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Alberta’s Environmental Science 

Program 
 

The Chief Scientist has a legislated responsibility for developing and implementing Alberta’s 

environmental science program for monitoring, evaluation and reporting on the condition of the 

environment in Alberta. The program seeks to meet the environmental information needs of 

multiple users in order to inform policy and decision-making processes. Two independent 

advisory panels, the Science Advisory Panel and the Indigenous Wisdom Advisory Panel, 

periodically review the integrity of the program and provide strategic advice on the respectful 

braiding of Indigenous Knowledge with conventional scientific knowledge. 

 Alberta’s environmental science program is grounded in the principles of: 

­ Openness and Transparency. Appropriate standards, procedures, and methodologies are 

employed and findings are reported in an open, honest and accountable manner.   

­ Credibility. Quality in the data and information are upheld through a comprehensive 

Quality Assurance and Quality Control program that invokes peer review processes when 

needed.  

­ Scientific Integrity. Standards, professional values, and practices of the scientific 

community are adopted to produce objective and reproducible investigations. 

­ Accessible Monitoring Data and Science. Scientifically-informed decision making is 

enabled through the public reporting of monitoring data and scientific findings in a timely, 

accessible, unaltered and unfettered manner. 

­ Respect. A multiple evidence-based approach is valued to generate an improved 

understanding of the condition of the environment, achieved through the braiding of 

multiple knowledge systems, including Indigenous Knowledge, together with science.  

 

Learn more about the condition of Alberta’s environment at: environmentalmonitoring.alberta.ca. 

  

http://environmentalmonitoring.alberta.ca/
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1 Background and rationale 
Trends of ambient air quality in Alberta Environment and Parks (AEP) have traditionally been 

assessed using annual summaries (e.g., annual averages or annual quantiles) of hourly data 

from ground monitoring stations. The goal is to determine if there is a trend in the concentrations 

of the air quality parameters over time. This assessment was performed using a tool developed in 

2005 by staff in the Operations Division of AEP. The tool utilized the Theil-Sen method (Theil 

1950, Sen 1968) to estimate trend and the Mann-Kendall method (Mann 1945, Kendall 1975) to 

test for the statistical significance of the estimated trend. However, Yue et al. (2002) have 

demonstrated that these methods (the Theil-Sen and Mann-Kendall) are affected by 

autocorrelation (see Section 2.3.1 for a detailed discussion). Therefore, a procedure known as 

the Trend Free Pre-Whitening (TFPW) described in Yue et al. (2002) was adopted and 

implemented in the tool to address the effect of autocorrelation in the data. When annual 

summaries are used, the problem of autocorrelation is significantly reduced due to the longer 

averaging period (1 year), thus making the task less challenging for TFPW. The tool is a Fortran-

based statistical program but utilizes Microsoft Excel as its user interface to input and display 

outputs in the form of annual trends and related statistics. In this document, this tool will be 

referred to as TFPW. 

A detailed analysis of air quality data was conducted to provide scientific support to the 2013 Air 

Quality Management Framework (AQMF) Management Response for the Lower Athabasca 

Regional Plan (LARP). A technical report was later released by Liu et al. (2015) based on this 

analysis. The 2013 AQMF Management Response, backed by the technical report (Liu et al. 

2015) identified some limitations with the TFPW tool. The primary statistical concerns were 

related to the sample size. Specifically, using the tool to analyze data for a short-term trend was 

found to be problematic. Since annual averages of hourly data were used by the tool to assess 

trend, the statistical sample size was restricted to the number of years over which trend is being 

analyzed (1 data point per year). Thus for a short period (e.g., five years or less), the sample size 

of five or less is too small to estimate and draw a meaningful statistical conclusion about the 

trend. The statistical implication of such a small sample size is two-fold. First, there is not enough 

statistical power (i.e., the probability of detecting a trend when there is a trend) to efficiently test 

the null hypothesis about the trend. Second, increasing the sample size to improve statistical 

power by using shorter averaging periods (e.g., monthly or daily) will likely increase the 

autocorrelation problem. Using shorter averaging time may also introduce seasonal variations 

into the data which the tool is not designed to address.  

As it is an annual communication to Albertans on the management response to air and surface 

water trigger exceedances at monitoring stations in the Lower Athabasca Region (LAR), the 2013 

Management Response report recommended that the issues discussed above be addressed. A 
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new approach and a tool with enough statistical power and the capability to analyze both short-

term and long-term trends of air quality to support the ambient environmental condition reporting 

was recommended. The LARP technical team contacted the Standards, Quality and Innovation 

(SQI) team of EMSD, previously within Alberta Environmental Monitoring, Evaluation and 

Reporting Agency (AEMERA) in 2015, to develop a new tool. Specifically, the LARP technical 

team members were interested in information on short-term changes of ambient air quality to 

identify emerging issues and track the effectiveness of air quality management in the area and 

needed a tool that can estimate both short-term and long-term trends. This report documents the 

details of the statistical theory and analysis of the approaches of the new tool. 

The request from the LARP technical team was timely, as statistical tool development was part of 

the SQI team plan at the time. Following the request, a project initiation meeting was held on July 

16, 2015, between the LARP technical team and the SQI team to discuss details of the project. A 

presentation was made by the SQI team to the LARP technical team in August 2015 on the 

proposed process, and the project officially started in September 2015. An initial package of the 

new tool which is based on R-software and a draft report was completed in September 2016. This 

is the final report for the project documenting the scientific information considered when 

developing the new tool. 

1.1 Project objectives 
The objectives of the present study are two-fold: First, we identified and described the statistical 

challenges typically encountered when conducting trend analysis of air quality data. Specifically, 

the challenges related to autocorrelation, heteroscedasticity, and non-normality of data and 

considerations related to statistical power are described and defined. We also provided guidance 

on how to deal with statistical challenges when conducting trend analysis. Second, we identified 

and tested three methods using NO2 and SO2 data from three air quality monitoring stations in 

Alberta. 

The three methods tested are: 

1) A nonparametric approach where the Theil-Sen and the Mann-Kendall methods are 

applied sequentially to estimate trend and to test that the estimated trend is statistically 

significant, respectively. 

2) A parametric approach where linear regression is used to estimate trend and the 

generalized autoregressive conditional heteroscedasticity (GARCH) method is used to 

estimate the standard error to test the null hypothesis that the estimated trend is not 

statistically significant. 

3) A parametric approach where linear regression is used to estimate trend and the 

autoregressive integrated moving average (ARIMA) method is used to estimate the 
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standard error to test the null hypothesis that the estimated trend is not statistically 

significant. 

The first approach (Theil-Sen and Mann-Kendall methods) is the approach currently used in the 

existing tool for trend analysis. This approach was selected to test the tool’s applicability to 

monthly summaries of hourly data and to demonstrate how the challenges (seasonality and 

autocorrelation) introduced by using these monthly summaries can be addressed. The other 

reasons for selecting this approach is the popularity of the Theil-Sen and the Mann-Kendall 

methods in environmental science and their attractive statistical properties; these are 

nonparametric methods and do not require any distributional assumptions (e.g., Wang and Swail 

2001, Yue et al. 2002,). As a non-parametric approach, it also provides a good reference for 

comparison with the other two parametric approaches tested in this report. 

The second and the third approaches are similar. They are both linear regression (parametric) 

methods except that they use different methods to estimate the standard error of trend for 

subsequent testing of the null hypothesis. GARCH and ARIMA were chosen for this study 

because in theory, they are statistically more robust and superior over other standard error 

estimation methods under linear regression analysis of time series data (e.g. Bollerslev 1986, 

Nelson 1991, Ding et al. 1993, Zakoïan 1994).  

The criteria used for comparing the three approaches are: 1) Confidence interval width of the 

trend estimates, 2) Fit statistics measured by mean square prediction error and 3) statistical 

power measured by the minimum size of monthly trend each method can detect using two years 

of measurements (24 months). The results of this study should be treated as initial and 

preliminary findings.  

1.2 The organization of this report 
The critical issues and statistical challenges of trend analysis are discussed in Section 2. Section 

3 presents an overview of methods suitable for trend analysis and an in-depth discussion of the 

methods presented in this report. Specifically, the ARIMA and GARCH regression analysis 

methods are discussed in detail. This discussion includes how each method addresses the 

statistical issues and challenges discussed in Section 2. Section 4 provides guidance on how to 

conduct trend analysis of air quality data using the methods discussed in Section 3. The 

procedures discussed in the guidance are used to develop a statistical tool in the R programming 

language and will be demonstrated and made available to end users. Section 5 presents the 

results of a case study that applied the methods discussed in Section 3 on NO2 and SO2 data 

from arbitrarily selected monitoring stations from the Wood Buffalo Environmental Association 

(WBEA) Airshed.  
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2 Issues and challenges in trend 

analysis 

2.1 Why is trend analysis important 
The trend of the ambient concentration of a specific environmental pollutant can be described in a 

variety of ways including cyclical, seasonal, monotonic or step-wise, and may reflect patterns due 

to seasonal variation, emissions inputs from anthropogenic activities, or natural events. From an 

environmental management perspective, a cumulative increase in the ambient concentration 

levels of an air quality parameter over time may indicate the presence of an input emission 

source of the parameter into the ambient environment. This cumulative increase may be small 

and gradual requiring the analysis of long-term data to detect. Also a decision has to be made as 

to whether the estimated trend is statistically significant (Hirsch et al. 1982, Hirsch and Slack 

1984, Esterby 1993). Therefore, the choice of a suitable statistical method for trend analysis with 

enough power to support this decision is important. 

Understanding the trends of ambient air quality parameters may assist in answering fundamental 

questions such as: i) are the concentrations of key air quality parameters increasing or 

decreasing over time? ii) Are anthropogenic activities contributing to the ambient concentrations 

of these air quality parameters? The answers to these questions and others may determine if 

corrective measures are needed under the Land Use Framework (AEP 2008). As corrective 

measures should be timely, proportional and appropriate, efforts must be made to avoid fixing a 

false positive (Type I error) or failure to detect an existing trend (Type II error). This further 

underscores the importance of making the right statistical inference about the trend. 

2.2 Sources of uncertainties 
A major challenge in trend analysis is error or uncertainties in the data. Uncertainties play a major 

role in reducing the statistical power of trend analysis. Major sources of uncertainties are the 

dynamics of the geophysical environment (i.e. variability due to the atmospheric and 

meteorological cycles) and data capture activities (including uncertainties due to measurement, 

sampling, sample treatment and analysis), and may increase the variability in the data. The 

increased variability may impact statistical inference about the trend by reducing the statistical 

power of the analysis.  

Other issues such as insufficient quantity of data and the repeated nature of continuous air quality 

data may further exacerbate this problem and further reduce statistical power. As continuous air 

quality data in Alberta are reported on an hourly basis at various stations across the province, the 



16 Methods and Procedures for Trend Analysis of Air Quality Data 

data are time series. The individual data points in such series could be correlated resulting in a 

statistical phenomenon called autocorrelation. Autocorrelation is a statistical problem that affects 

the statistical inference about the trend by impacting the estimated standard error of the 

estimated trend (Yue et al. 2002). Combined with increase uncertainty from other sources, 

autocorrelation can further reduce the statistical power of trend analysis. 

2.3 Statistical challenges 
The focus of this section is on statistical issues that may arise from the nature of air monitoring 

data and how these issues may affect the statistical estimation of a trend and the subsequent 

statistical inferences. 

2.3.1 Autocorrelation  

In standard regression or time series analysis textbooks (e.g. Johnston 1984, Harvey 1990, 

Kariya and Kurata 2004), autocorrelation refers to the correlation between the error terms from 

different time periods of a regression model fitted to a time series data. Autocorrelation is simply a 

correlation coefficient such as Pearson correlation coefficient (ρ). However, instead of the 

correlation between two different variables, autocorrelation is between two values of the same 

variable collected or observed at different times, t and t-k, where t-k is the kth lag of t. The 

measure of autocorrelation is used to assess the randomness or independence of individual 

values in the data series, a key assumption needed for most univariate statistical analysis of the 

data. Thus the presence of autocorrelation is an indication that the values in the data are not 

independent. 

There are several causes of autocorrelation. In air monitoring data a pollution signal that may 

cause the concentration of a specific pollutant to increase may take time to die out causing 

successive measurements of the pollutant to be correlated. Autocorrelation could also be caused 

by a factor that is correlated with the pollutant concentration thereby causing the individual values 

of the pollutant to be correlated. The most common cause of autocorrelation in air pollution data 

is cyclical variations such as diurnal or seasonal variations. The individual values measured on 

the same phase of the cycle tend to be correlated. Autocorrelation may also exist for observations 

collected at different spatial locations. In such cases, observations collected at locations that are 

either near each other or have similar levels of a factor that is correlated with the pollutant, may 

be correlated. This is referred to as spatial autocorrelation. In this document, however, 

autocorrelation is used to refer to correlation of observations in time (temporal autocorrelation). In 

this case first-order autocorrelation refers to the correlation between an observation and the first 

lag (lag 1) observation in the series. Similarly, second-order autocorrelation refers to the 

correlation between an observation and the second lag (lag 2) observation in the series.  
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Autocorrelation may affect the analysis and interpretation of environmental data (e.g., Tiao et al. 

1990, Weatherhead et al. 1998, 2000). If this dependence (correlation) is positive, there is a high 

chance of concluding that there is a positive trend in the concentration when in fact there may be 

no trend. Statistically, it can be shown that positive autocorrelation can result in smaller standard 

error of estimate of a trend than the actual standard error (e.g., Tiao et al. 1990, Weatherhead et 

al. 1998, 2000, and Yue et al. 2002). The result is that the test statistic for the null hypothesis may 

be inflated. This inflation of the test statistic has been shown to increase nonlinearly with the 

strength of the autocorrelation (Yue et al. 2002). The consequence of the inflated test statistic 

could be an increase in the false positive rate, which in this case is an increase in the rate of false 

detection of trend. The converse is also true; negative autocorrelation may inflate the standard 

error estimate leading to false acceptance of the null hypothesis. 

The use of linear regression (parametric) analysis requires (in addition to independence) that 

environmental data be normally distributed and have uniform variance across time. These 

requirements have contributed indirectly to the popularity of the use of non-parametric analysis 

such as the Theil-Sen trend estimator (Theil 1950, Sen 1968) and the Mann-Kendall trend test 

(Mann 1945, Kendall 1975). The enormity of literature on the use of these non-parametric 

methods is a testament to this fact. However, studies have also shown that autocorrelation can 

affect the results of these non-parametric methods. False rejections of the null hypothesis (false 

positives) are more likely in the trend analysis of a dataset with autocorrelation, and the likelihood 

increases with increasing strength of the correlation when the Mann-Kendell trend test is used 

(Kulkarni and von Storch 1995, Yue et al. 2002). The variance of a trend estimated by the Theil-

Sen test was shown by Yue et al. (2002) in a simulation study to increase with the magnitude of 

autocorrelation, which if not accounted for can result in gross underestimation of the standard 

error.  

The issue of autocorrelation has resulted in the use of pre-whitening, an approach adopted to 

remove autocorrelation before implementing Theil-Sen slope estimation and Mann-Kendall test 

for trend analysis (e.g., von Storch 1995, von Storch and Zwiers 1999, Wang and Sail 2001, Yue 

et al. 2002, Zhang and Zwiers 2004). While this is considered by many to be an attractive solution 

to problems related to autocorrelation, it has also been noted to tend to “wash-out” the trend in 

the data (Yue et al. 2002). Recursive pre-whitening originally proposed by Kulkarni and von 

Storch (1995) has been demonstrated by Wang and Swail (2001), and Zhang and Zwiers (2004) 

to be an effective alternative to the original pre-whitening method. Kulkarni and von Storch (1995) 

and Yue et al. (2002) have demonstrated that false rejection of the null hypothesis occurs at a 

rate close to the nominal Type I error rate of 5% when recursive pre-whitening is applied to data 

with the first-order autocorrelation before the Mann-Kendall trend test is conducted.  
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2.3.2 Heteroscedasticity 

Heteroscedasticity is a statistical term used to describe non-uniform variance of the residuals 

from the statistical fit of a trend. The problem of non-uniform variance is associated with 

parametric methods, such as linear regression analysis that relies on a statistical reference 

distribution to test the null hypothesis of no trend. The issue of heteroscedasticity is typically 

reflected in the residual variance not being constant for all values of the independent variable 

(i.e., time). In environmental sciences, periods of episodic conditions may result in not only 

elevated levels of the pollutant concentration but may also cause large temporal fluctuation in the 

concentrations, resulting in higher variance. An added challenge for air quality data is that the 

variance may not follow a definite temporal pattern, making it difficult to model with a simple 

variance function. 

Standard regression textbooks such as Neter et al. (1983), Johnston (1984), Graybill and Iyer 

(1994), and Kariya and Kurata (2004) show that heteroscedasticity affects the variance estimates 

of a regression slope (e.g., trend). The poor variance estimate for trend may result in a poor 

estimate of the test statistic, which can result in an incorrect inference about the trend.  

Non-parametric methods such as Mann-Kendall trend test (Mann 1945, Kendall 1975) and Theil-

Sen slope (Theil 1950, Sen 1968) are not affected by the issue of heteroscedasticity. In 

parametric regression analysis, however, procedures such as weighted least squares (WLS) and 

iteratively weighted least squares (IWLS) (e.g., Cleveland 1979, Carroll and Rupert 1988, 

Cleveland and Durvlin 1988, Ryan 1997) are typically used to address heteroscedasticity. More 

sophisticated techniques such as the generalized least squares which addresses both 

autocorrelation and heteroscedasticity (e.g., Johnston 1984, Kariya and Kurata 2004) can be 

used. More recently the generalized autoregressive conditional heteroscedasticity (GARCH) 

approach has been implemented for trend analyses in environmental sciences to address both 

heteroscedasticity and autocorrelation (e.g., Wang et al. 2005, Wang et al. 2006, Chen et al. 

2008, and Modarres and Ouarda 2013). 

2.3.3 Non-normality 

Another statistical challenge is that the distributions of air quality data are typically not normal, but 

instead are usually skewed distributions (Georgeopoulos and Seinfeld, 1982). This skewness is 

attributed to the less frequent occurrence of poor air quality episodes. In some cases, such as in 

nitrogen dioxide (NO2) where concentrations show strong seasonal variation, the data may show 

bi-modal distributions.  

The normality assumption is perhaps the least challenging issue compared with the other two 

discussed above for the following reasons: 
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1) The normality assumption in linear regression is required to use the normal distribution or the 

small sample version, the student’s t-distribution as the reference distribution for hypothesis 

testing, but this requirement applies to the distribution of the regression residuals. Although the 

original pollution data may be non-normal, the residuals tend to be approximately normal as they 

are conditional on the independent variables thus making this requirement less relevant.  

2) It takes a considerable departure from normality to invalidate the hypothesis test, which hardly 

happens with regression residual especially when the sample size is large. More details can be 

found in standard linear regression textbooks (e.g., Neter et al. 1983, Johnston 1984).  

Regardless, the previous practice has been to avoid the use of regression analysis altogether in 

favor of nonparametric methods.  

2.3.4 Statistical power 

Statistical power refers to the ability of a statistical analytical method to detect an effect if any 

exists. In statistical terms, power is the probability of rejecting an incorrect null hypothesis. For 

trend analysis of air quality data, a higher statistical power implies an increased probability of 

detecting an existing effect (trend) and thus rejecting the null hypothesis of no trend. Statistical 

power is affected by several factors. One factor is the effect size. In trend analysis, the target 

effect is the trend, and large trends (increases or decreases in magnitude) are much easier to 

detect. In the words of Cohen (1988), “all null hypotheses, at least in their 2-tailed forms, are 

false, meaning, whatever we are looking for is always going to be there – it might be there in such 

small quantities that we are not bothered about finding it”. Thus, thinking of effect size in 

environmental sciences often involves addressing a fundamental question: is the effect significant 

enough to warrant further investigation? An answer to this question may help in deciding the 

choice of a Type I error rate that is considered acceptable. 

A second factor that affects the statistical power is the sample size. A relatively large sample size 

is expected to improve the estimates of the parameters and their associated standard errors. The 

improved standard errors estimates help refine the probability of detecting an effect.  

Another factor is the probability of wrongly concluding that there is an effect (trend) when there is 

none. This probability is the Type I error or the Type I error rate (designated as α). The Type I 

error rate is commonly set at 5% in environmental sciences to indicate the probability of rejecting 

a correct null hypothesis. If the Type I error rate is set high, then there is an increased chance of 

concluding that there is a trend. Thus, a higher Type I error rate artificially increases the statistical 

power. Statistical power and the probability of accepting an incorrect null hypothesis (known as a 

Type II error, represented by β) are complementary, such that power =1 - β (see Figure 1 below). 

In Figure 1, increasing the Type I error rate implies a decrease in Type II errors and hence 

increases the statistical power. 
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The last factor to discuss is the error or the conditional variation from month-to-month (or any 

chosen time resolution). In the trend analysis of environmental data, various sources of data 

capture errors, as well as autocorrelation, contribute to this variation and may mask a trend, 

making it difficult to assess its significance. Larger variations may require larger amounts of data 

(sample size) to assess trends of a given magnitude.  

The question of how many years of data are needed to detect a trend of a given size has been 

studied by Tiao et al. (1990), and Weatherhead et al. (1998, 2000). These studies developed a 

relationship that ties together all the factors discussed above into Equation 1 below. Figure 1 is 

the graphical representation of this relationship (Tiao et al. 1990). Equation 1 relates the number 

of years of monitoring (i.e. sample, n) needed to detect trend of magnitude (effect size, θ) at a 

95% confidence interval (Type I error rate of 5%), while risking a Type II error rate of β, given that 

month-to-month variation (σ) is observed and the first order autocorrelation is assumed with 

autocorrelation coefficient, ρ. Mathematically, this relationship is given by: 

𝑛 = [
(2+𝑧β)𝜎

|𝜃|
√
1+𝜌

1−𝜌
]

2
3⁄

               (Equation 1) 

Where: zβ is the β-percentile of the standard normal curve; the lower bound of the alternate 

hypothesis is –zβ, such that P(Z < -zβ) = β.  

Based on this relationship, the number of years needed to detect an annual trend θ at a 95% 

probability can be calculated by assuming a 90% statistical power (meaning β = 10% and z0.10 ≈ 

1.3), thus giving the relationship: 

𝑛 = [
3.3𝜎

|𝜃|
√
1+𝜌

1−𝜌
]

2
3⁄

      (Equation 2) 
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Figure 1- The probability distribution of estimated effect 𝜃̂ under the null hypothesis H0: 

𝜃̂ = 0 (left curve) and alternate hypothesis HA: 𝜃̂ > 0 (right curve) with an illustration of 
the probability for detecting trend (power = 1- β). Modified from Tiao et al. (1990). 

Please note that the assumption used to generate Figure 1 above is that both the null and 

alternative hypothesis are normally distributed. While this assumption may not be tenable in some 

cases where statistical power analysis may be needed, Figure 1 serves to illustrate the 

relationships between the factors that affect statistical power. 

 

3 Statistical principles of selected 

methods for trend analysis 
The general concept of trend analysis is that the environmental data series is a function of a time-

dependent trend and a random or stochastic variation (error). Mathematically, this may be written 

as: 

tt tfY  )(
       (Equation 3) 

Where: 

𝑌𝑡, t = t1, t2, t3, . . ., tn, is the data series. This may be the concentration of a specific 

pollutant in the air; 

𝑓(𝑡) is a fixed function of time; 

𝜀𝑡 is the stochastic random variable or the noise term. 
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The null hypothesis is that the data series 𝑓(𝑡) is not dependent on time but is constant. The 

alternative hypothesis is that 𝑓(𝑡) is not constant over time but is some monotonic function of 

time. The idea of trend analysis is to decide on a test statistic and verify that the term 𝜀𝑡 satisfies 

the assumptions of the test statistic. If not, adjustments are made to fulfil the test assumption, and 

the test statistic is constructed, and the null distribution is derived (Yue et al. 2002). Thus the 

various methods of trend analysis in environmental science literature all aim at testing the 

hypothesis that 𝑓(𝑡) in Equation 3 is a constant, or at least changing in a monotonic but negligible 

manner, such that 𝑓(𝑡) can be regarded as a constant, assuming the 𝜀𝑡 are well-behaved. The 

inability of the 𝜀𝑡 terms to meet test assumptions has resulted in different methods of trend 

analysis. While several methods exist in the scientific literature for analyzing trend, the focus of 

this report is on the linear regression and the nonparametric methods (Theil-Sen and Mann-

Kendall). Specifically, the linear regression methods discussed in this report are the generalized 

autoregressive conditional heteroscedasticity (GARCH) and the autoregressive integrated moving 

average (ARIMA). 

3.1 Nonparametric methods 

3.1.1 The Mann-Kendall test 

The use of nonparametric methods such as Mann-Kendall analysis (Mann 1945, Kendall 1975) 

and Theil-Sen trend estimator (Theil 1950, Sen 1968) for trend analyses in environmental 

sciences is very popular (e.g. Kulkarni and von Storch 1995, Wang and Swail 2001, Yue et al. 

2002, Zhang and Zwiers 2004). This is because environmental data are often highly skewed, 

have censored or missing data due to detection limits, or have significant outliers due to the 

occurrence of environmental extremes. Thus, nonparametric methods, which do not assume any 

distribution, are often the most suitable in such circumstances for analyzing trends (e.g., Lins and 

Slack 1999, Douglas et al. 2000, Zhang et al. 2001, Yue et al. 2002). Amongst these 

nonparametric methods, the Mann-Kendall test and the Theil-Sen slope are the most frequently 

used for analyzing trends in environmental sciences. These methods are currently implemented 

in tandem in the current tool used by AEP for trend analysis.  

The Mann-Kendall test also called Kendall’s tau test due to Mann (1945) and Kendall (1975), is 

the rank-based nonparametric test for assessing the significance of a trend. The assumption here 

is that a sample of data Yi, i =1, 2, 3. . . , n are independent and identically distributed (IID) i.e., 

the data points are a collection of independent observations with no trend. The alternative is that 

a monotonic or some other form of trend exists in the data; i.e., conditional on time or any 

sequence in which the data points were collected, a trend can be observed in the data. On that 

basis, Kendall’s tau statistic, which measures some interdependence amongst the observations, 
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is calculated and its statistical significance assessed. The Kendall’s tau statistic in itself is not a 

measure of trend, but rather an indicator of whether a trend exists. 

Kendall’s tau statistic is based on rank sums and calculated by: 

   

𝑆 = ∑ ∑ sgn(𝑌𝑗 − 𝑌𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

;      𝑗 > 𝑖 (Equation 4) 

Where: 

sgn(x) =  {

  1          𝑖𝑓 𝑥 > 0

  0          𝑖𝑓 𝑥 = 0

−1         𝑖𝑓 𝑥 < 0

 (Equation 5) 

The distribution of S (calculated above) under the null hypothesis (H0) is symmetrical and is 

normal in the limit as n becomes large (Wang and Swail, 2001). Under H0, the mean of S is zero 

and, in case of no ties (e.g., no multiple values for the same sampling time), the variance of S is 

given by: 
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

nnn
VS

      (Equation 6) 

3.1.2 The Theil-Sen slope 

The Theil-Sen method (Theil 1950, Sen 1968), which is based on Kendall’s rank correlation, is 

used to estimate trend and is commonly used in combination with the Mann-Kendall test to 

provide both an estimate and a test for trend (e.g., Yue et al. 2002). The Theil-Sen method 

considers measurements Y1, Y2, Y3, . . ., Yn of an environmental variable (say the concentration 

of a pollutant) taken at times t1, t2, t3, . . ., tn, where  t1 ≤ t2 ≤ t3 ≤ . . . ≤  tn (the time intervals do not 

necessarily have to be equal), as independent observations. The gradient Dk, (k=1,2,3,. . . N), for 

each N pairs of observations taken at times tj and ti such that 1 ≤ i ≤ j ≤ n and  
ij tt 

 > 0, can be 

calculated as: 

 

𝐷𝑘 = (𝑌𝑗 − 𝑌𝑖) (𝑡𝑗 − 𝑡𝑖)⁄       (Equation 7) 
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The estimate of trend (𝛽̂) in the data series Y1, Y2, Y3, . . ., Yn can then be calculated as: 
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   (Equation 8) 

The above represents an empirical nonparametric calculation of the median of Dk. The (1 − α) 

confidence interval for 𝛽̂ may be calculated as follows (Wang and Swail 2001): 

1) Compute M1 and M2 using the estimate (Vs) from the Mann-Kendall test described above 

and the (1 − 𝛼 2⁄ ) quantile of the standard normal distribution (𝑍(1−𝛼 2⁄ )) as: 
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2) Determine the order statistics 𝐷𝑀1 and 𝐷𝑀2+1 as the lower and upper (1 − 𝛼) confidence 

limits respectively from the collection of the N gradients (𝐷𝑘). 

An alternative approach for calculating the confidence interval of a Theil-Sen slope is to use a 

bootstrap simulation method (e.g., Wilcox, 2005). The recent version of the TFPW uses the 

bootstrap approach to estimate confidence intervals of the Theil-Sen slope estimates of the trend. 

Details of the bootstrap simulation procedure are presented in Section 4.  

3.1.3 Dealing with autocorrelation in nonparametric trend analysis 

The null hypothesis in the Mann-Kendall test is that the data points are independent and 

randomly ordered and, as discussed above, the Theil-Sen slope is also calculated based on the 

same assumption. However, the effect of autocorrelation causes individual observations in the 

data to be dependent, thus violating this assumption.  

Positive autocorrelation has been shown to increase the probability of detecting a trend in a 

Mann-Kendall test when in fact none may exist. Hamed and Rao (1998) investigated this problem 

and derived a theoretical relationship to calculate the variance of the Mann-Kendall trend test 

statistic for autocorrelated data. They then proposed a modified non-parametric trend test, which 

is suitable for autocorrelated data, based on the modified value of the variance of the Mann-

Kendall trend test statistic.  

Earlier work by Kulkarni and von Storch (1995) and a simulation study by Yue et al. (2002) have 

also demonstrated that positive autocorrelation may result in increased false positives for both the 

Theil-Sen and Mann-Kendall methods. Based on the work by Yue et al. (2002), the recursive or 

iterative pre-whitening procedure has been summarized in the following steps:  
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1) Estimate the slope (𝛽̂) of β of the series tX  using the Theil-Sen method (Sen 1968) and 

then use the estimated slope (𝛽̂) to de-trend the data series tX with: 

 𝜃𝑖 = 𝑋𝑡 − 𝛽̂𝑡     (Equation 10)  

2) The de-trended data series i  is used to estimate the first order correlation coefficient 𝜌̂.  

3) The estimate of 𝜌̂ obtained from step 2 is used to pre-whiten tX : 

          ˆ1ˆ
1  ttt XXX

    (Equation 11) 

4) Re-estimate a new trend parameter 𝛽̂ of the pre-whitened series using the Theil-Sen 

estimator. 

5) Repeat steps 2 to 4 until a new estimate of 𝜌̂ is less than 0.05 and there is no significant 

change in 𝛽̂, as specified in the initial criteria. The final Theil-Sen estimate 𝛽̂ is taken as 

the estimate of trend. The Mann-Kendall trend test is then applied to the final pre-

whitened series to test the null hypothesis of no trend in the data series. 

3.2 Linear regression analysis 
Regression analysis is one of the conventional methods of analyzing trends in environmental data 

(including contaminants). The regression method estimates a variable, often the concentration of 

a pollutant as a well-defined function of time with all applicable standard regression assumptions 

duly tested and accounted for, to appropriately test the null hypothesis of no trend. The linear 

regression method is the most common and assumes that 𝑓(𝑡) in Equation 3 is a linear function 

of time, thus resulting in Equation 12 below: 

tt tY  
    (Equation 12) 

Where: 

𝑌𝑡  is the environmental observation at time t; 

α is a regression parameter representing the intercept; 

β is a regression parameter (slope) that estimates the trend of the environmental 

observations; 

𝜀𝑡 is the random error (white noise) term associated with each observation.  

Given that all the assumptions are met and that the trend is indeed linear, Equation 12 may be 

fitted to the environmental observations by ordinary least squares (OLS) to test the hypothesis 

that the trend (β) is statistically significant. From purely statistical perspectives, the null 

hypothesis of no trend can only be tested using Equation 12 if the following conditions are met: 
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1) The relationship between the environmental data series 𝑌𝑡 and time is linear in the 

parameters α and β; i.e., Equation 12 is the true specification of the relationship between 

the environmental observations and time. 

2) The error (𝜀𝑡) is assumed to be distributed normally with mean = 0 and variance = 𝜎2; i.e., 

𝜀𝑡 ~ IIDN(0, 𝜎2). The reference distribution used to test the null hypothesis of no trend is 

Student’s t-distribution, which is a small sample version of the standard normal curve, 

with mean 0 and a sample-based variance of 𝑠2 𝑛⁄ . An important characteristic here is 

symmetry – Student’s t-distribution (like the standard normal) is symmetric about the 

mean, 0. Thus, skewness can result in the lack of symmetry.  

3) The error (𝜀𝑡) is assumed to be an independent random variable, i.e., there is no 

correlation (no autocorrelation) amongst the 𝜀𝑡’s. The idea here is that the error term in 

the current period t is not dependent on either the error term in the previous period (t - 1), 

the error term in the following period (t + 1), or on error term in any other period (t + i). 

4) The error (𝜀𝑡) is assumed to be identically distributed, i.e., 𝜀𝑡 has a constant variance 

𝜎2 across time (homoscedasticity). 

5) Time is a non-stochastic variable, i.e., time is not recorded in error by the measurement 

or monitoring instrument. If time is recorded in error, i.e., if instead of t, t + ξ is recorded, 

where ξ is random with an unknown distribution, then t is no longer non-stochastic, and 

the standard linear OLS estimation does not apply. 

Data from natural systems seldom meet these assumptions, resulting in the OLS approach not 

being used. If these assumptions are not met, the OLS estimate of the trend (β) may still be 

unbiased but may no longer be efficient, as the standard error of the estimate for β is poor. 

Consequently, any conclusions drawn about the trend may be wrong. Other estimators of linear 

regression had to be explored; usually requiring that some adjustment is made to the data. As 

already discussed above, air quality data are typically associated with the statistical issues which 

tend to violate the assumptions described previously.  

A common approach in linear regression estimation is to transform the data to achieve normality 

and uniform variance. For instance, taking the log-transformation of a lognormal dataset will result 

in a dataset that is normally distributed. While the interpretation of the estimated coefficients may 

not be straightforward, the transformation will allow for valid hypothesis testing and will either 

confirm that the estimated trend in the original units is either statistically significant or not. An 

example of a common transformation that can be used for trend analysis of air quality data is the 

log-linear transformation of the form: 

   log (𝑌𝑡)  =  𝛼 + 𝛽𝑡 + 𝜀𝑡      (Equation 13) 

This equation can be used to transform the series Yt to achieve normality. In such a case, the 

literal interpretation of trend β no longer applies; a unit increase in time no longer results in a β 

unit increase in Yt, but instead, a new value 𝑌𝑡+1  = 𝑌𝑡𝑒
𝛽  is created. Thus, a unit increase in time 
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does not result in a constant increase in Yt anymore. A consequence of a log-linear 

transformation of Yt is to infer a nonlinear trend between Yt and time, although if β is sufficiently 

small, the trend will be approximately linear for the most part. Thus, data transformation to meet 

the above statistical assumptions may sometimes result in problems with the interpretation of the 

results. 

3.2.1 Dealing with autocorrelation and heteroscedasticity: The 
generalized least squares and related approaches 

The effects of autocorrelation and heteroscedasticity can be solved by using an estimate 𝜌̂ of the 

coefficient of autocorrelation and a variance function in a generalized least squares (GLS) 

framework. Details of the implementation of GLS and related methods can be found in standard 

linear regression textbooks (e.g., Neter et al. 1983, Johnston 1984, Graybill and Iyer 1994, Kariya 

and Kurata 2004, Baltagi 2008). The goal is to obtain an efficient estimate of the standard error of 

the regression coefficient β (trend) using the coefficient of autocorrelation (𝜌̂) and the residual 

variance function, in order to correctly test the null hypothesis of no trend. On that basis, several 

related methods have been developed over the years to address this issue. We describe briefly, 

some of the common procedures below. 

Although the methods may be different in nomenclature, they address similar issues to improve 

the reliability of hypothesis testing about the regression coefficients: autocorrelation and 

heteroscedasticity. The weighted least squares and iterative weighted least squares (e.g., 

Cleveland 1979, Carroll and Rupert 1988, Cleveland and Durvlin 1988, Ryan 1997) are 

regression estimation methods designed to address the issue of non-uniform variance using a 

residual variance function. The generalized least squares methods (e.g., Johnston 1984, Kariya 

and Kurata 2004, Baltagi 2008) and mixed effects modeling (e.g., Pinheiro and Bates 2000) 

define more generalized error structures using estimates of the coefficient of autocorrelation and 

residual variance function to address both autocorrelation and non-uniform variance. In both 

cases, it is assumed that the residual variance can be approximated by a simple function which 

can be applied with the estimate of the coefficient of autocorrelation to address both 

autocorrelation and heteroscedasticity. 

Another class of regression estimators worthy of mentioning is the robust estimators. Robust 

estimators have been used extensively to address issues with outliers in regression analysis 

(e.g., Rousseeuw and Leroy 1987, Ryan 1997, 2008). Other research works have developed 

robust estimators to improve statistical inference in the presence of heteroscedasticity (e.g., 

Tofallis 2008) and autocorrelation (Hardin and Hilbe 2012). Also, robust estimators such as 

robust minimax designs (Wiens 1998, 2000) have also been developed to improve statistical 

inference in model misspecification and heteroscedasticity in linear regression analysis. These 
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are all intended to improve inferences on the regression parameters in Equation 12, which in this 

case includes time trend β.  

3.2.2 Dealing with autocorrelation and heteroscedasticity: the ARCH, 
GARCH and ARIMA approaches 

In some cases such as in stock markets, the non-uniform residual variance (heteroscedasticity) 

may be difficult to approximate with a simple variance function. The extremely volatile nature of 

stock market data series often give rise to non-uniform variance with no defined pattern, making it 

difficult to model using the traditional generalized least squares regression estimators. The 

Autoregressive Conditional Heteroscedastic (ARCH) models (Engle 1982) and the various forms 

of Generalized Autoregressive Conditional Heteroscedastic (GARCH) models (e.g. Bollerslev 

1986, Nelson 1991, Ding et al. 1993, Zakoïan 1994) were developed to address the volatility 

(extreme non-uniform of variance) associated with the wide variation of trading prices in stock 

markets over time 

GARCH models have been widely applied in econometrics for volatility modeling and was 

originally proposed by Engle (1982) as Autoregressive Conditional Heteroscedasticity (ARCH) for 

modeling the conditional variance of a financial time series. Bollerslev (1986) further developed 

the idea by including a lagged conditional variance term. This term helped smoothen the 

conditional heteroscedastic function to produce the GARCH models.  

GARCH models have rarely been applied in environmental sciences until recently by Wang et al. 

(2005), Wang et al. (2006), Chen et al. (2008) and Modarres and Ouarda (2013). Wang et al. 

(2005) applied GARCH-type models for analyzing streamflow data from the northeastern Tibet 

Plateau of China and discussed the advantages of GARCH models for addressing conditional 

heteroscedasticity in daily and monthly streamflow data. Chen et al. (2008) developed an 

algorithm based on the GARCH type models for modeling time series of 10-day streamflow of the 

Wu-Shi River in Taiwan and showed that GARCH models are superior for modeling time series 

compared to the traditional linear time series models. In Canada, Modarres and Ouarda (2013) 

used the GARCH approach for modeling daily streamflow data from the Matapedia River in the 

province of Quebec. They compared the GARCH models to the autoregressive integrated moving 

average (ARIMA) models and concluded that GARCH models are superior to the ARIMA models 

for modeling conditional heteroscedasticity. 

The relevance of this method for analyzing air quality data is that the non-uniformity in the 

variance (heteroscedasticity) in air quality data may not follow a specific pattern, but can vary 

widely within short periods (like stock market) in response to changes in ambient environmental 

conditions. These events could be episodic events such as wildfires and may cause significant 

variation in the concentration of a specific pollutant during those events. Addressing this type of 
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heteroscedasticity for air pollution data to provide efficient estimates of standard errors for 

hypothesis testing require the capability of methods such as ARCH and GARCH.  

The basic idea of applying GARCH to linear regression models is as follows: 

1) If we assume that a linear regression model is: 

 tt vtY    (Equation 14) 

Where Yt, α, β, and t are as defined before (see Equation 3), and preliminary analyses show that 

the assumptions for regression analysis that the error term vt is IIDN(0, σ2) are not met; this 

suggests that vt is not well-conditioned and that some adjustments need to be made. 

2) Because air quality data are usually time series, the error term vt will likely follow the 

autoregressive process (i.e., autocorrelation may be present). Thus, the qth order 

autoregressive process (AR(q)) is used to model 𝑣𝑡 as: 
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Where  ρi is the ith order coefficient of autocorrelation and
itv 

is the ith lag of
tv
, i = 1, 2, 3, . . ., q. 

The error term 
t
in Equation 15 now consists of independent observations but with non-uniform 

variance (𝜎𝑡
2). 

3) The GARCH approach is to model the conditional variance (𝜎𝑡
2) of  𝜀𝑡 as: 

 𝜀𝑡  =  𝜎𝑡𝜖;       𝜖 ~ IIDN(0, 1); 
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Where 𝜔, 𝛾𝑖 and 𝜃𝑗 are parameters to be estimated. The above formulation is called the GARCH 

(V, M) model. Both autocorrelation and heteroscedasticity are modelled in the same process 

resulting in better estimates of the standard error of β. This enables a more robust hypothesis 

testing about β. Combined with the autoregressive process in step (2) above, the modelling 

framework is called the AR(q)-GARCH (V, M). This can be implemented both in standard 

statistical packages such as SAS (SAS Institute Inc. 2005) and in R (R Core Team 2018). Note 

that the difference between the ARCH formulation as initially proposed by Engle (1982) and the 

GARCH models is the third term on the right-hand side of Equation 16. The ARCH models do not 

include the term 
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in Equation 16. Also, note that Equation 16 is only one version of the 

GARCH formulation and is comparatively the simplest. A few examples of more complex versions 
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of GARCH typically used in extremely volatile series such as stock markets are: the nonlinear 

asymmetric GARCH (NAGARCH) (Engle and Ng 1993), the exponential GARCH (EGARCH) 

(Nelson 1991), the quadratic GARCH (QGARCH) (Sentana 1995), and the Glosten-Jagannathan-

Runkle GARCH (GJR-GARCH) (Glosten et al. 1993). 

A class of models popular in univariate time series analysis and commonly known as the Box-

Jenkins models (Box and Jenkins 1968) are good candidates for modeling residuals in a 

regression analysis framework. These classes of models, known as the autoregressive integrated 

moving average (ARIMA) models, use the combination of the autoregressive (AR) process, time 

differencing of the series (integration (I)) and moving average (MA) to model and make forecasts 

of time series. These are written as ARIMA(p, d, q), where p is the order of the autoregressive 

process, d is the time interval for differencing to make the series stationary, and q is the moving 

average window. The most common in this class of models are the autoregressive moving 

average models (ARMA) models since in most applications the time series is differenced to 

achieve stationarity before analysis. 

Referring to Equation 14 above, ARIMA can be applied to model the residual component (vt) as 

follows: 

{
 
 

 
 
𝑣𝑡  =  ∑𝜌𝑖𝑣𝑡−𝑖 + 𝜀𝑡

𝑝

𝑖=1

(𝐴𝑅(𝑝))

𝜀𝑡  =  ∑𝛾𝑖𝜀𝑡−𝑖            

𝑞

𝑖=0

(𝑀𝐴(𝑞))

 (Equation 17) 

In Equation 17 above, the autoregressive process models the autocorrelation of vt while the MA 

component is used to smoothen the white noise component of vt (εt) to achieve some form of 

uniformity in the variation of the white noise. The similarity of the formulation in Equation 17 with 

Equation 16 should be noted; the MA(q) in Equation 17 and the ARCH component of Equation 16 

are similar, except that the ARCH part of Equation 16 models the residual variance while the 

MA(q) component models the residuals. 

3.3 Summary 
Whether parametric or nonparametric, each method has its strengths and drawbacks primarily 

due to the nature of environmental data – the presence of uncertainties due to sampling and 

measurement errors, distributional issues, the occurrence of extreme values, autocorrelation and 

sometimes uneven data censorship due to variable minimum detection or reporting limits.  

Autocorrelation is the primary statistical challenge in trend analysis that the methods presented in 

this report will address. The parametric approach (Tiao et al. 1990, Weatherhead et al. 1998, 
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2000), and the nonparametric methods of the Mann-Kendall test (Mann 1945, Kendall 1975)  

used with the Theil-Sen estimator of a trend (Theil 1950, Sen 1968) address autocorrelation 

differently. However, both methods are intended to provide statistically robust estimates and 

inferences about the trend. Pre-whitening the data series before conducting nonparametric 

analysis helps obtain robust estimates of trend test statistics for nonparametric methods, while 

the linear regression methods model the residual errors to address both autocorrelation and 

heteroscedasticity to obtain efficient estimates and tests for trend. 

 

4 Guidance for trend analysis of air 

quality data 

4.1 The purpose of this guidance 
This section provides general guidance on how to conduct trend analysis and provides specifics 

on how to use the three approaches discussed above to conduct trend analysis. Also, based on 

the need for shorter-term analysis of trends, this section also provides guidance on how to use 

monthly data and what issues to expect and how to deal with these issues if monthly data are 

used for trend analysis.  

4.2 Data preparation 
The primary source of air quality data used in this report is the AEP airdata website (formerly 

known as the Clean Air Strategic Alliance (CASA) data warehouse). The data for each station 

considered for trend analysis must be checked to ensure that there are no obvious data gaps or 

errors. Since most station data stored in this database would have undergone the required 

QA/QC checks, the flags associated with the values should be checked to resolve any data 

issues before rejecting or accepting the value. The hourly data must be compiled to obtain 

monthly averages using the following suggested rules: 

• 50% of the total hourly observations must be available before a particular day’s 

observations are included in determining the monthly average. This requirement may be 

a “low bar” to cross when compared to the data completeness criteria of 75%, typically 

used in Alberta for daily data. But as the objective is to estimate the monthly average, 

50% represent a very descent sample size. 

• For a particular month to be included for trend analysis, the month must have valid 

observations (including values below detection limits) available for at least 50% of all 

hours in the month. If not, the month should be assigned a missing value but included in 
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the dataset. Note, 50% is considered a fairly good sample for estimating monthly 

averages. 

• Hourly missing values are treated as missing observations, while values below detection 

limits may be replaced with 0. This is already the case for the data from continuous air 

monitoring stations that are stored in the airdata warehouse. As this guidance is for 

continuous monitoring data, replacing non-detects with 0 is not expected to have a 

significant impact on trend estimates for average concentrations. As non-detects are 

more likely in months with low concentrations and less likely for months with high 

concentrations of the target pollutant, replacing them with 0 should not distort the trend 

for the average concentrations. Moreover, with the exception of SO2 which is typically low 

at non-industrial sites where non-detects are more likely to occur at higher percentages, 

non-detects are typically low for other major pollutants such as NO2 such that their impact 

on the data is minimal.  

• It is desirable to first aggregate data from hourly to daily averages before determining 

monthly averages. This is to ensure that all daily observations are equally weighted. 

• Using the data completeness criteria above may result in missing data for some months. 

In such cases, decision on whether to include the affected year should be made based 

on whether and how the missing could impact the trend estimate. If the number and 

pattern (random, continuous or systematic) of missing data in a particular year could 

significantly impact the trend then the whole year’s data should be excluded from the 

analysis. We recommend that only continuous yearly worth of data be used for trend 

analysis; annual (continuous 12 months) data gaps should be avoided. As a guide 

missing monthly data should not exceed 30% (4 months) if they are consecutive months 

or 50% (6 months) if the pattern is random. 

It is highly preferable to use whole year (from January to December) values. If partial years are 

used, the calendar month needs to be identified and use it as the starting value. For example, if 

the time window starts from May 2005, the starting value of the time variable is 5; subsequent 

months are then numbered in that order. The position of the month in the year determines its 

season and is very important for the method described in this document for modeling 

seasonality. If a particular month has no valid record, that month should be assigned a missing 

value but included in the data. However, if a specific tool such as the “OPENAIR” package in R is 

to be used, requirements for the proper use of the tool should be followed. The suggestions 

herein are applicable for the tool being packaged based on this report. 

4.3 Preliminary data analysis 
The statistical issues present in the dataset should be identified before the trend analysis is 

conducted. It is recommended that more than one method be used for trend analysis so that the 

results can be compared. If statistical inferences made from the different methods are consistent, 

i.e., both of them rejecting or accepting the null hypothesis, then the statistical decision about 
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trend will have high confidence. Note, because the pre-whitening step is based on the first order 

autocorrelation, the nonparametric method may produce less reliable results for a higher order of 

autocorrelation. The pre-whitening step is to “wash-out” autocorrelation and may be successful in 

doing so if the first-order autocorrelation is the issue. In most cases, monthly averaging time 

periods may be enough to limit the autocorrelation problem to a first-order autocorrelation 

problem. 

The first task is to examine the data for any unusual distributions and the presence of any 

apparent outliers and influential values. Simple histogram plots may help display the distribution 

of the data; a bi-modal pattern might appear due to strong seasonality, particularly for NO2. The 

presence of outliers may result in statistical contamination of the data and may lower the 

statistical power to detect a trend. However, this will likely be a lesser issue in air quality data, 

especially if hourly data are rolled-up into monthly data. However, if there is a significant amount 

of outliers in the monthly average themselves, the dataset may need to be investigated further for 

issues that might have caused such extreme values.  

US EPA (2006, page 115-120) presents an extensive discussion of diagnostic tests to identify 

potential outliers and guidance on how to select a statistical test for outliers. A step-by-step 

procedure for conducting an outlier test using selected methods is also presented. However, for 

this guidance, no detailed discussion of outlier analysis is included, as outliers are not currently 

considered as a serious issue for trend analysis of air quality data when monthly averages are 

used. The amount of hourly data averaged to obtain monthly data (744) is large enough to 

significantly reduce the impact of outliers if they are only a few data points. Furthermore, data 

stored in the EMSD airdata warehouse go through significant QA/QC checks to ensure that errors 

are identified and removed, corrected or flagged. 

As a general guide however, monthly average data points suspected to be outliers should be 

included for further analysis unless there are good reasons recorded in the EMSD airdata 

warehouse to indicate that those values are not valid data points. Values suspected to be outliers 

may be influential values reflecting the occurrence of unusual environmental and not necessarily 

erroneous data points, and thus should not be discarded. If a monthly average has been 

confirmed to be an error, it should be designated as a missing value. Simple methods such as 

graphical time series plots of monthly averages may help identify suspected outliers for further 

investigation. 

4.3.1 Accounting for seasonality 

Ambient concentrations of air quality parameters tend to have seasonal patterns, which adds 

more variability to the data and lowers the statistical power for detecting a trend. While 

nonparametric smoothing methods such as LOESS (local regression) (Cleveland 1979) can be 

used to model and account for seasonality, the harmonic regression typically used in time series 
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analysis to examine the cyclical behavior of time series is recommended. The goal is to 

decompose the time series to remove the seasonal (harmonic) component of the series. Given 

that the LOESS smoothing method is flexible and is heavily data dependent, there is an 

increased likelihood that part of the trend may be removed through the de-seasonalizing process, 

especially if the smoothening is not applied correctly. Thus the resulting de-seasonalized series 

may show a trend that is smaller than the actual trend in the original series.  

As presented in Tiao et al. 1990 and Weatherhead et al. (1998, 2000), the combination sine and 

cosine functions are used to model seasonality (St) shown in Equation 18: 

𝑆𝑡 =∑{𝛽1,𝑗𝑠𝑖𝑛 (
2𝜋𝑗𝑡

12
) + 𝛽2,𝑗𝑐𝑜𝑠 (

2𝜋𝑗𝑡

12
)}

𝜆

𝑗=1

 (Equation 18) 

Where: 𝜆 is the number of sine and cosine terms needed to completely account for seasonality (a 

maximum of 4 may be enough according to Weatherhead et al. (1998, 2000)), 𝛽1,𝑗 and 𝛽2,𝑗 are 

the parameters associated with the jth sine and cosine terms respectively. 

4.3.2 Test for autocorrelation 

The next and perhaps the most important task was to test for autocorrelation. Since monthly data 

is being used as opposed to annual data, the likelihood of autocorrelation is higher. Most 

standard statistical packages, such as the R-software, can do this test using an autocorrelation 

function (ACF) or partial autocorrelation function (PACF). Most statistical packages are capable of 

producing the Durbin-Watson statistic (Durbin 1969), a test statistic for autocorrelation. When 

there is no autocorrelation, this statistic is approximately equal to 2. As a guide, however, values 

between 1.5 and 2.5 usually indicate there is no autocorrelation. Values smaller than 1.5 indicate 

positive autocorrelation while values greater than 2.5 indicate negative autocorrelation. The 

statistical package may include probability of significance of the Durbin-Watson statistic to help 

with the statistical inference on autocorrelation.  

The following procedure can be followed to test for autocorrelation manually using simple 

statistical tools, such as Microsoft Excel: 

1) Deseasonalize and de-trend the monthly data using simple linear regression of the form: 

𝑌𝑡 =  𝛼 + 𝑆𝑡 + 𝛽𝑡 + 𝑣𝑡 (Equation 19) 

Where: α is the regression intercept, St is seasonality term (Equation 18), β is the time coefficient 

(trend) of the data and vt is the error term assumed to be autocorrelated. De-seasonalization is a 

critical step, as monthly data is affected by seasonal variations. The parameters α, β, 𝛽1,𝑗 and 𝛽2,𝑗 

can be estimated by the preliminary regression fit of Equations 19. 
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2) Calculate the error terms  tSYv ttt  ˆˆˆ  . Note that the “hat” designations are 

meant to show that the above variables are estimates. 

3) Calculate the coefficients of autocorrelation ρi by estimating the regression equation 

given in Equation 15 above. 

For monthly data, a maximum of q = 4 may be enough, and for the case study reported in the 

later section, only the first order autocorrelation coefficient was statistically significant in most of 

the datasets. Therefore for most analyses, the first order autocorrelation will be sufficient. 

4) Regardless of the presence and the nature of autocorrelation, it is recommended that 

more than one trend analysis method be used so that the results can be compared. The 

diagnostics should only confirm the implementation details to use for each method, e.g., 

in the case of GARCH and ARIMA, the autocorrelation diagnostics should provide 

guidance on which values of q to use in the autoregressive part as shown in Equation 15 

and Equation 17. If both first and second order autocorrelations are significant, the q 

should be set to 2. Note, the current setup of Theil-Sen/Mann-Kendall method requires 

the diagnoisis of autocorrelation for pre-whitening to be implemented, the order of 

autocorrelation is not needed. 

4.3.3 Test for heteroscedasticity 

This test is useful for only the parametric option. Although often subjective, graphical plots of the 

error terms (vt) against independent variables (in this case time) or the approximate predicted 

terms 
tSY tt  ˆˆˆˆ 

are the easiest way to assess non-uniform variances. If the pattern of the 

scatter plot of vt against, for example, 
tŶ
or t does not show noticeable non-uniformity (e.g., see 

Figure 2(a)), then there is no heteroscedasticity. Figure 2(b) shows a clear case of non-uniform 

variance, as the points appear to be more widely scattered with increasing time.  
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Figure 2- Variation of error variance with the independent variable time. Figure 2(a) shows 

the case of uniform variance with the points scattered almost evenly across time, while 

Figure 2(b) shows the case of non-uniform variance, where the scatter of the points appear 

to be increasing in width with time. Note that the data presented in this Figure were created 

for illustration; they are not real air quality data. 

While plots like Figure 2 may be enough to test for non-uniform variance, more sophisticated 

statistical tests do exist in some standard statistical packages. For example, the modified 

Breusch-Pagan test (Breusch and Pagan 1979) and the White test (White 1980) are both 

available in SAS. Note that the plots like those in Figure 2 may not show a clear picture of non-

uniform variance if the sample size is small, in which case, the test can be done by including an 

option in the command syntax in the statistical package being used. 

Briefly, the Breusch-Pagan test can be conducted as follows using the null hypothesis of 

homoscedasticity (no heteroscedasticity): 

i) Fit Equation 19 to the data using OLS and estimate the regression residuals (𝑣̂𝑡); 

ii) Regress (𝑣̂𝑡
2
) on the k independent variables in the original regression equation (i.e., 

Equation 19) and obtain the goodness of fit statistic R2. Note: for trend analysis, time 

and seasonality variables are the independent variables;  

iii) The Breusch-Pagan test can be done using either F-statistic or the Lagrange 

Multiplier (LM) statistic. Calculate the F-statistic as: 𝐹 =  
𝑅2(𝑛−(𝑘+1))

𝑘(1−𝑅2)
  if the F-statistic is 

chosen for the test or the Lagrange Multiplier (LM) statistic as: 𝐿𝑀 =  𝑛𝑅2, if the LM 

statistic is chosen for the test; where n is the sample size; 
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iv) Calculate the p-value for the F-statistic using F-distribution with (k, n-(k+1)) degrees 

of freedom, if the F-statistic is used for the test or the p-value for the LM statistic 

using 2 distribution with k degrees of freedom, if the LM statistic is used for the test; 

v) If the p-value is smaller than a critical probability value set prior to the analysis (e.g., 

0.05) then the null hypothesis of homoscedasticity is rejected, i.e., there is 

heteroscedasticity. 

The steps for conducting the White test are similar to the Breusch-Pagan test outlined above 

except that, in step ii) above, 𝑣̂𝑡
2are regressed on the independent variables as well as their 

squares and cross-products to obtain the R2. This is equivalent to regressing 𝑣̂𝑡
2 on the predicted 

dependent variable 𝑌̂ and its square 𝑌̂2 to determine the R2. The R2 is then used to complete the 

White test following steps iii) to v) above. Note that the Breusch-Pagan and the White test both 

use R2 to calculate the test statistic. The only difference is how the R2 is obtained. 

4.4 Nonparametric trend analysis 
As described in Section 3, the nonparametric option described in this document is a combination 

of the Mann–Kendall test (Mann 1945, Kendall 1975) and the Theil-Sen trend estimator to provide 

both the test for the presence of trends as well as the magnitude and confidence limits of the 

trend. Although details of the principles and theories of these two methods have been discussed 

in Section 3, additional practical details of the two methods are presented below. 

4.4.1 The Mann-Kendall trend test 

Recall the discussion in Section 3.1 that for a given sample of n random variables (X1, X2, . . . , 

Xn), the Mann-Kendall statistic S is calculated by Equations 4 and 5. The distribution of S is 

symmetrical and normal if a minimum sample size is met (Wang and Swail 2001). It must be 

emphasized here that adequate sample size is required for this condition to hold. As indicated in 

Yue and Wang (2004), the minimum sample size required is 8. From Section 3.1 above, the 

mean of S is zero, and the variance is given by Equation 6. Based on these properties, the test 

statistic can be computed (Wang and Swail, 2001, Yue and Wang 2004) as: 
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All variables in Equation 20 are defined as in Equations 4 and 5. Given that the S statistic is 

approximately normal, the test statistic Z is also approximately normal, and  Z(1-α/2) is set as the 
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critical value;  where Φ(𝑍(1−𝛼/2))  =  𝛼/2 and Φ(… ) is the standard normal cumulative distribution 

function and α is the significance level of the test (Hirsch et al. 1982). A conclusion of no trend is 

made if |𝑍| < 𝑍(1−𝛼/2). A positive Z value indicates an increasing trend and, a decreasing trend is 

indicated by a negative Z value (Wang and Swail 2001). The Mann-Kendall test can be 

implemented manually using the above procedure and formulas in Equations 4, 5, 6 and 20. 

4.4.2 The Theil-Sen slope estimator 

The Theil-Sen method (Sen 1968), which is based on Kendall’s rank correlation, is used to 

estimate trend (𝛽̂) as presented in Equations 7 and 8. Although the confidence interval of 𝛽̂ can 

be calculated as described in Wang and Swail (2001) and presented in Section 3.1.2 above, the 

process of determining the confidence interval of the median presented in Gilbert (1987) may also 

be used. The use of bootstrap simulations (e.g., Wilcox, 2005) to calculate the confidence interval 

of 𝛽̂ are also common in recent years. A brief outline of the bootstrap method is presented below. 

The recent version of the TFPW uses the bootstrap approach to estimate confidence intervals of 

the Theil-Sen slope estimates of trend. In this report, however the Mann-Kendall test present in 

Section 4.4.1 is used for statistical inference. 

4.4.3 Implementing nonparametric methods 

Since the Mann-Kendall method relies on data independence to produce a valid test for trend, if 

the preliminary tests above establish the presence of autocorrelation, then the observations are 

not independent, and modification has to be made. Earlier research work by Kulkarni and von 

Storch (1995) and a simulation study by Yue et al. (2002) have demonstrated that positive 

autocorrelation may result in an increased occurrence of false positives. Following the work of 

Yue et al. (2002), a recommended approach for implementing the iterative pre-whitening for 

monthly data (assuming autocorrelation has been determined to be an issue) is as follows:  

1) First, because monthly data, which is affected by seasonal variation, is used for trend 

analysis, the data series tY  has to be deseasonalized. This is done by subtracting the 

seasonality component from Equation 18 above as:  

.

;ˆ

1 ttt

tttt

vv

vtSYX









  

(Equation 21) 

Where 𝑆̂𝑡 is as given in Equation 18. 

2) The next step is to use the deseasonalized series tX  in Equation 21 above to estimate 

the slope (𝛽̂) of β using the Theil-Sen method (Sen 1968) described above. The slope 

estimate is then used to de-trend the data series tX : tX tt  ˆ  
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3) Next, the de-seasonalized and de-trended data series i  is used to estimate the first 

order correlation coefficient 𝜌̂.  

4) Next, the estimate of 𝜌̂ obtained from step 3) above is used to pre-whiten tX :

    ˆ1ˆ
1  ttt XXX  and a new trend parameter 𝛽̂ is re-estimated using the Theil-

Sen estimator. 

5) Steps 2 to 4 are repeated until a new estimate of 𝜌̂ is found to be less than 0.05 and there 

is no significant change in 𝛽̂ as specified in the initial criteria. The final Theil-Sen estimate 

𝛽̂ is taken as the estimate of the trend. The Mann-Kendall trend test is then applied to the 

final pre-whitened series to test the null hypothesis of no trend in the data series. 

A suggested criterion for deciding on whether the change in 𝛽̂ is significant is to set a small 

change 𝛿 in 𝛽̂, where 𝛿 is the maximum change that is considered to be negligible such that 𝛽̂ −

𝛿 ≈ 𝛽̂ . Once the change in 𝛽̂ is less than 𝛿, the iteration is stopped. A guide to selecting the value 

of 𝛿 is to examine the order of magnitude of the data being analyzed. A preliminary linear 

regression fit to the data may give a rough idea of the magnitude of the trend to expect. A small 

percentage of the estimated trend in this preliminary analysis (say 0.01%) may be a good 

estimate of 𝛿. The steps for implementing iterative pre-whitening are summarized in the flowchart 

presented in Figure 3. The confidence interval of the slope estimate 𝛽̂ may be calculated as 

described in Section 3.2 above or by the bootstrap simulation.  
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Figure 3- A flowchart showing the implementation process of the iterative Trend-Free Pre-

Whitening method for nonparametric estimation of air quality trends used in the present 

study. 

 

If a bootstrapping simulation is to be used to construct a confidence interval for the estimated 

Theil-Sen slope, the simulation should be done on the final pre-whitened data series. The 

following is a suggested procedure for implementing bootstrap simulation on the pre-whitened 

data series: 

1) Decide on the subsample size using the minimum sample size needed to implement the 

Theil-Sen slope estimation successfully as a guide. Although technically a sample size as 

small as five can be used to implement Theil-Sen slope estimation, a smaller subsample size 

will likely result in a much wider confidence interval, particularly if the original sample 

(bootstrap population) size is much larger. The idea of bootstrapping is to calculate the Theil-

Sen slopes for a sufficiently large number of subsamples and then determine the α/2 and (1 - 
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α/2) percentiles as the lower and upper confidence limits, respectively. While there are 

various suggestions in literature to help guide subsample size selection, a detailed, objective 

but somewhat tedious approach is: 

a) Decide on a subsample size and complete the simulation; 

b) Change the random seed and rerun the simulation and compare the results in a) 

to the results obtained using the new seed; 

c) If the results are very different, then the selected subsample size is too small. 

Increase the subsample size to a larger number, then repeat steps a) and b) and 

compare the results. Stop when the results are similar. This is a judgement call, 

but as a guide, an overlay histogram of the dataset in a) with the dataset in b) 

may help judge the similarity between the two datasets. 

2) Decide on the number of subsamples (replicates) to select (N). A recommended 

minimum of 100 subsamples may be used. Note: a larger number of replicates may take 

a long time to complete. However, for more accurate results, relatively larger numbers 

are recommended. The validity of results from bootstrapping is dependent on the 

convergence of the simulation exercise. Therefore, an adequate number of replicates are 

needed for the simulation exercise to converge. A key feature of bootstrapping, however, 

is its ability to converge rather quickly, making the number of replicates required less 

onerous. 

3) Calculate the slope for each subsample and then the empirical α/2 and (1 - α/2) 

percentiles for the collection of the N slopes as the lower and upper confidence limits. If 

desired, the standard error of the collection of N slopes can also be calculated. 

4.4.4 Some limitations of the nonparametric methods  

While these methods provide good tests and estimates of the trend, the Mann-Kendall and the 

Theil-Sen methods have limitations. One noticeable limitation is the complexity introduced when 

both first-order and second-order autocorrelations are statistically significant. Pre-whitening would 

have to remove both orders of autocorrelation, and some analytical challenges may arise as a 

result. As there are no well-established methods of pre-whitening when both first and second 

order autocorrelations exist, the hope is that the second-order autocorrelation may indirectly be 

removed through the pre-whitening process described above. 

Generally, under normal conditions where the parametric analysis assumptions are met, the 

parametric methods have more statistical power than the nonparametric rank-based methods. 

Also, the assumption of normality is needed to test the hypothesis of Mann-Kendall test. Although 

meeting the assumption of normality for the Mann-Kendall test might be easier because of the 

general stability of the Mann-Kendall statistic to skewness, sufficient sample size is needed for 

this assumption to hold.  
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4.5  Parametric methods 

4.5.1 Linear regression with GARCH and ARIMA 

As previously discussed, the variance in air quality data can be volatile due to complex 

meteorological conditions and emission sources. This variation may not follow a particular pattern 

thus requiring the use of a much more sophisticated approach like GARCH to handle the inherent 

variance in air quality data. Recall from the previous sections that the basic idea of applying 

GARCH to linear regression models for the trend in air quality is as follows: 

1) If the preliminary analyses show the presence of autocorrelation and non-uniform 

variance, this suggests that the error term vt in Equation 19 is not well-conditioned and 

that some adjustments need to be made. 

2) Use the qth order autoregressive process (AR(q)) to model 𝑣𝑡 as given by Equation 15 

and obtain the error terms t  which are independent observations but may have non-

uniform conditional variance (𝜎𝑡
2), i.e., they may not be identically distributed. The value 

of q should have been decided on in the preliminary diagnostics for autocorrelation. 

3) Model the conditional variance (𝜎𝑡
2) of 𝜀𝑡  using the GARCH (V, M) model (Equation 16). 

The total number of regression parameters to be estimated will depend on the values of M and V. 

The steps 1) to 3) above can be implemented in either SAS (SAS Institute Inc. 2005) using the 

AUTOREG procedure in SAS/ETS or in the R using the RUGACH package (Ghalanos 2013) as 

described in the next sections. 

4.5.2 Test for the order of autoregression and GARCH (V, M) effects 

The process of applying AR(q)-GARCH(V, M) begins with a decision on the values of q, V, and M 

to specify. The parameter q is the order of autocorrelation to specify. For monthly air quality data, 

a maximum order of 2 (but 1) is typically sufficient for most analytical work, and this value would 

have been determined in the preliminary diagnostics section described above. If not, statistical 

packages, such as SAS and R, provide customized procedures for deciding on which 

autocorrelation coefficients to include (the value of q). In SAS/ETS, the stepwise autoregression 

procedure can be used (SAS Institute Inc. 2005). 

The decision on the optimum values for V and M are not straightforward and may require some 

optimization routines (e.g., Lee and King 1993, Wong and Li 1995). The recommended approach 

in this report is to use trial-and-error starting with V = 1 and M = 1 and then examining the fitted 

coefficients in each case for statistical significance. However for monthly data, V = 1 and M = 1 

may be enough. This simplifies Equation 16 to: 

 
2

1

2

1

2

  ttt   (Equation 22) 
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Where ω, γ and θ are the GARCH parameters. 

4.5.3 Implementing AR(q)-GARCH (V, M) 

The AR(q)-GARCH (V, M) can be implemented in most standard statistical packages such as 

SAS and R. In R, the AR(q)-GARCH (V, M) can be implemented in the RUGARCH package 

(Ghalanos 2013) and because R is a free software that is widely used, the discussions that follow 

will focus on R only. The installation of the R-package comes with detailed documentation 

regarding the features of the package, which can be found in the R help section. However, the 

general process is summarized as follows:  

1) Creating variables: All variables to be used for modeling must be defined or created. 

Seasonality variables may be generated using Equation 18 or if some other method is 

chosen to deseasonalize the data, such as the LOESS process, seasonality variables may 

not be relevant moving forward and can be ignored.  The response variable (e.g., monthly 

average concentration) of the pollutant (e.g., SO2 or NO2) is also created as discussed 

earlier. 

2) The seasonality variables and the time variable (months) are combined into an exogenous 

dataset as shown in Textbox 1 below. If the data had already been deseasonalized, then 

the only exogenous (independent) variable is time (month). 

 

3) The model is specified as shown in the sample R-code given in Textbox 2 below as 

follows (the format of the model specification is known as the ugarch.spec): 

a. The variance model GARCH (V, M) is defined in the variance.model section of 

the ugarch.spec. In this sample and for the analytical work done in this report, a 

much simpler variance model is specified (i.e., sGARCH).  

b. The mean model is defined to include the main regression model and also the 

autoregressive process (AR(q)) by including the external regressors (the 

exogenous dataset specified in step 2) above), under the mean.model section. 

The armaOrder = (q, p) specifies the autoregressive parameter q and the moving 

average parameter p. In the sample code below (Textbox 2), the moving average 

parameter is excluded by replacing p with 0.   

Textbox 1: Code for creating a set of independent variables 
 
##Dependent variable - e.g., Monthly average NO2 concentration: 
yc <- data$no2  ##Note: data is read into R from an external source, e.g. excel  
 
## Independent or exogenous set of variables 
exog <- cbind(s1, s2, s3, s4, c1, c2, c3, c4, time) 
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c. The model distribution is specified under the distribution.model section; the 

distribution could be normal, skewed normal, etc. (the complete list is given in the 

R documentation of the RUGARCH package). For monthly data, normal (“norm”) 

may be good enough to approximate the distribution of the residuals. The 

skewed normal (“snorm”) option can be used if some skewness is observed in 

the fitted residuals.  

 

 

4) The model is then fitted to each set of pollutant data using the ugarchfit and specifying 

the response variable and the fit specifications developed in steps 3)a, 3)b and 3)c above 

(Textbox 2). 

 

                

4.5.4 Some limitations of the GARCH approach 

While the GARCH method is sufficient to address both autocorrelation and heteroscedasticity, the 

non-normality problems may not be addressed sufficiently. Although options exist in both 

SAS/ETS and the RUGARCH package in R (Ghalanos 2013) for specifying alternative 

distributions for the residuals (besides normal) to improve the standard error estimates, the 

conditional distribution of the residuals must be understood in order to specify the right option. 

The skewed-normal (snom) option is robust enough for most linear regression residual as they 

are typically unimodal distributions that show little to moderate skewness. Another limitation is 

that the GARCH requires a minimum of 100 data points to implement. Realistically, however, a 

sample size of less than 100 may not show the extreme volatility that GARCH was intended for; 

i.e., the addition of the term 𝜃𝜎𝑡−1
2  in Equation 22 in the GARCH specification was intended to 

model this extreme volatility. This term becomes redundant for smaller sample sizes and may 

Textbox 3: Fitting the GARCH model 

##Fitting GARCH(V, M) with skewed normal distribution 
Garch_fit        <- ugarchfit(data = yc, spec = fit.spec) 

Garch_fit 

 

Textbox 2: Creating fit specification for the GARCH model 
 
## Fit specification: AR(q)-GARCH(V, M) with skewed normal distribution (snorm) 
fit.spec   <- ugarchspec( 
              variance.model = list(model = "sGARCH", garchOrder = c(V, M)),  #V=1, 

M=1 
               mean.model  = list(armaOrder = c(q, 0), include.mean = TRUE, 
                external.regressors = exog),  

                        distribution.model   =   "snorm") 
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lead to some illogical results in some instances (Ghalanos 2013). Thus constraints have been 

added in both the SAS/ETS software and the RUGARCH package in R to prevent GARCH from 

running if the sample size is less than 100. This may be solved by reducing GARCH (V, M) to 

ARCH (V). This is an easy adjustment to make in SAS, but not so easy in R. If using R; the 

recommendation is to fit the ARIMA model to the data as discussed in Section 4.5.5 below, 

drawing on the similarity between ARCH (Equation 16) and the ARIMA (Equation 17) models. 

4.5.5 Implementing the ARIMA (p, d, q) 

The implementation of the ARIMA method is very similar to the to the GARCH approach, but 

much more straightforward. This can be done with SAS or R. As with the GARCH approach 

discussed above, the implementation using R is described by the following steps: 

1) The variables are created as done in Section 4.5.3, including a variable to model 

seasonality. However if some other method is used to deseasonalize the data, 

seasonality variables should be excluded.  The response variable is also created.  

2) The seasonality variables and the time variable (months) are combined into an 

exogenous dataset as done in Section 4.5.3. If the data had already been 

deseasonalized, then the only exogenous (independent) variable is time (month). 

3) The model is then fitted to each set of pollutant data using the set of independent 

variables and the response variable. The sample R code is presented in the Textbox 4, 

below. The value of p is the order of autocorrelation, d is the differencing parameter (set 

to 0 for this study as differencing is not needed) and q is the moving average parameter 

(1 or 2 will be suitable for monthly data that has been deseasonalized, e.g. using 

methods described in Section 4.3.1).  

 

 

Textbox 4: Code for fitting ARIMA 

##Dependent variable - e.g. Monthly average NO2 concentration: 
yc <- data$no2  ##Note: data is read into R from an external source, e.g. excel 
 
## Independent or exogenous set of variables 
exog <- cbind(s1, s2, s3, s4, c1, c2, c3, c4, time) 
##Fitting the ARIMA model 
arima_fit     <-  arima(yc, order = c(1,0,1), xreg = exog) #p=1 d=0 and q=1 
arima_fit 
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4.6 Deriving annual trends from monthly trends 
The above proposal suggests the use of monthly averages for analysis, but most conclusions 

about trends are made on an annual basis, so the monthly trends need to be converted to annual 

trends. An easier way of looking at this issue is to look at the trend as a time-dependent gradient 

or monthly increase (or decrease) rate. This way, the annual trend can be derived by multiplying 

monthly trend (β) by 12 months, i.e., year trend is 12β. 

Alternatively, the independent variable (month) could be annualized by dividing by 12 (the 

number of months in a year) and trend analysis implemented. As trend measures the change in 

pollutant concentration per unit change in time, the estimated trend will represent annual 

changes.  

4.7 Additional remarks 
The ideas proposed in this report will be capable of addressing most trend analyses needs. A 

package (tool) has been created in R and is being finalized for user convenience.  

While it is desirable to implement both parametric and nonparametric methods such that their 

results can be compared, one may be better in some cases than the other. For instance, when 

second-order autoregressive processes or higher (AR(2+)) are encountered, the nonparametric 

methods presented above may not be applicable, as there are no well-established methods for 

conducting iterative pre-whitening when AR(2+) is the problem. 

As a guide, if results from two or more selected methods are inconsistent, then there are two 

possible problems; 1) incorrect implementation of one or both methods and 2) the conditions 

necessary for one method to work well is not satisfied. For the first problem, the procedure used 

to implement both methods must be re-checked to ensure they were properly implemented. Next, 

the issues investigated in Section 4.3 above should be re-checked to make sure that they were 

properly identified and addressed.  

If both problems are addressed, and the results are still inconsistent, the parametric regression 

methods described here adequately address autocorrelation and heteroscedasticity and 

theoretically should have more statistical power than the nonparametric method. If the 

examination of the regression residual shows severe departures from a normal distribution (which 

will rarely be the case), the preference should be given to the result of the nonparametric method. 

The parametric regression analysis provides outputs that include test statistics and graphics such 

as histograms or normal q-q plots of the regression residuals to support the test for normality. 

These outputs can be examined for any cases of non-normality. Although no separate or 

additional tests for normality is necessary, the regression residuals can be saved and used to 

conduct normality test using simple statistical tool such as R or Microsoft excel.  
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5 Case studies of trend analysis  

5.1 Introduction 
This section presents the results of a case study that compared three trend analysis approaches: 

1) A nonparametric approach that uses the Theil-Sen method to estimate a trend and the 

Mann-Kendall method to test the null hypothesis that the trend is not statistically 

significant. 

2) The parametric linear regression method for estimating trend and using the GARCH 

method to estimate the standard error for the trend to test the null hypothesis that trend is 

not statistically significant. 

3) The parametric linear regression method for estimating trend and using the ARIMA 

method to estimate the standard error for trend so that the null hypothesis can be tested. 

As previously stated, the methods of trend analysis in the existing TFPW tool utilizes annual 

summaries of hourly air quality data to assess the trend. This implies that as many as 8,760 data 

points could potentially be rolled up into a single data point per year for annual trend assessment. 

For a short-term analysis of 2 to 5 years, these annual summaries of 2 to 5 data points do not 

provide an adequate sample size to assess a trend accurately. Also, using annual averages 

precludes the examination of an intra-annual trend. Using monthly data helps increase the 

sample size for trend analysis while enabling intra-annual trends to be assessed. 

5.2 Data sources 
Sample data for this study came from three air monitoring stations; these are Anzac, Fort McKay 

- Bertha Ganter, and Fort McMurray - Athabasca Valley. These stations were selected arbitrarily, 

and the results are for illustration only. The hourly concentrations of SO2 and NO2 dating back to 

1996 for these stations were downloaded from the Clean Air Strategic Alliance (CASA) data 

warehouse (now known as the airdata warehouse on the EMSD website). The concentrations 

were converted from parts per million (ppm) to parts per billion (ppb) before carrying out further 

analysis to ensure that all of the data was in the same unit. 

Examination of the data for completeness revealed data gaps in the years earlier than 2000. 

Therefore, the NO2 and SO2 data for Anzac station were chosen from February 1, 2006 to August 

31 2015, while similar data for the other two stations; the Fort McKay - Bertha Ganter, and the 

Fort McMurray - Athabasca Valley monitoring stations, were chosen from January 1, 2000 to 

August 31, 2015, to ensure there are no significant gaps in the data. Thus the study used 116 

months of data from Anzac and 189 months of data from each of Bertha Ganter and Athabasca 

Valley. The criterion for including data for specific months in the analysis was based on the 
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availability of data; at least 50% of the total number of hours for that month at the specific station. 

Based on this criterion, the month of January 2006 was dropped from the Anzac dataset since 

NO2 data was available for only 190 hours out of the total 744 hours and for SO2, only 121 hours 

out of the 744 hours were available during that month, each representing less than 50% in both 

cases. A summary of the percentage count of available data per month and the number of 

months included in the analysis for each station is presented in Table 1. The percentages in 

Table 1 show that all monthly averages were obtained from over 50% of valid data for each 

month. 

Table 1- Summary of percentages of hours of available valid data per month for each 

station and the number of months included in the analysis for each station and each 

parameter (NO2 and SO2).  

Monitoring station Number of 

months 

Percentage of available hourly data per month 

Minimum Average Maximum 

NO2 data 

Anzac 115 85.22 93.41 96.24 

Bertha Ganter  188 51.34 92.45 95.16 

Athabasca Valley 188 70.56 93.74 95.24 

SO2 data 

Anzac 115 85.42 94.33 95.56 

Bertha Ganter  188 77.96 94.23 95.43 

Athabasca Valley 188 70.70 94.01 95.43 
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5.3 Data evaluation and summaries 

5.3.1 Data summaries 

The hourly data for NO2 and SO2 were summarized to obtain the average concentrations for each 

month at all three stations. Given the vast amount of data in these summaries, time series plots 

were created for average concentrations, and the number of observations (hourly data) used to 

derive the average concentrations for NO2 and SO2 for each month. Table 2 presents overall 

summaries (minimum, mean, median and maximum) of hourly concentrations for NO2 and SO2 

from the three stations (Anzac, Fort McKay – Bertha Ganter and Fort McMurray – Athabasca 

Valley).  

Table 2- Overall summaries (minimum, mean, median and maximum) of hourly 

concentrations for NO2 and SO2 from the three stations. 

Station Name 

Summaries of hourly concentrations (ppb) 
Number of 

Samples 
Maximum  Minimum  Mean  Median  

NO2 

Anzac 84.00 0.00 2.83 1.40 78,440 

Bertha Ganter 53.00 0.00 6.39 3.00 126,974 

Athabasca Valley 183.00 0.00 9.91 7.00 128,734 

SO2 

Anzac 106.00 0.00 0.54 0.00 79,221 

Bertha Ganter 184.00 0.00 1.27 0.00 129,402 

Athabasca Valley 84.00 0.00 0.82 0.00 129,099 

Although values below detection limits (or no-detects) are not flagged in the database, the 0 

values in the tables are assumed to be non-detects. The detection limits are 1 ppb for SO2 

monitors (model 43i) and 0.4 ppb for NO2 monitors (model 42i) (personal communication with 

Gary Cross, Ambient Air lead, WBEA). Note, the median values of SO2 are 0 indicating that for 
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SO2, at least 50% of the hourly measurements used for this analysis are below detection limits. 

The NO2 data did not have this issue as the percentage non-detects at all 3 stations were below 

10%. As the interest for this study was to estimate trend, all the non-detects was assumed to be 0 

for both NO2 and SO2. 

The time series plots for NO2 and SO2 are presented in Figures 4, 5, and 6 for Anzac, Bertha 

Ganter and Athabasca Valley, respectively. Note, the intervals on the horizontal axis (date) are in 

days although the axis formats are “month-year” formats. Therefore, the uneven number of days 

in months and leap years are the reasons for the uneven labels shown on the horizontal axis for 

the individual years. Nevertheless, the goal was to show a general trend not specific values. The 

time series plots of NO2 and SO2 for all stations reveal similar seasonal patterns for each 

parameter; NO2 showed strong seasonal variation, in line with general expectations that winter 

months are expected to show relatively higher levels of NO2. The seasonal patterns for SO2 

concentrations are not as strong as they are for NO2.  

 

 

Figure 4- Time series graphs for NO2 and SO2 for Anzac showing monthly average 

concentrations (ppb) (from February 2006 to August 2015). 
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Figure 5- Time series graphs for NO2 and SO2 for Fort McKay - Bertha Ganter showing 

monthly average concentrations (ppb) (from January 2000 to August 2015). 
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Figure 6- Time series graphs for NO2 and SO2 for Fort McMurray - Athabasca Valley 

showing monthly average concentrations (ppb) (from January 2000 to August 2015). 

A visual inspection of the graphs in Figures 4, 5 and 6 does not reveal data points that deviate 

strongly from the general patterns of the data series, except in Figure 5(b) where a spike in SO2 

concentration is observed at Fort McKay – Bertha Ganter for the month of October 2005. 

However, this value (4.5 ppb) is not considered an unusual value when seasonal variation are 

taken into account. Beside there are no records in the EMSD database to suggest that the SO2 

data for October 2005 are erroneous. We therefore concluded that outliers are not a significant 

issue and no further consideration was given to outlier analysis. However, there is some 

evidence, particularly for SO2 data series, that the temporal variations are not uniform across the 

period chosen for the study. 

5.3.2 Test for autocorrelation 

The data for the three stations were investigated for autocorrelation using the ACF function in 

SAS. A similar analysis can be accomplished in R. This approach is more qualitative than 

quantitative and presents a visually appealing illustration of the autocorrelation problem. An 

alternative quantitative approach is to fit Equation 15 to the time series data and then use the 

parameter statistics to infer the presence of autocorrelation for each lag. Although the outcome of 
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this approach is similar the ACF analysis, the approach involves the manual calculation of each 

lag variable before fitting Equation 15. This approach was therefore not used here. 

The plots of autocorrelations against the lag of the monthly concentrations are given in Figures 7, 

8 and 9 for Anzac, Fort McKay – Bertha Ganter and Fort McMurray Athabasca Valley 

respectively. Note that although the data used for this test were deseasonalized, the same test 

can be performed on the raw data as described in Section 4. In each Figure, the vertical bars 

indicate the estimate of the autocorrelation between the current value and the lag value. Thus, 

the correlation value at lag 0 is the correlation between the current value and itself, and this value 

is 1 as shown in each graph. The second bar in each graph is the first order (lag 1) 

autocorrelation, while the third bar represents second-order (lag 2) autocorrelation and so on. The 

shaded band in each graph is the approximate 95% confidence interval for the estimated 

autocorrelations (each vertical bar). This shade region is approximated by 1.96 √𝑛⁄ , where n is 

the sample size and 1.96 if the (100 − 𝛼 2⁄ ) percentile of the standard normal distribution. Note in 

SAS 1.96 is rounded to 2. The presence of autocorrelation is based on the extension of the 

autocorrelation bars above the shaded region and the rate of decline of the bars with increasing 

lag (SAS Institute Inc. 2005). In graphs where some bars extend beyond the shaded region and 

also decline relatively slowly indicates the presence of autocorrelation but may not necessarily 

show which order of autocorrelation is significant. Note that the presence of first-order 

autocorrelation alone may reflect higher bars that decline slowly. On that basis, all of the ACF 

graphs (except Figure 8 b) show evidence.  
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a) ACF for NO2 concentration 

 

b) ACF for SO2 concentration 

Figure 7- Autocorrelation functions (ACF) for NO2 concentrations (a) and SO2 

concentrations (b) at Anzac monitoring station.  
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a) ACF for NO2 concentration 

 

b) ACF for SO2 concentration 

Figure 8- Autocorrelation functions (ACF) for NO2 concentrations (a) and SO2 concentrations (b) at 

Fort McKay - Bertha Ganter monitoring station.  
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a) ACF for monthly NO2 concentration 

           

b) ACF for monthly SO2 concentration 

Figure 9- Autocorrelation functions (ACF) for NO2 concentrations (a) and SO2 concentrations (b) at 

Fort McMurray – Athabasca Valley monitoring station.  
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5.4 Data analysis 

5.4.1 Modeling seasonality and de-seasonalizing the data 

Due to the strong evidence of seasonality in Figure 4, 5 and 6, we characterized seasonal 

variation in each dataset using Fourier decomposition as in Tiao et al. (1990) and Weatherhead 

et al. (1998), discussed in the previous sections (see Equation 18).The complete linear 

regression model both for ARIMA and GARCH modeling framework is given in Equation 23. 
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All the terms in Equations 23 are defined as shown in the previous sections. Preliminary analysis 

was conducted on Equation 23 to determine how many sine and cosine functions are necessary 

to deseasonalize the data. Initially, four sine and four cosine functions (eight terms in total) were 

considered (i.e., λ = 4). The statistical significance of the coefficients for the eight seasonal terms 

were assessed at 5% probability based on the results of the preliminary regression analysis using 

ordinary least squares.The first four terms (two sine and two cosine terms, i.e. λ = 2) were found 

to be statistically significant at 5% probability and were chosen for further analysis. In expanded 

form, the chosen seasonality function can be written as: 
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It should be noted that because ordinary least squares regression analysis was used in the 

preliminary analysis, the test statistics for the coefficients of the seasonality terms are likely 

inflated due to the potential effect of autocorrelation as evident in Figures 7, 8 and 9. But the 

potential impact on the model is to include more seasonal terms than needed, which should not 

impact the results of further analysis. 

5.4.2 Linear regression analysis with GARCH and ARIMA 

Further analysis using the ARIMA and the GARCH modeling framework used Equation 23 and 

the seasonality term St given by Equation 24. The term vt of Equation 23 is the main focus of the 

ARIMA and GARCH analysis in this section. The initial step in applying AR(q)-GARCH(V, M) to 

model vt is to determine the order of autocorrelation q, and the values of V and M. Figure 7 

suggests that at least the first order autocorrelation (q = 1) is statistically significant. Therefore, 
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using the initial values of V = 2 and M = 2, preliminary fitting of AR(q)-GARCH(V, M) conducted 

using the RUGARCH-package in R show that V = 1 and M = 1 was enough to model the 

residuals based on 5% probability of significance. Therefore, the final model fitted for each station 

and each pollutant was using the GARCH framework was: 

{
 
 
 

 
 
 
𝑌𝑡 =  𝛼 + 𝑆𝑡 + 𝛽𝑡 + 𝑣𝑡;                                       

𝑆𝑡 = ∑{𝛽1,𝑗𝑠𝑖𝑛 (
2𝜋𝑗𝑡

12
) + 𝛽2,𝑗𝑐𝑜𝑠 (

2𝜋𝑗𝑡

12
) } ;

2

𝑗=1

𝑣𝑡 =  𝜌𝑣𝑡−1 + 𝜀𝑡;                                                  

𝜀𝑡  = 𝜎𝑡𝜖;      𝜖 ∽  𝐼𝐼𝐷𝑁(0,1);                             

𝜎𝑡
2  =  𝜔 +  𝛾𝜀𝑡−1

2  +  𝜃𝜎𝑡−1
2 .                             

 (Equation 25) 

 

A sample R-code for fitting the above model (Equation 25) is presented in the Appendix.  

As mentioned earlier, ARIMA is the generalized form of the autoregressive moving average 

(ARMA) models, which models residual variance structure using a combination of AR and MA 

(see Appendix 2). Based on the results of the GARCH modeling above, the ARIMA (1, 0, 1) was 

used for all stations and both parameters. Equation 23 was used, but the error terms vt were 

modeled differently as: 

𝑌𝑡 =  𝛼 + 𝑆𝑡 + 𝛽𝑡 + 𝑣𝑡;                                       

𝑆𝑡 = ∑{𝛽1,𝑗𝑠𝑖𝑛 (
2𝜋𝑗𝑡

12
) + 𝛽2,𝑗𝑐𝑜𝑠 (

2𝜋𝑗𝑡

12
) } ;

2

𝑗=1

𝑣𝑡 = 𝜌1𝑣𝑡−1 + 𝜀𝑡;                                                  
𝜀𝑡  = 𝜀𝑡 + 𝛾1𝜀𝑡−1.                                                   

 (Equation 26) 

Where: ρ1, γ1 are the autoregressive and moving average parameters, respectively. A sample R-

code for fitting the above model (Equation 26) is presented in the Appendix.  

 

5.4.3 Nonparametric methods 

The seasonality parameters estimated using the linear regression with GARCH (see Appendix) 

were used to de-seasonalize each data series before further analysis with the nonparametric 

methods (Mann-Kendall test and Theil-Sen slope). In this case study, the Theil-Sen slope was 

calculated for each dataset as a measure to trend while the Mann-Kendall test was used to test 

the statistical significance of each trend, as suggested by Yue et al. (2002). However, as 
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discussed in Section 4.4.2, confidence intervals of the Theil-Sen slopes can be estimated and 

their statistical significance tested using a bootstrap simulation procedure. As the Mann-Kendall 

method was used to provide this information, the bootstrap option was not used in this study.  

Iteratively pre-whitening of each de-seasonalized data series was conducted using the steps 

outlined in Section 4.4.3 and presented in the flowchart in Figure 3. Each pre-whitened data 

series was then used to estimate Theil-Sen slope (trend) and test the statistical significance of the 

trend using Mann-Kendall test. 

5.4.4 Comparing the nonparametric, GARCH and ARIMA methods 

The approaches were compared using three different criteria: The confidence interval width, the 

statistical power measured by the minimum size of monthly trend each method can detect with 

two years of data and the root mean square prediction error as a measure of the fit of each 

method to the data.  

The confidence interval for each method is calculated as: 

  
SEZWCI 2/2 

      (Equation 27) 

Where: WCI is the width of the confidence interval, Zα/2 is the 100 ∙ (1 −  𝛼/2) percentile of the 

standard normal distribution and SE is the estimated standard error of trend. 5% was used as α 

for this comparison. From the statistical theory presented in Section 3.1, the combined Theil-Sen 

and Mann-Kendall methods of trend analysis does not provide comparable estimates of standard 

error with the other methods. Therefore, standard errors of estimates comparable to the other two 

methods were recovered (reverse calculated) from the test probabilities using the relationship: 

  

pZ
SE

̂


       (Equation 28) 

Where: SE is the derived standard error of estimate of the trend, 
̂

 is the estimate of trend and 

Zp is the 100 ∙  (1 − 𝑝) percentile of the standard normal curve and p is the test probability for a 

given method.  

To estimate the minimum size of a monthly trend that can be detected by each method, Equation 

2 was rearranged to produce Equation 29 and used to estimate the minimum monthly trend 

(effect size) that can be detected with two years of data.  

𝜃̂ = [(
3.3𝜎

𝑛3 2⁄
)√(

1 + 𝜌

1 − 𝜌
)] (Equation 29) 
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Where: ̂  is the effect size (monthly trend), n is the sample size (n is set at 24 months), σ is the 

standard deviation of the residuals and ρ is the estimated coefficient of autocorrelation. The 

values of σ and ρ were obtained from each model outputs of the analyses in sections 5.4.2 and 

5.4.3. Alternatively, σ may also be calculated from each model’s residuals. Note that the 

autocorrelation estimates (ρ) for all three models are similar. Any differences in statistical power 

are driven by σ. Also note that results obtained using Equation 29 are extrapolations derived 

based on the residual statistics of the three methods, they are not from real data as the GARCH 

method cannot be implemented when sample size is less than 100. 

The root mean square prediction error measures the goodness of fit of each method. It is 

calculated as: 

𝑅𝑀𝑆𝐸 =  √
∑ 𝑒̂𝑖
𝑛
𝑖=1

𝑛
 (Equation 30) 

Where: RMSE is the mean square prediction error, ê is the prediction error of the monthly 

concentration and n is the sample size. The data used for this analysis (error estimates) were 

direct outputs from the trend analysis. As this was not a validation exercise, independent data 

sets were not used in this exercise.  

The rationale for choosing RMSE for this comparison is the fact that while two different methods 

give comparable estimates of trend, one method may be slightly biased and this bias can be 

magnified if the analysis period is much longer than what the case study did. Because RMSE 

combines bias estimates and variance of the residuals, it is a much better indicator of which 

model fits the data better. Besides Equation 30, RMSE can also be expressed in terms of bias (B) 

and variance (σ2) as: 

 

𝑅𝑀𝑆𝐸 = √𝜎2 + 𝐵2 = √
∑ (𝑒̂𝑖 − 𝑒̅̂)

2𝑛
𝑖=1

𝑛
+ 𝑒̅̂2 

𝑒̅̂ =  
∑ 𝑒̂𝑖
𝑛
𝑖=1

𝑛
 

(Equation 31) 

Where: ê is the mean of the residuals (error) used as a measure of bias and all other variables 

are as defined. 
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5.5 Preliminary Results and Discussion 

5.5.1 Trend estimates and null probabilities for the Theil-Sen/Mann-
Kendall, GARCH and ARIMA 

The estimates of trend and the corresponding test probabilities for the three methods are 

presented in Table 3 for the 3 stations: Fort McMurray - Athabasca Valley, Fort McKay - Bertha 

Ganter, and Anzac. As this study was just for illustration, only the parameter estimates and the 

test probabilities are presented. The intent of the analysis is to show how each method works and 

not present trend reports for these stations. Seasonality parameters are not critical to this study 

and are thus presented in Appendix 3. 

The test probabilities presented in Table 3 are the probabilities of making a Type I error by 

concluding that the estimated trend by each method is statistically significant. Thus the smaller 

the probability, the lower the Type I error rate. The allowable Type I error rate set for this case 

study is 0.05. The Type I error rates for all 3 models for NO2 at Fort McMurray Athabasca Valley 

are high than 0.05 (0.5101, 0.2630, and 0.8360 respectively in Table 3). Other cases of relatively 

high Type I error rates are: ARIMA for SO2 at Fort McKay-Bertha Ganter (0.1526), Theil-

Sen/Mann Kendall and ARIMA for SO2 at Anzac (0.7728 and 0.3603, respectively). In all other 

cases, Type I error rates are less than 5%, indicating that those trends are statistically significant. 

Table 3- Trend estimates and test probabilities for GARCH, Theil-Sen/Mann-Kendall and 

the ARIMA methods for the three monitoring stations for NO2 and SO2. Note, the Mann-

Kendall statistics show statistical significance while the Theil-Sen slope provides trend 

estimates.  

Monitoring 

Station 

 

GARCH Theil-Sen/MK ARIMA 

Monthly 

trend (ppb) 
Probability 

Monthly 

trend (ppb) 
Probability 

Monthly 

trend (ppb) 
Probability 

NO2 

Anzac -0.0108 0.0000 -0.0077 0.0000 -0.0064 0.0410 

Bertha Ganter 0.0120 0.0000 0.0105 0.0000 0.0115 0.0001 

Athabasca Valley 0.0026 0.5101 0.0047 0.2630 0.0008 0.8360 
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SO2 

Anzac 0.0002 0.0000 0.0002 0.7728 -0.0008 0.3603 

Bertha Ganter 0.0013 0.0234 0.0016 0.0056 0.0014 0.1526 

Athabasca Valley -0.0015 0.0005 -0.0019 0.0012 -0.0020 0.0010 

The results presented in Table 3 suggest that all three methods are quite similar in their statistical 

conclusion about trend when applied to NO2 data. All three tests identified significant trend for 

NO2 at Anzac and Bertha Ganter and the absence of a significant trend for NO2 concentration at 

Athabasca Valley base on the 5% probability of Type I error. In contrast, the significance of 

temporal trend varied appreciably among the three methods when applied to the concentrations 

of SO2 (Table 3). The GARCH method identified a significant trend (p << 0.001) in SO2 at Anzac 

while neither the Theil-Sen/Mann-Kendall nor the ARIMA identified significant trend (p = 0.77 and 

p = 0.36, respectively). At Bertha Ganter station, the GARCH and Theil-Sen/Mann-Kendall 

methods identified statistically significant trends (p = 0.02 and p = 0.006 respectively). The 

ARIMA method identified a statistically non-significant trend (p = 0.15). Lastly, all 3 tests 

identified, statistically significant trends in SO2 concentration at Athabasca Valley (Table 3). 

Based on the result presented above, the Theil-Sen/Mann-Kendall and the GARCH methods are 

consistent in their outcomes except for SO2 in Anzac, where the GARCH method showed 

statistical significance for a trend, but the Mann-Kendall test did not. The ARIMA fit appears to be 

the most conservative accepting the null hypothesis of no trend in 3 out of the 6 study cases (NO2 

at Fort McMurray Athabasca Valley, SO2 at Fort McKay Bertha Ganter and SO2 at Anzac). But 

the ARIMA fit also agrees with each of the other two methods in 4 out of 6 studies cases (NO2 at 

all the 3 stations and SO2 at Athabasca valley).  

Differences in the results of any two methods selected for comparison may be reflected in any of 

the following outcomes: 

1) The trend estimates are very different but are the same sign (both are positive or 

negative), and the statistical conclusions are different; 

2) The trend estimates are directly opposite (one is positive, and the other is negative), and 

the statistical conclusion of both methods is that the estimated trends are significant; 

3) The trend estimates are very similar, but the statistical conclusions are different; one 

saying the trend is statistically significant and the other saying it is not (e.g. SO2 at Anzac 

where the trend estimates are the same for the GARCH and Theil-Sen/Mann-Kendall but 

the GARCH method concluded trend is significant while Theil-Sen/Mann-Kendall 

concluded that trend is not significant, both at 5% probability); And, 
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4) The trend estimates are directly opposite (one is positive, and the other is negative), and 

the statistical conclusions are that the estimated trends are not significant (e.g., SO2 at 

Anzac where the Theil-Sen/Mann-Kendall trend estimate and the ARIMA trend estimates 

are opposite but both concluded that there no trend at 5% probability). 

If the outcome is either 1) or 2), this may indicate that one of the methods is biased. A simple 

overlay graph of predictions from both models and the actual values may reveal which method is 

biased. A quantitative bias assessment such as presented in Section 5.5.2 below can also help 

determine which model is biased. Also, the implementation of both methods including data 

preparation should be thoroughly checked. If the outcome is 3), then one method has better 

statistical power than the other. Check the implementation to make sure that all methods are 

appropriate for the dataset in question. In the example given above for SO2 at Anzac, steps were 

taken to ensure that all the methods are implement properly. Therefore we can conclude that 

based on the GARCH test results, SO2 trend at Anzac is statistically significant. Outcome 4) is 

probably nonconsequential but still needs to be investigated to ensure that proper procedures 

were followed in implementing both methods. If both methods are properly implemented then 

outcome 4 is an indication that both methods did not have enough statistical power to detect any 

trend. 

It should be noted that the magnitudes of trend estimates presented in Table 3 are the rates at 

which pollutant concentrations change per month. Annual rates of change may be obtained by 

multiplying each estimate by 12, the number of months in a year. Alternatively, the t in Equation 

23 above may be normalized with a quotient of 12 and used for the regression analysis. This will 

result in annual trend estimates. 

5.5.2 Comparison of the Theil-Sen/Mann-Kendall, GARCH and ARIMA 
methods 

Table 4 presents the widths of the 95% confidence intervals for the estimates of a trend for NO2 

and SO2 with data from the 3 test stations. The interval widths are low which reflect the low 

magnitude of the monthly trend estimates presented in Table 3. A comparison of the three 

methods for NO2 shows that the performance of the methods are similar. The performance of 

Theil-Sen/Mann-Kendall method is slightly better than the GARCH and the ARIMA methods 

(0.0058 vs. 0.0086 and 0.0122, respectively) at Anzac. At the Bertha Ganter station, the GARCH 

method performed better with confidence interval of 0.0049 followed by the Theil-Sen/Mann-

Kendall method (0.0079) and the ARIMA method (0.0096). At the Athabasca Valley station, the 

ARIMA method is better with confidence interval width of 0.0023 compared to the GARCH 

method (0.0157) and the Theil-Sen/Mann-Kendall method (0.0291). In general, no method is 

consistently better than the other methods for all stations regarding the confidence interval of the 

trend estimates for NO2. 
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The comparison of the three methods for SO2 reveal a slightly different trend; with the exception 

of the Anzac station where the Theil-Sen/Mann-Kendall method is slightly better (0.0001 vs. 

0.0002 and 0.0034 respectively for the GARCH and ARIMA methods), the GARCH method has 

smaller confidence interval (0.0023 for Bertha Ganter and 0.0017 for Athabasca Valley). In 

comparison, the confidence intervals for the Theil-Sen/Mann-Kendall method is 0.0025 for each 

of the two stations (Bertha Ganter and Athabasca Valley) while the ARIMA confidence intervals 

are slightly worse 0.0038 and 0.0146 respectively for the two stations (Table 4). Athough the 

GARCH is slightly better than the Theil-Sen/Mann-Kendall method for SO2 at Bertha Ganter and 

Athabasca Valley, the confidence intervals for both methods are much closer for both stations, 

implying that the performance of GARCH over Theil-Sen/Mann-Kendall for SO2 at these stations 

is marginal. But the GARCH and the Theil-Sen/Mann-Kendall methods are both better than the 

ARIMA method for SO2. 

Table 4- The width of the 95% confidence intervals for monthly trend estimates for NO2 

and SO2 using the GARCH, Theil-Sen/Mann-Kendall and the ARIMA methods respectively. 

Monitoring Station GARCH Theil-Sen/MK ARIMA 

NO2 

Anzac 0.0086 0.0058 0.0122 

Bertha Ganter 0.0049 0.0079 0.0096 

Athabasca Valley 0.0157 0.0291 0.0023 

SO2 

Anzac 0.0002 0.0001 0.0034 

Bertha Ganter 0.0023 0.0025 0.0038 

Athabasca Valley 0.0017 0.0025 0.0146 

 

Table 5 presents the fit statistics (RMSE) for the three methods applied to the three monitoring 

stations. The GARCH method appears to fit the data better with relatively smaller RMSE than the 

other two methods for all pollutants and for all stations (see Table 5). Although the Theil-
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Sen/Mann-Kendall and the ARIMA methods are comparable in their fit statistics (RMSE) for both 

NO2 and SO2 at Bertha Ganter and Athabasca Valley (Table 5), the Theil-Sen/Mann-Kendall is 

much better at Anzac than the ARIMA method.  

As the RMSE also include bias, residual variances were calculated and are presented in 

parentheses and highlighted in bold italics. Thus, the difference between the figures within and 

outside the parenthesis for each method is the estimate of bias. Cases in which the two values 

are very different (e.g., ARIMA model for Anzac NO2) are indicative of the presence of bias. On 

that basis, the GARCH model has the least amount of bias for both NO2 and SO2 at all stations 

(Table 5). This finding is reflected in the trend test results for SO2 at Anzac, where the GARCH 

method found a significant trend while the other two methods did not. Except for SO2 at Anzac, 

the Theil-Sen/Mann-Kendall method is also less biased compared to the ARIMA method. The 

bias for the ARIMA model is the largest at Anzac for both SO2 and NO2 (Table 5). In general 

however, the GARCH method has the least bias, followed by the Theil-Sen/Mann-Kendall while 

the ARIMA method has the most bias. But all the three methods can be considered to be 

reasonably unbiased with the exception of the Anzac station, for practical purposes. 

Table 5- The fit statistic (RMSE and residual variance) for NO2 and SO2 using the GARCH, 

Theil-Sen/Mann-Kendall and the ARIMA methods respectively. Note the residual variances 

are in parentheses. 

Monitoring Station GARCH Theil-Sen/MK ARIMA 

NO2 

Anzac 0.6346 (0.6327) 1.1101 (1.1000) 2.1913 (1.6398) 

Bertha Ganter 1.2925 (1.2925) 1.3552 (1.3550) 1.3559 (1.3555) 

Athabasca Valley 1.4408 (1.4408) 1.6360 (1.6229) 1.6247 (1.6210) 

SO2 

Anzac 0.2519 (0.2510) 1.2454 (0.5747) 1.8855 (1.5914) 

Bertha Ganter 0.5654 (0.5654) 0.5682 (0.5679) 0.5679 (0.5678) 

Athabasca Valley 0.3861 (0.3861) 0.3956 (0.3956) 0.3956 (0.3956) 



66 Methods and Procedures for Trend Analysis of Air Quality Data 

Table 6 presents the comparison of the three methods regarding the magnitude of the monthly 

trend (ppb) that can be detected with 24 months (2 years) of observations (assuming monthly 

averages are used). The values in Table 6 represent the estimated minimum size of monthly 

trend each method can detect. This criterion is an indicator of which method has the most 

statistical power for detecting a trend, where the model that can detect the smallest trend has the 

most statistical power. Please note that these are extrapolated based on the model statistics 

obtained in this study to put all models on the same level for comparison. The numbers do not 

indicate how a particular model will perform for 2-year trend analysis. 

Based on the values in Table 6, the GARCH model has slightly better statistical power, capable of 

detecting smaller trends for NO2. Except for Anzac, the ARIMA method has a slightly better 

power than the Theil-Sen/Mann-Kendall for NO2. However, the values for all three models are 

likely within a 95% percent confidence interval of each other judging from the confidence interval 

widths presented in Table 4 above. For SO2, the GARCH method has better power than the 

Theil-Sen/Mann-Kendall and the ARIMA methods at Anzac. At the other two stations (Bertha 

Ganter and Athabasca Valley) all three methods are similar, differing only at the fourth decimal 

place in terms of magnitude of trend each method can detect. This further confirms edge of the 

GARCH model in terms of statistical power over the other methods.  
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Table 6- The comparison of the GARCH, Theil-Sen/Mann-Kendall and the ARIMA methods 

respectively based on the trend each method can detect using 24 months (2 years) of 

measurements for NO2 and SO2. Note trend estimates are presented in ppb. 

Monitoring Station GARCH Theil-Sen/MK ARIMA 

NO2 

Anzac 0.0273 0.0534 0.0701 

Bertha Ganter 0.0456 0.0528 0.0502 

Athabasca Valley 0.0683 0.0748 0.0702 

SO2 

Anzac 0.0091 0.0238 0.0626 

Bertha Ganter 0.0167 0.0161 0.0160 

Athabasca Valley 0.0146 0.0142 0.0142 

 

5.6 Conclusion 
The results presented in this case study about the performance of each of the methods should be 

interpreted as preliminary findings. Additional analyses based on designed simulation studies of 

the three methods under various scenarios of the statistical challenges discussed in this 

document will better evaluate these methods and understand their merits. Although the GARCH 

method is better than the other two methods, such a detailed analysis are necessary to better 

define the domains within which each method works best. Such analyses may also examine 

existing alternatives and compare and evaluate their merits against the methods tested in this 

study. 

On a preliminary basis we recommend that at least two of the methods presented in this report be 

used for any trend analysis exercise, preferably one of the parametric methods (GARCH and 

ARIMA) and the nonparametric (Theil-Sen/Mann-Kendall) so as to cross check results.  
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7 Appendices 
 

R-code used for implementing GARCH modeling 
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R-code used for implementing ARIMA modeling 
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Estimates and standard errors of the seasonal model 
fitted in GARCH and used for de-seasonalizing air 
quality time series for Theil-Sen/Mann-Kendall 
analysis. 

 

Parameter 
Fort McMurray Athabasca 

Valley 

Fort McKay Bertha 

Ganter 
Anzac 

NO2 

β1,1 0.00288 0.00025 0.00263 0.00019 1.08775 0.11526 

β1,2 0.00112 0.00020 0.00115 0.00016 0.78088 0.09068 

β2,1 0.00523 0.00025 0.00438 0.00019 1.89693 0.11527 

β2,2 0.00004 0.00020 0.00077 0.00016 0.29482 0.09081 

SO2 

β1,1 0.00033 0.00009 0.00036 0.00009 0.27864 0.04134 

β1,2 0.00016 0.00008 0.00009 0.00009 0.15140 0.03443 

β2,1 0.00002 0.00009 -0.00012 0.00009 0.20038 0.04134 

β2,2 -0.00015 0.00008 -0.00019 0.00009 
-

0.00890 
0.03453 
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The estimated 95% lower confidence limits (LCL) and 
upper confidence limits (UCL) for the monthly trend 
estimates of NO2 and SO2 using the GARCH, Theil-
Sen/Mann-Kendall and the ARIMA methods 
respectively. 

Station 

GARCH Theil-Sen/MK ARIMA Fit 

LCL UCL LCL UCL LCL UCL 

NO2 

Athabasca Valley -0.00524 0.01044 -0.00982 0.01922 -0.00039 0.00193 

Bertha Ganter 0.00953 0.01447 0.00654 0.01446 0.00669 0.01631 

Anzac -0.01512 -0.00654 -0.01064 -0.00482 -0.01245 -0.00026 

SO2 

Athabasca Valley -0.00232 -0.00068 -0.00312 -0.00068 -0.00924 0.00534 

Ganter 0.00018 0.00250 0.00037 0.00291 -0.00051 0.00330 

Anzac 0.00016 0.00032 0.00011 0.00025 -0.00251 0.00091 

 

 


