TABLE OF CONTENTS

Acknowledgements	
Executive Summary	ii
Fish Habitat	iv
Water Quality	
Riparian Vegetation	V:
Channel Maintenance	
One Ecosystem IFN Determination from Four Riverine Compo	
Γable of Contents	X
1.0 Introduction	1
2.0 South Saskatchewan River Basin Water Management Plan	n 3
2.1 Instream Flow Needs Technical Team	4
2.2 Purpose of the SSRB IFN Report	5
3.0 Overview of the SSRB Aquatic Resources	
3.1 Study Area	
3.2 Background of Water Management in the SSRB	
3.3 Red Deer River Basin	
3.3.1 Fisheries Resources	
3.3.3 Water Quality	
3.3.4 Geomorphology	
3.4 Bow River Basin	22
3.4.1 Fisheries Resources	
3.4.2 Riparian Resources	
3.4.3 Water Quality	
3.4.4 Geomorphology	
3.5 Oldman River Basin	
3.5.1 Fisheries Resources	
3.5.2 Riparian Resources	
3.5.4 Geomorphology	
3.6 Southern Tributaries	31
3.6.1 Fisheries Resources	

3.6.2	Riparian Resources	
3.6.3	Water Quality	
3.6.4	Geomorphology	38
3.7 So	uth Saskatchewan River Basin	41
3.7.1	Fisheries Resources	
3.7.2	Riparian Resources	
3.7.3	Water Quality	
3.7.4	Geomorphology	
4.0 Ecol	ogical Basis of Flow Regimes for Aquatic Resources	45
4.1 Th	e Aquatic Ecosystem and Biological Diversity	45
4.2 Ins	stream Flows in the Context of Riverine Ecology	45
4.2.1	Ecological Principles	46
4.2.2	Physical Processes	
4.2.3	Biological Processes	48
4.2.4	Interconnectivity of the Riverine Ecosystem	50
4.3 Cu	arrent Methods and Research for Ecosystem IFN Studies	51
4.3.1	Use of Natural Flow as a Benchmark Condition	51
4.4 Te	chnical Team Approach to Defining an Aquatic Ecosystem IFN	54
5.0 Fish	Habitat Instream Flow Needs	57
5.1 Ge	neral Process	57
5.1.1	Physical Habitat Modelling	
5.2 Sit	re-specific Fish Habitat IFN Data for the SSRB	61
5.2.1	River Reach Delineation	
5.2.1	Study Site Selection	
5.2.3	Hydraulic Modelling	
5.2.4	Selection of Target Species and Life Stages	
5.2.5	Species and Life Stage Periodicities	
5.2.6	Habitat Suitability Criteria	
5.2.7	WUA Results for Each Reach	71
EO Dia	sh Habitat IFN Determination Method	73
5.3.1 5.3.2	Background Step 1: Percent Reduction in Flow from Natural	
5.3.3	Step 2: Defining The Ecosystem Base Flow	
5.3.4	Step 3: Determining Flows for Fish Habitat-Time Series Analysis	77
5.3.5	Step 4: Conducting Habitat Time Series	77
5.3.6	Step 5: Reviewing Evaluation Metrics	
5.3.7	Summary of the Final Approach	
5.3.8	Modification for the South Saskatchewan River Basin	81
5.4 Fis	sh Habitat IFN Results and Discussion	82
5.4.1	Winter Ice-Covered IFN for Fish Habitat	
5.4.2	Red Deer River Fish Habitat IFN Results	
5.4.3	Bow River Fish Habitat IFN Results	
5.4.4	Oldman River Fish Habitat IFN Results	
5.4.5	Southern Tributaries Fish Habitat IFN Results	
5.4.6	South Saskatchewan River	116

	5.4.7	Summary of Fish Habitat Results	. 117
5	.0 Water	Quality Instream Flow Needs	121
	6.1 Bac 6.1.1	kgroundInstream temperature and dissolved oxygen	
	6.1.2 6.1.3	Assimilation of Wastes	123
	6.2.1	ommended Flows for Water Quality Instream Flow Needs Red Deer River	. 125
	6.2.2 6.2.3 6.2.4	Bow River	. 134
	6.2.5 6.3 Con	South Saskatchewan River sub-basin nclusion	
	6.3.1	Further Work	. 138
7	_	ian Ecosystem Instream Flow Needs	
		oductionks Between Cottonwood Biology and Hydrology	
	-	pacts of Damming and Diversions	
	7.4 Tarş 7.4.1 7.4.2 7.4.3 7.4.4	geting Flows to Sustain Riparian Forests Base flows for forest survival and maintenance Moderate flows for tree health and growth Peak flows for seedling establishment Flow-ramping and moderate flows for seedling survival	146 146 147
	7.5 Dra	fting the 'Poplar Rule Curve'	148
	7.6.1 7.6.2	olying the PRC within the South Saskatchewan River Basin Flow modifications that affect riparian cottonwoods PRC flows for test reaches in the Oldman River Basin	157 160
	7.7.1 7.7.2 7.7.3 7.7.4 7.7.5 7.7.6 7.7.7	luating the PRC Criteria Relative contribution of each PRC criterion PRC criterion 1: Naturalized flow PRC criterion 2: Naturalized 90% exceedence flow PRC criterion 3: 65% of naturalized flow PRC criterion 4: 50% return interval-shifted naturalized flow PRC criterion 5: 125% bankfull flow Summary of evaluation of PRC criteria	174 178 180 183 185 187
_		olicability of PRC flows for other systems:	
3		nel Maintenance Instream Flow Needsekground - Channel Maintenance Flows	
		iew of Methods	

8.3	Calculating a Channel Maintenance Flow (CMF), Shields Method	. 198
8.4 8	Summary of Channel Maintenance Flows for SSRB Reaches	
8.5	Conclusion and Recommendations	. 205
9.0	Integrated Aquatic Ecosystem IFN	. 207
9.1	Background	. 207
9.2	IFN Integration Method	. 207
9.3	Integrated Ecosystem IFN Determinations	. 214
10.0	Summary and Conclusions	. 225
1 1 1	Summary of the IFN Process for the SSRB WMP 0.1.1 Fish Habitat 0.1.2 Water Quality 0.1.3 Riparian Vegetation 0.1.4 Channel Maintenance Flows 0.1.5 Integration of the Four IFN Components	227 230 232 236
10.	2 Application of the Ecosystem IFN in the SSRB WMP	. 238
11.0	Literature Cited	. 243
Gloss	sary	. 261
Apper	ndix A – Fisheries Management Objectives	. 271
Apper	ndix B –Historical Distribution of Riparian Forest (Dawson 1885)	. 271
	ndix C – Hydraulic Calibration and Simulation Results for Fish Habitat Mode	_
Appeı	ndix D – Weighted Useable Area (WUA) Curves	. 271
Appeı	ndix E – Fish Habitat Evaluation Results	. 271
Apper	ndix F – Channel maintenance Flow Calculations	. 271
Apper	ndix G – Integrated Ecosystem IFN Determinations	. 271

LIST OF FIGURES

Figure 3.1. Major flow regulating structures on the mainstem reaches of the Red Deer,
Bow, Oldman, St. Mary, Belly, and Waterton Rivers8
Figure 3.2. Location of the IFN reach boundaries for the Red Deer, Bow, Oldman, St.
Mary, Belly, Waterton, and South Saskatchewan Rivers9
Figure 3.3. The natural and recorded flow downstream of the St. Mary River Dam and
the Oldman River Dam
Figure 3.4. The natural and recorded flow for the Bow River at Calgary and
downstream of the Bassano Dam14
Figure 3.5. The natural and recorded flow downstream of the Dickson Dam for the Red
Deer River at Drumheller
Figure 3.6. Geographic ranges of the cottonwood species that occur in the SSRB 17
Figure 3.7. Changes in density of poplar communities from 1951 to 1990
Figure 4.1. Multi-disciplinary assessment framework applied for the SSRB WMP to
determine the ecosystem IFN
Figure 5.1. Conceptual representation of a stream reach by computational cells, with
attributes of depth, velocity, and channel index, used in habitat modelling 59
Figure 5.2. Calculation of component suitability index values for the depth, velocity
and channel index that generates the WUA versus discharge function 60
Figure 5.3. Species periodicity charts for the Bow River
Figure 5.4. Species periodicity charts for the Red Deer River
Figure 5.5. Species periodicity charts for the Oldman River
Figure 5.6. Species periodicity charts for the St. Mary, Belly, and Waterton Rivers 69
Figure 5.7. Oldman River Reach 6 WUA curves for all target management species and
life stages
Figure 5.8. Example of the 80% habitat exceedence procedure for defining the EBF
from the Oldman River Reach 6
Figure 5.9. Availability of site-specific fish habitat IFN (PHABSIM) study sites used to
develop the fish habitat IFN determination for the SSRB WMP
Figure 5.10. The weekly Ecosystem Base Flows for the Red Deer River Reach 1 using
the maximum value between the 80% habitat duration analysis for goldeye adult
and the 95% flow exceedence
Figure 5.11. The weekly Ecosystem Base Flows for the Red Deer River Reach 3 using
the maximum value between the 80% habitat duration analysis for goldeye adult
and the 95% flow exceedence
the maximum value between the 80% habitat duration analysis for goldeye adult and walleye spawning and the 95% flow exceedence
Figure 5.13. The weekly Ecosystem Base Flows for the Red Deer River Reach 6 using
the maximum value between the 80% habitat duration analysis for mountain
whitefish and the 95% flow exceedence
Figure 5.14. The weekly Ecosystem Base Flows for the Red Deer River Reach 7 using
the maximum value between the 80% habitat duration analysis for mountain
whitefish juvenile and the 95% flow exceedence92
Figure 5.15. The weekly Ecosystem Base Flows for the Bow River Reach 1 using the
Tessmann calculation

Figure 5.16. The weekly Ecosystem Base Flows for the Bow River Reach 2 using the
maximum value between the 80% habitat duration analysis for mountain
whitefish juvenile and the 95% flow exceedence95
Figure 5.17. The weekly Ecosystem Base Flows for the Bow River Reach 3 using the
maximum value between the 80% habitat duration analysis for mountain
whitefish juvenile and the 95% flow exceedence96
Figure 5.18. The weekly Ecosystem Base Flows for the Bow River Reach 4 using the
maximum value between the 80% habitat duration analysis for mountain
whitefish adult and the 95% flow exceedence98
Figure 5.19. The weekly Ecosystem Base Flows for the Oldman River Reach 1 using
the Tessmann calculation99
Figure 5.20. The weekly Ecosystem Base Flows for the Oldman River Reach 2 using
the maximum value between the 80% habitat duration analysis for mountain
whitefish adult and the 95% flow exceedence
Figure 5.21. The weekly Ecosystem Base Flows for the Oldman River Reach 3 using
the maximum value between the 80% habitat duration analysis for mountain
whitefish adult and the 95% flow exceedence
Figure 5.22. The weekly Ecosystem Base Flows for the Oldman River Reach 4 using
the maximum value between the 80% habitat duration analysis for mountain
whitefish adult and the 95% flow exceedence
Figure 5.23. The weekly Ecosystem Base Flows for the Oldman River Reach 5 using
the maximum value between the 80% habitat duration analysis for mountain
whitefish juvenile and the 95% flow exceedence
Figure 5.24. The weekly Ecosystem Base Flows for the Oldman River Reach 6 using
the maximum value between the 80% habitat duration analysis for mountain
whitefish juvenile and the 95% flow exceedence
Figure 5.25. The weekly Ecosystem Base Flows for the Oldman River Reach 7 using
the maximum value between the 80% habitat duration analysis for mountain
whitefish juvenile and the 95% flow exceedence
Figure 5.26. The weekly Ecosystem Base Flows for the Belly River Reach 1 using the
maximum value between the 80% habitat duration analysis for mountain
whitefish adult and the 95% flow exceedence
Figure 5.27. The weekly Ecosystem Base Flows for the Belly River Reach 2 using the
maximum value between the 80% habitat duration analysis for mountain
whitefish juvenile and the 95% flow exceedence
Figure 5.28. The weekly Ecosystem Base Flows for the Belly River Reach 3 using the
Tessmann calculation
Figure 5.29. The weekly Ecosystem Base Flows for the St. Mary River Reach 1 using
the maximum value between the 80% habitat duration analysis for mountain
whitefish juvenile and the 95% flow exceedence
Figure 5.30. The weekly Ecosystem Base Flows for the St. Mary River Reach 2 using
the Tessmann calculation
Figure 5.31. The weekly Ecosystem Base Flows for the Waterton River Reach 1 using
the maximum value between the 80% habitat duration analysis for mountain
whitefish adult and the 95% flow exceedence
Figure 5.32. The weekly Ecosystem Base Flows for the Waterton River Reach 2 using
the maximum value between the 80% habitat duration analysis for mountain
whitefish adult and the 95% flow exceedence
Figure 5.33. The weekly Ecosystem Base Flows for the South Saskatchewan River
Reach 1 using the Tessmann calculation

Figure 5.34. The weekly Ecosystem Base Flows for the South Saskatchewan River
Reach 2 using the Tessmann calculation
Figure 6.1. Alberta surface water quality index for southern rivers, 2000-2001 122
Figure 6.2. Availability of reach-specific water quality modelling for IFN determinations
within the SSRB WMP 126
Figure 7.1. Cross-section of a streambank showing the extent of moistened substrates
and the suitability of zones for cottonwood seedling establishment
Figure 7.2. Generalized flows required by cottonwoods along the Oldman River 151
Figure 7.3. Exceedence curve for naturalized streamflows along the Oldman River. 152
Figure 7.4. Threshold-based streamflow requirements for cottonwoods in relation to
the exceedence curve for naturalized streamflow along the Oldman River 153
9
Figure 7.5. Three exceedence-based curves that each satisfy a portion of the
streamflow requirements of cottonwoods along the Oldman River
Figure 7.6. PRC for cottonwoods in relation to the exceedence curve for naturalized
streamflow along the Oldman River
Figure 7.7. Major flow-regulatory structures and PRC study reaches in the SSRB 157
Figure 7.8. Flow-chart of criteria-based decisions for calculating PRC flows 162
Figure 7.9. Actual vs. PRC weekly flows during a high flow year, a low flow year, and
two average flow years along the upper and lower reaches of the Belly River 165
Figure 7.10. Naturalized vs. actual weekly flows during a high flow year, a low flow
year, and two average flow years along the upper and lower reaches of the Belly
River
Figure 7.11. Actual vs. PRC weekly flows during a high flow year, a low flow year, and
two average flow years along the upper and lower reaches of the Waterton River.
Figure 7.12. Naturalized vs. actual weekly flows during a high flow year, a low flow
year, and two average flow years along the upper and lower reaches of the
Waterton River
Figure 7.13. Actual vs. PRC weekly flows during a high flow year, a low flow year, and
two average flow years along the upper and lower reaches of the St. Mary River.
Figure 7.14. Naturalized vs. actual weekly flows during a high flow year, a low flow
year, and two average flow years along the upper and lower reaches of the St.
Mary River
Figure 7.15. a) Example of a weekly PRC vs. a naturalized exceedence curve for flows
along the St. Mary River near Lethbridge, and b) individual exceedence curves for
each criterion of the PRC
Figure 7.16. Ranges of naturalized flow affected by each PRC criterion
Figure 7.17. a) Average change from naturalized to actual weekly flows for a series of
flow-regulated years, and b) summary of changes to flows affected by PRC
criterion 1
Figure 7.18. a) Average actual weekly flows relative to naturalized 90% exceedence
flows during the growing season for a series of flow-regulated years, and b)
averages of actual weekly flows affected by PRC criterion 2
Figure 7.19. a) Average change from naturalized to actual weekly flows during the
growing season for a series of flow-regulated years, and b) summary of changes to
flows affected by PRC criterion 3
Figure 7.20. a) Average return interval shifts from actual to naturalized weekly flows
during the growing season, and b) summary of changes to flows affected by PRC
criterion 4

Figure 7.21. Comparison of naturalized weekly flows greater than 125% bankfull with
their corresponding actual weekly flows
Figure 7.22. Availability of site-specific data required to develop a PRC for every reach
in the SSRB WMP190
Figure 8.1. Example of channel maintenance instream flow needs, determined using
the modified Wyoming Model
Figure 8.2. Shields number versus discharge relationship for the Red Deer River 200
Figure 8.3. Shields number versus discharge relationship for the Bow River 200
Figure 8.4. Shields number versus discharge relationship for the Oldman River 201
Figure 8.5. Shields number versus discharge relationship for the South Saskatchewan
River
Figure 8.6. Availability of site-specific data required for the Shield's equation to
calculate the channel maintenance flows
Figure 9.1. Illustration of how each ecosystem component was integrated into the final
ecosystem IFN curve for the Belly River near Standoff
Figure 9.2. Illustration of the seasonality of each ecosystem component for a drier
than average water year and the resulting integrated ecosystem IFN
Figure 9.3. An illustration of the seasonality of the naturalized hydrograph and the
resulting integrated ecosystem IFN for the Red Deer River
Figure 9.4. An illustration of inter-annual flow variability for the Oldman River near
Monarch and the associated flow duration curves illustrating the variable
ecosystem IFN determination
Figure 9.5. Summary of the combined reach-specific data required for a detailed
integrated ecosystem IFN throughout the SSRB215
Figure 9.6. The Red Deer River at Drumheller integrated ecosystem IFN
Figure 9.7. The Bow River below the Carseland weir integrated ecosystem IFN 218
Figure 9.8. The Oldman River at Lethbridge integrated ecosystem IFN
Figure 9.9. The Belly River near Standoff integrated ecosystem IFN
Figure 9.10. The Waterton River near Standoff integrated ecosystem IFN
Figure 9.11. The St. Mary River near Lethbridge integrated ecosystem IFN 222
Figure 9.12. The South Saskatchewan River at Medicine Hat integrated ecosystem IFN.
Figure 10.1. Example of inter-annual and intra-annual flow variability of the
ecosystem IFN determination for the Oldman River

LIST OF TABLES

Table 3.1. Red Deer River reach boundaries and gauging stations)
Table 3.2. Bow River reach boundaries and gauging stations)
Table 3.3. South Saskatchewan River reach boundaries and gauging stations 10)
Table 3.4. Oldman River reach boundaries and gauging stations11	Ĺ
Table 3.5. Belly, St. Mary and Waterton river reach boundaries and gauging stations.	
	l
Table 3.6. Assessments of riparian forest abundances along the Red Deer River in the	
1880s, 1950s, 1980s, and late 1990s	3
Table 3.7. Geographic characteristics of the Red Deer River and river valley 21	Ĺ
Table 3.8. Assessments of riparian forest abundances along the Bow River in the	
1880s, 1950s, 1980s, and late 1990s	1
Table 3.9. Geographic characteristics of the Bow River and river valley26	5
Table 3.10. Assessment of riparian forest abundance along the Oldman River in the	
1880s, 1950s, 1980s, and late 1990s	3
Table 3.11. Geographic characteristics of the Oldman River and river valley 30)
Table 3.12. Assessment of riparian forest abundance along the southern tributaries in	
the 1880s, 1950s, 1980s, and late 1990s	3
Table 3.13. A) Changes to cottonwood abundance in the Oldman River Basin from the	
1950s to the 1980s. B) Summary of magnitude of changes in cottonwood	
abundance using ranked categories34	ļ
Table 3.14. Geographic characteristics of the southern tributaries of the Oldman	
River40)
Table 3.15. Assessments of riparian forest abundances along the South Saskatchewan	L
River in the 1880s, 1950s, 1980s, and late 1990s	3
Table 5.1. Habitat evaluation metrics for a 20% reduction from the natural flow with	
the added constraint of the EBF for Red Deer River Reach 185	5
Table 5.2. Habitat evaluation metrics for a 20% reduction from the natural flow with	
the added constraint of the EBF for Red Deer River Reach 3	7
Table 5.3. Habitat evaluation metrics for a 25% reduction from the natural flow with	
the added constraint of the EBF for Red Deer River Reach 5	3
Table 5.4. Habitat evaluation metrics for a 20% reduction from the natural flow with	
the added constraint of the EBF for Red Deer River Reach 6)
Table 5.5. Habitat evaluation metrics for a 25% reduction from the natural flow with	
the added constraint of the EBF for Red Deer River Reach 7	2
Table 5.6. Habitat evaluation metrics for a 25% reduction from the natural flow with	
the added constraint of the EBF for Bow River Reach 293	3
Table 5.7. Habitat evaluation metrics for flows constrained only by the EBF for Bow	
River Reach 3	5
Table 5.8. Habitat evaluation metrics for a 55% reduction from the natural flow with	
the added constraint of the EBF for Bow River Reach 497	7
Table 5.9. Habitat evaluation metrics for a 40% reduction from the natural flow with	
the added constraint of the EBF for Oldman River Reach 2)
Table 5.10. Habitat evaluation metrics for a 30% reduction from the natural flow with	
the added constraint of the EBF for Oldman River Reach 3	L
Table 5.11. Habitat evaluation metrics for a 15% reduction from the natural flow with	
the added constraint of the EBF for Oldman River Reach 4	2

Table 5.12. Habitat evaluation metrics for a 30% reduction from the natural flow with
the added constraint of the EBF for Oldman River Reach 5
Table 5.13. Habitat evaluation metrics for a 20% reduction from the natural flow with
the added constraint of the EBF for Oldman River Reach 6
Table 5.14. Habitat evaluation metrics for a 20% reduction from the natural flow with
the added constraint of the EBF for Oldman River Reach 7
Table 5.15. Habitat evaluation metrics for a 30% reduction from the natural flow with
the added constraint of the EBF for Belly River Reach 1
Table 5.16. Habitat evaluation metrics for a 20% reduction from the natural flow with
the added constraint of the EBF for Belly River Reach 2
Table 5.17. Habitat evaluation metrics for a 40% reduction from the natural flow with
the added constraint of the EBF for St. Mary River Reach 1
Table 5.18. Habitat evaluation metrics for a 25% reduction from the natural flow with
the added constraint of the EBF for Waterton River Reach 1
Table 5.19. Habitat evaluation metrics for a 20% reduction from the natural flow with
the added constraint of the EBF for Waterton River Reach 2
Table 5.20. Summary of fish habitat IFN determinations to be incorporated into the
ecosystem IFN
Table 6.1. Red Deer River water quality IFN determinations
Table 6.2. Bow River water quality IFN determinations
Table 6.3. Oldman River water quality IFN determinations
Table 6.4. Oldman Tributaries water quality IFN determinations
Table 6.5. South Saskatchewan River water quality IFN determinations
Table 7.1. Documented examples of riparian cottonwood declines associated with flow
regulation along streams in North America
Table 7.2. Riparian cottonwood phenology along the Oldman River at Lethbridge 149
Table 7.3. Weekly flow requirements of riparian cottonwoods along the Oldman River
at Lethbridge150
Table 7.4. Criteria for calculating PRC flows during a given week of the year 155
Table 7.5. Weekly and bankfull flows used to calculate the PRC along test reaches in
the Oldman River Basin161
Table 7.6. Average naturalized flow exceedences of 125% bankfull flow during peak
flow weeks
Table 7.7. A) Documented changes to cottonwood abundances from the 1950s to the
1980s along reaches upstream and downstream from the Belly River Diversion
Weir, Waterton River Dam, and St. Mary River Dam. B) Summary of the
magnitude of changes in cottonwood abundance
Table 7.8. The ranges of flow affected by each PRC criterion
Table 7.9. Summary comparing recorded flows to flows required by individual PRC
criterion
Table 7.10. Assessments of riparian forest abundances along various tributaries of the
SSRB in the 1880s, 1950s, 1980s, and late 1990s
Table 8.1. Recommended channel maintenance flows

