	-
Physical D	escription	n of Reach		
Channel Width (m):	-	-	-	-
Channel Slope: Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (LDB).	-	-	-	-
Substrate				
Composition - Organics:	\checkmark	\checkmark	-	V
Composition - Fines:	-	-	-	1
Composition - Sand:	-	-	-	-
Composition - Gravel:	-	-	-	-
Composition - Boulder:	- /al-aa-)	-	-	-
Instream cover (presence	/absence)			
Large Woody Debris:	-	-	-	-
Detritus:	-	-	-	-
Substrate:	-	-	-	-
Undercut Banks:	-	-	-	-
Instream vegetation:	-	-	-	-
Overhead cover (presenc	e/absence)		
Overbanging trees:	-	-	-	-
Overhanging grasses:	-	-	-	-
Overhanging shrubs:	-	-	-	-
Overhead litter >150 mm:	-	-	-	-
Overhead litter <150 mm:	-	-	-	-
Riparian Vegetation:	Shrub	s, sedges, g	grasses	, mixed
		fores	st	
Channel I	Morpholog	gy 0 m US		
Dominant Bed Material:			-	
Sub-Dominant Bed Materia	l:		-	
Morphology:			-	
Pattern:			-	
13101103/0015.			-	
	Notes			
Site consists of beaver pon Site is in heavy use by cattl	d with mark e.	kers indicati	ng buri	ed pipe.

Pond site at SC1-1, June 17, 2013

Pond site at SC1-1, August 7, 2013

Pond site at SC1-1, August 7, 2013

SC1-1, March 21, 2013

Referen	icing Info	rmation		
Site Code:	SG2-4			
Date Assessed:	20 Jun	8 Aug	-	19 Mar
	2013	2013		2013
Time Assessed:	8:45	13:00	-	14:50
UTM (NAD83, Zone 12):	ť	33984E, 5	994680 \	IN
Access:		I ruck/A	Argo	
Seaso	nal Inforn	nation		
	Spring	Summer	Fall	Winte
Temperature (°C):	-	-	-	-
Dissolved Oxygen (mg/L):	-	-	-	-
pH:	-	-	-	-
Conductivity (µS/cm):	-	-	-	-
vvetted vvidtn (m):	-	-	-	-
Average Depth (III).	-	-	-	-
	escription	1 of Reach		
Channel Width (m):	-	-	-	-
Stream Bank Slope (LDB)	-	-		_
Stream Bank Slope (RDB):	_	_	_	-
Substrate				
Composition - Organics:	-	-	-	-
Composition - Fines:	-	-	-	-
Composition - Sand:	-	-	-	-
Composition - Gravel:	-	-	-	-
Composition - Boulder:	- /ahaanaa)	-	-	-
Small Woody Debris	/absence)	_	_	_
Large Woody Debris:	-	-	_	-
Detritus:	-	-	-	_
Substrate:	-	-	-	-
Undercut Banks:	-	-	-	-
Instream vegetation:	-	-	-	-
Overhead cover (presence	e/absence)		
Overhanging trees	-	-	-	-
Overhanging crasses:	-	-	-	-
Overhanging shrubs:	_	_	_	_
Overhead litter >150 mm:	-	-	-	-
Overhead litter <150 mm:	-	-	-	-
Riparian Vegetation:		-		
Channel I	Morpholo	gy 0m US		
Dominant Bed Material:			-	
Sub-Dominant Bed Material	l:		-	
Morphology:			-	
Pattern:			-	
Islands/Bars:			-	
	Notes			
No defined channel. Site is	a wetland.			

Wetland of SG2-4, June 20, 2013

Wetland of SG2-4, August 8, 2013

Wetland of SG2-4, August 8, 2013

Referer	ncing Info	rmation		
Site Code:	SG4-5			
Date Assessed:	20 Jun	8 Aug	-	20 Mar
Time Assessed	2013	2013		2013
LITM (NAD82, Zono 12):	13.25	12.10	-	9.05 N
$\Delta coese:$	•	Truck/A		IN
Access.			ago	
Seaso	nal Inforn	nation		
Tomporature (°C):	Spring	Summer	Fall	Winter
Dissolved Overgon (mg/L):	-	-	-	-
Dissolved Oxygen (mg/L).	-	-	-	-
pn. Conductivity (uS/cm):	-	-	-	-
Wetted Width (m):	_	_	_	_
Average Depth (m):	-	-	-	-
Physical D	escriptio	n of Reach		
Channel Width (m):	-	-	-	-
Channel Slope:	-	-	-	-
Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate				
Composition - Organics:	-	-	-	-
Composition - Sand	_	-	-	-
Composition - Gravel:	_	_	_	_
Composition - Boulder:	-	-	-	-
Instream cover (presence	/absence)			
Small Woody Debris:	-	-	-	-
Large Woody Debris:	-	-	-	-
Detritus:	-	-	-	-
Subsitate:	-	-	-	-
Instream vegetation	-	-	-	-
Overhead cover (presenc	e/absence)		
Undercut banks:	-	-	-	-
Overhanging trees:	-	-	-	-
Overhanging grasses:	-	-	-	-
Overhanging shrubs:	-	-	-	-
Overhead litter >150 mm:	-	-	-	-
Riparian Vegetation:	-		-	-
Channel I	Morpholo(
Dominant Dari Matarial		<u>y un 03</u>		
Dominant Bed Material:	1.		-	
Morphology.	1.		-	
Pattern:			-	
Islands/Bars:			-	
	Notes			
No defined channel site is	a wetland			

SG4-5, June 20, 2013

SG4-5, June 20, 2013

SG4-5, August 8, 2013

Referen	cing Info	rmation		
Site Code:	GAL-2			
Date Assessed:	17 Jun	7 Aug	-	20 Mar
The Accessed	2013	2013		2013
Time Assessed:	11:00 1	TT:30	-	16:15 N
		, טיבו 291סוב. / Truck	982002	N
Access:			Argo	
Seaso	nal Inforn	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	17.3	21.3	-	0.2
Dissolved Oxygen (mg/L):	6.7	9.0	-	5.7
pH:	9.04	9.00	-	8.66
Conductivity (µS/cm):	472	1015	-	989
Wetted Width (m):	-	-	-	-
Average Depth (m).	-	-	-	≥1.0
	escription	1 Of React	1	
Channel Width (m):	-	-	-	-
Stroam Bank Slone (LDB)	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate				
Composition - Organics:	-	-	-	-
Composition - Fines:	\checkmark	\checkmark	-	\checkmark
Composition - Sand:	-	-	-	-
Composition - Gravel:	-	-	-	-
Composition - Boulder:	-	-	-	-
Instream cover (presence/	absence			
Small woody Debris:	-	-	-	-
Detritus:	_	_	_	-
Substrate:	-	-	-	-
Undercut Banks:	-	-	-	-
Instream vegetation:	-	-	-	-
Overhead cover (presence	e/absence)		
Undercut banks:	-	-	-	-
Overhanging trees:	-	-	-	-
Overhanging shruhs	-	-	-	-
Overhead litter >150 mm:	-	-	-	-
Overhead litter <150 mm:	-	-	-	-
Riparian Vegetation:		-		
Channel M	/lorpholog	<mark>ay 0 m US</mark>		
Dominant Bed Material:	<u> </u>		-	
Sub-Dominant Bed Material	•		-	
Morphology:			-	
Pattern:			-	
Islands/Bars:			-	
	Notes			

Garnier Lake/GAL-2, June 17, 2013

Garnier Lake/GAL-2, June 17, 2013

Garnier Lake/GAL-2, August 7, 2013

Garnier Lake/GAL-2, March 20, 2013

Referen	icing Info	rmation		
Site Code:	GAC-4			
Date Assessed:	17 Jun	7 Aug	-	20 Mar
Time Assessed:	2013	2013		2013
LITM (NAD92, Zono 12):	12.50	0.40 527765E 5	-	15.50 N
	· ·	Truck/i	903540 Arao	IN .
ALLESS.		TTUCK//	-iyu	
Seaso	nal Inforn	nation		
	Spring	Summer	Fall	Winte
Temperature (°C):	17.0	17.2	-	0.1
Dissolved Oxygen (mg/L):	6.2	0.5	-	-
pH:	7.56	7.40	-	6.72
Conductivity (µS/cm):	446	660	-	1079
Average Depth (m).	-	-	-	-
Physical D	oscriptio	of Poack		
Channel Width (m):	escription	I UI REACI		
Channel Width (m).	-	-	-	-
Stream Bank Slope (LDB):	_	_	_	_
Stream Bank Slope (RDB):	-	-	-	-
Substrate				
Composition - Organics:	\checkmark	\checkmark	-	\checkmark
Composition - Fines:	-	V	-	-
Composition - Sand:	-	-	-	-
Composition - Graver.	-	-	-	-
Instream cover (presence	/absence)			
Small Woody Debris:	- ,	-	-	-
Large Woody Debris:	-	-	-	-
Detritus:	-	-	-	-
Substrate:	-	-	-	-
Instream vegetation	-	_	-	-
Overhead cover (presenc	e/absence)		
Undercut banks:	-	-	-	-
Overhanging trees:	-	-	-	-
Overhanging grasses:	-	-	-	-
Overhanging shrubs:	-	-	-	-
Overhead litter <150 mm	-	-	-	-
Riparian Vegetation:				
Channel	Iorpholog			
		<u> </u>		
Dominant Bed Material:			-	
Morphology			-	
Disturbance:			-	
Islands/Bars:			-	
	Notes			
	the heating	routh of com	u oti -	
macrophytes (e.g., duckwee	im neavy g ed)	rowin of aq	uatic	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

GAC-4, June 17, 2013

Duckweed cover, June 17, 2013

GAC-4, August 7, 2013

GAC-4, March 20, 2013

Referencing Information				
Site Code:	SG7-1			
Date Assessed:	5 May 2012	-	15 Oct 2011	-
Time Assessed:	11:20	-	15:80	-
UTM (NAD83, Zone 12):		526144E 5	987246N	
Access:		Truck,	walk	
Seaso	nal Inforn	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	3.3	-	-	-
Dissolved Oxygen (mg/L):	8.8	-	-	-
pH:	7.80	-	-	-
Conductivity (µS/cm):	722	-	-	-
Wetted Width (m):	1.0	-	-	-
Average Depth (m):	0.5	-	-	-
Physical D	escription	n of Reach	1	
Channel Width (m):	1.0	-	-	-
Channel Slope:	5	-	-	-
Stream Bank Slope (LDB):	None	-	-	-
Stream Bank Slope (RDB):	None	-	-	-
Composition - Organics:	1	-	_	-
Composition - Fines:	-	-	-	-
Composition - Sand:	-	-	-	-
Composition - Gravel:	-	-	-	-
Composition - Boulder:	-	-	-	-
Instream cover (%)				
Small woody debris:	90	-	-	-
Boulders:	-	-	-	-
Undercut banks:	10	_	_	_
Deep pools:	-	-	-	-
Instream vegetation:	-	-	-	-
Overhead cover (%)				
Overhanging grasses:	-	-	-	-
Overhanging trees:	40	-	-	-
Overhanging shrubs:	-	-	-	-
Overhanging debris >15 cm	20	-	-	-
Riparian Vegetation	-	-	-	-
Overhead cover (%)	Deciduou	is forest. sh	rubs	
Channel M	/orpholog	uv 0 m US		
Dominant Bed Material		Oras	nic	
Sub-Dominant Bed Material		Nor	ne	
Morphology:	Run (60	%), Pool (3	0%), Riff	le (10%)
Disturbance:	- (Culvert	, road	- ()
Islands/Bars:		Nor	ne	
	Notes			
A series of braided channels	fast flowing	a through th	e soil Ma	aiority of
A series of braided channels, fast flowing through the soil. Majority of them are covered in debris. Channels do not reach culvert, flow moves through grasses to left of new road access to highway ditch. Unsure if culvert was ever fully connected as it lies 50-60 m to the right of existing culverts that channels are currently flowing through.				

New channels through grass to small culverts, May 5, 2012

Referencing Information							
Site Code:	SM3b-1						
Date Assessed:	8 May	July 13	-	-			
Time Assessed:	2012	2011					
LITM (NAD92, Zono 12):	15.50	3.00 522062E 50	- 004121N	-			
		JZZ90ZE J		I			
Access.		TTUCK,	waik				
Seasonal Information							
	Spring	Summer	Fall	Winter			
Dissolved Oxygen (mg/L):	10.0	1.8	-	-			
pH:	8.09	7.35	-	-			
Conductivity (µS/cm):	383	321	-	-			
Wetted Width (m):	12	-	-	-			
Average Depth (m):	0.1	0.2	-	-			
Physical Description of Reach							
Channel Width (m):	7.5	-	-	-			
Channel Slope:	-	-	-	-			
Stream Bank Slope (LDB):	20°	-	-	-			
Stream Bank Slope (RDB):	20°	-	-	-			
Substrate	1						
Composition Einos:	V	-	-	-			
Composition - Sand	_	_	-	-			
Composition - Gravel	_	_	_	_			
Composition - Boulder:	-	-	_	-			
Instream cover (%)							
Small Woody Debris:	-	-	-	-			
Large Woody Debris:	-	-	-	-			
Boulders:	-	-	-	-			
Undercut banks:	-	-	-	-			
Deep Pools:	-	-	-	-			
Instream vegetation:	100	-	-	-			
Overhead cover (%)	100						
Overhanging trace:	100	-	-	-			
Overhanging strubs	-	-	-	-			
Overhanging debris >15 cm.	-	-	-	_			
Overhanging debris <15 cm:	-	-	-	-			
Riparian Vegetation:	-	-	-	-			
Overhead cover (%)	De	ciduous for	est, shru	ıbs			
Channel M	lorpholog	y 0 m US					
Dominant Red Material		Oroa	nic				
Sub-Dominant Bed Material:	None						
Morphology:	Pool						
Pattern:	Roads						
Islands/Bars:	None						
	Notes						
during any assessment.							

SM3b-1, July 13, 2011

SM3b-1, July 13, 2011

SM3b-1 center channel, May 8, 2012

SM3b-1, May 8, 2012

Referencing Information							
Site Code:	SM3a-1						
Date Assessed:	8 May	July 12	Oct 14	-			
	2012	2011	2012				
Time Assessed:	10.53	14.10	13:30	-			
UTM (NAD83, Zone 12):		522890E 5982449N					
ACCESS: ITUCK/ATV							
Season	al Inform	nation					
	Spring	Summer	Fall	Winter			
Temperature (°C):	10.3	16	3.8				
Dissolved Oxygen (mg/L):	7.0	1.8	1.7	-			
pH:	7.73	6.96	7.09	-			
Conductivity (µS/cm):	136	257	367	-			
Wetted Width (m):	200	26	70	-			
Average Depth (m):	0.6	0.8	0.6	-			
Physical Description of Reach							
Channal Width (m);	0 m US	100m DS	200m DS	300m DS			
Channel Slope:	30 ∖1°	95	100 \\0.1°	118 \\0.1°			
Stream Bank Slope (LDB)	~1 85°	- 85°	20.1 85°	20.1 85°			
Stream Bank Slope (EDB):	85°	85°	85°	85°			
Substrate Composition (%)	00	00	00	00			
Organics:	\checkmark	\checkmark	\checkmark	V			
Fines:	-	-	-	-			
Sand:	-	-	-	-			
Gravel:	-	-	-	-			
Cobble:	-	-	-	-			
Boulder:	-	-	-	-			
Instream cover (%)							
Small woody debris:	-	-	-	-			
Boulders:	-	-	-	-			
Undercut Banks	_	_	_	-			
Deep Pools:	-	-	-	-			
Instream vegetation:	100	100	100	100			
Overhead cover (%)							
Overhanging grasses:	80	80	80	80			
Overhanging trees:	-	-	-	-			
Overhanging shrubs:	20	20	20	20			
Overhanging debris >15 cm:	-	-	-	-			
Diverning debris 150 cm:	-	- Graccos	- codaoc	-			
		Glasses	, seuges				
Channel Mo	orpholog	ly 0 m US					
Dominant Bed Material:	Organics						
Sub-Dominant Bed Material:	Clay						
Morphology:	Run/Pool						
Pattern:							
13101103/0013.		INO	lie				
Notes							
Defined channel for portions, but most water in a diffused,							
inundated marsh land. Some beaver activity near the road.							

Right downstream bank looking upstream at SM3a-1, July 12, 2011

Left downstream bank looking downstream at SM3a-1, October 14, 2012

Upstream of culvert at SM3a-1, October 14, 2012

Referencing Information				
Site Code:	MOC-1			
Date Assessed:	7 May	July 11	Oct 12	-
Time Assessed	10.05	11.00	9:30	_
LITM (NAD92, Zono 12):	10.00	523200E	50680/81	M
		Truck	/wolk	N
Access.		TTUCK	Jwaik	
Season	al Inform	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	8.6	17.1	5.8	
Dissolved Oxygen (mg/L):	8.8	5.7	6.8	-
pH:	8.24	8.06	7.74	-
Conductivity (µS/cm):	497	621	357	-
Wetted Width (m):	19.8	2.8	3.1	-
Average Depth (m):	1.5	0.9	0.8	-
Physical De	scription	of Reacl	h	
	0m US	100m DS	200m DS	300m DS
Channel Width (m):	11.8	9.0	82	32
Channel Slope:	1°	1°	1°	1°
Stream Bank Slope (LDB):	90°	80°	-	3°
Stream Bank Slope (RDB):	20°	15°	-	5°
Substrate Composition (%)				
Organics:	\checkmark	\checkmark	\checkmark	\checkmark
Fines:	-	-	-	-
Sand:	-	\checkmark	-	-
Gravel:	-	\checkmark	-	-
Cobble:	-	\checkmark	-	-
Boulder:	-	-	-	-
Instream cover (%)				
Small woody debris:	10	10	10	15
Large woody debris:	10	20	10	5
Boulders:	-	-	-	-
Doop Pools:	-	50	-	-
Instream vegetation:	80	- 20	30	- 80
Overhead cover (%)	-	20	50	00
Overhanging grasses:	-	10	10	25
Overhanging trees:	-	-	-	-
Overhanging shrubs:	70	60	80	70
Overhanging debris >15 cm:	20	10	5	-
Overhanging debris 150 cm:	10	20	5	5
Riparian Vegetation:	Gras	sses, shrub	s, mixed	forest
Channel M	orpholog	gy 0m US		
Dominant Bed Material		Oroa	nics	
Sub-Dominant Bed Material:		No	ne	
Morphology:	Run	riffle: pool	impound	dment
Pattern:	E	Beaver dar	n. floodin	a
Islands/Bars:	_	No	ne	-
	Notes			
Beaver dam cleared from out	ert in July	2011 bia	h water fl	0)//
downstream of culvert. Multip	le new bea	aver dams	upstream	n and
downstream of culvert in fall. Good rearing habitat for fish.				

Downstream, MOC-1, July 11, 2011

100 m upstream, MOC-1, Oct 12, 2011

200 m upstream, MOC-1, May 7, 2012

Reference	Referencing Information				
Site Code:	MUL-1				
Date Assessed:	4 May	July 11	Oct 12	Jan 24	
	2012	2011	2011	2012	
Time Assessed:	15:55	11:15	13:35	16:15	
UTM (NAD83, Zone 12):		523573E	5995546N	1	
Access:		Truck	/walk		
Season	al Inform	ation			
	Spring	Summer	Fall	Winter	
Temperature (°C):	8.6	21.2	10.8	0.0	
Dissolved Oxygen (mg/L):	14.2	6.8	9.2	0.0	
pH:	9.23	9.3	9.40	8.86	
Conductivity (µS/cm):	2197	2160	2065	1010	
Wetted Width (m):	-	-	-	-	
Average Depth (m):	-	-	-	-	
Physical De	scription	of Reacl	h		
Average Shore Depth (m):	0.27	-	-	-	
Average Littoral Depth (m):	0.50	-	-	-	
Average Littoral Length (m):	8.3	-	-	-	
Substrate Composition (%)					
Organics:	-	-	-	-	
Fines:	-	-	-	-	
Sand:	V	-	-	-	
Gravel.	V	-	-	-	
Boulder:	-	-	-	-	
Instream cover (%)	-	-	_	-	
Small woody debris:	-	-	_	_	
Large woody debris:	-	-	-	-	
Boulders:	-	-	-	-	
Undercut Banks:	-	-	-	-	
Deep Pools:	-	-	-	-	
Instream vegetation:	-	-	-	-	
Overhead cover (%)					
Overhanging grasses:	-	-	-	-	
Overhanging trees:	-	-	-	-	
Overhanging shrubs:	-	-	-	-	
Overhanging debris >15 cm:	-	-	-	-	
Overnanging debris 150 cm:	-	-	-	-	
Ripanan vegetation.		Grasses	, seages		
Channel Mo	orpholog	y 0 m US			
Dominant Bed Material:		Sa	nd		
Sub-Dominant Bed Material:		Gra	vel		
Morphology:		Lal	ke		
Pattern:		n/	а		
Islands/Bars:		No	ne		
	Notes				
Access is through private resi	dence.				

MUL-1, July 11, 2011

MUL-1 shore, July 11, 2011

MUL-1, October 12, 2011

MUL-1, May 4, 2012

Referenc	ing Infor	mation		
Site Code:	SL1-1			
Date Assessed:	8 May 2012	July 11 2011	-	-
Time Assessed:	16:29	14:36	-	-
UTM (NAD83 Zone 12)		524238E \$	59944291	J
Access:		Tri	ick	•
100033.				
Season	al Inform	ation		
	Spring	Summer	Fall	Winte
Temperature (°C):	7.3	-	-	-
Dissolved Oxygen (mg/L):	3.2	-	-	-
pH:	7.11	-	-	-
Conductivity (µS/cm):	209	-	-	-
Wetted Width (m):	7.0	-	-	-
Average Depth (m):	0.08	-	-	-
Physical De	scription	of Reach	า	
Channel Width (m):	-	-	-	-
Channel Slope:	-	-	-	-
Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate Composition (%)	,			
Organics:	V	-	-	-
Fines:	-	-	-	-
Sand. Crovel:	-	-	-	-
Glavel.	-	-	-	-
Cobble.	-	-	-	-
Instream cover (%)	-	-	-	-
Small woody debris:	30	10	10	15
Large woody debris:	20	20	10	5
Boulders:	-	-	-	-
Undercut Banks:	-	50	_	_
Deep Pools:	-	-	50	-
Instream vegetation:	50	20	30	80
Overhead cover (%)				
Overhanging grasses:	20	10	10	25
Overhanging trees:	-	-	-	-
Overhanging shrubs:	-	60	80	70
Overhanging debris >15 cm:	40	10	5	-
Overhanging debris 150 cm:	50	20	5	5
Riparian Vegetation:	Decidu	ous forest	, grasses	, shrubs
Channel Mo	orpholog	y 0 m US		
Dominant Bed Material:		Oraa	nics	
Sub-Dominant Bed Material:		n/a	a	
Morphology:		Po	ol	
Pattern:		Road, c	utlines	
Islands/Bars:		-		
	Notes			
Site is flooded low-lying wetla	and area s	serving as	headwat	ers,
in the summer July 11, 2011				

in the summer, July 11, 2011.

SL1-1, May 8, 2012

Wetland of SL1-1, May 8, 2012

Wetland of SL1-1, May 8, 2012

Riparian community of SL1-1, May 8, 2012

Referencing Information				
Site Code:	MIL-1			
Data Assessed:	6 May	July 14	Oct 12	Jan 24
Date Assessed.	2012	2011	2011	2012
Time Assessed:	11:45	10:58	13:55	14:30
UTM (NAD83, Zone 12):		520486E	59893051	N
Access:		Truck	/ATV	
Season	al Inform	nation		
	Spring	Summor	Fall	Winter
Temperature (°C):	Jon Spring	10.6	10.6	
Dissolved Oxygen (mg/L):	4.0	7.0	7.5	0.0
Dissolved Oxygen (mg/L).	9.0	7.0	7.5	9.0
p⊓. Conductivity (uS/cm):	0.13	0.7	0.02	0.01
Wetted Width (m):	514	221	257	305
Average Depth (m):	-	-	_	-
Physical De	<u></u>			
Average Shore Depth (m):	SCRIPTION	I OT REAC		
Average Littoral Depth (m):	0.44	-	-	-
Average Littoral Length (m):	16	_	_	_
Substrate Composition (%)	10			
Organics:	1	-	-	-
Fines:	-	-	-	-
Sand:	-	-	-	-
Gravel:	-	-	-	-
Cobble:	-	-	-	-
Boulder:	-	-	-	-
Instream cover (%)				
Small woody debris:	-	-	-	-
Large woody debris:	-	-	-	-
Boulders:	-	-	-	-
Deep Deele:	-	-	-	-
Deep Pools.	-	-	-	-
Overhead cover (%)	-	-	-	-
Overhanging grasses:	-	_	_	-
Overhanging trees:	_	-	-	-
Overhanging shrubs:	-	-	-	-
Overhanging debris >15 cm:	-	-	-	-
Overhanging debris 150 cm:	-	-	-	-
Riparian Vegetation:		Sedges,	grasses	
Channel Mo	orpholog	y 0 m US		
Dominant Bed Material		Orac	anic	
Sub-Dominant Bed Material		Orac	anic	
Morphology:		Uiya Lal		
Pattern:		n/	a	
Islands/Bars:		No	ne	
	Notos		-	
	110185			
Water quality was collected at south end of Michel Lake. Original sampling intended for channel at north end of lake, however channel was dry.				

Michel Lake/MIL-1, July 14, 2011

Michel Lake/MIL-1, July 14, 2011

Michel Lake/MIL-1, January 24, 2012

Michel Lake/MIL-1 shoreline, May 6, 2012

Referencing Information				
Site Code:	GAC-1			
Date Assessed	6 May	July 14	Oct 14	Jan 26
	2012	2011	2011	2012
lime Assessed:	18:16	15:00	15:10	10:15
UTM (NAD83, Zone 12):		525489E	5994514	N
Access:		Truc	k/walk	
Seasor	nal Inform	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	7.5	18.2	7.4	-
Dissolved Oxygen (mg/L):	8.4	2.6	7.0	-
pH:	7.5	7.90	8.45	-
Conductivity (µS/cm):	479	548	777	-
Wetted Width (m):	33	7.3	6.0	-
Average Depth (m):	>1	>1	>2	-
Physical De	escriptio	n of Read	h	
	0m US	100m DS	200m DS	300m DS
Channel Width (m):	40	38	26	35
Channel Slope:	-	-	-	-
Stream Bank Slope (LDB):	70°	40°	45°	60°
Stream Bank Slope (RDB):	45°	20°	30°	60°
Substrate Composition (%)				
Organics:	\checkmark	\checkmark	\checkmark	\checkmark
Fines:	-	-	-	-
Sand:	-	-	-	-
Gravel:	-	-	-	-
	-	-	-	-
Boulder:	-	-	-	-
Small woody debris:		100		
Large woody debris:	_	-	_	_
Boulders:	_	_	_	_
Undercut Banks:	-	-	-	-
Deep Pools:	-	-	-	20
Instream vegetation:	100	-	100	80
Overhead cover (%)				
Overhanging grasses:	100	50	-	-
Overhanging trees:	-	-	-	10
Overhanging shrubs:	-	50	-	90
Overhanging debris >15 cm:	-	-	-	-
Overhanging debris 150 cm:	-	-	- 	-
Riparian Vegetation:	Grasses	, seages,	snrubs, m	lixed fores
Channel M	orpholo	gy 0 m US	S	
Dominant Bed Material:		Org	janic	
Sub-Dominant Bed Material:		No	one	
Morphology:		Run/Imp	oundment	t
Pattern:	Ro	ad, culver	t, beaver	dam
Islands/Bars:		Beave	er dam	
	Notes			
Reach divided by culvert. Mu	Itiple intac	ct and bro	ken beav	er dams
upstream and downstream of	f culvert ir	nfluencing	channel	flow.
		-		

GAC-1, July 14, 2011

Referencing Information					
Site Code:	GAC-2				
Date Assessed:	7 May	July 14	-	-	
Time Accessed	2012	2011			
Time Assessed.	14.55	10.20	-	- N	
		JZJ979E C	/AT\/	IN	
Access.		TTUCK	AIV		
Season	al Inform	nation			
	Spring	Summer	Fall	Winter	
Temperature (°C):	13.5	17.6	-	-	
Dissolved Oxygen (mg/L):	8.0	7.2	-	-	
pH:	7.85	7.87	-	-	
Conductivity (µS/cm):	518	587	-	-	
Wetted Width (m):	12.8	18	-	-	
Average Deptn (m):	-	>1	-	-	
Physical De	scription	of Reach	1		
Channel Width (m):	0m US	100m DS :	200m DS	5 300m DS	
Channel Slope:	2°	5 1°	40	2	
Stream Bank Slope (LDB):	2 35°	35°	_	40°	
Stream Bank Slope (RDB):	80°	20°	-	30°	
Substrate Composition (%)					
Organics:	V	-	\checkmark	V	
Fines:	-	\checkmark	-	-	
Sand:	V	\checkmark	-	-	
Gravel:	V	V	-	-	
Cobble:	-	-	-	J,	
Boulder.	-	-	-	V	
Small woody debris:	70	60	_	5	
Large woody debris:	10	20	-	-	
Boulders:	-	-	-	-	
Undercut Banks:	20	20	-	-	
Deep Pools:	-	-	-	-	
Instream vegetation:	-	-	100	95	
Overhead cover (%)				-	
Overhanging grasses:	80	-	-	5	
Overhanging trees.	- 20	-	- 100	10	
Overhanging debris >15 cm	- 20	40	-	-	
Overhanging debris 150 cm:	-	-	-	_	
Riparian Vegetation:	Gr	asses, sec	lges, shi	rubs	
Channel Mo	orpholog	y 0 m US			
Dominant Bed Material:		Orga	nics		
Sub-Dominant Bed Material:		Nor	ne		
Morphology:		Run, impo	undmen	t	
Pattern:	F	looded, be	eaver da	m	
Islands/Bars:		Bai	rs		
	Notes				
Very heavy macrophyte cove	r. Multiple	e beaver d	ams acr	OSS	
reach affecting channel flow, flooded.	Very heavy macrophyte cover. Multiple beaver dams across reach affecting channel flow, some sections dewatered, others flooded.				

Downstream, GAC-2, July 14, 2011

GAC-2, July 14, 2011

GAC-2, July 14, 2011

100 m downstream of GAC-2, May 7, 2012

Referencing Information				
Site Code:	GAC-3			
Date Assessed:	7 May	July 12	-	-
Time Accorde	2012	2011		
LITTA (NADO2, Zono 12):	14.02	11.10 527104E1	-	-
UTM (NAD83, \angle one 1 \angle):		527 104E €	0900 4 0∠i -/∧ T \/	4
Access:		ITUCK	(AIV	
Season	al Inform	ation		
	Spring	Summer	Fall	Winter
Temperature (°C):	15.1	18.6	-	-
Dissolved Oxygen (mg/L):	7.1	9.0	-	-
pH:	8.27	8.10	-	-
Conductivity (µS/cm):	336	434	-	_
Wetted Width (m):	58	76	-	-
Average Depth (m):	>1.5	0.7	-	-
Physical De	scription	of Reacl	n	
	0m US	100m DS	200m DS	300m DS
Channel Width (m):	50	75	100	40
Channel Slope:	0°	0°	0°	0°
Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate Composition (%)				
Organics:	V	1	V	V
Fines:	-	√ ,	-	-
Sand:	V ,	V	-	-
Gravel:	V	1	-	-
	-	-	-	√ /
Boulder.	-	-	-	V
Small woody debrie:	_	-	_	_
Siliali woody debris:	-	-	-	-
Boulders:	-	_	-	_
Undercut Banks:	-	-	-	-
Deep Pools:	-	-	-	-
Instream vegetation:	100	100	100	100
Overhead cover (%)				
Overhanging grasses:	100	100	100	100
Overhanging trees:	-	-	-	-
Overhanging shrubs:	-	-	-	-
Overhanging debris >15 cm:	-	-	-	-
Overhanging debris 150 cm:	-	-	-	-
Riparian Vegetation:		Grasses	, sedges	
Channel Mo	orpholog	y 0 m US		
Dominant Bed Material:		Orga	anic	
Sub-Dominant Bed Material:		No	ne	
Morphology:		Poi	nd	
Pattern:		-		
Islands/Bars:		Small is	slands	
	Notes			
Large wetland with open wat	er No cha	annel unst	ream sm	nall
Large wetland with open water. No channel upstream, small outlet channel to north and series of smaller wetlands downstream. Thousands of frog eggs in the shallows in the spring.				

Reference	Referencing Information			
Site Code:	SG2-1			
Date Assessed:	7 May 2012	July 15 2011	Oct 12 2011	-
Time Assessed:	10:35	9:30	11:30	-
UTM (NAD83, Zone 12):		527405E	59938271	N
Access:		Truck	/ATV	
Seasor	al Inform	ation		
	Spring	Summer	Fall	Winter
Temperature (°C):	4 6	16.9	4 7	-
Dissolved Oxygen (mg/L)		1 2	ч. <i>г</i> 1 1	_
nH·	7 32	7 75	7.07	_
Conductivity (uS/cm):	379	494	583	_
Wetted Width (m):	20	39	-	-
Average Depth (m):	1.3	0.37	-	-
Physical De	scription	of Reacl	h	
	0m US	100m DS	200m DS	300m DS
Channel Width (m):	1.5	20	20	20
Channel Slope:	-	-	-	-
Stream Bank Slope (LDB):	-	-	-	-
Stream Bank Slope (RDB):	-	-	-	-
Substrate Composition				
Organics:	\checkmark	\checkmark	V	V
Fines:	-	-	-	-
Sano: Gravel:	-	-	-	-
Cobble:	-	-	-	-
Boulder:	_	_	_	_
Instream cover (%)				
Small woody debris:	-	-	10	-
Large woody debris:	-	-	-	-
Boulders:	-	-	-	-
Undercut Banks:	-	-	-	-
Deep Pools:	-	-	-	-
Instream vegetation:	100	100	90	100
Overhead cover (%)	00	50	50	60
Overhanging trees:	90	50	50	60
Overhanging shrubs	- 10	50	50	40
Overhanging debris >15cm:	-	-	-	-
Overhanging debris 150cm:	-	-	-	-
Riparian Vegetation:	Gr	asses, shi	rubs, sed	ges
Channel M	lorpholoc	v 0m US		-
Dominant Bed Material:		Oraa	nics	
Sub-Dominant Bed Material		n/	a	
Morphology:		Impoundr	nent/Run	
Pattern:	В	eaver dan	ns, cutline	es
Islands/Bars:	Bea	ver lodge,	small isla	ands
	Notes			
Flooded area downstream or	f beaver n	ond Activ	e and old	beaver
dams with braided channels	downstrea	am.		

Referencing Information				
Site Code:	SG4-1			
Date Assessed:	7 May	July 13	Oct 12	-
Time Accessed	2012	2011	2011	
LITM (NAD22, Zono 12):	12.55	9.30 527271E	13.19	-
			/ATV	N
Access.		TUCK	VAIV	
Season	al Inform	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	9.5	16.8	5.9	-
Dissolved Oxygen (mg/L):	8.0	1.8	3.2	-
pH:	7.8	7.62	7.07	-
Conductivity (µS/cm):	175	380	467	-
Wetted Width (m):	22	42	0.5	-
Average Depth (m):	1.5	>1	0.5	-
Physical De	scription	of Reac	h	
Channel Width (m);	0m US	100m DS	200m DS	300m DS
Channel Width (m).	30	4	7.5	35
Stream Bank Slope (LDB)	-	-	-	_
Stream Bank Slope (RDB):	_	_	_	_
Substrate Composition				
Organics:	1	\checkmark	\checkmark	1
Fines:	-	-	-	-
Sand:	-	-	-	-
Gravel:	-	-	-	-
Cobble:	-	-	-	-
Boulder:	-	-	-	-
Instream cover (%)	2	50		
Large woody debris:	2	- 50	-	-
Boulders:	_	-	_	_
Undercut Banks:	-	-	-	-
Deep Pools:	-	-	-	-
Instream vegetation:	98	50	100	100
Overhead cover (%)				
Overhanging grasses:	-	40	-	100
Overhanging trees:	-	-	-	-
Overhanging debris >15 cm;	100	60	-	-
Overhanging debris 215 cm	-	-	-	-
Riparian Vegetation:		Grasses	s. shrubs	
Channel Mo	ornholog	v 0 m US	,	
Dominant Dad Matariali		0.000	nice	
Sub-Dominant Bed Material:		Orga	ne	
Morphology:		Impoun	Idment	
Pattern:	Bea	ver dam, r	oads. cut	lines
Islands/Bars:	200	Small	island	
	Notes	-	-	
			Al In 11	
upstream. Fall samples colle- grassland area with defined of	cted from channel ir	beaver por the sprin	niy built ond. Floc g; lots of	ded frogs.

Upstream of SG4-1, July 13, 2011

Downstream of SG4-1, July 13, 2011

Riparian community of SG4-1, October 12, 2011

100 m upstream of SG4-1, May 7, 2012

Referencing Information				
Site Code:	SG5-1			
Date Assessed:	6 May	-	Oct 15	-
Time Assessed:	2012		2011	
LITM (NAD82, Zono 12):	12.33	- 52/818E	9.50	-
OTM (NADOS, ZONE 12).		JZ4010L	/ΔT\/	N
Access.			0711	
Seasor	nal inform	nation		
T ((20)	Spring	Summer	Fall	Winter
Temperature (°C):	4.5	-	-	-
Dissolved Oxygen (mg/L):	8.2	-	-	-
pH: Conductivity (uS/cm):	7.60	-	-	-
Wetted Width (m):	008	-	-	-
Average Depth (m):	0.15	-	-	-
Physical De	escriptio	n of Reac	h	
	0m US	100m DS	200m DS	300m DS
Channel Width (m):	1.1	1.3	0.80	0.95
Channel Slope:	1°	1°	1°	2°
Stream Bank Slope (LDB):	3°	5°	5°	2°
Stream Bank Slope (RDB):	3°	5°	5°	2°
Substrate Composition (%)				
Organics:	40	90	80	10
Fines:	60	-	10	30
Sallu. Gravel:	-	10	10	- 30
Cobble:	_	_	_	-
Boulder:	-	-	-	20
Instream cover (%)				
Small woody debris:	60	100	40	30
Large woody debris:	-	-	-	30
Boulders:	-	-	-	30
Deen Pools:	10	-	60	10
Instream vegetation:	30	-	-	-
Overhead cover (%)				
Overhanging grasses:	20	30	10	30
Overhanging trees:	20	30	60	10
Overhanging shrubs:	20	20	20	40
Overhanging debris >15 cm:	-	20	10	10
Diverning debris 150 cm:	40 Grasses	- ebrube e	- edaes n	10 nived fores
	0183363	, siliubs, s	euges, n	
Channel M	orpnoio	gyumus		
Dominant Bed Material:		Orga	inics	
Sub-Dominant Bed Material:		Fin	es	
Morphology:		Run,	lino	
Islands/Bars		no	ne	
	Notos	10		
	NOLES			
Site was not assessed during summer field program due to access restrictions. Water levels prevented sampling in fall season. Frozen to depth in winter. Small channel in spring, lots of fallen trees.				

Upstream end of SG5-1 culvert at highway, October 15, 2011

100 m upstream, cross-channel of SG5-1, May 6, 2012

Downstream of SG5-1, May 6, 2012

Reference	Referencing Information				
Site Code:	SG8-1				
Data Assessed:	8 May	July 12	Oct 12	Jan 25	
Date Assessed.	2012	2011	2011	2012	
Time Assessed:	14:36	13:15	11:49	14:34	
UTM (NAD83, Zone 12):		527576E	5986577	N	
Access:		Truc	k/ATV		
Seasor	nal Inforn	nation			
	Spring	Summer	Fall	Winter	
Temperature (°C):	11.3	_	_	_	
Dissolved Oxygen (mg/L):	11.0	-	-	_	
pH:	7 63	_	-	-	
Conductivity (uS/cm):	405	_	_	_	
Wetted Width (m):	0.65	-	-	-	
Average Depth (m):	-	-	-	-	
Physical De	escriptio	n of Reac	h		
	0m US	100m DS	200m DS	300m DS	
Channel Width (m):	0.8	-	-	-	
Channel Slope:	2°	-	-	-	
Stream Bank Slope (LDB):	40°	-	-	-	
Stream Bank Slope (RDB):	60°	-	-	-	
Substrate Composition (%)					
Organics:	100	-	-	-	
Fines:	-	-	-	-	
Sand:	-	-	-	-	
Glavel.	-	-	-	-	
Boulder:	-	-	-	-	
Instream cover (%)		-	-	-	
Small woody debris:	70	-	-	-	
Large woody debris:	20	-	-	-	
Boulders:	_	-	-	-	
Undercut Banks:	-	-	-	-	
Deep Pools:	-	-	-	-	
Instream vegetation:	10	-	-	-	
Overhead cover (%)					
Overhanging grasses:	30	-	-	-	
Overhanging trees:	-	-	-	-	
Overhanging shrubs:	20	-	-	-	
Overhanging debris >15 cm:	40	-	-	-	
Diverning debris 150 cm:	10	-	-	-	
			-		
Channel M	orpholog	<u> </u>			
Dominant Bed Material:		Orga	anics		
Sub-Dominant Bed Material:		n	/a		
Morphology:		Run,	pool		
Pattern:		n	/a /-		
ISIANUS/BAIS.		n	/a		
	Notes				
Seasonal channel, dry during all seasons of sampling except spring. In spring, small runs with numerous debris jams and step pools. No fish passage from lake unless much higher flow.					

Downstream of SG8-1, May 8, 2012

Upstream of SG8-1, May 8, 2012

Referen	cing Info	rmation		
Site Code:	SG9-1			
Date Assessed:	8 May	July 12	Oct 12	Jan 25
Time Assessed:	2012 15:00	2011 13·15	2011 11·40	2012
TIME ASSessed.	15.00	13.15 527585E	5086312	14.30 N
		JZ7 JUJL	5900312 k/ΔT\/	IN .
Access.			NAIV	
Seaso	nal Inforr	nation		
	Spring	Summer	Fall	Winter
Temperature (°C):	11.3	-	-	-
Dissolved Oxygen (mg/L):	11.0	-	-	-
pH: Conductivity (uS/cm):	7.63	-	-	-
Wetted Width (m)	405	-	-	-
Average Depth (m):	-	-	-	-
Physical D	escriptio	n of Reac	h	
i iijoida D	0m US	100m DS	200m DS	300m D
Channel Width (m):	0.88	-	-	-
Channel Slope:	3°	-	-	-
Stream Bank Slope (LDB):	15°	-	-	-
Stream Bank Slope (RDB):	30°	-	-	-
Substrate Composition (%)	100			
Organics. Fines:	100	-	-	-
Sand:	_	-	-	-
Gravel:	-	-	-	-
Cobble:	-	-	-	-
Boulder:	-	-	-	-
Instream cover (%)	20			
Small woody debris:	30 10	-	-	-
Boulders:	-	_	_	_
Undercut Banks:	50	-	-	-
Deep Pools:	-	-	-	-
Instream vegetation:	10	-	-	-
Overhead cover (%)				
Overhanging trees:	-	-	-	-
Overhanging shrubs:	10	_	_	_
Overhanging debris >15cm:	10	-	-	-
Overhanging debris 150cm:	80	-	-	-
Riparian Vegetation:			-	
Channel M	lorpholo	gy 0 m US	5	
Dominant Bed Material:		Orga	anics	
Sub-Dominant Bed Material:		n	/a	
Morphology:		Run,	pool	
Pattern:		n	/a	
Islands/Bars:		n	/a	
	Notes			
Seasonal channel, dry during	g all other	seasons	of sampli	ng. In
spring, small runs with nume	rous debr	is jams ar	nd step p	ools. No
tish passage from lake unles	s much h	igher flow.		

Outlet of channel SG9-1 into Garnier Lake, dry upstream, July 12, 2011

Dry channel of SG9-1, October 12, 2011

Downstream at SG9-1, May 8, 2012

Upstream at SG9-1, May 8, 2012

Referencing Information						
Site Code:	MOC-2					
Date Assessed	8 May	July 12	Oct 14	Jan 23		
Time Assessed	2012	2011	2011	2012		
Time Assessed:	10:35	10:00	12:45	16:20		
UTM (NAD83, Zone 12):		521460E	5982100I	N		
Access:		Iruci	k/waik			
Seasor	nal Inforn	nation				
	Spring	Summer	Fall	Winter		
Temperature (°C):	6.8	17.0	7.9	0		
Dissolved Oxygen (mg/L):	9.1	-	6.9	7.6		
pH:	7.92	8.13	7.83	7.79		
Conductivity (µS/cm):	322	410	554	722		
Wetted Width (m):	5.3	13	10.7	-		
Average Depth (m):	0.47	1.4	>1.5	-		
Physical De	Physical Description of Reach					
	0m US	100m DS	200m DS	300m DS		
Channel Width (m):	1./ 1°	flooded	6.5	1.75 <1°		
Stream Bank Slope (LDB):	90°	- 10°	- 90°	90°		
Stream Bank Slope (RDB):	90°	20°	90°	25°		
Substrate Composition (%)						
Organics:	100	100	60	10		
Fines:	-	-	40	30		
Sand:	-	-	-	10		
Gravel:	-	-	-	10		
Cobble: Boulder:	-	-	-	30 10		
Instream cover (%)	-	-	_	10		
Small woody debris	10	40	5	_		
Large woody debris:	10	10	Ū			
Boulders:	-	-	-	-		
Undercut Banks:	10	-	15	50		
Deep Pools:	10	-	-	50		
Instream vegetation:	70	60	80	-		
Overhead cover (%)						
Overhanging grasses:	20	50	50	90		
Overhanging shrubs:	- 80	- 50	- 50	- 10		
Overhanging debris >15 cm:	-	-	-	-		
Overhanging debris 150 cm:	-	-	-	-		
Riparian Vegetation:	G	Grasses, ru	ushes, wil	lows		
Channel M	orpholog	յ <mark>չ 0 m ՍՏ</mark>	6			
Dominant Bed Material		Ora	anic			
Sub-Dominant Bed Material:	Fines					
Morphology:	Run/Impoundment					
Pattern:	Beaver dam, bridge, road, collapsed					
Islands/Bars:	Beaver dam					
	Notes					
Site runs through a large culv	Site runs through a large culvert beaver impoundment has					
flooded large area creating braided channels and wetlands –						
good rearing habitat for fish.						

Referencing Information						
Site Code:	DIL-1					
Date Assessed:	6 May	July 13	Oct 14	Jan 24		
	2012	2011	2011	2012		
Time Assessed:	15:20	TT:30	9:00	10:45		
		521400E	0902100 ///.alk	IN		
Access.		Thuch	VVVaik			
Seasor	nal Inform	nation				
	Spring	Summer	Fall	Winter		
Temperature (°C):	9.9	18.9	7.9	0		
Dissolved Oxygen (mg/L):	7.4	4.7	4.5	0.8		
pH:	7.45	7.69	6.90	7.88		
Conductivity (µS/cm):	263	272	385	350		
Wetted Width (m):	-	-	-	-		
Average Depth (m).	-	-	-	-		
Physical De	escription	n of Reac	h			
Average Shore Depth (m):	0.95 1 38	-	-	-		
Average Littoral Length (m).	43	-	-	-		
Substrate Composition (%)						
Organics:	\checkmark	-	-	-		
Fines:	-	-	-	-		
Sand:	-	-	-	-		
Gravel:	-	-	-	-		
	-	-	-	-		
Instream cover (%)	-	-	-	-		
Small woody debris:	-	-	-	-		
Large woody debris:	-	-	-	-		
Boulders:	-	-	-	-		
Undercut Banks:	-	-	-	-		
Deep Pools:	-	-	-	-		
Instream vegetation:	100	-	-	-		
Overhanging grasses:	_	_	_	_		
Overhanging trees:	_	-	_	_		
Overhanging shrubs:	-	-	-	-		
Overhanging debris >15 cm:	-	-	-	-		
Overhanging debris 150 cm:	-	-	-	-		
Riparian Vegetation:	Sec	dges, aqua	tic macro	phytes		
Chann	<mark>el Morp</mark> h	ology				
Dominant Bed Material:		Ora	anic			
Sub-Dominant Bed Material:	Organic					
Morphology:	Lake					
Pattern:	n/a					
Islands/Bars:		No	ne			
Notes						

Shore of DIL-1, July 13, 2011

Shore of DIL-1, May 6, 2012

Shore of DIL-1, May 6, 2012

Referencing Information							
Site Code:	GAL-1						
Date Assessed:	8 May	July 15	Oct 12	Jan 25			
Time Assessed	2012	2011	2011	2012 14·10			
LITM (NAD83 Zone 12)	10.50	527432F	508735	7N			
Access		JZ745ZE 5967557N					
Seaso	onal Infor	mation					
	Spring	Summer	Fall	Winter			
Temperature (°C):	9.9	20.4	8.9	0			
Dissolved Oxygen (mg/L):	7.4	6.6	9.0	8.3			
pH:	7.45	9.00	8.53	8.65			
Conductivity (µS/cm):	263	848	800	872			
Average Depth (m):	-	-	-	-			
Physical C			-	-			
Physical L	0 15	on or Kea		_			
Average Littoral Depth (m):	1.21	-	-	-			
Average Littoral Length (m):	18.5	-	-	-			
Substrate Composition (%)							
Organics:	\checkmark	-	-	-			
Fines:	-	-	-	-			
Sand:	\checkmark	-	-	-			
Gravel:	-	-	-	-			
Boulder:	-	-	-	-			
Instream cover (%)							
Small woody debris:	10	-	-	-			
Large woody debris:	-	-	-	-			
Boulders:	30	-	-	-			
Undercut Banks:	-	-	-	-			
Deep Pools:	-	-	-	-			
Overhead cover (%)	00	-	-	-			
Overhanging grasses:	_	_	_	_			
Overhanging trees:	-	-	-	-			
Overhanging shrubs:	-	-	-	-			
Overhanging debris >15 cm:	-	-	-	-			
Overhanging debris 150 cm:	-	-	-	-			
Riparian Vegetation:	Grasse	es, cattails,	shrubs, r	nixed forests			
Chan	nel Morpl	hology					
Dominant Bed Material:		Or	ganic				
Sub-Dominant Bed Material:	Organic						
Morphology:		Lake					
Pattern:		I	n/a				
Islands/Bars:		N	one				
	Notes						
Substrate changes from organic to sand within 2-5 m from shore. Strong sulphur smell from lake in the fall. Winter ice thickness = 61 cm							

East shore, July 15, 2011

West shore, October 12, 2011

Cross-lake, GAL-1, May 8, 2012

