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10.0 SUMMARY AND CONCLUSIONS 
This report details the method used to determine ecosystem based instream flow needs for the 
mainstem reaches of the Red Deer, Bow, Oldman, Waterton, Belly, St. Mary and South 
Saskatchewan rivers in the South Saskatchewan River Basin. These determinations are 
designed to protect the aquatic ecosystem. In summary, this report: 

• Provides an overview of the aquatic ecosystem resources in the SSRB. 

• Presents the current scientific knowledge of the flows necessary to protect 
the aquatic ecosystem, by recognizing the interconnectivity of different 
ecosystem components. 

• Outlines the specific methods used by the Technical Team to develop an 
IFN determination for each riverine component: channel maintenance, 
riparian vegetation, fish habitat and water quality. 

• Describes the method used to integrate the various ecosystem components 
into a single IFN determination for the protection of the aquatic ecosystem. 

• Provides ecosystem IFN determination flows for each reach, on a weekly 
time step, based on the 1912-1995 flow record. 

• Concludes that with an accompanying adaptive management approach to 
managing flows, an ecosystem based IFN determination will protect or 
restore the riverine resources in the SSRB. 

Fundamentally, this report acknowledges that fish, wildlife and riparian vegetation 
communities evolved and adapted to the fluvial processes and habitats characteristic of the 
pre-disturbance rivers in the SSRB. Protecting, maintaining or restoring the aquatic ecosystem 
must be founded on rehabilitating and managing the fluvial processes that create and maintain 
habitats vital to fish, wildlife, and riparian species.  The Technical Team was assigned the task 
of determining a flow regime to protect the aquatic ecosystem by the SSRB Steering Committee. 

The IFN determinations made in this report for the protection of the aquatic ecosystem of the 
mainstem reaches of the SSRB were based on the latest scientific understanding.  A key 
principle in aquatic ecology that has gained widespread acceptance is the Natural Flow 
Paradigm (Poff et al. 1997, Richter et al. 1997).  The underlying concept is that the natural 
intra- and inter-annual variability of flow is critical in defining the aquatic ecosystem.  In cases 
where rivers have degraded as a result of water management, restoring aspects of the natural 
flow variability is critical to restoring the ecological processes of the system, including the 
recovery of fish, wildlife and riparian populations (NRC 1992a, Rasmussen 1996, Independent 
Science Group 2000).  Providing a simple, standard-setting IFN recommendation or single 
minimum flow is not considered a suitable approach if the management goal is the protection 
of the aquatic ecosystem (Annear et al. 2002). 

Annear et al. (2002) identified five riverine components that should be addressed in an IFN 
study: hydrology, geomorphology, biology, water quality, and connectivity.  While it would be 
ideal to always address all of these riverine components, it should be recognized that it is often 
difficult to directly incorporate every component into an IFN study due to data gaps, limited 
resources, or insufficient expertise available to participate in the study.  The Technical Team, 
composed of staff from Alberta Environment and Alberta Sustainable Resource Development, 
was established in an effort to include expertise on as many riverine components of the aquatic 
ecosystem as possible within project limitations. The Technical Team accessed expertise from 
both within and outside the Government of Alberta as necessary to develop the new IFN 
determinations.   
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For this study, no new data were gathered, although some new modelling was carried out using 
existing information. Previous modelling results were also re-examined and improvements were 
made where possible. As described in the body of this report, the Technical Team relied on 
existing data for fish habitat, water quality, riparian vegetation, and channel maintenance to 
develop the IFN determinations.  Although not every aspect of every component of the aquatic 
ecosystem was addressed in the current evaluation, the information used in this process is 
believed to be comprehensive by today’s standards and incorporates the entire range of flow 
variability within each sub-basin of the SSRB. 

Methods for quantifying instream flow needs have evolved considerably since the original 
instream flow studies were carried out in the South Saskatchewan River Basin in the 1980s 
and early 1990s. Instream flow methods continue to evolve today.  Most of the original studies 
were based on the quantification of instream flows from the relatively narrow perspective of 
identifying flows for only a few selected sport fish species.  In some instances, water quality 
issues for the selected sport fish species were also addressed. At the time, this approach was 
consistent from the perspective of many natural resource management agencies that placed a 
priority on protecting sport fish populations. The assumption was that if the flows for sport fish 
were provided, then the entire aquatic ecosystem was protected. While this can be a reasonable 
starting point, it is not necessarily true in all instances. It is now considered better to include 
as many riverine components as possible in an IFN determination and avoid unnecessary 
assumptions whenever possible. 

Many myths about what a river needs or does not need have been dispelled during the past few 
decades. For example, it was formerly accepted that higher flows represent excess water in 
rivers. Therefore, it was believed that floodwater removal caused no harm and could even 
benefit, the ecological function of the river. However, as recognized by instream flow 
practitioners as early as the 1970s, seasonal high flows are critical components of river 
ecology. This is especially true at the terrestrial/aquatic interface, where high flows deposit 
sediment, shape channels, rejuvenate and maintain riparian vegetation and habitats, improve 
water quality, expand and enrich food webs, maintain the valley, and provide access to 
spawning and rearing sites in the floodplain.  Similar arguments can be made about the 
importance of natural periods of low flow (drought). 

A considerable body of accumulated knowledge indicates that in order to protect the aquatic 
ecosystem, there must be consideration of multiple riverine components and processes, rather 
than the traditional focus on a single component such as fish habitat or water quality.  It is 
well documented that a single minimum flow determination does not result in the long term 
maintenance of the resource the minimum flow recommendation was initially intended to 
protect (Stalnaker 1990, Annear et al. 2002). Providing only minimum flows to protect low flow 
fish habitat conditions does not account for the flow requirements of the other ecosystem 
components that form and maintain the fish. Establishing instream flows on the basis of only 
fish habitat needs may result in the alteration of geomorphological processes, reduction or 
alteration of riparian vegetation, and changes in floodplain function if high flows are removed 
or reduced (Trush and McBain 2000).  Without flows to maintain riparian poplars, poplar 
forests will eventually disappear, resulting in the loss of habitat in the form of large woody 
debris, and a loss of an energy input that forms a critical part of the aquatic food web. The 
removal of significant amounts of flow from some rivers can result in habitat change and a 
reduction or alteration in fish populations and diversity (Carling 1995, Hill et al. 1991).  

The Technical Team adopted an ecosystem perspective as the basis for making an instream 
flow need determination for the mainstem reaches in the SSRB.  Ecosystems are complex with 
many inter-related pathways. An IFN determination needs to be based on the well-being of the 
entire ecosystem, not a condition that benefits only one species or one life stage of a sport fish 
species.  As such, the entire natural flow range was considered and flow recommendations for 
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all flow components within the natural range of flows were made, within the limits of available 
data and knowledge. 

For this study, four different components of the aquatic ecosystem were studied: channel 
maintenance, riparian vegetation, fish habitat and water quality. Each one was described in 
detail in the report. The following is a brief summary for each of the components. 

10.1 Summary of the IFN Process for the SSRB WMP 

10.1.1 Fish Habitat 

The fish habitat IFN component determination is based on site-specific data and habitat 
modelling. The basic concept of the fish habitat based protocol is to reduce flows in 
incremental amounts from the natural flow and evaluate each reduction in terms of habitat 
losses relative to natural conditions.  The protocol can be described in five basic steps: 

1. Develop a series of constant-percent flow reductions from the natural 
flow, in 5% increments;  

2. Calculate the ecosystem base flow (EBF); 

3. Identify the flow range to conduct habitat time series analyses, using 
site-specific WUA curves as the assessment criteria;  

4. Conduct habitat time series analyses for the natural flow and each 
constant-percent flow reduction, with the added constraint of the EBF; 
and 

1. Apply the habitat evaluation metrics to identify the fish habitat IFN. 

The first step is to reduce the flow as a percentage of the natural flow in even 5% increments, 
starting with a 5% reduction (5%, 10%, 15%, and so on). A flow file is produced for each 
percent reduction from natural. Next, a threshold value, referred to as the Ecosystem Base 
Flow EBF) is established. This is done to reduce the impact on habitat during naturally low 
flow periods. Based on this premise, a highly protective ecosystem IFN should not result in an 
increase in the frequency or duration of naturally limiting habitat conditions. The EBF is 
defined for each reach and is calculated on a weekly time step (i.e. there is a different EBF 
value for each week).  

The third step is to determine a range of flows on which to carry out the fish habitat time series 
analysis. It is assumed there is an upper flow limit where the validity of the fish habitat based 
flow information, weighted usable area (WUA) curves, becomes questionable.  During the 
spring freshet, other ecosystem tools should be used instead of WUA curves for fish. For 
example, it is better to evaluate flows required for riparian vegetation needs, channel 
maintenance processes or other ecosystem processes dependent on high flows. Weeks with 
median flows that are beyond the evaluation range of a WUA curve were therefore removed 
from the analysis. This effectively removes the spring freshet from the analysis.  

As noted in Section 5, this does not mean that every individual flow data point above the peak 
of the highest flow WUA curve is removed from the analysis.  The approach does remove weeks 
where the majority of flows are beyond the limits of the WUA curves, but many individual flow 
records remain in the analysis that are above the peaks of all of the WUA curves. 
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The fourth step is to complete a habitat time series as described by Bovee et al. (1998). A 
habitat time series is based on the calculation of available habitat for every discharge record 
used in the evaluation. Habitat is evaluated only during the open water season, which is 
defined as the period from Week 14 through Week 44 (approximately from the beginning of 
April to the end of October). 

The fifth and final step for the fish habitat component is to assess the results using evaluation 
metrics. Several metrics are used to evaluate the effects of change in discharge relative to 
natural conditions. Although all habitat metrics are reviewed, the change in total average 
habitat, the maximum weekly loss in average habitat, and the maximum instantaneous habitat 
loss are the three most useful metrics for making comparisons.   

Specific habitat loss thresholds were defined for these three evaluation metrics as part of the 
Highwood River IFN (Clipperton et al. 2002), and were used for the SSRB evaluation as well. As 
a first step, the greatest constant flow reduction from natural, that did not exceed any of the 
metric thresholds, is defined as the fish habitat IFN. The thresholds are: 

• a 10% loss in average habitat from natural;  

• a 15% maximum weekly loss of average habitat from natural; and  

• a 25% maximum instantaneous habitat loss from natural. 

The first metric, the difference in average habitat, is viewed as an indicator of chronic effects of 
flow reduction on habitat availability and the aquatic ecosystem for the long term. The second 
metric, the maximum weekly loss in average habitat, is considered to be an indicator of 
intermediate chronic effects of flow reduction on habitat availability and the aquatic ecosystem 
over an intermediate length of time. The third evaluation metric chosen is the maximum 
instantaneous habitat loss. This metric is based on the habitat available during each individual 
week during the period of record for the natural flow and for each of the constant-percent flow 
departures from natural. It represents acute effects of flow reduction. 

It is assumed that no single habitat evaluation metric can adequately assess the change in 
habitat from natural. Impacts of the same habitat loss are greater if it is long term rather than 
short-term. Using all three metrics gives a measure of long term chronic impacts (difference in 
average habitat), seasonal or short term chronic impacts (maximum weekly loss in average 
habitat) and acute impacts (maximum instantaneous habitat loss) on habitat. 

In summary, starting with a 5% departure from the natural flow regime, habitat time series are 
constructed and each metric is checked to see if it is met or exceeded. If the criteria are met, 
then an additional 5% reduction from the natural flow regime is evaluated through a similar 
time series analysis. This is repeated until at least one of the three criteria is exceeded. 
Evaluation metrics are also calculated for each biologically significant period (BSP) for the 
entire open water season for all life stages present in each reach.  

Some very different patterns of habitat loss arose between metrics in the SSRB evaluations that 
did not follow the expected pattern of habitat loss.  These are attributable to site-specific 
hydraulics, channel geometry, and the WUA curves of the reach being evaluated. In some 
cases, large maximum instantaneous losses are found, while many of the other metrics showed 
very small habitat losses, and in some cases, habitat gains.  The possible reasons for this are 
described in Section 5.   

In situations like these, expert judgment was used to develop an instream flow need 
determination that balances acute and chronic habitat losses for all species and life stages, at 
all times of the year. While the strict application of a percent flow reduction below the 
threshold criterion defined for the three key evaluation metrics was intended, following this 
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rule did not always produce results that made biological sense. Balancing and compromising 
between yearly habitat losses and losses within specific BSPs was required. Decisions also had 
to be made to balance habitat losses between life stages present for only a part of the year, 
such as spawning, and the other life stages present year-round. It was deemed more 
appropriate to manage for, and refine these complex situations at an operational level, rather 
than at the current planning level. 

Because only a single flow determination for fish habitat was applied for the entire open-water 
season, some of the metrics were allowed to exceed the defined thresholds to provide a balance 
of habitat loss among all life stages. This assessment was based on expert opinion.  Ongoing 
monitoring and adaptive management are critical steps to ensure the IFN is protecting the 
fishery as expected. Further investigation and future development of the fish habitat evaluation 
method could overcome some of these shortfalls.   

One improvement to the fish habitat based flow recommendations for the current project, over 
those previously used in the SSRB, results from changes made to the habitat suitability criteria 
(HSC) curves. The HSC curves were altered in a workshop setting to reflect a more current and 
wider knowledge base than the previous ones. The HSC data are broader and, in the opinion of 
the Technical Team, better reflect the true microhabitat potential of the species and life stages 
in question. Therefore, the resultant weighted usable area curves should more accurately 
describe habitat-flow relationships compared with the original ones. 

It is widely recognized that under-ice habitat conditions are just as important, and potentially 
even more critical than habitat during the open water times of the year. Consequently, IFN 
studies and recommendations should include the needs of aquatic organisms and habitat 
characteristics in both the open water period and the ice-covered period. However, conducting 
IFN studies during the winter or ice-covered period is extremely difficult. To date, no fish 
habitat studies have been carried out for the winter period in the SSRB. Therefore, instream 
flow needs during the ice covered period are lacking. For the purpose of this report, the winter 
ice-covered period was defined to be from week 45 through week 13, (i.e. November – March) 
for every reach. 

One of the most difficult problems with using standard fish habitat models is the creation of 
winter Habitat Suitability Criteria (HSC) curves. To be able to create HSC curves for fish and to 
monitor fish behaviour for model verification, it is necessary to observe fish in the river in 
wintertime. Several methods are available for collecting the data needed to develop HSC curves 
for under-ice conditions. Each has limitations that prevent them from being widely used. 
Therefore, the Tessmann method was used to generate IFNs for the winter period in the SSRB 
until better tools are available. Winter IFN is an issue that requires a great deal more research 
and effort. 

 Future Considerations 

In carrying out the fish habitat instream flow needs component, it was necessary to make 
several assumptions. If, in the future, it is decided to make further investigations, then it is 
recommended the following issues be addressed: 

• The microhabitat requirements for sturgeon have not been determined. 
This is particularly problematic because sturgeon are a much larger fish, 
with unique habitat requirements compared with the largest species for 
which data were collected (e.g. rainbow trout). For this study, a broad 
assumption was made that the integrated IFN would meet the life history 
requirements of the sturgeon. If future studies are carried out, it is 
recommended the specific habitat suitability criteria data for this species 
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be collected and directly factored into the fish habitat IFN requirement 
component. 

• In this study, only sport fish were modelled. This means that sport fish 
served as a surrogate for all fish species, including forage fish. If future 
studies are carried out, microhabitat data should be collected for all 
species of fish or at the very least, one species from each family or genus. 
The importance of invertebrates also needs to be investigated. If they are 
deemed  important, then collecting microhabitat data for these species 
should also be completed. 

• For the mobile life stages, cover was not factored into the fish habitat IFN 
determinations because it is currently believed the cover requirements of 
the older life stages of the target fish in the SSRB are not critical. If future 
studies are carried out, then this issue should be addressed. If it is indeed 
found to be a critical factor, then the necessary data should be collected. 

• Improving the ability of models to reflect the biology of the system is 
warranted for any future work. Effort should be made to develop 
conditional criteria for HSC curves that better reflect habitat descriptors, 
such as distance from shore and cover, that are biologically relevant to the 
species and life stages of concern. 

• When using any predictive model, output may not follow an expected 
pattern. It is important to understand why this occurs. It is recommended 
that all anomalies described in this report be investigated. 

• Site-specific fish habitat data did not exist for all the reaches in the SSRB. 
In those instances where data were missing, the hydrological flow statistic 
of 95% exceedence was used to set the EBF. In some reaches where 
habitat data were available, selecting the greater of the 95% exceedence 
flow or the 80% habitat retention flow was necessary, because using only 
the 80% habitat retention value did not adequately account for the 
hydrology in the late spring to fall season. It was our goal to ensure the 
intra-annual variability of flow, relative to the natural flow regime, was 
maintained. Further biological grounding regarding the setting of the EBF 
is essential and it is recommended that this work be carried out if future 
studies are undertaken. 

Even though every step should be taken to validate physical fish habitat models, there have 
been instances where predictive physical habitat model output was not consistent with the 
observed biology of the system. Beecher et al. (2002) carried out model validation according to 
accepted practices, yet in other studies being carried out on the same streams, it was clearly 
demonstrated the best year class recruitment occurred during much different flows than the 
model predicted (H. Beecher, 2003. pers. comm.). As is the case with the use of any model, 
extreme care must be taken in its application. It is strongly recommended that a fisheries 
monitoring program be implemented to verify the impact on fish populations of any water 
management decisions. 

10.1.2 Water Quality 

Water quality based instream flow needs values were generated in the early to mid 1990s for 
the mainstems of the Red Deer, Bow and Oldman rivers. Summer WQ IFNs were also generated 
for the Waterton, Belly and St Mary rivers. Private consultants under contract to the provincial 
government carried out the work. 
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 Basis of the water quality IFN values 

A broad range of water quality data are collected on a routine basis throughout the SSRB and 
include variables such as nutrients, major ions, metals, pesticides and bacteria.  In most 
cases, these variables are best managed by source control, rather than by instream flow 
determinations.   

Water quality instream flow determinations focus on temperature and dissolved oxygen (and 
ammonia in some reaches) because these variables are amenable to management by flow 
regulation.  For fisheries protection, these two variables are also the most critical water quality 
variables in southern Alberta rivers. Dissolved oxygen levels also determine the assimilative 
capacity of a river reach.  

 Protection against high temperatures and low dissolved oxygen 

concentrations 

Summer stream temperatures tend to track ambient air temperatures, typically reaching 
maximum values in late July and August. Exceedences of temperature guidelines for protection 
of fish species may occur during extended periods of high ambient temperatures and sparse 
cloud cover, in particular when river flows are low.  Higher flows provide a buffer against 
instream temperature exceedences.  Instream temperatures that exceed guidelines have a 
negative effect on fish metabolism and can cause fish mortality.  Acute temperatures for most 
sport fish in Alberta are between 22 and 29 °C; seven-day chronic values are between 18 and 
24 °C.   

Oxygen becomes less soluble as stream temperatures increase, causing a reduction in DO 
levels.  The Alberta provincial guideline for dissolved oxygen for fish protection (all fish species) 
is 5 mg/L for protection against acute DO deficit, and 6.5 mg/L seven-day average 
concentration for protection against chronic deficit (AENV 1999). 

 Assimilation of Wastes 

This use requires sufficient flow to dilute wastes, and allow for biological breakdown of organic 
wastes, while protecting the aquatic environment from significant impact.  Assimilation flows 
are typically intended to ensure that dissolved oxygen and ammonia levels remain within 
guidelines for the protection of aquatic life.  To establish assimilation flows, water quality 
modelling is conducted, based on current and/or future contaminant loadings from various 
sources, in particular below the municipal wastewater treatment plants downstream of major 
cities.  River flows for waste assimilation are a consumptive use of our water in that they limit 
the amount of water that can be diverted for other uses. This is a fundamental difference 
compared with the other IFN components described in this document.   

 Scouring Flows 

Of particular importance to water quality are  high flows due to snow melt in late spring and 
early summer.  These flows are called flushing or scouring flows, because they dislodge 
sediments and other materials that accumulate on and within the riverbed and carry them 
downstream.  In cases where these sediments are rich in nutrients and organic matter, the 
removal of the sediments with the high flows reduces seasonal increases in oxygen demand 
within the reach.  High sediment oxygen demand lowers dissolved oxygen levels and can cause 
fish kills.   
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Periodic high flows in spring and early summer also impede the establishment of both new and 
existing aquatic vegetation.  Without these high flows, macrophyte and algal growth can exert a 
very significant oxygen demand during nighttime periods in late summer, when growth can be 
prolific, and during winter when the biomass decays.  

 Provision of the Water Quality Based IFNs 

Water quality IFN values, based on temperature and dissolved oxygen, have been provided for 
the summer and winter low flow periods in most reaches in the project study area.  In some 
reaches (the Oldman and Red Deer rivers), IFN values have been provided for all four seasons.  
Water quality IFNs still need to be determined for other reaches on at least a seasonal basis. 
Where WQ IFNs have not yet been prescribed, such as the South Saskatchewan River, the use 
of recent recorded flows is recommended. These flows should be based on existing water 
quality monitoring data indicating minimal exceedences of guidelines.  

A provincial database contains extensive water quality data that are available and largely 
sufficient for further IFN work. Resources are needed to conduct additional water quality 
modelling using the most recent water quality data. Much work has been carried out in the 
past decade, but there is still great benefit in continued refinement of the existing IFN values 
and generation of IFN values where none currently exist. 

10.1.3 Riparian Vegetation 

The guidelines developed for determining instream flow recommendations for riparian poplars 
are designed to provide the full range of flows required to help preserve and restore riparian 
forest ecosystems in the South Saskatchewan River Basin.    

Riparian cottonwoods are intimately dependent on the riparian water table. They are able to 
survive in the driest regions of southern Alberta only because their root systems tap the 
riparian water table, connecting them to a reliable water supply even during periods of natural 
seasonal high temperatures and low precipitation.  Any IFN determination must therefore 
maintain the water table within reach of the root systems of established cottonwoods. 

Riparian poplar forests require ongoing reproduction to drive forest replenishment.  
Cottonwood seeds require specific substrate and moisture conditions during their first few 
weeks for successful germination and establishment.  Moist, barren sediments, such as those 
exposed by ice or flood flows, are suitable for cottonwood seedling establishment.  As peak 
springtime flows recede, so does the riparian water table. Young cottonwood seedlings will only 
survive if their root growth is able to keep pace with the moist capillary fringe above the 
declining water table. Flows prescribed to meet poplar instream needs must therefore 
accommodate the natural seasonal variability of flows that support seedling recruitment.  

Dendrochronological analyses have shown that natural cottonwood recruitment is associated 
with 1 in 5 to 1 in 10 year return flood events along streams in southern Alberta. However, 
larger scale floods that cause geomorphic changes can improve recruitment opportunities for 
the next several years.  

 Flows to Sustain Riparian Forests 

Because each stream has its own combination of environmental constraints and species 
compositions, flows required to sustain riparian cottonwood forests may vary greatly from 
reach to reach.  Logically, the natural flow regimes that have supported riparian forests 
historically should be adequate to maintain those forests into the future.  The approach taken 
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here targets flows for maintaining and restoring the natural extent and character of riparian 
cottonwood forests, rather than simply trying to ensure the survival of remnant trees. 

The calculated instream flows are expected to both: 

• Sustain the health of existing trees in a condition comparable to the level 
that would be expected under natural conditions; and 

• Maintain the frequency of seedling recruitment events so that the long 
term viability of the riparian forest is sustained. 

Cottonwood streamflow requirements can be grouped into four general categories:  

• tree survival,  

• tree growth,  

• seedbed preparation, and  

• seedling and sapling survival.  

 Flows for forest survival and maintenance  

One minimum flow will not suffice for every reach, because each reach has unique 
characteristics that dictate tolerable water table levels for the cottonwoods residing there. A 
range of low flows is therefore required that fluctuates both within and between years. 

Because naturally occurring riparian cottonwoods are adapted to tolerate natural extremes of 
streamflow, they can survive occasional drought conditions. However, the cumulative effects of 
prolonged or excessively frequent drought events will lead to gradual forest deterioration and 
reduced resiliency to subsequent stresses. Low flows should be calculated with the goal of 
maintaining cottonwood survival under chronic implementation. The lowest flows required for 
the survival and maintenance of riparian cottonwoods have been estimated at between 40 and 
60% of average weekly flow. 

 Flows for tree health and growth 

Chronic low flows alone will not sustain a healthy riparian forest. A range of moderate flows is 
required for optimal growth of cottonwoods.  Thus, as when calculating a range of low flows, it 
is recommended that moderate flows be modelled after trends in the naturally occurring flow 
regime. As tends to occur naturally, exposure to a broad range of dynamic floodplain 
conditions can improve forest resiliency and ensure its survival, despite the inevitable 
disturbances and stress associated with a highly variable flow environment.  Research shows 
that normal growth requires average natural streamflows, with 40 to 60% of natural streamflow 
being necessary for healthy tree canopies and 74 to 313% of long-term average annual flows 
being needed for maximum growth. 

 Flows for channel processes and associated seedling establishment 

Moderate flows favour the survival of mature cottonwood trees. To ensure the ongoing viability 
of riparian forests, a range of high flows is also needed. These flows drive channel dynamics 
that control erosion, deposition of sediment and the formation of barren sites required for 
seedling recruitment.  

Bankfull discharge is recognized as a threshold of flow magnitude conducive to cottonwood 
seedling replenishment. However, flows beyond the bankfull threshold are needed in channels 
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with coarse bed materials.  A number of studies show that flows up to 160% of bankfull can be 
important in determining the geomorphic characteristics of a stream. 

 Flows for long-term seedling survival 

Intra-annual variability is especially important following peak flows, when seedlings are being 
established.  A receding flow regime is required to encourage root development in seedlings, but 
the rate of decline cannot be so severe as to cause seedling mortality.  Thus, in order to 
promote long term survival of cottonwood saplings, variability in the flow regime should not 
exceed that which would occur naturally.  By preserving the natural range of high and low 
flows that affect the riparian water table, cottonwood root systems will be encouraged to 
establish at depths that promote healthy tree growth and resiliency to future flow fluctuations. 

 The Poplar Rule Curve 

The determination of poplar instream flow needs must address the pattern of flow required to 
meet the varied moisture requirements of the poplars during the growing season.  The natural 
degree of variability in streamflow was incorporated in the design of flow regimes for sustaining 
riparian cottonwoods and the channel processes they depend on.  Therefore, riparian poplar 
IFNs were based on the exceedence curves of naturalized flows for each river reach assessed, 
for each week of the year.   

The goal of the Poplar Rule Curve process is to integrate the low, moderate, and high flow 
requirements of cottonwoods with a natural pattern of flow variability.  The PRC is defined by a 
composite of three exceedence-based curves and bankfull discharge.  

The first curve included in the PRC defines the minimum streamflow required for long term 
cottonwood survival and maintenance as the 90% exceedence flow. Lower flows will occur 
naturally, but cottonwoods should be able to tolerate these acute level events as long as the 
frequency of these events is not increased. Thus, natural flows that are less than the 90% 
exceedence flow are not reduced or increased. Natural flows that are greater than the 90% 
exceedence flow are not reduced below the 90% exceedence flow in a given week. 

Moderate to high PRC flows are defined by the greater of either 65% of naturalized flow, or that 
flow corresponding with a 50% increase in the return interval.  These two values bridge the 
minimum flow requirements for cottonwood survival with those for healthy tree growth and 
seedling establishment. 

The maximum flow required by the PRC has been set at 125% of bankfull discharge to include 
flows critical for maintaining the channel dynamics necessary for creating nursery sites for 
poplar seedling establishment.  

The determination of poplar instream needs can be simplified into four PRC rules. These rules 
dictate:  

• There be no reductions to flows with natural exceedences of 90% or 
greater;  

• Flows may not be reduced below the 90% exceedence level;  

• Reduction of up to 35% of naturalized flow is acceptable, provided the 
resulting RI shift is not greater than 50%; and  

• The highest flows can be reduced to 125% of bankfull. 
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The PRC approach is designed to meet the flow requirements for cottonwood survival, growth 
and reproduction within the context of a continuum of natural flow variability.  To ensure both 
intra- and inter-annual variation are accommodated within a PRC recommendation, the PRC 
decision criteria are applied to weekly exceedence curves throughout the cottonwood growing 
season.   

It is expected that the details of the PRC rules will need to be revised slightly to address 
variability present along reaches and sub-basins within the South Saskatchewan River Basin 
before the integrated IFNs are implemented.  

 Suitability of PRC flows in southern Alberta  

Results of comparisons between PRC flows and actual flow regimes along selected test reaches 
in the South Saskatchewan River Basin support the validity of the PRC for sustaining riparian 
cottonwood populations. A detailed validation of the PRC was completed through the individual 
assessment of each of the five criteria whose exceedence curves form the basis of the PRC.  To 
evaluate each criterion, the flows in the affected exceedence range were compared with the 
corresponding regulated flows implemented along the various test reaches and related to 
known impacts on riparian poplar forests. 

The part of the PRC that cannot be adequately evaluated, based on comparisons with the 
implemented flow regimes for these test reaches, is the reduction of peak flows that exceed 
125% bankfull.  It is not possible to infer the effects of such a change, because none of the flow 
regimes along the test reaches have been modified in this way. 

 Evaluation of PRC criteria 

PRC criterion 1 protects flows below the naturalized 90% exceedence level. Occasional, slight 
reductions (<30%) to flows in this exceedence range alone might not be seriously harmful. 
However, combined with moderate reductions to larger flows, there is an increasing likelihood 
of inducing chronic drought stress in downstream forests. This criterion is acceptable for the 
current planning level analysis. 

PRC criterion 2 would prevent reductions below naturalized 90% exceedence flow. Similar to 
the case for criterion 1, occasional, slight reductions below the 90% exceedence threshold may 
not have serious consequences. However, reductions of greater than 10% are not acceptable. 
Considering that 10% of a naturalized 90% exceedence flow represents a relatively insignificant 
volume of water from a management perspective, the risk associated with adjusting criterion 2 
is not merited. 

The assessment of PRC criterion 3 suggests that while the 35% reduction might be adjusted to 
40% without harming riparian forests, such a reduction would prevent PRC criterion 3 from 
providing a gradual transition between criteria 2 and 4. The resultant exceedence curves would 
have an unnatural step function imposed in mid-range flows.  This would somewhat negate the 
effort to maintain the inter-annual variation of the natural system.  Thus, the 35% flow 
reduction allowed by criterion 3 should only be altered in concert with a similar adjustment in 
the exceedence curve for criterion 4. 

PRC criterion 4 permits flow reductions equivalent to a 50% increase in return interval. Based 
on the trends along the test reaches, this value seems generally acceptable. Due to the 
variability among the reaches, it is not clear if a further reduction would still be adequate for 
maintaining healthy downstream forests.  Without additional evidence from other test reaches, 
the limit of 50% increase in RI should be maintained. 
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PRC criterion 5 would permit peak flows to be limited to 125% bankfull. Considering that 
actual reductions to flows beyond this magnitude have been relatively minor along the test 
reaches, the appropriateness of the 125% bankfull value as a maximum in the PRC cannot be 
verified using these test cases. This criterion is the only part of the PRC that is defined by an 
absolute value calculated without reference to the historic flow record. The 125% bankfull 
value is recommended only as an initial approximation. It requires further consideration on a 
reach-specific basis. 

The individual assessments of the five PRC criteria generally support their use in the PRC 
approach for meeting the flow requirements of riparian cottonwoods in the SSRB. Trends 
observed along the test reaches suggest that only minor revisions could be safely made to any 
of the criteria used in calculating the overall PRC.  

10.1.4 Channel Maintenance Flows 

Channel maintenance flows, as defined for this report, cover the range of flows that have been 
commonly referred to as flushing flows, bed mobilization flows, channel structure flows, and 
channel forming flows. Although the importance of these flows to the aquatic ecosystem is well 
understood, the methods used to describe these flows are just emerging. As with most IFN 
methods, detailed data are required along with the use of predictive models. 

One of the most difficult challenges that must be addressed in an IFN study is determining the 
entire range of channel maintenance flows with a magnitude, frequency of occurrence, and 
duration as they relate to the natural flow. The Technical Team reviewed several well 
documented sediment transport models that can be used to determine flow.  Most of these 
methods are data intensive. Because it was not possible to collect new data for this study, they 
could not be used.  

Data were available to use a sediment transport model. In this study, channel maintenance 
flow recommendations were determined using an incipient motion method, based on the 
Shields entrainment function.  The Shields equation uses sediment grain size and channel 
slope to recommend flushing flows. 

The Shields equation generates a flow magnitude but does not stipulate the timing or duration 
of the needed flow. Therefore, it was not possible to generate weekly exceedence curves of IFN 
values that were similar, in terms of duration and frequency, to those compiled for the other 
three components: riparian vegetation, fish habitat and water quality. Instead, a comparative 
analysis of the integrated IFN recommendation was completed, to ensure the higher 
recommended discharges were adequate to provide the necessary flows for channel 
maintenance. 

It is recommended that before finalizing IFN prescriptions, detailed models that not only 
provide a recommendation in terms of magnitude, but also timing, duration and frequency 
should be applied in the SSRB.  

The channel maintenance flow determinations provided in this report are weekly averages and 
are intended to be used for guidance in a general water balancing model context. More detailed 
studies and better tools are required before any decisions are made regarding implementation 
of flows on an operational basis. It is most likely that regulation structures in the South 
Saskatchewan River Basin have already significantly altered the natural sediment regime in 
these rivers. Before any decisions are made to implement channel maintenance flows, it is 
necessary to understand these changes in sediment regime, as it is possible that changes to 
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these higher flows from current operations could have profound and unexpected effects on the 
channel. 

Channel maintenance flows are as important as flows prescribed for any of the other ecosystem 
components. Changes to the channel morphology as a result of flow regulation will result in 
changes to habitat and therefore, in changes to populations of stream-dwelling species. 
Channel maintenance flows occurring with near-natural frequency are required to maintain a 
near-natural ecosystem. Reduction or elimination of the physical processes associated with 
high flow events will greatly affect habitat that stream-dwelling and riparian species rely on. 

10.1.5 Integration of the Four IFN Components 

Even though there is recognition by IFN practitioners of the need to consider all elements of the 
aquatic ecosystem in defining an IFN, there is no universally accepted method for combining 
the different ecosystem components to develop an integrated flow recommendation. For this 
study, the Technical Team developed a straightforward method for integrating the four 
ecosystem component IFN results in a flow duration curve format, using a weekly time step. 

For the most part, water quality IFN determinations are provided as a single value for each 
week of the year, for each reach. Water quality recommendations tend to dominate when the 
natural flow is relatively low. Water quality values are often available for both winter and the 
open-water seasons.  

The fish habitat IFN determination is a variable flow curve that is applied seasonally for each 
week in the open water season, excluding the spring freshet. Fish habitat data are not available 
for the winter weeks.  Tessmann values are applied in this period. Fish habitat IFNs tend to 
dominate for a range of moderate flows and generally overlap with water quality and riparian 
flows.  

The riparian IFN determination is also a variable flow curve and is applied only during the 
growing season in the spring and summer. The riparian IFN tends to dominate during the 
spring freshet, when high flows are common.  

Usually, but not always, there is some overlap among the components. When this occurs, one 
component becomes the primary determinant of the ecosystem IFN flow. Conversely, there are 
times when a determination is provided by only one component. This may be due to limitations 
in data sets or seasonal omissions of determinations of some components. 

The channel maintenance IFN determination is not readily incorporated into a weekly duration 
format.  Instead, a check was conducted to ensure the IFN determination at the higher 
discharges was adequate to also provide the flows necessary for channel maintenance.  

Both the fish habitat and riparian IFN determinations identified a base flow below which no 
reduction in flow is recommended.  In situations when the natural flow is below the base flow 
determination, the final integrated ecosystem IFN will usually be the same as the natural flow.  
The exception to this rule occurs when augmented flows are required to meet the water quality 
IFN determination, based on current loadings in the system. In determining the water quality 
IFN, it is not realistic to factor out current loadings from municipalities. Therefore, the water 
quality based IFN recommendations are unlinked from the natural flows because following the 
natural flow would increase violations of water quality parameters beyond natural levels. 
Although the period when the water quality IFN exceeds the natural flow is typically limited to 
the winter weeks, in very dry years it can also exceed the natural flow during the summer.  
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The integrated IFN is determined for each reach separately by comparing the IFN value for each 
of three components, on a week by week basis, for every data point for that reach in the period 
of record.  The channel maintenance IFN values are not available in a format that allows direct 
integration into the IFN. Therefore the final integration is initially based on the IFN values for 
water quality, fish habitat and riparian vegetation. The component with the highest flow 
recommendation is selected as the flow value for the integrated or ecosystem IFN. When there 
are three IFN values, one for each component, the one with the highest flow requirement 
defines the integrated IFN at that point.   

Each component has data gaps for either some years or some reaches under review. Therefore, 
there are instance when the integrated IFN is only made from two, or even just one of the 
components. For example, during the spring, the IFN is often defined entirely by the riparian 
IFN determination, regardless of the flow.  This reflects the seasonality of the hydrograph and 
the corresponding biological functions that have adapted to the timing of high flows.  

It was the goal of this study to provide as broad an ecosystem based IFN determination as 
possible. The integrated IFN is based on several riverine components and, as such, is better 
than an IFN determination based on any one individual component. Combining the individual 
components into one integrated IFN determination reflects the interconnectivity between the 
components.  The Technical Team believes it is best to use all available data, apply the best 
tools for the appropriate time of year and flow range, and to integrate and incorporate all 
available data in formulating IFN determinations. 

For this study, all IFN determinations were made on a reach by reach basis. The IFN 
determinations need to be checked for consistency from upstream to downstream reaches. 
Before any impact assessment is done, balancing of the IFN determinations for the individual 
reaches must be carried out. 

10.2 Application of the Ecosystem IFN in the SSRB WMP 

There is no one correct or universally accepted way to define instream flow needs. Defining 
instream flow needs involves data collection and analysis, making assumptions, modelling, and 
professional judgment. Throughout the report, the Technical Team has documented its 
decision-making processes as thoroughly as possible and documented the rationale for all 
decisions. It is the opinion of the Technical Team that the instream flow needs determinations 
contained in this report represent an improvement compared with earlier IFN analyses. This is 
due to a number of reasons: 

• The ecosystem IFN is comprised of four riverine components: water 
quality, fish habitat, riparian vegetation and channel maintenance. These 
address the entire range of natural flows in terms of magnitude, frequency 
and duration.  

• The inter-annual and intra-annual flow variability of the ecosystem IFN 
better incorporates the pattern of natural flow variations in a consistent 
manner for every week, as illustrated for a dry, average and wet water year 
in Figure 10.1. 

• The current IFN has more comprehensive Ecosystem Base Flows, defined 
for every week. 

• Improvements to the hydraulic calibrations and revisions to the fish 
habitat suitability criteria (HSC) curves resulted in updated WUA curves. 
These served as the basis for the new fish habitat based IFN analyses. 
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 Figure 10.1. Example of inter-annual and intra-annual flow variability of the ecosystem IFN 
determination for the Oldman River (OM4) for a wet (top, 1990), average (middle, 
1946), and dry (bottom, 1984) flow year based on the average annual flow. 
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As is the case with any instream flow needs determination study, there is some uncertainty. In 
the absence of data, assumptions must be made. It was the goal of the Technical Team to 
reduce to the extent possible the uncertainty inherent in studies of this nature. All decision 
points have been documented. The Technical Team does not wish to imply there were no 
arbitrary decisions. There were several instances where arbitrary decisions had to be made, but 
in those instances a decision was made through consensus. 

For all future studies, the Technical Team wishes to stress the need for continued 
interdisciplinary study involving, but not limited to, hydrologists, hydraulic modellers, fluvial 
geomorphologists, river engineers, aquatic chemists, riparian ecologists, aquatic botanists, 
fisheries biologists and invertebrate biologists. 

In the past there has been considerable discussion about “what the numbers mean.” The intent 
of this report is to define an IFN that will provide for the protection of the aquatic environment 
by allowing all the naturally occurring ecosystem functions and services to continue. It is often 
the wish of many to view IFN recommendations as a very narrowly defined line that demarcates 
the transition from healthy to non-functioning or degraded ecosystems. The authors wish to 
caution those who hold this view that rarely, if ever, is it possible to define a threshold above 
which, for example, all natural processes, functions and services occur and below which they 
do not occur.  This concept is an over-simplification.  There is no evidence to suggest such a 
line exists. In the real world of complex ecosystems, it is more reasonable to expect a 
continuum of impacts, associated with various degrees of flow regime change, that incorporate 
the thresholds of many species, rather than a single threshold for the entire ecosystem (Brizga 
2001). 

The best guidance the Technical Team can provide in terms of interpreting the IFN 
determinations in the context of suggested water management options is that flow values lower 
than the IFN determinations will not likely protect the ecosystem over time. The ecosystem will 
not be able to provide all the historical natural functions and services that it used to. Based on 
the predictive modelling results, if the flows are at or above the recommended flows, then the 
ecosystem should be protected at near-natural levels.  

It can also be said that when comparing two flow regimes, the flow regime that deviates further 
from the IFN determination will cause greater risk to the riverine ecosystem. Although it is not 
possible to accurately determine the degree to which the risk increases with deviation from the 
IFN, the Technical Team offers the following for consideration. In general, the greater the 
deviation from the IFN, the more likely it is that: 

1. Change from natural will occur; 

2. Change will occur more rapidly; 

3. Change will be more severe (greater stress on a species); 

4. Change will be more extensive (affect more species); 

5. Recovery from change will take longer; and 

6. Change will be irreversible. 

There is a paucity of scientific knowledge that will help quantify the risk associated with any of 
the six concerns listed above.  Each of these is a new area of research yet to be opened. 

The ecosystem IFN determination is based on best available knowledge, but our knowledge 
about the complexities of ecosystems is incomplete. A fundamental difficulty in managing 
ecosystems for the long term is that their great complexity makes it difficult to forecast the 
future in any meaningful way. Not only are predictive models uncertain, common statistics 
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may also underestimate the uncertainties of these models. Even when the best attempts are 
made to account for as many parameters as feasible, there are other key drivers, such as 
climate and technological change, that are unpredictable. Many of these parameters change 
non-linearly. In addition to the physical, chemical and biological factors that determine the 
ecosystem, the human element adds yet another dimension (Walker et al. 2002). 

Regardless of the flow management decisions made in the future, it should be mandatory to 
validate the predictions of the models used in this report. Managing the uncertainty in any 
social resource decision is a prudent step to take. An adaptive environmental assessment and 
management program should be established. This report, and the recommendations contained 
herein, is based on the best available scientific information. However, alluvial river systems are 
complex and dynamic. Although our understanding of these systems, and our predictive 
capabilities, have improved in the last decades, there is still uncertainty about how the river 
and the riverine resources will react to any proposed water management plan. An adaptive 
management program provides a structured mechanism for fine tuning management 
operations in relation to the recommended flows. 

In summary, the primary role of the IFN determinations is to give the decision makers guidance 
on future water management decisions in the SSRB, over the long term. If the current flows are 
near or above the IFN determination flows, then a decision to keep the reaches in a near 
natural and highly protective state can be achieved by limiting additional allocations. In those 
reaches where the existing flows are lower than the IFN determinations, and a decision is made 
to move toward the IFN determinations, then over the long term, the ecosystem should recover 
and function closer to a natural level. If a decision is made to hold flows below the IFN 
determinations, or to reduce them further through additional allocations or operational 
changes, it can be expected that the ecosystem will not function as it would under natural 
conditions.  

The results of this study should be useful in future discussions regarding water planning in 
the South Saskatchewan River Basin. It is hoped this document will provide guidance to the 
decision makers and the information in this report will help decision makers better understand 
the consequences of their decisions.
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GLOSSARY 
 
Abiotic –  The nonliving, material components of the environment, such as water, sediment, 

temperature, etc.  
 
Abscission – Separation of a leaf from a plant.  Normally induced at the end of the growing 

season by the production of abscissic acid.  Can also be triggered by adverse conditions 
such as drought stress. 

 
Adaptive Management – A process whereby management decisions can be changed or 

adjusted based on additional biological, physical or socio-economic information.  
 
Annual Flow – The total volume of water passing a given point in 1 year.  May be expressed as 

a volume (such as acre-feet) but may also be expressed as an equivalent constant 
discharge over the year, such as cfs or m3/s.  

 
Aquatic Habitat – A specific type of area with environmental (i.e., biological, chemical, or 

physical) characteristics needed and used by an aquatic organism, population, or 
community. 

 
Backwater – (1) A pool surface created in an upstream direction as a result of the damming 

effect of a vertical or horizontal channel constriction that impedes the free flow of water.  
(Bovee et al. 1998); or (2) Generally, an off-shoot from the main channel with little flow 
and where the water surface elevation is maintained by conditions in the main channel 
acting on the downstream end of the backwater. 

 
Bankfull Discharge – The discharge corresponding to the stage at which floodplain begins to 

be inundated.   
 
Bar – (1) A ridge-like accumulation of sand, gravel, or other alluvial material formed in the 

channel, along the banks, or at the mouth of a stream where a decrease in velocity 
induces deposition.  (2) An alluvial deposit or bank of sand, gravel, or other material, at 
the mouth of the stream or at any point in the stream itself that causes an obstruction 
to flow:  

 
Base Flow – The ground-water component of a stream’s flow. It consists of the flow that would 

remain in the saturated zone below the streambed surface if surface flow were removed.  
 
Baseline – The conditions occurring during the reference timeframe, usually referring to water 

supply habitat values, or population status.  Baseline is often some actual recent 
historical period but may also represent: (1) the same climatological-meteorological 
conditions but with present water development activities on line; (2) the same 
climatological-meteorological conditions but with both current and proposed future 
development on line; or (3) virgin or pre-development conditions.  The definition of 
baseline will always depend on the objectives of the study.  Quite often, two or more 
baseline conditions may be necessary to evaluate a specific project.  

 
Bedload – Material moving on or near the streambed and frequently in contact with it.   
 
Benthic – Associated with the bottom of a body of water.  
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Biological Oxygen Demand (BOD) – An empirical test used by laboratories to determine the 
relative oxygen requirements of wastewaters, effluents and polluted waters.  The test 
measures the oxygen utilized during a specified incubation period for the biochemical 
degradation of organic materials. 

 
Biologically Significant Period (BSP) – A period of weeks or days when a given life stage is 

present or active, and for which PHABSIM modelling of that stage is relevant.  For 
example, the BSP for rainbow trout spawning is 30 April to 17 June.  Modelling habitat 
for spawning rainbow trout is relevant only for this period. 

 
Biomass – The weight of a taxon or taxa per unit area.  May be expressed as wet or dry weight. 

(Syn:  Standing crop.)  
 
Biotic – Of or pertaining to the living components of an ecosystem.  
 
Braided – Pattern of two or more interconnected channels typical of alluvial streams.   
 
Calibration – A means of adjusting modelled depths and velocities to obtain the most realistic 

depiction of hydraulic conditions in a study site. 
 
Capillary Fringe – a zone of moisture that extends above the saturated riparian water table 

due to the ‘wicking’ effect caused by the surface tension of water (Mahoney & Rood 
1998). The height of the capillary fringe is dependent upon substrate texture, ranging 
from 20 to 40 cm for coarse-textured mixtures of cobble and gravels, and 30 to 100 cm 
for fine-textured silt and sands ( 

 
CCME  – Canadian Council of Ministers of the Environment 
 
CCREM – Canadian Council of Resource and Environment Ministers 
 
CFS – Cubic feet per second (measure of streamflow or discharge).  
 
CFU – Colony forming units (bacteria). A measurement used in water quality assessments, with 

particular reference to recreational guidelines and fecal coliform bacteria, including E. 
coli. 

 
Channel – The cross section containing the stream that is distinct from the surrounding area, 

due to breaks in the general slope of the land, lack of terrestrial vegetation, and 
changes in the composition of the substrate materials. 

  
Channel Index – A general term in PHABSIM that can incorporate substrate, cover or both. 
 
Channel Maintenance Flows – Range of flows within a stream from normal to peak runoff. 

May include, but is not limited to flushing flows or flows required to maintain the 
existing natural stream channel and adjacent riparian vegetation. 

 
Channel Maintenance Flows – Streamflow or magnitude sufficient to mobilize significant 

amounts of bedload. 
 
CMS (m3/s) – Cubic metres per second (measure of streamflow or discharge).  
 
Competition – Active demand by two or more organisms or species for the same environmental 

resources, especially in excess of the available supply.   
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Composite Fish – A WUA curve synthesized by combining curves for 2 or more life stages of a 
fish. 

 
Connectivity – Maintenance of lateral, vertical, longitudinal and temporal pathways for 

biological, hydrological and physical processes 
 
Consumptive Use – Represents the difference between the amount of water diverted and the 

amount of the return flow to the system (e.g., surface stream or underground basin). It 
is that amount by which the total resource is depleted.  

 
Cover – Structural features (e.g., boulders, log jams) or hydraulic characteristics (e.g., 

turbulence, depth) that provide shelter from currents, energy-efficient feeding stations, 
and/or visual isolation from competitors or predators.   

 
D50 – In a sediment or gravel mixture, D50 is the diameter that 50% of the mixture, by weight, 

falls short of or exceeds. ( i.e., 50% of the gravel is larger than the specified diameter 
and 50% is smaller.) 

 
Dam – An artificial barrier that obstructs the flow of water and that increases the water surface 

elevation upstream of the barrier.  Usually built for water diversion, water storage, or to 
increase hydraulic head.  Dams can affect fish passage, sediment transport, stream 
temperature, ice formation, and other natural processes. 

 
Dendrochronology – The science of dating events and variations in environment in former 

periods by comparative study of growth rings in trees and aged wood.  
 
Depth – The vertical distance from a point on the bed to the water surface. 
   
Discharge – The rate of streamflow or the volume of water flowing at a location within a 

specified time interval.  Usually expressed as cubic metres per second (m3/s) or cubic 
feet per second (ft3/s).   

 
Dissolved Oxygen – The amount of oxygen dissolved in water, expressed in mg/L or as percent 

saturation, where saturation is the amount of oxygen that can theoretically be dissolved 
in water at a given altitude and temperature.   

 
Diversion – A withdrawal from a body of water by means of a ditch, dam, pump or other man-

made contrivance.  
 
Diversity – That attribute of a biotic (or abiotic) system specifying the richness of plant or 

animal species (or complexity of habitat.  
 
DO – Dissolved oxygen 
 
Dry Year – A time period with a given probability of representing dry conditions; for example, a 

given year may be as dry or drier than 80% of all other similar periods.  
 
Duration – (1) The percentage of time a class of events occurs.  (2) An event’s time span.  
 
Duration Analysis – Examination of a certain period of record to categorize the frequency of 

classes of events within that period, often resulting in a duration curve.  
 
DSSAMt – Dynamic Stream Simulation and Assessment Model with temperature 
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Ecosystem – Any complex of living organisms, interacting with nonliving chemical and 
physical components, that form and function as a natural environmental unit.  

 
Ecosystem Base Flow (EBF) – A threshold value below which the Instream Flow Need is 

considered to be all of the natural flow. No diversions should take place. 
 
Effluent – A discharge or emission of a liquid or gas.  
 
Exceedence – That probability of an event exceeding others in a similar class.  Note this may 

be ′equal or exceed’ or ′exceed’ only.  Probabilities may also be expressed as non-
exceedence, that is, the probability of being less than or equal or just less than. 

 
Fish Rule Curve (FRC) – A variable flow recommendation based, in a specific way, on the WUA 

versus discharge curve and the natural available supply of water.  The recommended 
flow varies, depending not only on the WUA curve, but also on the hydrologic conditions 
experienced (wet, dry, average) during the period.  

 
Fishery – (1) The interaction of aquatic organisms, aquatic environments and their human 

users to produce sustained and ever-increasing benefits for people; (2) a product of 
physical, biological and chemical processes. Each component (process) is important, 
each affects the other, and each presents opportunities for impacting or enhancing the 
nature or character of fisheries resources. Fish populations are merely one attribute of 
a fishery.   

 
Flood – Any flow that exceeds the bankfull capacity of a stream or channel and flows onto the 

floodplain.  
 
Floodplain – Typically flat, depositional surface adjacent to a stream channel, that becomes 

inundated when flows exceed the bankfull capacity of a channel. 
 
Flow – (1) The movement of a stream of water or other mobile substances from place to place; 

(2) Discharge; (3) Total quantity carried by a stream.  
 
Flow Duration Curve – A plot of a discharge statistic versus its cumulative empirical 

probability of occurrence in the hydrologic time series. The discharge statistics are 
arranged in descending order and each discharge is assigned a rank from 1 (highest 
flow) to n (lowest flow) and its cumulative probability is calculated by: 

1+
=
n
mP  

 
where m is the rank and n is the total number of events in the time series. The plotting 
position represents the exceedence probability, or the probability that the associated 
event will be equaled or exceeded. 

 
Flow Exceedence – A plot of river discharge (in cfs) vs. the percentage of time a given 

discharge is exceeded.  For example, the highest discharge for the period of record has 
an exceedence value of 0%; the discharge that is exceeded half the time has a value of 
50%. 

 
Flow Exceedence, Naturalized – A flow exceedence curve that is constructed by adjusting 

gauge values for all diversions in the reach, such that natural flows are approximated. 
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Flow, Flushing – Artificial or natural discharge, of sufficient magnitude and duration to scour 
and remove fine sediments from the stream bottom, that helps to maintain the integrity 
of substrate composition.   

 
Flow, Natural – The flow regime of a stream as it would occur under completely unregulated 

conditions, that is, not subjected to regulation by reservoirs, diversions, or other human 
works. 

  
Flow Regime – The distribution of annual surface runoff from a watershed over time (hours, 

days, or months).  See also, hydrologic regime.   
 
Fluvial – Pertaining to streams or produced by river action.  
  
Freshet – An increase in streamflow due to heavy rain or snowmelt.  
 
Fry – A fish between the egg stage and the fingerling stage.  Depending on the species, a fry 

can measure between a few millimetres and a few centimetres.  
 
Gradient – The rate of change of any characteristic, expressed per unit of length.  See Slope.  

May also apply to longitudinal succession of biological communities.  
 
Habitat – The place where an organism or population lives, and its surroundings, both living 

and nonliving; includes life requirements such as food and shelter (see Physical 
Habitat).  

 
Habitat Duration – A plot of habitat value (Weighted Usable Area, or WUA) vs. the percentage 

of time a given value of WUA is exceeded. 
 
Habitat Guild – Groups of species that share common characteristics of microhabitat use and 

selection at various stages in their life histories.   
 
Habitat Suitability Criteria (HSC) – A mathematical means of assigning a value between 0 

and 1 to a physical variable, to describe its value as aquatic habitat for a species.  For 
example, a velocity of 1.5 ft/s might be assigned a value of 1.0 for rainbow trout 
spawning.   

 
HSC, Utilization - A type of HSC based solely on observed use of physical habitat. 
 
HSC, Preference - A type of HSC in which utilization data are adjusted for availability.  For 

example, a few observations in a rare habitat type may result in a high rating for that 
type. 

 
HSC, Nonparametric - HSC in which a suitability index is assigned to central percentiles of 

the observations.  For example, an index of 1.0 is commonly assigned to the central 
50% of the observations, and an index of 0.2 to the central 90%.   

 
Habitat Type – A collective term for habitats having equivalent ecological structure and 

function.  A landscape classification system.   
 
Headwater – The source for a stream in the upper tributaries of a drainage basin.  
 
Headworks – A structure built across a stream to facilitate the diversion of flow into a canal. 

Usually consists of a diversion weir and its ancillary works. 
 
Hydrograph - The graphical relationship of the discharge or stage with respect to time. 
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Hydrologic Regime – The distribution, over time, of water in a catchment. Includes 

precipitation, evaporation, soil moisture, groundwater storage, surface storage, and 
runoff.   

 
Hydrology – The science that deals with the occurrence, circulation and distribution of water 

in a watershed or larger area, and includes its relationship to the environment and 
living things.   

 
IFG4 – A hydraulic simulation model that uses empirical measurements of velocity, discharge, 

and water surface elevation to predict conditions at other discharge levels. 
 
Instream Flow Incremental Methodology (IFIM) – IFIM is a decision-support system 

designed to help determine the benefits or consequences of different water management 
alternatives. IFIM is primarily a process for solving water resource allocation issues that 
include concerns for riverine habitat resources. IFIM was developed under leadership of 
the U.S. Fish and Wildlife Service by an inter-disciplinary team of scientists drawn from 
Federal and State resource agencies and academia. IFIM is composed of a library of 
linked analytical procedures that describe the spatial and temporal features of habitat 
under alternative flow regimes for a number of temporal and spatial scales. 

 
IFN – Instream Flow Needs 
 
Impoundment – Generally, an artificial collection or storage of water; a reservoir, pit, dugout, 

or sump.  
 
Incipient Motion Method – A method that defines the hydraulic conditions at which an 

individual particle on a channel bed will start moving. This is accomplished by defining 
the relationship between the grain size of the material on a channel bed and the 
hydraulic shear stress acting on it. 

 
Incremental Method – The process of developing an instream flow policy that incorporates 

multiple or variable rules to establish, through negotiation, flow-window requirements 
or guidelines to meet the needs of an aquatic ecosystem, given water supply or other 
constraints.  Usually implies the determination of a habitat-discharge relation for 
comparing stream flow alternatives through time (see Standard-setting).  

 
Indigenous – A fish or other aquatic organism native to a particular water body, basin, or 

region. 
 
Instream Cover – Any material located within the water column of a stream that provides 

protection from predators or competitors, or mitigates the imports of other stream 
conditions for fish wildlife and aquatic animals. 

  
Instream Flow Requirement – Instream flow is the amount of water flowing through a natural 

stream course that is needed to sustain the instream values at an acceptable level.  
Instream values and uses include protection of fish and wildlife habitat, migration, and 
propagation; outdoor recreation activities; navigation; hydropower generation; waste 
assimilation (water quality); and ecosystem maintenance which includes recruitment of 
fresh water to the estuaries, riparian vegetation, floodplain wetlands, and maintenance 
of channel geomorphology.  Water requirements sufficient to maintain all of these uses 
at an acceptable level are the instream flow requirements.  
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Instream Objective (IO) – A river flow value that combines the instream flow value for the 
protection of the environment with socio-economic considerations identified by various 
stakeholders. The objective is to derive a workable compromise instream flow value. 

 
Invertebrate – All animals without a vertebral column.  In this report, aquatic insects.  
 
Irrigation – The application of water to soil for crop production, or for turf, shrubbery, or 

wildlife food and habitat.  Provides water requirements of plants not satisfied by rainfall.   
 
Juvenile – Young of a species.  
 
Life Stage – An arbitrary age classification of an organism into categories related to body 

morphology and reproductive potential, such as spawning, egg incubation, larva or fry, 
juvenile, and adult.  

 
m3/s – Cubic metres per second. 
 
mg/L – Milligrams per litre. 
 
Macrohabitat – Abiotic habitat conditions in a segment of river controlling longitudinal 

distribution of aquatic organisms, usually describing channel morphology, flow, or 
chemical properties or characteristics with respect to suitability for use by organisms.  

 
Mainstem – The main channel of a river, as opposed to tributary streams and smaller rivers 

that feed into it. 
  
Manning’s Equation – A mathematical relationship between depth, velocity, bed roughness, 

slope, and discharge.  This relationship is used in PHABSIM to simulate velocities at 
modelled flows. 

 
MANSQ – A hydraulic simulation model that is mainly used to estimate water surface 

elevations at a range of discharges. 
 
Maximum weekly loss in average habitat – A difference computed by first calculating and 

comparing the WUA averages for each week, for each of two scenarios, and then finding 
the greatest difference. 

 
Meso-habitat – A discrete area of stream exhibiting relatively similar characteristics of depth, 

velocity, slope, substrate, and cover, and variances thereof (e.g., pools with maximum 
depth <5 ft, high gradient riffles, side channel backwaters).   

 
Microhabitat – Small localized areas within a broader habitat type used by organisms for 

specific purposes or events, typically described by a combination of depth, velocity, 
substrate or cover.  

 
Minimum Flow – The lowest stream flow required to protect some specified aquatic function; 

established by agreement or rule.  
 
Natural Flow Paradigm – The full range of natural intra- and inter-annual variation of 

hydrological regimes, and associated characteristics of timing, duration, frequency, and 
rate of change, are critical in sustaining the full native biodiversity and integrity of 
aquatic ecosystems.  
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Natural Hydrograph – (1) a graph showing the variation in stage (depth) or discharge 
unaffected by human alteration, over a specific period of time; (2) a flow regime with a 
suitable period of record that has not been anthropogenically altered. 

 
Non-point Source (NPS) – Runoff from diffuse sources such as fields and roadways, as 

opposed to runoff from a point specific site or point source. 
 
Office-based Techniques – Using existing data, according to standard procedures. 
 
Period of Record – The length of time for which data for an environmental variable have been 

collected on a regular and continuous basis.   
 
Persistence – A non-random process within a time series of hydrological or meteorological 

events that tend to have high events following other highs and low events following 
other lows.  

 
PHABSIM (pronounced PEE-HAB-SIM) – The Physical HABitat SIMulation system; a set of 

software and methods that allows the computation of a relation between stream flow 
and physical habitat for various life stages of an aquatic organism or a recreational 
activity.  

 
Phreatophytic – Plants with a tap root system extending to the water table; they can transpire 

at a high rate even in the desert, so long as the water table does not drop below the tap 
root.  

 
Physical Habitat – Those abiotic factors (such as depth, velocity, substrate, cover, 

temperature, water quality) that make up some of an organism’s living space (see 
Habitat)  

 
Pioneer forests – Forests capable of establishing in barren areas and initiating the first level of 

ecological succession. 
  
Point Source Runoff – Effluent from a factory pipe, wastewater treatment plant or from sewer 

discharge or other specific points, rather than from diffuse sources. 
 
Policy – Purposive action taken by public authorities on behalf of or affecting the public.   
 
Pool – Part of a stream with reduced velocity, often with water deeper than the surrounding 

areas, which is usable by fish for resting and cover.  
 
Poplar Rule Curve (PRC) – A set of guidelines that determine the minimum instream flow to 

meet the lifecycle requirements of riparian poplars. Application of the guidelines to a 
hydrological dataset generates an exceedence curve that specifies the instream flow for 
each natural flow value at a given time. 

 
Reach – A comparatively short length of a stream, channel, or shore.  One or more reaches 

compose a segment.  The actual length is defined by the purpose of the study but is 
usually no greater than 5-7 times the channel width.  

 
Recurrence Interval – The average time interval between events equaling or exceeding a given 

magnitude in a time series.  (Also see exceedence probability.)  
 
Regime – The general pattern (magnitude and frequency) of flow or temperature events 

through time at a particular location, (such as, snowmelt regime, rainfall regime).  
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Regulated Flow – Streamflow that has been affected by regulated releases, diversions, or other 
anthropogenic perturbations.   

 
Reservoir – A pond, lake, or basin, either natural or artificial, for the storage, regulation, and 

control of water.   
 
RI – Return interval. 
 
Riparian –  Pertaining to anything connected with or adjacent to the banks of a stream or other 

body of water.   
 
Riparian Vegetation – Vegetation dependent upon an excess of moisture during a portion of 

the growing season on a site that is definitely moister than the surrounding area.   
 
River – A large stream that serves as the natural drainage channel for a drainage basin of 

considerable area.   
 
Run – A portion of a stream with low surface turbulence which approximates uniform flow, and 

in which the slope of the water surface is roughly parallel to the overall gradient of a 
stream reach.  

  
Scour – The localized removal of material from the streambed by flowing water.  The opposite of 

fill.   
 
Sediment Oxygen Demand – The quantity of dissolved oxygen required for the biochemical 

degradation of organic materials in the stream substrate (bottom sediment).  The 
greater the concentration of organic materials in the substrate, the greater the amount 
of oxygen needed for biodegradation to occur, thereby reducing the dissolved oxygen 
available in the overlying water column. 

 
Segment – Terminology from IFIM meaning 1. A relatively long (e.g., hundreds of channel 

widths) section of a river, exhibiting relatively homogeneous conditions of hydrology, 
channel geomorphology, and pattern. 2. The fundamental accounting unit for total 
habitat.   

 
Senescence – The final growth phase of a plant.  The process of plant degeneration that 

generally occurs at the end of the growing season typified by chlorophyll breakdown, 
decreased growth rate, and transport of nitrogen from leaves to other plant parts. 

 
Shields Entrainment Function – A relationship, developed by Shields (1936), to define 

streambed movement in relation to hydraulic forces acting on the channel bed. 
 
Shields Equation – A simplified form of the Shields Entrainment Function that tests the 

movement of individual grain particles on a channel bed. 
 
Side Channel – Lateral channel with an axis of flow roughly parallel to the mainstem and 

which is fed by water from the mainstem; a braid of a river with flow appreciably lower 
than the main channel.  Side channel habitat may exist either in well-defined secondary 
(overflow) channels, or in poorly defined watercourses flowing through partially 
submerged gravel bars and islands along the margins of the mainstem.   

 
Slope – The inclination or gradient from the horizontal of a line or surface.  The degree of 

inclination can be expressed as a ratio, such as 1:25, indicating a one-unit rise in 25 
units of horizontal distance or as 0.04  per length.  Sometimes also expressed as feet 
per mile.  
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SOD – Sediment oxygen demand. 
 
Spatial Variability – Pertaining to, or involving a species positioning in space, occurrence in 

space, and variability in occurrence in space (vertically, horizontally, and laterally).  
 
Spawn – To lay eggs, especially of fish.  
 
SSRB – South Saskatchewan River Basin 
 
Stage – The distance of the water surface in a river above a known datum (e.g., relative to 

mean sea level).   
 
Stream – A natural watercourse containing flowing water, at least part of the year, supporting 

a community of plants and animals within the stream channel and the riparian 
vegetative zone. 

   
Streambank – The portion of the channel cross-section that tends to restrict lateral movement 

of water at normal water levels.  Is usually made up of rock, soil and vegetative 
components.  (Duff 1984) 

 
Tessmann Method – The Tessmann Method is a variation of the Tennant Method. Tessmann 

adapted Tennant’s seasonal flow recommendations to calibrate the percentages of the 
average annual flow to local hydrologic and biologic conditions including monthly 
variability.  The Tennant method is based on percentages of average annual flow derived 
from estimated or recorded hydrologic records, limited field measurements, and 
photographs taken at multiple discharges. 

 
WASP – Water Quality Analysis Simulation Program 
 
WCO – Water Conservation Objectives 
 
WRRM – Water Resources Management Model 
 
WQRRS – Water Quality for River-Reservoir Systems  
 
Water Table –  The riparian water table consists of streamflow that has infiltrated the 

streambed. This zone of saturation extends horizontally from the stream’s surface and 
slopes gradually downward. 

 
Weighted Useable Area (WUA) – The wetted area of a stream weighted by its suitability for use 

by aquatic organisms. Units are square feet or square metres, usually per specified 
length of stream.  
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APPENDIX A – FISHERIES MANAGEMENT OBJECTIVES 

APPENDIX B –HISTORICAL DISTRIBUTION OF RIPARIAN FOREST (DAWSON 1885) 

APPENDIX C – HYDRAULIC CALIBRATION AND SIMULATION RESULTS FOR FISH HABITAT 
MODELLING 

APPENDIX D – WEIGHTED USEABLE AREA (WUA) CURVES 

APPENDIX E – FISH HABITAT EVALUATION RESULTS 

APPENDIX F – CHANNEL MAINTENANCE FLOW CALCULATIONS 

APPENDIX G – INTEGRATED ECOSYSTEM IFN DETERMINATIONS 
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