CARBON OFFSET EMISSION FACTORS HANDBOOK

Version 1.0

March 2015

Specified Gas Emitters Regulation

Environment and Sustainable Resource Development

Title:	Carbon Offset Emission Factors Handbook
Number:	ESRD Climate Change, 2015, No. 1
Program Name:	Alberta Carbon Offset Program
Effective Date:	March 31, 2015
This document was updated on:	

Disclaimer

The information provided in this directive is subject to revisions as learnings and new information come forward as part of a commitment to continuous improvement. Emission factors provided in this directive must be used when referenced in approved quantification protocols.

This document is not a substitute for the legal requirements. Consult the Specified Gas Emitters Regulation and the legislation for all purposes of interpreting and applying the law, in the event that there is a difference between this document and the Specified Gas Emitters Regulation or legislation, the Specified Gas Emitters Regulation or the legislation prevails.

This directive is subject to periodic review as deemed necessary by the Department, and will be re-examined at a minimum of every five years from the original publication date to ensure methodologies and science continue to reflect best-available knowledge and best practices. Any updates to this directive as a result of the reviews will apply at the end of the credit duration period. Project extensions will be required to follow the current directive.

Any comments or questions regarding the content of this document may be directed to:

Alberta Environment and Sustainable Resource Development

Air and Climate Change Policy Branch 12th Floor, 10025 – 106 Street Edmonton, Alberta, T5J 1G4 E-mail: **ESRD.GHG@goy.ab.ca**

Date of Publication: March 2015

ISSN: 2368-951X (Printed) ISSN: 2368-9528 (On-line)

Copyright in this publication, regardless of format, belongs to Her Majesty the Queen in right of the Province of Alberta. Reproduction of this publication, in whole or in part, regardless of purpose, requires the prior written permission of Alberta Environment and Sustainable Resource Development.

© Her Majesty the Queen in right of the Province of Alberta, 2015

Table of Contents

1.0	Common Emissions Factors	5
1.1	Global Warming Potential	5
1.2	Electricity Grid Use and Displacement Factors	6
1.3	Fuel Extraction and Production Related Emissions	7
1.4	Fuel Combustion Related Emissions	8
2.0	Common Quantification Methods	10
2.1	Quantification of Avoided Landfill and Stockpile Methane Emissions	10

List of Tables

Table 1.	Intergovernmental Panel on Climate Change (IPCC) Global Warming Potentials - 100 Year Time Horizon
Table 2.	Electricity Grid Displacement and Grid Usage Factors
Table 3.	Total Line Loss
Table 4.	Emission Intensity of Fuel Extraction and Production (Diesel, Natural Gas and Gasoline)7
Table 5.	Emission Factors for Gasoline and Diesel Production
Table 6.	Emission Factors for Combustion of Natural Gas and Natural Gas Liquids
Table 7.	Emission Factors for Combustion of Refined Petroleum Products
Table 8.	Landfill Definitions Applicable to Avoided Landfill and Stockpile Methane Emissions Quantification in Alberta
Table 9.	First Order Decay (FOD) Methane Quantification Model11
Table 10.	Model Parameters for Quantification of Avoided Landfill and Stockpile Methane Emissions

. . . .

Introduction

The Carbon Offset Emission Factors Handbook contains a listing of common emission factors used in the Alberta carbon offset system as well as common quantification methodologies.

Common emission factors, provided in section 1, are intended as inputs to formulae provided in approved quantification protocols.

Common quantification methods, provided in section 2, are commonly used formulae for quantification of greenhouse gas offsets in Alberta. This section includes both quantification methods and factors required for greenhouse gas offset quantification.

Emission factors and methodologies are subject to periodic updates. Updated values are immediately applicable for use in new offset projects. Current projects will be required to transfer to updated factors if they receive a crediting period extension. The project developer is responsible for ensuring the most current version is used for annual project reporting.

1.0 Common Emissions Factors

1.1 Global Warming Potential

The Global Warming Potentials (GWP) of specified gases is listed in the Specified Gas Emitters Regulation (AR139/2007). Alberta uses the 2007 GWPs as published by the International Panel on Climate Change. Global warming potentials are effective for 2014 vintage credits forward as per a MEMO released by ESRD on January 23, 2014.

Table 1.	Intergovernmental Panel on Climate Change (IPCC) Glot	bal
	Warming Potentials - 100 Year Time Horizon	

	Formula	100-year
Specified Gas	Formula	GŴP
Carbon Dioxide	CO ₂	
Methane	CH₄	25
Nitrous Oxide	N ₂ O	298
Sulphur Hexafluoride	SF ₆	22,800
Perfluoromethane	CF ₄	7,390
Perfluoroethane	C ₂ F ₆	12,200
Perfluoropropane	C ₃ F ₈	8,830
Perfluorobutane	C ₄ F ₁₀	8,860
Perfluorocyclobutane	c-C₄F ₈	10,300
Perfluoropentane	C ₅ F ₁₂	9,160
Perfluorohexane	C ₆ F ₁₄	9,300
Hydrofluorocarbons-23	CHF3	14,800
Hydrofluorocarbons-32	CH ₂ F ₂	675
Hydrofluorocarbons-41	CH ₃ F	92
Hydrofluorocarbons-43-10mee	$C_5H_2F_{10}$ (structure: CF ₃ CHFCHFCF ₂ CF ₃)	1,640
Hydrofluorocarbons-125	C ₂ HF ₅	3,500
Hydrofluorocarbons-134	C ₂ H ₂ F ₄ (structure: CHF ₂ CHF ₂)	1,100
Hydrofluorocarbons-134a	C ₂ H ₂ F ₄ (structure: CH ₂ FCF ₃)	1,430
Hydrofluorocarbons-143	C ₂ H ₃ F ₃ (structure: CHF ₂ CH ₂ F)	353
Hydrofluorocarbons-143a	C ₂ H ₃ F ₃ (structure: CF ₃ CH ₃)	4,470
Hydrofluorocarbons-152a	C ₂ H ₄ F ₂ (structure: CH ₃ CHF ₂)	124
Hydrofluorocarbons-227ea	C ₃ HF ₇ (structure: CF ₃ CHFCF ₃)	3,220
Hydrofluorocarbons-236fa	C ₃ H ₂ F ₆ (structure: CF ₃ CH ₂ CF ₃)	9,810
Hydrofluorocarbons-245ca	C ₃ H ₃ F ₅ (structure: CH ₂ FCF ₂ CHF ₂)	693

2007. Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Adapted from Table 2.14, IPCC Fourth Assessment Report, 2007

1.2 Electricity Grid Use and Displacement Factors

Below the are grid factors applicable in the Alberta carbon offset system for projects that are displacing grid electricity with renewable electricity or reducing grid electricity usage and projects resulting in additional electricity usage from the Alberta electrical grid. These factors are set by Alberta Environment and Sustainable Resources Development (ESRD) and updated at minimum every 5 years.

Factor	tCO₂e/MWh	Description
Electricity grid displacement with renewable generation	0.59	Applicable to projects displacing grid- electricity with renewable generation.
Increased on-site grid electricity use (includes line loss)	0.64	Applicable for use in projects that increase electricity usage in the project condition.
Reduction in grid electricity usage (includes line loss)	0.64	Applicable to energy efficiency projects resulting in decreased grid electricity usage.
Distributed renewable displacement at point of use (includes line loss)	0.64	Applicable to projects displacing grid electricity with distributed renewable electricity generation at point of use.

Table 3. Total Line Loss

Factor	MWh line loss/MWh consumed	Description
Total line loss for transmission and distribution	1.083	Weighted average line loss for transmission and distribution in Alberta is 7.7% (calculated as 1/(1-line loss)). Line loss is incorporated into the factors in Table 2 when reducing grid electricity usage or when renewable generation is at point of use.

2004. A Study on the Efficiency of Alberta's Electricity Supply System: Project# CASA-EEEC-02-04. Prepared for Clean Air Strategic Alliance. Jem Energy.

1.3 Fuel Extraction and Production Related Emissions

Below are emissions factors associated with the extraction and production of fuels. Values are sourced from a Canadian Association of Petroleum Producers (CAPP) report on upstream oil and gas emissions.

Table 4. Emission Intensity of Fuel Extraction and Production (Diesel, Natural Gas and Gasoline)

Gauna		Emissior	n Factors
Source	kg CO₂/L	kg CH₄/L	kg N₂O/L
Diesel Production	0.138	0.0109	0.00004
Gasoline Production	0.138	0.0109	0.00004
	kg CO ₂ /m ³	kg CH₄/m³	kg N₂O/m³
Natural Gas Extraction	0.043	0.0023	0.000004
Natural Gas Processing	0.090	0.0003	0.00003

September 2004. A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry, Volume 1. Clearstone Engineering Ltd. Prepared on behalf of Canadian Association of Petroleum Producers.

Emission factors must be used for fuel volumes corrected to 15°C and 101.325 kPa.

Table 5. Emission Factors for Gasoline and Diesel Production

	Approximate Proportionate	Emiss	sion Factors	(t/10 ³ m ³)
	Amount in Year of Emission Factor Generation (10 ³ m ³ /yr)	CO₂	CH₄	N ₂ O
Light / Medium Crude Oil Production	55,588	86.3	4.41	0.0038
Heavy Crude Oil Cold Production	30,924	75	25.1	0.0033
Heavy Crude Oil Thermal Production	10,589	594.2	3.75	0.009
Weighted Average		0.1381	0.0109	4.208E-6

September 2004. A National Inventory of Greenhouse Gas (GHG), Criteria Air Contaminant (CAC) and Hydrogen Sulphide (H2S) Emissions by the Upstream Oil and Gas Industry, Volume 1. Clearstone Engineering Ltd. Prepared on behalf of Canadian Association of Petroleum Producers.

1.4 Fuel Combustion Related Emissions

Table 6. Emission Factors for Combustion of Natural Gas and Natural G	ias
Liquids	

		Emission Fact	ors
Source	CO₂ (g∕m³)	CH₄(g/m³)	N₂O(g∕m³)
Natural Gas			
Electric Utilities	1918	0.49	0.049
Industrial	1918	0.037	0.0 <mark>3</mark> 3
Producer Consumption (non- marketable product)	2380	6.4	0.06
Pipelines	1918	1.9	0.05
Cement	1918	0.037	0.034
Manufacturing Industries	1918	0.037	0.033
Residential, Construction, Commercial/Institutional, Agriculture	1918	0.037	0.035
Propane	g/L	g/L	g/L
Residential	1507	0.027	0.108
All Other Uses	1507	0.024	0.108
Ethane	976	0.024	0.108
Butane	1730	0.024	0.108

2014. National Inventory Report 1990-2012: Greenhouse Gas Sources and Sinks in Canada. The Canadian Government's Submission to the UN Framework Convention on Climate Change. Part 2. Emission factors must be used for fuel volumes corrected to 15°C and 101.325 kPa.

.

	Emission Factors					
Source	CO₂ (g/L)	CH₄(g/L)	N₂O(g/L)			
Light Fuel Oil						
Electric Utilities	2725	0.18	0.031			
Industrial	2725	0.006	0.031			
Producer Consumption	2643	0.006	0.031			
Residential	2725	0.026	0.006			
Forestry, Construction, Public Administration and Commercial/Institutional	2725	0.026	0.031			
Heavy Fuel Oil						
Electric Utilities	3124	0.034	0.064			
Industrial	3124	0.12	0.064			
Producer Consumption	3158	0.12	0.064			
Residential, Forestry, Construction, Public Administration, and Commercial/Institutional	3124	0.057	0.064			
Kerosene						
Electric Utilities	2534	0.006	0.031			
Industrial	2534	0.006	0.031			
Producer Consumption	<u>253</u> 4	0.006	0.031			
Residential	2534	0.026	0.006			
Forestry, Construction, Public Administration and Commercial/ Institutional	2534	0.026	0.031			
Diesel	2663	0.133	0.4			
Motor Gasoline	2289	N/A	0.02			

2014. National Inventory Report 1990-2012: Greenhouse Gas Sources and Sinks in Canada. The Canadian Government's Submission to the UN Framework Convention on Climate Change. Part 2.

.

2.0 Common Quantification Methods

2.1 Quantification of Avoided Landfill and Stockpile Methane Emissions

The methodology for quantifying greenhouse gas emissions reductions from the diversion of organic materials from a Municipal Solid Waste (MSW) landfill, wood waste landfill or wood waste stockpile is provided below. Emissions reductions are achieved by reducing methane emissions associated with anaerobic decomposition. In Alberta, landfills are classified as outlined in the Waste Control Regulation. If a Class II landfill meets the definition of a MSW landfill or a wood waste landfill, waste diversion from it is eligible under this methodology. Waste diverted from Class III landfills is not eligible under this methodology because they are for the disposal of inert waste.

Table 8. Landfill Definitions Applicable to Avoided Landfill and Stockpile Methane Emissions Quantification in Alberta

Definitions				
Municipal Solid Waste (MSW) Landfill	A Municipal Solid Waste (MSW) landfill includes residential, institutional, commercial and industrial and construction and demolition wastes in various amounts.			
Wood Waste Landfill	A wood waste landfill is an industrial on-site landfill for the disposal of wood waste.			
Wood Waste Stockpiles (Permanent)	A wood waste stockpile is an above ground pile used for permanent disposal of wood waste.			
Eligible Waste	Organic waste that is expected to decompose and generate methane in a landfill or stockpile under anaerobic conditions.			
Class II Landfill As defined in the Alberta Waste Control Regulation: a landfill for the disposal of waste not including hazardous waste.				
Class III Landfill	As defined in the Alberta Waste Control Regulation: A landfill for the disposal of inert waste.			
Inert Waste	Solid waste that, when disposed of in a landfill or re-used, is not reasonably expected to undergo physical, chemical or biological changes to such an extent as to produce substances that may cause an adverse effect, and includes, but is not limited to, demolition debris, concrete, asphalt, glass, ceramic materials, scrap metal and dry timber or wood that has not been chemically treated.			
Projects related to landfills whose designation is unclear should contact ESRD for further				

Projects related to landfills whose designation is unclear should contact ESRD for further guidance.

First Order Decay ((FOD) Methane Quantification Model				
Methane (CH ₄) Quantification Model: Waste	The principle formula for the first order decay (FOD) Scholl-Canyon Model to be used for estimating avoided methane emissions as a result of waste diversion is:				
Diversion	$\mathbf{Q} = \sum_{x=1}^{40} \left[\mathbf{k} * \mathbf{W}_{c} * \mathbf{L}_{o} * e^{-k(x-1)} * (1-\mathbf{R}) \right] * (1-\mathbf{O}X)$				
	Where:				
	Q = amount of methane emitted in the years x=1 to 40 by the waste Wc (t CH ₄ /yr) under the assumed baseline waste disposal practice				
	k = methane generation constant (yr ⁻¹)				
	W _c = amount of eligible waste diverted from disposal in the current year C (wet weight, t)				
	$L_o =$ methane generation potential (t CH ₄ /t waste)				
	R = methane captured and destroyed (fraction)				
	OX = oxidation of methane in cover material (fraction)				
	x = iterative FOD emissions in year 1 to 40 from a given mass of waste W_{C}				
	For the purpose of Alberta waste diversion protocols, the FOD model is used to calculate emissions forward over a period of 40 years ($x=1$ to 40), beginning in the year in which the waste is initially diverted. These emissions are applied to the total baseline emissions for the project in the year of waste diversion.				
Methane	$L_o = MCF * DOC * DOC_f * F * 16/12$				
Generation Potential (L _o)	Where:				
	L_0 = methane generation potential (t CH ₄ / t waste)				
	MCF = methane correction factor (fraction)				
	DOC = fraction of degradable organic carbon in the waste (weight fraction)				
	DOC _f = fraction of DOC that decomposes (weight fraction)				
	F = fraction of methane in landfill gas				
	16/12 = stoichiometric factor (molecular weight ratio CH ₄ /C)				

.....

.........

.....

.......

Parameter	MSW Landfill				Wood Waste Landfill	Wood Waste Stockpiles Permanent
Methane Correction Factor (MCF)	Managed (anaerobic)ª	Unmanaged – Deep ^c (<u>></u> 5 metres waste)	Unmanaged – Shallow ^d (<5 metres waste)	Uncategorized ^e		
	1.0 (0.5 semi-aerobic) ^b	0.8	0.4	0.6	0.8 (deep landfill >5m) 0.4 (shallow landfill <5m)	0.28 ²
	 placement of waste control of scavengi the following: (i) c waste. b -Semi-aerobic managi include all of the for cover material; (ii) ventilation system c - Unmanaged deep a managed SWDS ar water table at or n water, such as port d - Unmanaged shallow which have depths e - Uncategorized SWE 	solid waste disposal sites e (i.e., waste directed to ng and a degree of contro- over material; (ii) mechan ged SWDS: These must h ollowing structures for int leachate drainage syster nd/or high water table SM ad which have depths of g ear ground level. Latter id, river or wetland by wa v SWDS: All SWDS not n of less than 5 metres. DS: Only if projects canno- this category be used.	specific deposition area ol of fires) and will incl nical compacting; or (ii nave controlled placeme roducing air to waste la m; (iii) regulating pond NDS: All SWDS not m greater or equal to 5 m situation corresponds t iste. neeting the criteria of r	as, a degree of ude at least one of ii) levelling of the ent of waste and will ayer: (i) permeable dage; and (iv) gas neeting the criteria of hetres and/or high to filling inland managed SWDS and		
Fraction of CH₄ in Landfill Gas (F)		0.5			0.5	0.5

Table 10. Model Parameters for Quantification of Avoided Landfill and Stockpile Methane Emissions

Model Paramet	ers ¹						
Parameter	MSW Landfill					Wood Waste Landfill	Wood Waste Stockpiles Permanent
Default Fraction of Degradable Organic Carbon (DOC)	If detailed information on the landfill waste composition is not available or applicable, default DOC should be used. If information on how the landfill is managed is not available to determine MCF, then use default Lo. Use $DOC_f = 0.6$ if comprehensive wood waste diversion program in place and $DOC_f = 0.5$ if no wood waste diversion program in place. Default values for Alberta:DOC content in % of wet weightDOC $L_0 f$ $L_0 f$ from 1990-present0.1756.6767.95					L _o ^{f,g} 80 g - for a shallow landfill L _o =40	L _o f 40
Fraction of	f -L₀ in kg CH₄/t waste		5 6				
Degradable Organic Carbon (DOC)	If the landfill specific waste stream is well understood ^h , individual DOC for the measured proportion of each waste stream in the landfill can be used to calculate a landfill-specific DOC using the formula provided below, or ideally based on measurement of the actual DOC content of each waste type in the landfill's waste stream. This landfill-specific mixed waste DOC value must be used in conjunction with the mixed waste landfill default DOC _f of 0.5 to 0.6. DOC = $(0.4*A) + (0.2*B) + (0.15*C) + (0.43*D)$ DOC content in % of wet weight						
	Waste Type DOC ³ h -The sampling prog industry accepted tech should be undertaken Characterization Fram	A Paper 0.4 ram for the wa nniques . Sortin according to t	ng and documen	0.15 monitoring shoul itation of the was	te composition	N/A	N/A
Default Fraction of Degradable Organic Carbon Dissimilated (DOC _f)	$DOC_f = 0.6$ if compresent $DOC_f = 0.5$ otherwise	nensive wood w	waste diversion p	orogram in place		N/A	N/A

Model Parame	ters ¹					
Parameter	MSW Landfill Wood Waste Landfill Wood Waste St Pe Currently not available. The landfill/stockpile default L ₀ must be used when diverting a specific waste type (i.e. waste type-specific DOC coused).					
Waste Type- Specific DOC and DOC _f						
Oxidation Factor (OX)	Type of Site	CH₄ Oxidation Rates (OX, %)	Developed A (m ²)	rea		
	Default	10	-			
	Managed, unmanaged and uncategorized landfill (not covered with aerated material)	0	А			
	Managed covered with CH ₄ oxidizing material e.g. topsoil/compost	10	В			
	For the case of different site types at different lar calculated by: $\mathbf{OX}_{average} = \frac{[(0\% * \mathbf{A}) + (10\% * \mathbf{B})]}{(\mathbf{A} + \mathbf{B})}$ The use of an oxidation value other than 10 per or supported by data relevant to the geographical constraints	ent should be clea	•			
Methane Collection and Destruction (1-R)	The fraction of methane collected and destroyed at the landfill (taking collection and destruction efficiencies into account). Projects diverting waste from landfills must provide clear documentation of landfill gas collection and destruction at all areas at the source landfills, i.e., the average LFG_{CE} at the source landfills (it cannot be assumed that R=0 because waste is being diverted from active cells). R = LFG Collection Efficiency (LFG_{CE})*Methane Destruction Efficiency (LFG_{DE})					
	Default Values for LFG Collection Efficiencies (LFG _{CE}) ^{5,6} :					
	Type of Cover System		ion Efficiency	Developed Area	N/A	
		Range (%)	Default (%)	m ²		
	Operating Cell	-	35.0	A		
	Temporary Covered Cell	65-68	66.5	В		
	Final Clay Covered Cell	85-92	88.5	С		
	Composite Liner System	90-97	93.5	D		
	LFG Mitigation Control System	Site Specific	Site Specific	E		

Parameter		MSW Landfill	Wood Waste Landfill	Wood Waste Stockpiles Permanent	
	For the case of various cover systems applied to different landfill areas, an average LFG _{CE} can be calculated by: $LFG_{CEaverage} = \frac{[(35\% * A) + (66.5\% * B) + (88.5\% * C) + (93.5\% * D)}{(A + B + C + D)}$ Default Values for Methane Destruction Efficiency (LFG _{DE}) ⁷ : Type of LFG Device Methane Destruction Efficiency				
	Boiler/Steam Turbines Gas Turbines Flares IC Engines Passive Venting Alternative methane controls at l technology, enhanced oxidation	Range (%) Average (%) 67-99+ 99.8 97-99+ 98.2 38-99+ 99.7 25-99+ 86.1 n/a 0 landfills must be appropriately taken into account practices).	(i.e., bioreactor		
Default k-value	The recommended equation as p Specified Gas Emissions from Lat research permits further assessin k=0.00003*PCPN + 0.01 Where: PCPN = Annual average precipita available Environment Canada 30 In the case where additional liqu landfill), the amount of additional	er Alberta's Technical Guidance for Quantification ndfills ⁸ is to be used to calculate k-values until on- nent of these values. Ation at the nearest weather station for the most re 0-year climate normal period (mm/yr). ids are introduced into the landfill (e.g. at a biorea Il liquids should be converted and added to the am se cases the formula for k would be:	-going ecently 0.02 actor	0.02	

. . . .

Model Paramet	ers ¹			
Parameter	MSW Landfill		Wood Waste Landfill	Wood Waste Stockpiles Permanent
Landfill- Specific k-value	Landfill-specific k-value calculation for those landfills in a position to do should follow th MSW Landfill k-value Calculation ⁹ .	ne		

¹ 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan.

- ² 2009. Methodological Tool. Tool to determine methane emissions avoided from disposal of waste at a solid waste disposal site. EB 41 Annex 10 Version 04. United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism (CDM).
- ³ 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 5 Waste, Intergovernmental Panel on Climate Change (IPCC).
- ⁴ 2005. Provincial waste characterization framework: A Joint Project of Alberta Environment, Government of Canada, Action Plan 2000 on Climate Change (Enhanced Recycling Program) and the Recycling Council of Alberta, Final Report. Alberta Environment.
- ⁵ 2003. French Calculation Guidelines for Estimating Atmospheric Emissions of CH4, CO2, SOX and NOX released by Non-Hazardous Waste Landfills (English Version). French Environmental Agency. ADEME.
- ⁶ 2007. Current MSW Industry Position and State-of-the-Practice on LFG Collection, Methane Oxidation, and Carbon Sequestration in Landfills. Prepared for Solid Waste Industry for Climate Solutions (SWICS). Prepared by SCS Engineers.
- ⁷ 1998. USEPA AP-42 Compilation of Emission Factors, November 1998, Attachment A. U.S. Environmental Protection Agency.
- ⁸ 2008. Technical Guidance for the Quantification of Specified Gas Emissions from Landfills (Version 1.2). Alberta Environment
- ⁹ October 2014. MSW Landfill k-value Calculation Best Management Practice. Alberta Environment.

Mar 2015

Orghern Offerst Environment Frankright und