Carbon Offset Emission Factors Handbook

Version 3.0

Carbon Offset Emission Factors Handbook Version 3.0 | Alberta Environment and Parks © 2022 Government of Alberta | June 14, 2022 | ISBN 978-1-4601-5422-9

Jun 2022 Carbon Offset Emission Factors Handbook

Summary of Revisions

Version	Date	Summary of Revisions
3.0	June 2022	Updated to current Alberta Environment and Parks template.
		Updates made to reflect current electricity grid factor and line loss of transmission and distribution of electricity.
2.0	November 2019	Updated to current Alberta Environment and Parks template, and changes made to reflect current electricity grid factor and line loss of transmission and distribution of electricity.
		Updated emission factors in Tables 5 and 6 (Combustion of natural gas and refined petroleum products) based on the 2019 National Inventory Report 1990-2017: Greenhouse Gas Sources and Sinks in Canada.
		Updated Table 9: Model Parameters for Quantification of Avoided landfill and Stockpile Methane Emission to remove methane emissions from wood waste stockpiles.
1.0	March 2016	Original Publication.

Contents

1.0 Common Emission Factors	6
1.1 Global Warming Potential	6
1.2 Electricity Grid Use and Displacement Factors	6
1.3 Fuel Extraction and Production Related Emissions	7
1.4 Fuel Combustion Related Emissions	7
2.0 Common Quantification Methods	9
2.1 Quantification of Avoided Landfill Methane Emissions	g
List of Tables Table 1: Electricity Grid Displacement and Grid Usage Factors	
Table 2: Total Transmission and Distribution Line Loss	6
Table 3: Emission Intensity of Fuel Extraction and Production	
Table 4: Emission Factors for Gasoline and Diesel Production	7
Table 5: Emission Factors for Combustion of Natural Gas and Natural Gas Liquids	7
Table 6: Emission Factors for Combustion of Refined Petroleum Products	8
Table 7: Landfill Definitions Applicable to Avoided Landfill Methane Emissions Quantification i	n Alberta9
Table 8: Quantification of Avoided Landfill Methane Emission	ç
Table 9: Model Parameters for Quantification of Avoided Landfill Methane Emissions	11

Related Publications

Technology, Innovation and Emissions Reduction Regulation

Emissions Management and Climate Resilience Act

Environmental Protection and Enhancement Act

Specified Gas Reporting Regulation

Standard for Greenhouse Gas Emission Offset Project Developers

Technical Guidance for Offset Protocol Development and Revision

Technical Guidance for the Assessment of Additionality

Standard for Greenhouse Gas Validation, Verification, and Audit

Introduction

The Carbon Offset Emission Factors Handbook contains a listing of common emission factors used in the Alberta emission offset system as well as common quantification methodologies.

Common emission factors, provided in Section 1, are intended as inputs to formulae provided in approved quantification protocols.

Common quantification methods, provided in Section 2, are commonly used formulae for the quantification of emission offsets in Alberta. This section includes both quantification methods and factors required for emission offset quantification.

Emission factors and quantification methodologies are subject to periodic updates. Emission offset project developers must use the most current version of the Handbook when initiating an emission offset project. If the Handbook is updated during the offset crediting period or extension period of an emission offset project, the offset project developer should refer to the Standard for Greenhouse Gas Emission Offset Project Developers for guidance.

1.0 Common Emission Factors

1.1 Global Warming Potential

The Global Warming Potentials (GWPs) of specified gases are published in the Standard for Completing Greenhouse Gas Compliance and Forecasting Reports.

1.2 Electricity Grid Use and Displacement Factors

Factors in Tables 1 and 2 apply to emission offset projects that displace grid electricity with renewable electricity, reduce grid electricity usage, or result in additional electricity usage from the Alberta electricity grid. The factors published in Tables 1 and 2 are effective for emission offset projects initiated from January 1, 2023, to December 31, 2023.

TABLE 1: ELECTRICITY GRID DISPLACEMENT AND GRID USAGE FACTORS

Factor	t CO ₂ e/MWh	Description
Electricity grid displacement factor		
Electricity grid displacement with renewable generation	0.52	Applicable to projects displacing grid- electricity with renewable generation.
Electricity grid displacement factor with line los	s applied	
Increased on-site grid electricity use (includes loss)	ine 0.55	Applicable for use in projects that increase electricity usage in the project condition.
Reduction in grid electricity usage (includes lin loss)	e 0.55	Applicable to energy efficiency projects resulting in decreased grid electricity usage in the project condition.
Distributed renewable displacement at point of (includes line loss)	use 0.55	Applicable to projects displacing grid electricity with distributed renewable electricity generation at point of use.

Methodology for the Electricity Displacement Factor, Alberta Emission Offset System, and calculation methodology is based on 2018-2020 data.

TABLE 2: TOTAL TRANSMISSION AND DISTRIBUTION LINE LOSS

Line loss Factor	MWh line loss/MWh consumed	Description
Total line loss for transmission and distribution	1.066	Weighted average line loss for transmission and distribution in Alberta is 6.22% (calculated as 1/(1-line loss)). Line loss is incorporated into the factors in Table 1 when reducing grid electricity usage or when renewable generation is at point of use.

Methodology for the Electricity Displacement Factor, Alberta Emission Offset System, and calculation methodology is based on 2018-2020 data.

1.3 Fuel Extraction and Production Related Emissions

Below are emission factors associated with the extraction and production of fuels. Values are sourced from a Canadian Association of Petroleum Producers (CAPP) report on upstream oil and gas emissions.

TABLE 3: EMISSION INTENSITY OF FUEL EXTRACTION AND PRODUCTION

Source	Emission Factor	'S	
Course	kg CO₂/L	kg CH₄/L	kg N₂O/L
Diesel Production	0.138	0.0109	0.000004
Gasoline Production	0.138	0.0109	0.000004
	kg CO₂/m³	kg CH₄/m³	kg N₂O/m³
Natural Gas Extraction	0.043	0.0023	0.000004
Natural Gas Processing	0.090	0.0003	0.000003

2004. A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H₂S) Emissions by the Upstream Oil and Gas Industry, Volume 1. Clearstone Engineering Ltd. Prepared on behalf of Canadian Association of Petroleum Producers.

TABLE 4: EMISSION FACTORS FOR GASOLINE AND DIESEL PRODUCTION

Source	Approximate Proportionate Amount in Year of Emission Factor	Emission I	Factors (t/10 ³ m	³)
	Generation (10³m³/yr)	CO ₂	CH ₄	N ₂ O
Light / Medium Crude Oil Production	55,588	86.3	4.41	0.0038
Heavy Crude Oil Cold Production	30,924	75	25.1	0.0033
Heavy Crude Oil Thermal Production	10,589	594.2	3.75	0.009

2004. A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry, Volume 1. Clearstone Engineering Ltd. Prepared on behalf of Canadian Association of Petroleum Producers.

1.4 Fuel Combustion Related Emissions

TABLE 5: EMISSION FACTORS FOR COMBUSTION OF NATURAL GAS AND NATURAL GAS LIQUIDS

Source	Emission Factors	(g/m³)	
	CO ₂	CH₄	N ₂ O
Natural Gas			
Electric Utilities	1928	0.49	0.049
Industrial	1928	0.037	0.033
Oil and Gas Sector Producer Consumption (non-marketable product)	2392	6.4	0.06
Pipelines	1928	1.9	0.05
Cement	1928	0.037	0.034
Manufacturing Industries	1928	0.037	0.033
Residential, Construction, Commercial/Institutional, Agriculture	1928	0.037	0.035

Propane	g/L	g/L	g/L
Residential	1515	0.027	0.108
All Other Uses	1515	0.024	0.108
Ethane	986	0.024	0.108
Butane	1747	0.024	0.108

2019 National Inventory Report 1990-2017: Greenhouse Gas Sources and Sinks in Canada. The Canadian Government's Submission to the UN Framework Convention on Climate Change. Part 2.

TABLE 6: EMISSION FACTORS FOR COMBUSTION OF REFINED PETROLEUM PRODUCTS

Source	Emission Factors (g/L)		
	CO ₂	CH ₄	N ₂ O
Light Fuel Oil			
Electric Utilities	2753	0.18	0.031
Industrial	2753	0.006	0.031
Producer Consumption	2670	0.006	0.031
Residential	2753	0.026	0.006
Forestry, Construction, Public Administration and Commercial/Institutional	2753	0.026	0.031
Heavy Fuel Oil			
Electric Utilities	3156	0.034	0.064
Industrial	3156	0.12	0.064
Producer Consumption	3190	0.12	0.064
Residential, Forestry, Construction, Public Administration, and Commercial/Institutional	3156	0.057	0.064
Kerosene			
Electric Utilities	2560	0.006	0.031
Industrial	2560	0.006	0.031
Producer Consumption	2560	0.006	0.031
Residential	2560	0.026	0.006
Forestry, Construction, Public Administration and Commercial/ Institutional	2560	0.026	0.031
Diesel- Refineries and others	2681	0.133	0.4
Diesel - Upgraders	2681	0.151	1.10
Motor Gasoline	2307	0.100	0.02

2019 National Inventory Report 1990-2017: Greenhouse Gas Sources and Sinks in Canada. The Canadian Government's Submission to the UN Framework Convention on Climate Change. Part 2.

2.0 Common Quantification Methods

2.1 Quantification of Avoided Landfill Methane Emissions

The methodology for quantifying greenhouse gas emissions reductions from the diversion of organic materials from a Municipal Solid Waste (MSW) landfill, wood waste landfill is provided below. Emission reductions are achieved by reducing methane emissions associated with anaerobic decomposition. In Alberta, landfills are classified as outlined in the Waste Control Regulation. If a Class II landfill meets the definition of a MSW landfill or a wood waste landfill, waste diversion from it is eligible under this methodology. Waste diverted from Class III landfills is not eligible under this methodology because they are for the disposal of inert waste. Waste diverted from a wood waste stockpile is not eligible under this methodology because is not an eligible baseline in any approved Alberta quantification protocols.

TABLE 7: LANDFILL DEFINITIONS APPLICABLE TO AVOIDED LANDFILL METHANE EMISSIONS QUANTIFICATION IN ALBERTA

Definitions	
Municipal Solid Waste (MSW) Landfill	A Municipal Solid Waste (MSW) landfill includes residential, industrial, commercial, and institutional (ICI) and construction and demolition (C&D) waste in various amounts.
Wood Waste Landfill	A wood waste landfill is an industrial on-site landfill for the disposal of wood waste.
Eligible Waste	Organic waste that is expected to decompose and generate methane in a landfill or stockpile under anaerobic conditions.
Class II Landfill	As defined in the Alberta Waste Control Regulation: a landfill for the disposal of waste not including hazardous waste.
Class III Landfill	As defined in the Alberta Waste Control Regulation: A landfill for the disposal of inert waste.
Inert Waste	Solid waste that, when disposed of in a landfill or re-used, is not reasonably expected to undergo physical, chemical, or biological changes to such an extent as to produce substances that may cause an adverse effect, and includes, but is not limited to, demolition debris, concrete, asphalt, glass, ceramic materials, scrap metal and dry timber or wood that has not been chemically treated.

Projects related to landfills whose designation is unclear should contact ACCO for further guidance.

TABLE 8: QUANTIFICATION OF AVOIDED LANDFILL METHANE EMISSION

First Order Decay (FOD) Methane Quantification Model

Methane (CH ₄)	The principle formula for the first order decay (FOD) Scholl-Canyon Model to be used for estimating avoide

Quantification Model: Waste Diversion

The principle formula for the first order decay (FOD) Scholl-Canyon Model to be used for estimating avoided methane emissions as a result of waste diversion is:

$$Q = \sum_{x=1}^{40} \left[\mathbf{k} * \mathbf{W}_c * \mathbf{L}_o * e^{-k(x-1)} * (1 - \mathbf{R}) \right] * (1 - \mathbf{0}\mathbf{X})$$

Where:

Q = amount of methane emitted in the years x = 1 to 40 by the waste W_c (tonne CH_4/yr) under the assumed baseline waste disposal practice

k = methane generation rate (1/yr)

W_C = amount of eligible waste diverted from disposal in the current year C (wet weight, t)

L_o = methane generation potential (tonne CH₄/ tonne waste)

R = methane captured and destroyed (fraction)

OX = oxidation of methane in cover material (fraction)

x = iterative FOD emissions in year 1 to 40 from a given mass of waste W_C

For Alberta waste diversion protocols, the FOD model is used to calculate emissions forward over 40 years (x = 1 to 40), beginning in the year in which the waste is initially diverted. These emissions are applied to the total baseline emissions for the project in the year of waste diversion.

First Order Decay (FOD) Methane Quantification Model

Methane Generation Potential (L_o)

 $L_0 = MCF * DOC * DOC_f * F * 16/12$

Where:

 L_o = methane generation potential (tonne CH_4 / tonne waste)

MCF = methane correction factor (fraction) in the year of decomposition

 $\label{eq:decomposition} \mbox{DOC} = \mbox{fraction of degradable organic carbon in the waste (tonne Carbon/tonne waste, by wet weight) in the \mbox{}$

year of decomposition

DOC_f = fraction of DOC that decomposes (weight fraction)

F= fraction by volume of methane in landfill gas

16/12 = stoichiometric factor to convert weight of carbon to weight of methane (molecular weight ratio

CH₄/C)

TABLE 9: MODEL PARAMETERS FOR QUANTIFICATION OF AVOIDED LANDFILL METHANE EMISSIONS

Parameter	MSW Landfill				Wood Waste Landfill
Methane Correction	Managed (anaerobic) ^a	Unmanaged – Deep ^c	Unmanaged – Shallow ^d	Uncategorizede	
Factor (MCF)		(≥5 metres waste)	(<5 metres waste)		
	1.0	0.8	0.4	0.6	0.8 (deep landfill >5m)
	(0.5 semi-aerobic) ^b				0.4 (shallow landfill <5m
	waste directed to specific	deposition areas, a degree o	/DS): These must have controlled from the control of scavenging, and a denaterial; (ii) mechanical compact	egree of control of fires)	
	following structures for in		ntrolled placement of waste and er: (i) permeable cover material; n system.		
	Unmanaged deep and/or high water table SWDS: All SWDS not meeting the criteria of managed SWDS and which have depths of greater or equal to 5 metres and/or high water table at or near ground level. The Latter situation corresponds to filling inland water, such as ponds, rivers, or wetlands by waste.				
		•	onds, rivers, or wetlands by wast	e.	
	situation corresponds to	filling inland water, such as po	onds, rivers, or wetlands by wast the criteria of managed SWDS a		
	situation corresponds to Unmanaged shallow SN than 5 metres.	filling inland water, such as po		and have depths of less	
	situation corresponds to Unmanaged shallow St than 5 metres. Uncategorized SWDS:	filling inland water, such as po	the criteria of managed SWDS a	and have depths of less	
·	situation corresponds to Unmanaged shallow St than 5 metres. Uncategorized SWDS:	filling inland water, such as po	the criteria of managed SWDS a	and have depths of less	0.5
andfill Gas (F)	situation corresponds to Unmanaged shallow SN than 5 metres. Uncategorized SWDS: category be used. 0.5	MDS: All SWDS not meeting Only if projects cannot catego the landfill waste composition	the criteria of managed SWDS a rize their SWDS into the above for a specific street in the second street in the se	and have depths of less our categories can this	0.5
Landfill Gas (F) Default Fraction of	situation corresponds to Unmanaged shallow SV than 5 metres. Uncategorized SWDS: category be used. 0.5 If detailed information on used. If the information of	rilling inland water, such as poor wds: All SWDS not meeting Only if projects cannot catego the landfill waste composition on how the landfill is managed	the criteria of managed SWDS a rize their SWDS into the above f	efault DOC should be CF, then use default Lo.	
Landfill Gas (F) Default Fraction of Degradable Organic	situation corresponds to Unmanaged shallow SV than 5 metres. Uncategorized SWDS: category be used. 0.5 If detailed information on used. If the information of	WDS: All SWDS not meeting Only if projects cannot catego the landfill waste composition on how the landfill is managed orehensive wood waste diverse	the criteria of managed SWDS a rize their SWDS into the above for a specific street in the second street in the se	efault DOC should be CF, then use default Lo.	L _o ^{f,g} 80
Fraction of CH₄ in Landfill Gas (F) Default Fraction of Degradable Organic Carbon (DOC)	situation corresponds to Unmanaged shallow SV than 5 metres. Uncategorized SWDS: category be used. 0.5 If detailed information on used. If the information of Use DOC _f = 0.6 if a complete the corresponding to the c	MDS: All SWDS not meeting Only if projects cannot catego the landfill waste composition on how the landfill is managed orehensive wood waste diverslace.	the criteria of managed SWDS a rize their SWDS into the above f	efault DOC should be CF, then use default Lo.	L _o ^{f,g} 80 g - for a shallow landfill
Landfill Gas (F) Default Fraction of Degradable Organic	situation corresponds to Unmanaged shallow SV than 5 metres. Uncategorized SWDS: category be used. 0.5 If detailed information on used. If the information of Use DOC _f = 0.6 if a complication of the program is in publication. Default values for Alberta	MDS: All SWDS not meeting Only if projects cannot catego the landfill waste composition on how the landfill is managed orehensive wood waste diverslace.	the criteria of managed SWDS at rize their SWDS into the above for its not available or applicable, do it is not available to determine Musion program is in place and DOC	efault DOC should be CF, then use default Lo.	L _o ^{f,g} 80 g - for a shallow landfill
Landfill Gas (F) Default Fraction of Degradable Organic	situation corresponds to Unmanaged shallow SV than 5 metres. Uncategorized SWDS: category be used. 0.5 If detailed information on used. If the information of Use DOC _f = 0.6 if a com diversion program is in p	MDS: All SWDS not meeting Only if projects cannot catego the landfill waste composition on how the landfill is managed orehensive wood waste diverslace.	the criteria of managed SWDS at rize their SWDS into the above for its not available or applicable, do its not available to determine Mission program is in place and DOI	efault DOC should be CF, then use default Lo. C _f = 0.5 if no wood waste	L _o ^{f,g} 80 g - for a shallow landfill

f -Lo in kg CH4/tonne waste. Must divide by 1000 kg CH4 to convert to tonne CH4/tonne waste.

Parameter	MSW Landfill					Wood Waste Landfill
Fraction of Degradable Organic Carbon (DOC)	If the landfill specific waste stream is well understood ^h , individual DOC for the measured proportion of each waste stream in the landfill can be used to calculate a landfill-specific DOC using the formula provided below, or ideally based on the measurement of the actual DOC content of each waste type in the landfill's waste stream. This landfill-specific mixed waste DOC value must be used in conjunction with the mixed waste landfill default DOC _f of 0.5 to 0.6. $DOC = (0.4*A) + (0.2*B) + (0.15*C) + (0.43*D)$ $DOC content in % of wet weight$					N/A
	Fraction of waste A B C D					
	Waste Type	Paper	Garden and Yard	Food	Wood	
	DOC ⁱⁱⁱ	0.4	0.2	0.15	0.43	
	h -The sampling program for waste composition monitoring should be based on industry-accepted techniques. Sorting and documentation of the waste composition should be undertaken according to the Alberta Environment Provincial Waste Characterization Framework ^{iv} .					
Default	DOC _f = 0.6 if a compreh	ensive wood waste	diversion program is ir	n place		N/A
Fraction of Degradable Organic Carbon Dissimilated (DOC _f)	DOC _f = 0.5 otherwise					
Waste Type-Specific	Currently not available.					
DOC and DOC _f	The landfill/stockpile default Lo must be used when diverting a specific waste type (i.e. waste type-specific DOC cannot be used).					
Oxidation Factor (OX)	Type of Site			H4 Oxidation Rates DX, %)	Developed Area (m²)	
	Default		1	0	-	
	Managed, unmanaged covered with aerated r		landfill (not 0		А	
	Managed covered with CH4 oxidizing material e.g. topsoil/compost			0	В	_
	For the case of different site types at different landfill areas, an average methane oxidation rate can be calculated by $\mathbf{OX}_{average} = \frac{[(0\% * \mathbf{A}) + (10\% * \mathbf{B})}{(\mathbf{A} + \mathbf{B})}$					by:

Parameter	MSW Landfill	Wood Waste Landfill

The use of an oxidation value other than 10 per cent should be documented, referenced, and supported by data relevant to the geographical context.

Methane Collection and Destruction (1-R)

The fraction of methane collected and destroyed at the landfill (taking collection and destruction efficiencies into account). Projects diverting waste from landfills must provide clear documentation of landfill gas collection and destruction at all areas at the source landfills, i.e., the average LFG_{CE} at the source landfills (it cannot be assumed that R=0 because waste is being diverted from active cells).

R = LFG Collection Efficiency (LFG_{CE})*Methane Destruction Efficiency (LFG_{DE})

Default Values for LFG Collection Efficiencies (LFG_{CE})^{v,vi}:

Type of Cover System	LFG Collection E	LFG Collection Efficiency		
, type of deter dyelen.	Range (%)	Default (%)	m ²	
Operating Cell	-	35.0	A	
Temporary Covered Cell	65-68	66.5	В	
Final Clay Covered Cell	85-92	88.5	С	
Composite Liner System	90-97	93.5	D	
LFG Mitigation Control System	Site Specific	Site Specific	E	

For the case of various cover systems applied to different landfill areas, an average LFG_{CE} can be calculated by:

$$LFG_{CEaverage} = \frac{[(35\%*A) + (66.5\%*B) + (88.5\%*C) + (93.5\%*D)}{(A+B+C+D)}$$

Default Values for Methane Destruction Efficiency (LFGDE)vii:

Type of LFG Device	LFG Device Methane Destruction Efficiency	
	Range (%)	Average (%)
Boiler/Steam Turbines	67-99+	99.8
Gas Turbines	97-99+	98.2
Flares	38-99+	99.7
IC Engines	25-99+	86.1
Passive Venting	n/a	0

Alternative methane controls at landfills must be appropriately taken into account (i.e., bioreactor technology, enhanced oxidation practices).

Default

k-value

The recommended equation as per Alberta's Technical Guidance for Quantification of Specified Gas Emissions from Landfills^{viii} is to be used to calculate k-values until ongoing research permits further assessment of these values.

0.02

Parameter	MSW Landfill	Wood Waste Landfill		
	k= 0.00003 * PCPN + 0.01			
	Where:			
	PCPN = Annual average precipitation at the nearest weather station for the most recently available Environment Canada 30-year climate normal period (mm/yr).			
	In the case where additional liquids are introduced into the landfill (e.g. at a bioreactor landfill), the amount of additional liquids should be converted and added to the amount of precipitation at the site. For these cases the formula for k would be:			
	k = 0.00003 * (PCPN+AL) + 0.01			
	Where:			
	AL = Amount of additional liquid into the landfill cell (mm/yr.)			
Landfill-Specific	Landfill-specific k-value calculation for those landfills in a position to do should follow the MSW Landfill k-value			
k-value	calculation ^a .			

¹/₂006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

[#]2009. Methodological Tool. Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site. EB 41 Annex 10 Version 04. United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism (CDM).

^{#/2}2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 5 Waste. Intergovernmental Panel on Climate Change (IPCC).

^{1/2}2005. Provincial waste characterization framework: A Joint Project of Alberta Environment, Government of Canada, Action Plan 2000 on Climate Change (Enhanced Recycling Program) and the Recycling Council of Alberta, Final Report. Alberta Environment.

^v2003. French Calculation Guidelines for Estimating Atmospheric Emissions of CH4, CO2, SOX and NOX released by Non-Hazardous Waste Landfills (English Version). French Environmental Agency. ADEME.

vi2007. Current MSW Industry Position and State-of-the-Practice on LFG Collection, Methane Oxidation, and Carbon Sequestration in Landfills. Prepared for Solid Waste Industry for Climate Solutions (SWICS). Prepared by SCS Engineers.

vii 1998. USEPA AP-42 Compilation of Emission Factors, November 1998, Attachment A. U.S. Environmental Protection Agency.

viii 2008. Technical Guidance for the Quantification of Specified Gas Emissions from Landfills (Version 1.2). Alberta Environment

^hOctober 2014. MSW Landfill k-value Calculation Best Management Practice. Alberta Environment

Carbon Offset Emission Factors Handbook | Version 3.0 Jun 2022 15