Background

“How are the fish in my lake doing?” We need this answer to set appropriate fishing regulations, to understand and correct any problems with fish habitat, and to guard against invasive species. A healthy fish population and fish community means we can all enjoy the benefits of sustainable fisheries and healthy ecosystems. A standard method of assessing the status of fish populations is necessary to allow comparisons of fish sustainability across the years at a lake, and to compare to other lakes. In Alberta, we use an accepted standard of index netting for lake fisheries assessment. This method provides the necessary data on fish abundance, biological data (such as age and sex), and species diversity to assess sustainability.

Fall Index Netting (FIN)

Alberta Environment and Parks monitor Walleye and Northern Pike populations using standardized index netting (Morgan, 2002). Fall index netting occurs during late summer and fall when water temperatures are 10-15 °C. Standardized multi-mesh gill nets are set at random locations between 2 and 15 metres deep, set for 21-27 hours (i.e., a net-night), and then reset in new random locations. Information from Yellow Perch, Lake Whitefish, Burbot, minnow, and sucker species are also collected. The information collected from each fish includes length, weight, age, gender, and maturity. After sampling, if fish are appropriate for human consumption, Alberta biologists provide the fish to local Indigenous peoples or to persons on approved subsistence lists. Typically, a tiny proportion of the lake’s fish population (usually less than 1 or 2%) are killed in this sampling.

How is this information used?

Catch rates (i.e., number of fish captured per net-night) of Walleye and Northern Pike are an index of the populations’ abundance, with higher catch rates meaning there are more fish in the lake. The abundance of adult fish is compared to the standardized thresholds for 5 broad categories of risk to the long-term sustainability of the fish population, with higher densities of fish having lower risk (Table 1). The sizes and age of fish also tell us if problems with overharvest (e.g., too few fish living to old age) or habitat (e.g., poor spawning success) are a concern. Biologists use this information, as well as a variety of data on water quality, access, development, and habitat threats as part of Alberta’s Fish Sustainability Index (FSI).

The Fisheries Management Objective for most Alberta fisheries is long-term sustainability, shown by the red lines on the graphs below. Achieving this objective uses the netting data and the FSI to determine the most appropriate sport fishing regulations for a lake. This landscape-level assessment allows for consistent, broad temporal comparisons of fish sustainability and status. For more information please see Alberta’s FIN and FSI websites,

Table 1 – Alberta’s Fish Sustainability Index risk thresholds for Walleye and Pike using the standardized Fall Index Net (FIN) method. Note: Thresholds align with species management frameworks.

<table>
<thead>
<tr>
<th>Mature Walleyes / net</th>
<th>Mature Pike / net</th>
<th>Risk to Sustainability</th>
</tr>
</thead>
<tbody>
<tr>
<td>>29.0</td>
<td>>21.8</td>
<td>Very Low</td>
</tr>
<tr>
<td>20.3-29.0</td>
<td>15.3-21.8</td>
<td>Low</td>
</tr>
<tr>
<td>14.5-20.2</td>
<td>10.9-15.2</td>
<td>Moderate</td>
</tr>
<tr>
<td>5.8-14.4</td>
<td>4.4-10.8</td>
<td>High</td>
</tr>
<tr>
<td><5.8</td>
<td><4.4</td>
<td>Very High</td>
</tr>
</tbody>
</table>

Results of the 2015 FIN at Jensen Reservoir

Jensen Reservoir (179 ha) is located 43 km south from the city of Lethbridge. From September 30 to October 1, 2015, five gill nets captured 1 Burbot, 204 Lake Whitefish, 5 Longnose Suckers, 14 Northern Pike, 11 Walleyes, and 56 White Suckers, from Jensen Reservoir.

Walleye

The mean catch rate of Walleye was 2.2/net-night. The catch rates of mature (Figure 1) and immature Walleye were 0.2/net-night and 2.0/net-night, respectively. The corresponding FSI score for the current mature density of Walleye was assessed at **very high risk**.

The length distribution shows no recent recruitment of Walleye and a narrow and unstable distribution of fish larger than 280 mm (Figure 2). This stocked fishery seems to be supported by 1 or 2 weak year-classes. This small waterbody likely has habitat issues limiting the creation of a sustainable walleye fishery.

The 2015 FIN sample represented approximately 0.5% of the estimated Walleye population size.
Figure 1 - The FIN catch rate of mature Walleye from Jensen Reservoir, 2015. Dashed line is the mean likelihood catch rate (0.2 fish/net-night), with individual net data as hollow circles (n=5 nets).

Figure 2 – FIN sample of showing size of Walleye from Jensen Reservoir, 2015. The red line indicates the average length distribution of Walleye from 5 Alberta lakes supporting long-term sustainable harvests of Walleye.

Northern Pike

The mean catch rate of mature Northern pike was 1.6/net-night (Figure 3). The corresponding FSI score for the mature density of Northern Pike was assessed at **very high risk**.

The length distribution shows unstable and weak recruitment of Northern Pike with low densities of fish from 400 to 970 mm (Figure 4). The weak Northern Pike population in this small reservoir seems to be supported by several weak year-classes.

The 2015 FIN sample represented approximately 2.0% of the estimated Northern Pike population size.

Summary

The FSI status of the Walleye population in Jensen Reservoir was assessed at **very high risk**. Creation of a long-term self-sustaining Walleye fishery is probably not achievable in this small reservoir.

The FSI status of naturally occurring Northern Pike in Jensen Reservoir was assessed at **very high risk**, therefore stringent conservation efforts are necessary to maintain this population, dependant on the management objective.

Literature