# **ALBERTA DEPARTMENT OF ENERGY**

OIL SANDS PRODUCTION PROFILE



Government of Alberta ■

This paper was prepared by the Research and Technology Branch, Alberta Energy, to illustrate technology developments in the Alberta oil and gas industry. The Government of Alberta shall have no liability whatsoever to third parties for any defect, deficiency, error or omission in the contents, analyses and evaluations presented in this paper. Any questions about this paper should be directed to

Branch Head Research and Technology Branch Alberta Department of Energy 9945 – 108 Street Edmonton, Alberta Canada T5K 2G6

April 4, 2012

## TABLE OF CONTENTS

| Introduction                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Methodology                                                                                                                                      |
| Oil Sands Areas                                                                                                                                  |
| Production Technologies  5    Primary/Enhanced Oil Recovery  5    Cyclic Steam Stimulation  5    Steam Assisted Gravity Drainage  5    Mining  5 |
| Data & Analysis                                                                                                                                  |
| Appendix I                                                                                                                                       |
| Appendix II                                                                                                                                      |

## INTRODUCTION

Canada is endowed with significant crude oil resources, in the order of two trillion barrels of oil in place. Although these oil deposits are some of the most challenging in the world to develop, innovative research and production technologies have enabled them to move from resources to proven reserves. Canada is a net exporter of oil and is consistently the top supplier of oil imports to the United States<sup>1</sup>. On its own, Alberta is responsible for approximately 71.2 percent of Canada's oil exports to the United States<sup>2</sup>,<sup>3</sup> (see *Appendix II-vi*). 60 percent is from the Oil Sands region using a combination of surface mining and in situ production methods<sup>4</sup>.

The purpose of this report is to provide a detailed overview of oil production volumes from the Oil Sands region based on production information submitted to the Ministry of Energy<sup>5</sup>. Specifically, this report will provide an analysis of production volumes based on (1) region, and (2) production technology as defined by the Alberta Department of Energy.

## METHODOLOGY

For each given annual reporting period (calendar year - see *Appendix I*), production data was collected by project and converted to barrels of bitumen per day (*bpd*) using standard conversion calculations. If projects were joint ventures, the production was split amongst the operators based on the percentage of ownership (at year end) - the total oil production for the year is provided in *Appendix I*, along with operators' shares of ownership. For each project, area or region was identified as well as owner and production technology (see *Production Technologies*).

For accounting purposes, projects utilizing Primary/Enhanced oil recovery (EOR) production technologies which were smaller than 4000 bpd, belonging to the same company, and in the same area, were combined into one daily production value with the project list provided in *Appendix I-x*. This was done because there is approximately a 2:1 ratio of Primary/EOR projects to the other three production technologies (see *Production Technologies*) projects combined. The Primary/EOR projects are also typically smaller per project than thermal projects because of the nature of the deposits and the subsequent production technologies. Thermal (CSS or SAGD) projects with less than 4000 bpd production remain separate in order to perform growth analyses on these production technologies. The production totals for experimental, conventional, and freehold projects are combined due to their smaller production volumes compared to the majority of Oil Sands projects.

<sup>&</sup>lt;sup>1</sup> <u>http://www.eia.gov/dnav/pet/pet\_move\_wimpc\_s1\_w.htm</u>

<sup>&</sup>lt;sup>2</sup> <u>http://www.neb.gc.ca/clf-nsi/rnrgynfmtn/sttstc/crdlndptrlmprdct/2010/ttlcrdlxprtdstntn2010.xls</u>

<sup>&</sup>lt;sup>3</sup> <u>http://www.ercb.ca/docs/products/STs/st3/2010/Oil\_2010.xls</u>

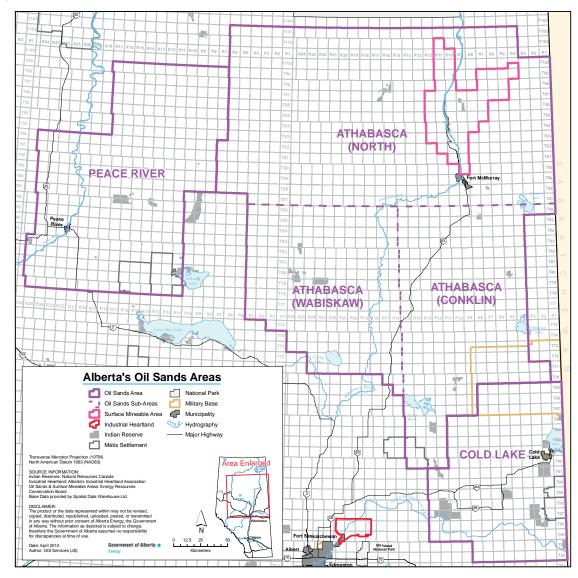
<sup>&</sup>lt;sup>4</sup> <u>http://www.centreforenergy.com/FactsStats/Statistics.asp?Template=5,2</u>

<sup>&</sup>lt;sup>5</sup> <u>http://www.finance.alberta.ca/publications/budget/budget2012/energy.pdf</u> - The Ministry consists of the Department of Energy and the Alberta Petroleum Marketing Commission. It also includes the Energy Resources Conservation Board (ERCB) and Alberta Utilities Commission (AUC), which are provincial agencies exercising independent adjudicative functions for which the Minister is responsible. The ERCB regulates the safe, responsible, and efficient development of Alberta's energy resources: oil, natural gas, oil sands, coal, and pipelines. The AUC regulates the utilities sector, natural gas and electricity markets to protect social, economic and environmental interests of Alberta where competitive market forces do not.

The main objective of the Oil Sands Production Profile (OSPP) was to identify the growth trend in different production technologies over the past 9 years and how these technologies have been applied to different Oil Sands areas. The total production values given in this profile are reflective of ERCB/EUB data with the exclusion of experimental, conventional, and freehold Oil Sands projects. Growth trends (linear or exponential) were measured and verified ( $\geq$  0.95 confidence) using R-squared regression analysis (see Appendix II).

## **OIL SANDS AREAS**

There are three main Oil Sands areas:


- 1. Athabasca
- 2. Cold Lake
- 3. Peace River

To identify with greater clarity where growth is occurring, the Athabasca Oil Sands Area (AOSA) is divided into three sub-areas:

- 1. Athabasca (North) The AOSA, North of Township 86 (known hereafter as "Athabasca North")
- 2. Athabasca (Wabiskaw) The AOSA, from Township 86 South, from Range 16 West (known hereafter as "Wabiskaw").
- 3. Athabasca (Conklin) The AOSA, from Township 86 South, East of Range 16 (known hereafter as "Conklin").

The map in Figure 1-i shows the locations of these areas. The crude oil characteristics vary significantly among these areas, as shown in Figure 1-ii.

FIGURE 1: i) OIL SANDS AREAS



#### ii) SELECT PHYSICAL CHARACTERISTICS OF OIL SANDS AREAS

| AREA            | <b>RESERVOIR</b>          | API     |          |
|-----------------|---------------------------|---------|----------|
|                 | MINING<br>(to top of pay) | IN-SITU |          |
| ATHABASCA NORTH | 0-80                      | 80-275  | 6-10     |
| WABISKAW        | N/A                       | 300-550 | Up to 18 |
| CONKLIN         | N/A                       | 150-475 | 8-12     |
| COLD LAKE       | N/A                       | 375-525 | 10-13    |
| PEACE RIVER     | N/A                       | 525-800 | 6-16     |

The combined effect of reservoir characteristics (depth, pressure, permeability, continuity, pay thickness, viscosity, API and others) and technological research have translated into the application and selection of different production technologies.

4

## **PRODUCTION TECHNOLOGIES**

Four technologies were outlined as the main production technologies currently used in the Oil Sands areas and are as follows:

### Primary/Enhanced Oil Recovery

Primary recovery from a reservoir is typically the first method of producing oil from a given reservoir. It uses energy which is already in the reservoir, such as gravity, or pressure drive (also known as waterdrive/gasdrive), to displace oil and drive it to surface facilities. EOR is typically any technology for producing oil after primary production is no longer economically viable. Waterflooding, gas injection, and polymer/chemical flooding are all examples of EOR. In some cases, these EOR production technologies are applied at the start of production, rather than being used as the secondary or tertiary recovery mechanism, in order to increase the ultimate recovery of oil from the reservoir.

## **Cyclic Steam Stimulation**

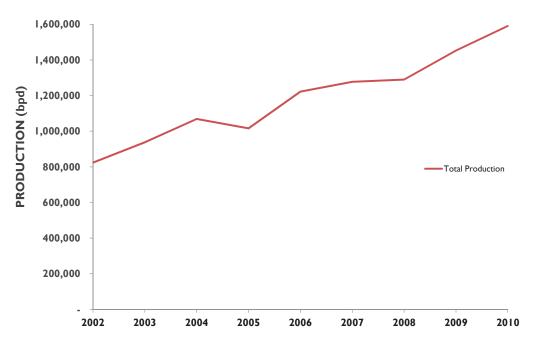
Cyclic steam stimulation (CSS), or huff and puff as it is sometimes called, is a thermal production technology in which one well is used to both inject steam and produce oil. Steam is injected at pressures high enough that the area surrounding the wellbore fractures, allowing steam to access and heat new areas of the reservoir. After weeks or months, the steam injection is completed; a few days are allowed for the steam to condense and then the production of oil and water begins. Production initially occurs due to increased reservoir pressures; later cycles require artificial lift technologies to produce the remaining oil during the production cycle. The cycle then starts over after the oil production rates become too small. This technology is as also applied in the heavy oil fields in California.

### Steam Assisted Gravity Drainage

Steam assisted gravity drainage (SAGD) is a thermal production technology which utilizes two horizontal wells, known as a well pair, one to inject steam below reservoir fracture pressures, and the other to produce water and oil. The top horizontal well injects steam over a period of months to heat the reservoir evenly, creating a steam chamber. The oil from the chamber drains to the lower production well to allow for production initially through pressure drive, and then by artificial lift or gas lift. The steam injection and oil production happen continuously and simultaneously once production starts. This technology has a high ultimate recovery of oil from the reservoir relative to other in situ production technologies.

### Mining

Truck and shovel technology is used to move sand impregnated with bitumen from the mining area to an extraction facility. The bitumen is then treated to remove the sand, mineral fines and other impurities in processes which vary among producers. Once the extraction process is completed, the bitumen is ready for refining or upgrading, depending on the company's chosen configuration.


## **DATA & ANALYSIS**

### **Annual Oil Sands Production**

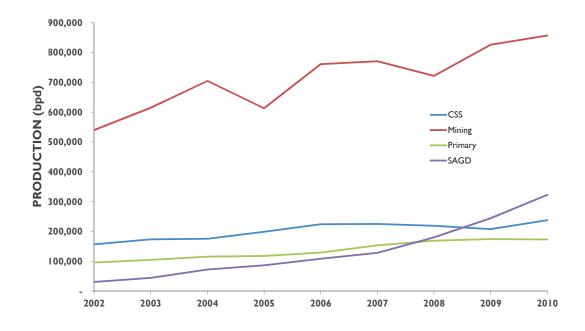
Oil sands production was calculated on an annual basis for 2002-2010 production years (see *Methodology and Appendix I*) and is presented in Figure 2.

FIGURE 2:





#### ii) ANNUAL CRUDE OIL PRODUCTION FROM OIL SANDS


|                | 2002    | 2003    | 2004      | 2005      | 2006      | 2007      | 2008      | 2009      | 2010      |
|----------------|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| <b>BBL/DAY</b> | 823,418 | 937,637 | 1,068,476 | 1,016,021 | 1,222,393 | 1,277,561 | 1,289,900 | 1,452,718 | 1,590,467 |

This chart shows growth in total crude production for the Oil Sands region. Average annual growth was determined to be 85,228 bpd with an 8.6% Compounded Annual Growth Rate (CAGR) (see *Appendix II* for sample calculation). Figure 2-i graphically illustrates the linear growth (R-squared=0.96, Appendix II-i) over the past 9 years of commercial operations.

### Annual Oil Sands Production by Technology

To emphasize the growth of separate technologies over the past 9 years, annual production was further analyzed based on the four commercial production technologies, 1) Primary/EOR, 2) CSS, 3) SAGD, and 4) Mining (as described in *Methodology and Appendix* I). Figure 3-i and 3-ii shows production by the various technologies.





#### ii) ANNUAL CRUDE OIL PRODUCTION (BPD) FROM OIL SANDS BY TECHNOLOGY

|         | 2002    | 2003    | 2004      | 2005      | 2006      | 2007      | 2008      | 2009      | 2010      |
|---------|---------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| CSS     | 156,899 | 173,667 | 175,535   | 198,860   | 224,277   | 225,218   | 219,029   | 207,947   | 237,892   |
| MINING  | 539,888 | 614,562 | 704,777   | 612,751   | 760,839   | 770,835   | 721,491   | 825,842   | 856,876   |
| PRIMARY | 96,037  | 104,839 | 115,537   | 117,970   | 128,878   | 153,296   | 169,131   | 174,423   | 173,145   |
| SAGD    | 30,594  | 44,569  | 72,627    | 86,440    | 108,398   | 128,212   | 180,248   | 244,507   | 322,644   |
| TOTAL   | 823,418 | 937,637 | 1,068,476 | 1,016,021 | 1,222,393 | 1,277,561 | 1,289,900 | 1,452,718 | 1,590,467 |

#### iii) CRUDE OIL GROWTH RATES FROM OIL SANDS BY TECHNOLOGY

|         | GROWTH (BPD/YEAR) | COMPOUNDED ANNUAL GROWTH (CAGR) |
|---------|-------------------|---------------------------------|
| CSS     | 8,999             | 5.3%                            |
| MINING  | 35,221            | 5.9%                            |
| PRIMARY | 8,568             | 7.6%                            |
| SAGD    | 32,450            | 34.2%                           |

Separating production technologies allowed for calculation of the individual growth rates (CAGR) of the technologies, and showed the corresponding trends. Growth rates can be seen in Figure 3-iii. CAGR for CSS (5.3%), Mining (5.9%) and Primary (7.6%), exhibited growth rates (Appendix II-i) similar to total annual crude production (8.5%) (Figure 2-i and 2-ii), while SAGD production exhibited exponential growth (R-squared=0.99, *Appendix II-iv*) with a significantly greater CAGR (34.2%) than all other production technologies.

## Annual Oil Sands Production by Area

Production trends were also examined within the distinct Oil Sands areas (see Oil Sands Areas). Annual crude production was determined for the 1) Athabasca North, 2) Cold Lake, 3) Conklin, 4) Peace River, and 5) Wabiskaw areas (as described in *Methodology and Appendix* I). Figure 4-i and 4-ii shows the annual production volumes for the various regions.

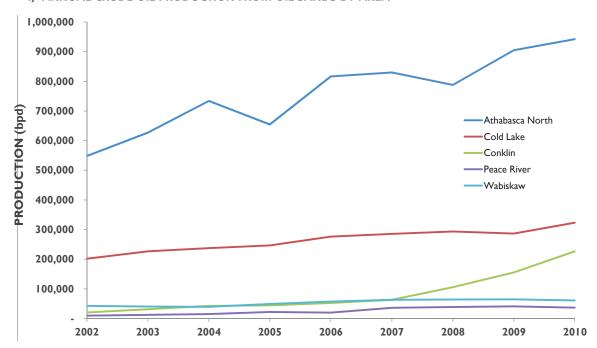
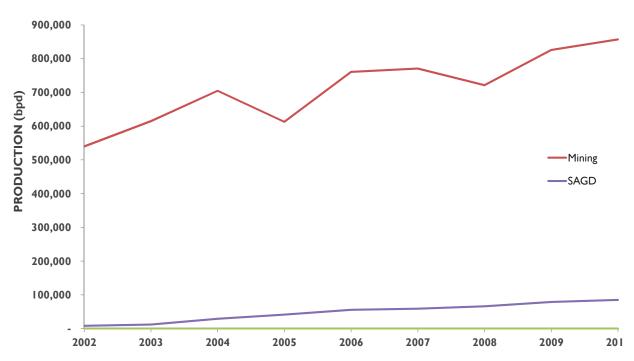


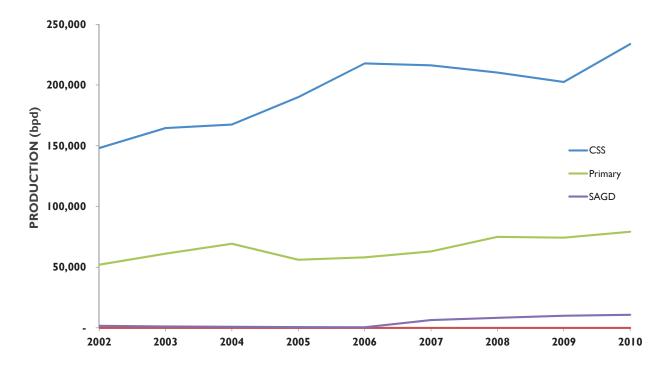

FIGURE 4 i) ANNUAL CRUDE OIL PRODUCTION FROM OIL SANDS BY AREA

#### ii) ANNUAL CRUDE OIL PRODUCTION (BPD) FROM OIL SANDS BY AREA

|                    | 2002     | 2003    | 2004      | 2005      | 2006      | 2007      | 2008      | 2009      | 2010      |
|--------------------|----------|---------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| ATHABASCA<br>NORTH | 548,03 I | 626,848 | 733,869   | 654,428   | 816,442   | 829,825   | 787,655   | 904,831   | 941,981   |
| COLD LAKE          | 201,715  | 226,665 | 237,534   | 246,594   | 276,332   | 285,400   | 293,347   | 286,669   | 323,505   |
| CONKLIN            | 20,583   | 31,204  | 42,741    | 44,129    | 52,304    | 62,897    | 105,840   | 155,543   | 226,811   |
| PEACE RIVER        | 9,965    | 12,328  | 15,167    | 21,864    | 20,077    | 36,087    | 38,633    | 41,133    | 36,947    |
| WABISKAW           | 42,902   | 40,593  | 39,165    | 49,006    | 57,238    | 63,35 I   | 64,425    | 64,542    | 61,223    |
| TOTAL              | 823,195  | 937,637 | 1,068,476 | 1,016,021 | 1,222,392 | 1,277,561 | 1,289,900 | 1,452,719 | 1,590,467 |

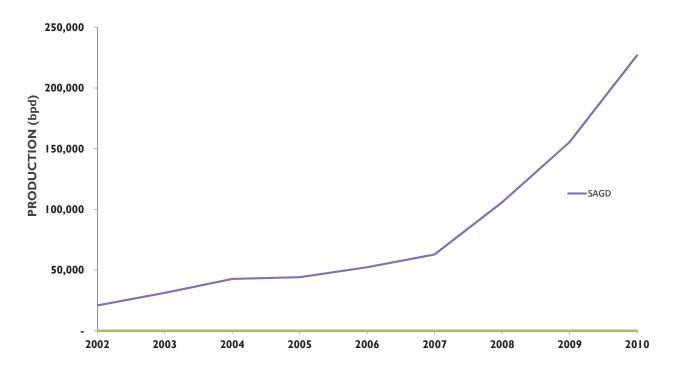

|                 | AVERAGE GROWTH (BPD/YEAR) | COMPOUNDED ANNUAL GROWTH RATE |
|-----------------|---------------------------|-------------------------------|
| ATHABASCA NORTH | 49,244                    | 7.0%                          |
| COLD LAKE       | 15,224                    | 6.1%                          |
| CONKLIN         | 25,779                    | 35.0%                         |
| PEACE RIVER     | 3,373                     | 17.8%                         |
| WABISKAW        | 2,290                     | 4.5%                          |

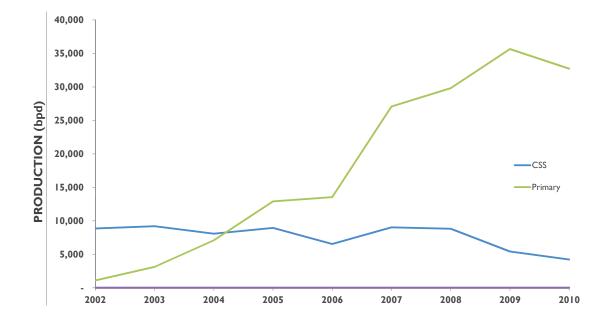
#### iii) ANNUAL CRUDE OIL GROWTH RATES FROM OIL SANDS BY AREA


CAGRs were calculated for Athabasca North (7.0%), Cold Lake (6.1%), Conklin (35.0%), Peace River (17.8%) and Wabiskaw (4.5%) areas (Figure 4-iii). All areas exhibited CAGRs less than 10%, with the exception of the Peace River (17.8%) and Conklin areas (*Appendix II-iii*). The Conklin area exhibited exponential growth (*Appendix II-iv*).

## Annual Oil Sands Areas Production by Technology

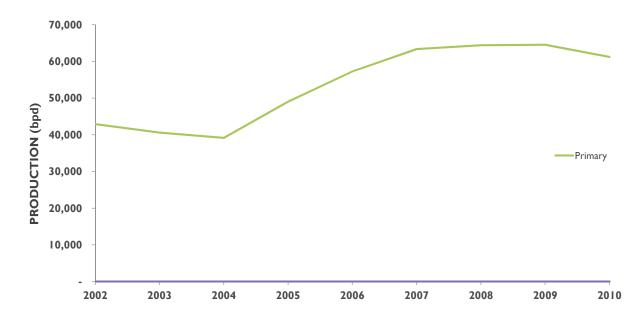
Regional production volumes were further sub-divided on the basis of technology to determine production trends in each area. Results are shown in Figure 5-i to 5-vi.






ii) ANNUAL CRUDE OIL PRODUCTION FROM OIL SANDS BY AREA - COLD LAKE


iii) ANNUAL CRUDE OIL PRODUCTION FROM OIL SANDS BY AREA - CONKLIN



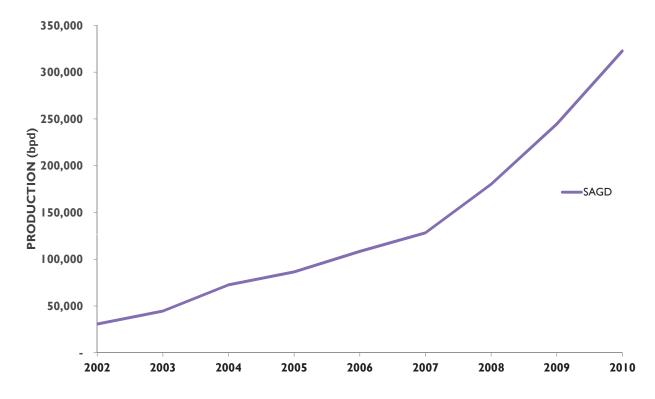


#### iv) ANNUAL CRUDE OIL PRODUCTION FROM OIL SANDS AREA BY AREA - PEACE RIVER

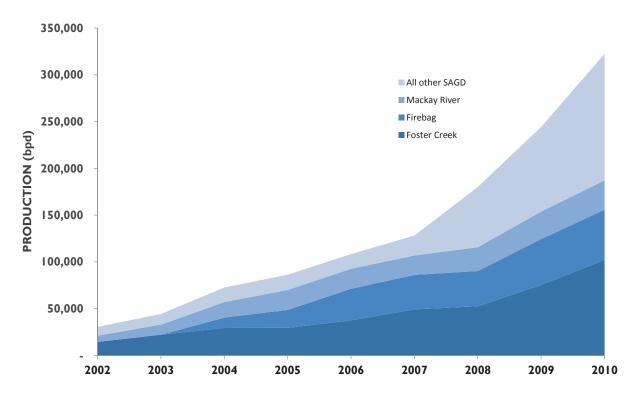
v) ANNUAL CRUDE OIL PRODUCTION FROM OIL SANDS AREA BY REGION - WABISKAW



|          | 2002    | 2003    | 2004    | 2005    | 2006    | 2007    | 2008    | 2009    | 2010    | GROWTH<br>RATE (bpd/y) | CAGR  |
|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------------------|-------|
| ATHABAS  |         | RTH     |         |         |         |         |         |         |         |                        |       |
| CSS      | -       | -       | -       | -       | -       | -       | -       | -       | -       | -                      | -     |
| MINING   | 539,888 | 614,562 | 704,777 | 612,751 | 760,839 | 770,835 | 721,491 | 825,842 | 856,876 | 39,623                 | 5.9%  |
| PRIMARY  | -       | -       | -       | -       | -       | -       | -       | -       | -       | -                      | -     |
| SAGD     | 8,142   | 12,286  | 29,092  | 41,677  | 55,603  | 58,990  | 66,164  | 78,989  | 85,105  | 9,620                  | 34.1% |
| COLD LA  | KE      |         |         |         |         |         |         |         |         |                        |       |
| CSS      | 148,045 | 164,464 | 167,455 | 189,912 | 217,747 | 216,196 | 210,217 | 202,468 | 233,681 | 10,705                 | 5.9%  |
| MINING   | -       | -       | -       | -       | -       | -       | -       | -       | -       | -                      | 0.0%  |
| PRIMARY  | 52,024  | 61,121  | 69,285  | 56,048  | 58,093  | 62,879  | 74,885  | 74,226  | 79,097  | 3,384                  | 5.4%  |
| SAGD     | 1,645   | 1,079   | 794     | 634     | 492     | 6,325   | 8,245   | 9,975   | 10,728  | 1,135                  | 26.4% |
| CONKLIN  | I       |         |         |         |         |         |         |         |         |                        |       |
| CSS      | -       | -       | -       | -       | -       | -       | -       | -       | -       | -                      | 0.0%  |
| MINING   | -       | -       | -       | -       | -       | -       | -       | -       | -       | -                      | 0.0%  |
| PRIMARY  | -       | -       | -       | -       | -       | -       | -       | -       | -       | -                      | 0.0%  |
| SAGD     | 20,806  | 31,204  | 42,741  | 44,129  | 52,304  | 62,897  | 105,840 | 155,543 | 226,811 | 25,751                 | 34.8% |
| PEACE RI | VER     |         |         |         |         |         |         |         |         |                        |       |
| CSS      | 8,854   | 9,203   | 8,080   | 8,948   | 6,530   | 9,021   | 8,812   | 5,430   | 4,212   | (580)                  | 0.0%  |
| MINING   | -       | -       | -       | -       | -       | -       | -       | -       | -       | -                      | 0.0%  |
| PRIMARY  | 1,111   | 3,125   | 7,087   | 12,916  | 13,548  | 27,066  | 29,821  | 35,654  | 32,735  | 3,953                  | 52.6% |
| SAGD     | -       | -       | -       | -       | -       | -       | -       | -       | -       | -                      | 0.0%  |
| WABISKA  | W       |         |         |         |         |         |         |         |         |                        |       |
| CSS      | -       | -       | -       | -       | -       | -       | -       | -       | -       | -                      | 0.0%  |
| MINING   | -       | -       | -       | -       | -       | -       | -       | -       | -       | -                      | 0.0%  |
| PRIMARY  | 42,902  | 40,593  | 39,165  | 49,006  | 57,238  | 63,35 I | 64,425  | 64,542  | 61,223  | 2,290                  | 4.5%  |
| SAGD     | -       | -       | -       | -       | -       | -       | -       | -       | -       | -                      | 0.0%  |


#### vi) ANNUAL CRUDE OIL PRODUCTION (BPD) AND GROWTH RATES FROM OIL SANDS REGIONS BY TECHNOLOGY

CAGRs for technologies in all regions exhibited similar growth displayed by technologies in the overall Oil Sands area (Figure 3-iii), with SAGD based production showing (exponential) growth in every producing region but Peace River and Wabiskaw. Primary production in the Peace River area showed a significant CAGR (52.6%), with a relatively low production volume.


### **Annual Oil Sands Production - SAGD**

To closer examine the exponential growth trends in the Conklin region, specifically, SAGD operations (Appendix II-iv and Appendix II-v), annual SAGD production was further analyzed to determine the top 3 projects based on absolute production. Top 3 SAGD producers were identified as 1) Foster Creek, 2) Firebag, and 3) Mackay River, according to the greatest production volumes (See Appendix I). Figure 6-ii highlights the top 3 projects and corresponding production.

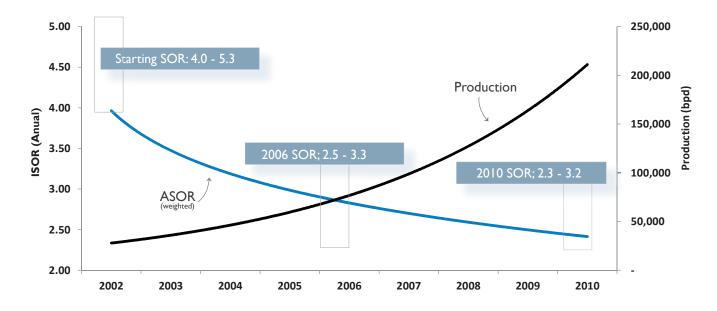
FIGURE 6 i) ANNUAL CRUDE OIL PRODUCTION FROM OIL SANDS FOR SAGD PRODUCTION



ii) ANNUAL CRUDE OIL PRODUCTION FROM OIL SANDS FOR TOP 3 SAGD PRODUCERS



|                | 2002   | 2003   | 2004   | 2005   | 2006    | 2007    | 2008    | 2009    | 2010    |
|----------------|--------|--------|--------|--------|---------|---------|---------|---------|---------|
| FOSTER CREEK   | 14,563 | 22,238 | 29,453 | 29,598 | 37,582  | 49,287  | 52,702  | 75,454  | 102,235 |
| FIREBAG        | -      | 32     | 11,031 | 19,194 | 33,680  | 36,936  | 37,680  | 49,075  | 53,609  |
| MACKAY RIVER   | 6,672  | 10,716 | 16,596 | 21,297 | 21,419  | 20,63 I | 25,414  | 29,348  | 31,496  |
| TOP 3 SAGD     | 21,235 | 32,986 | 57,080 | 70,089 | 92,681  | 106,854 | 115,795 | 153,878 | 187,340 |
| ALL OTHER SAGD | 9,359  | 11,583 | 15,547 | 16,351 | 15,717  | 21,358  | 64,453  | 90,629  | 135,304 |
| TOTAL SAGD     | 30,594 | 44,569 | 72,627 | 86,440 | 108,398 | 128,212 | 180,248 | 244,507 | 322,644 |


#### iii) ANNUAL CRUDE OIL PRODUCTION (BPD) FROM OIL SANDS FOR TOP 3 SAGD PRODUCERS

The annual steam-to-oil ratios (SORs) for the top 3 projects were examined to identify instantaneous (ISOR) and cumulative (CSOR) steam-to-oil ratios (Figure 7-i). SORs are a metric of energy use and efficiency for thermal projects like CSS and SAGD. The SOR is reported as the ratio of the volume of cold water needed to produce the required steam, over the volume of bitumen produced. A significant trend is the decrease in Annual ISOR and CSOR for the top 3 SAGD producers from the 2002-2010 production years, which represents 60% of current SAGD production (Figure 7-ii).

| FI | GURE 7                                          |
|----|-------------------------------------------------|
| i) | ANNUAL ISORS AND CSORS FOR TOP 3 SAGD PRODUCERS |

|              |       | 2002   | 2003   | 2004   | 2005   | 2006   | 2007    | 2008    | 2009    | 2010    |
|--------------|-------|--------|--------|--------|--------|--------|---------|---------|---------|---------|
| MACKAY RIVER | CSOR  | 5.28   | 2.87   | 2.58   | 2.43   | 2.50   | 2.52    | 2.54    | 2.53    | 2.51    |
|              | ISOR  | 5.28   | 2.62   | 2.36   | 2.23   | 2.67   | 2.59    | 2.59    | 2.52    | 2.41    |
|              | (BPD) | 6,672  | 10,716 | 16,596 | 21,297 | 21,419 | 20,63 I | 25,414  | 29,348  | 31,496  |
| FIREBAG      | CSOR  | -      | -      | 5.02   | 4.26   | 3.75   | 3.58    | 3.42    | 3.34    | 3.31    |
|              | ISOR  | -      | -      | 4.19   | 3.82   | 3.29   | 3.28    | 3.01    | 3.12    | 3.20    |
|              | (BPD) | -      | -      | 11,031 | 19,194 | 33,680 | 36,936  | 37,680  | 49,075  | 53,609  |
| FOSTER CREEK | CSOR  | 3.51   | 2.76   | 2.66   | 2.60   | 2.56   | 2.56    | 2.5 I   | 2.5 I   | 2.45    |
|              | ISOR  | 4.00   | 2.52   | 2.52   | 2.46   | 2.46   | 2.55    | 2.31    | 2.5 I   | 2.27    |
|              | (BPD) | 14,563 | 22,238 | 29,453 | 29,598 | 37,582 | 49,287  | 52,702  | 75,454  | 102,235 |
| TOP 3 SAGD   | ISOR  | 4.4    | 3.2    | 2.8    | 2.8    | 2.8    | 2.8     | 2.6     | 2.7     | 2.6     |
|              | (BPD) | 21,235 | 32,954 | 57,080 | 70,089 | 92,681 | 106,854 | 115,795 | 153,878 | 187,340 |

#### ii) ANNUAL ISORS VERSUS PRODUCTION FOR TOP 3 SAGD PRODUCERS



Annual ISOR and Crude Production of Project - Top 3 SAGD (2010)

## **APPENDIX I**

2002 – 2010 Oil Sands Project Production Volumes

(Note: Oil Sands production volume information is currently being reviewed and an updated version will be posted. Should you have any questions in the interim, please contact Jesse Toor (jesse.toor@gov.ab.ca) or Martin Mader (martin.mader@gov.ab.ca).

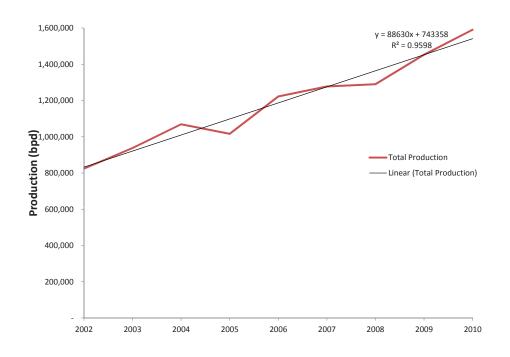
## **APPENDIX II**

### Calculations

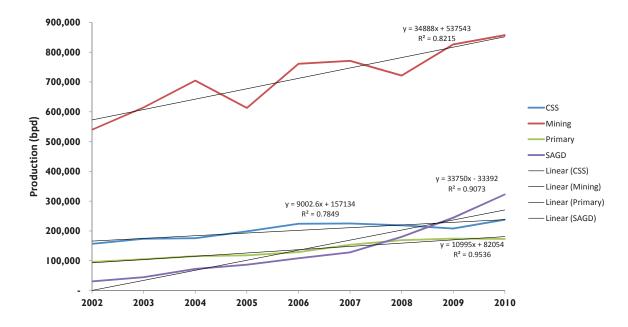
All Growth rates were calculated using Compounded Annual Growth Rate (CAGR) calculation:

r = [(x1/x2)(1/n)] - 1

Where:

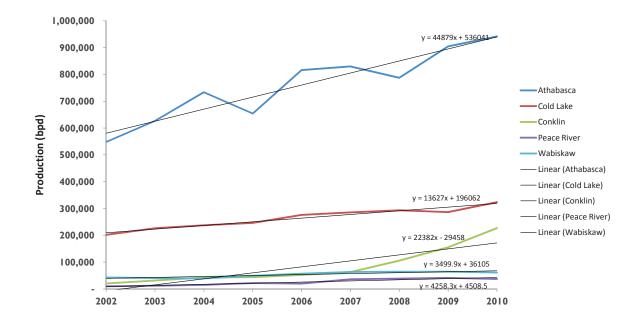

r = Compounded annual growth rate

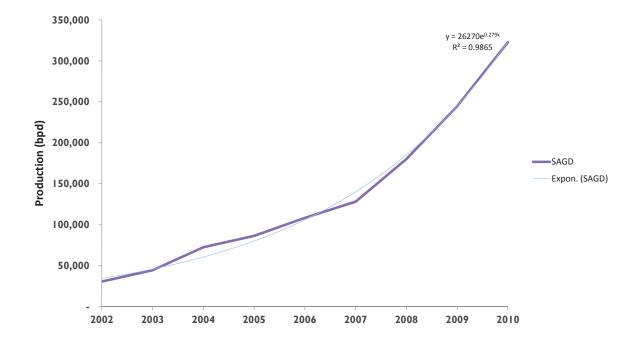
x1 = 2010 annual production value


x2 = 2002 Annual Production value

n = Production Years/Periods

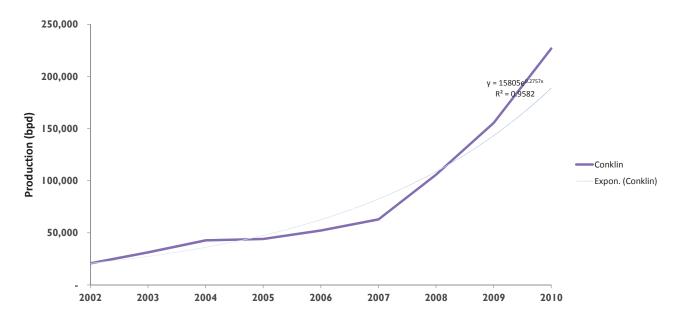
Trend types and R-squared values were generated using Microsoft Excel. See Figure i-v below for corresponding equations.





### i) Annual Crude Oil Production from Oil Sands



## ii) Annual Crude Oil Production from Oil Sands by Technology


## iii) Annual Crude Oil Production from Oil Sands by Area





## iv) Annual Crude Oil Production from Oil Sands for SAGD Production

## v) Annual Crude Oil Production from Oil Sands for SAGD Production



vi) Canada and Alberta Crude Oil Exports to the United States Petroleum Administration for Defense Districts (PADDs)

|                      | CANADA <sup>6</sup> (m <sup>3</sup> /day) | ALBERTA <sup>7</sup> (m <sup>3</sup> /day) |
|----------------------|-------------------------------------------|--------------------------------------------|
| PADDI                | 25,352.0                                  | 5,014.6                                    |
| PADD II              | 194,530.8                                 | 145,504.3                                  |
| PADD III             | 22,451.1                                  | -                                          |
| PADD IV              | 34,614.8                                  | 47,985.4                                   |
| PADDV                | 28,391.1                                  | 18,862.3                                   |
| TOTAL EXPORTS TO USA | 305,339.8                                 | 217,366.6                                  |

The percentage of Alberta crude oil exports (of total Canadian exports) to the United States were calculated using Canadian National Energy Board (Total Crude Oil Exports by Destination) and Alberta Environment Resources Conservation Board (ST-3 – Oil Supply & Disposition) 2010 export volumes (m<sup>3</sup>/day).

<sup>6</sup> http://www.neb.gc.ca/clf-nsi/rnrgynfmtn/sttstc/crdIndptrImprdct/2010/ttlcrdIxprtdstntn2010.xls

<sup>7</sup> http://www.ercb.ca/docs/products/STs/st3/2010/Oil\_2010.xls