Table of Contents

Acknowledgements ... i

Executive Summary ... iii

Fish Habitat .. iv

Water Quality .. v

Riparian Vegetation ... vi

Channel Maintenance ... vii

One Ecosystem IFN Determination from Four Riverine Components viii

Table of Contents ... xi

1.0 Introduction .. 1

2.0 South Saskatchewan River Basin Water Management Plan 3

2.1 Instream Flow Needs Technical Team .. 4

2.2 Purpose of the SSRB IFN Report .. 5

3.0 Overview of the SSRB Aquatic Resources ... 7

3.1 Study Area .. 7

3.2 Background of Water Management in the SSRB ... 12

3.3 Red Deer River Basin .. 15

3.3.1 Fisheries Resources .. 16

3.3.2 Riparian Resources ... 16

3.3.3 Water Quality .. 18

3.3.4 Geomorphology .. 20

3.4 Bow River Basin .. 22

3.4.1 Fisheries Resources .. 22

3.4.2 Riparian Resources ... 23

3.4.3 Water Quality .. 24

3.4.4 Geomorphology .. 25

3.5 Oldman River Basin ... 25

3.5.1 Fisheries Resources .. 25

3.5.2 Riparian Resources ... 27

3.5.3 Water Quality .. 28

3.5.4 Geomorphology .. 29

3.6 Southern Tributaries ... 31

3.6.1 Fisheries Resources .. 32
South Saskatchewan River Basin Instream Flow Needs Determination

3.6.2 Riparian Resources ... 32
3.6.3 Water Quality ... 36
3.6.4 Geomorphology .. 38

3.7 South Saskatchewan River Basin ... 41
3.7.1 Fisheries Resources ... 41
3.7.2 Riparian Resources ... 41
3.7.3 Water Quality ... 43
3.7.4 Geomorphology .. 43

4.0 Ecological Basis of Flow Regimes for Aquatic Resources 45
4.1 The Aquatic Ecosystem and Biological Diversity 45
4.2 Instream Flows in the Context of Riverine Ecology 45
4.2.1 Ecological Principles .. 46
4.2.2 Physical Processes .. 47
4.2.3 Biological Processes .. 48
4.2.4 Interconnectivity of the Riverine Ecosystem 50

4.3 Current Methods and Research for Ecosystem IFN Studies 51
4.3.1 Use of Natural Flow as a Benchmark Condition 52

4.4 Technical Team Approach to Defining an Aquatic Ecosystem IFN 54

5.0 Fish Habitat Instream Flow Needs .. 57
5.1 General Process ... 57
5.1.1 Physical Habitat Modelling ... 58

5.2 Site-specific Fish Habitat IFN Data for the SSRB 61
5.2.1 River Reach Delineation .. 61
5.2.2 Study Site Selection ... 61
5.2.3 Hydraulic Modelling ... 62
5.2.4 Selection of Target Species and Life Stages 64
5.2.5 Species and Life Stage Periodicities 65
5.2.6 Habitat Suitability Criteria .. 70
5.2.7 WUA Results for Each Reach .. 71

5.3 Fish Habitat IFN Determination Method 73
5.3.1 Background ... 73
5.3.2 Step 1: Percent Reduction in Flow from Natural 75
5.3.3 Step 2: Defining The Ecosystem Base Flow 75
5.3.4 Step 3: Determining Flows for Fish Habitat-Time Series Analysis ... 77
5.3.5 Step 4: Conducting Habitat Time Series 77
5.3.6 Step 5: Reviewing Evaluation Metrics 78
5.3.7 Summary of the Final Approach .. 79
5.3.8 Modification for the South Saskatchewan River Basin 81

5.4 Fish Habitat IFN Results and Discussion 82
5.4.1 Winter Ice-Covered IFN for Fish Habitat 85
5.4.2 Red Deer River Fish Habitat IFN Results 85
5.4.3 Bow River Fish Habitat IFN Results 93
5.4.4 Oldman River Fish Habitat IFN Results 98
5.4.5 Southern Tributaries Fish Habitat IFN Results 108
5.4.6 South Saskatchewan River .. 116
5.4.7 Summary of Fish Habitat Results ... 117

6.0 Water Quality Instream Flow Needs ... 121
 6.1 Background ... 121
 6.1.1 Instream temperature and dissolved oxygen ... 121
 6.1.2 Assimilation of Wastes .. 123
 6.1.3 Scouring Flows .. 124
 6.2 Recommended Flows for Water Quality Instream Flow Needs 125
 6.2.1 Red Deer River .. 125
 6.2.2 Bow River ... 132
 6.2.3 Oldman River .. 134
 6.2.4 The Southern Tributaries of the Oldman River 135
 6.2.5 South Saskatchewan River sub-basin ... 137
 6.3 Conclusion ... 138
 6.3.1 Further Work .. 138

7.0 Riparian Ecosystem Instream Flow Needs ... 141
 7.1 Introduction ... 141
 7.2 Links Between Cottonwood Biology and Hydrology 142
 7.3 Impacts of Damming and Diversions ... 143
 7.4 Targeting Flows to Sustain Riparian Forests ... 145
 7.4.1 Base flows for forest survival and maintenance 146
 7.4.2 Moderate flows for tree health and growth .. 146
 7.4.3 Peak flows for seedling establishment ... 147
 7.4.4 Flow-ramping and moderate flows for seedling survival 148
 7.5 Drafting the ‘Poplar Rule Curve’ ... 148
 7.6 Applying the PRC within the South Saskatchewan River Basin 156
 7.6.1 Flow modifications that affect riparian cottonwoods 157
 7.6.2 PRC flows for test reaches in the Oldman River Basin 160
 Evaluating PRC flows along test reaches .. 162
 7.7 Evaluating the PRC Criteria ... 174
 7.7.1 Relative contribution of each PRC criterion 174
 7.7.2 PRC criterion 1: Naturalized flow .. 178
 7.7.3 PRC criterion 2: Naturalized 90% exceedence flow 180
 7.7.4 PRC criterion 3: 65% of naturalized flow .. 183
 7.7.5 PRC criterion 4: 50% return interval-shifted naturalized flow 185
 7.7.6 PRC criterion 5: 125% bankfull flow .. 187
 7.7.7 Summary of evaluation of PRC criteria ... 188
 7.8 Applicability of PRC flows for other systems: .. 189

8.0 Channel Maintenance Instream Flow Needs ... 193
 8.1 Background - Channel Maintenance Flows .. 193
 8.2 Review of Methods .. 196
South Saskatchewan River Basin Instream Flow Needs Determination

8.3 Calculating a Channel Maintenance Flow (CMF), Shields Method.... 198
8.4 Summary of Channel Maintenance Flows for SSRB Reaches......... 202
 8.4.1 Overbank Flows Needed for Geomorphic Activity............................... 202
8.5 Conclusion and Recommendations .. 205

9.0 Integrated Aquatic Ecosystem IFN... 207
 9.1 Background.. 207
 9.2 IFN Integration Method.. 207
 9.3 Integrated Ecosystem IFN Determinations 214

10.0 Summary and Conclusions... 225
 10.1 Summary of the IFN Process for the SSRB WMP 227
 10.1.1 Fish Habitat .. 227
 10.1.2 Water Quality ... 230
 10.1.3 Riparian Vegetation ... 232
 10.1.4 Channel Maintenance Flows .. 236
 10.1.5 Integration of the Four IFN Components 237
 10.2 Application of the Ecosystem IFN in the SSRB WMP 238

11.0 Literature Cited .. 243

Glossary .. 261

Appendix A – Fisheries Management Objectives.............................. 271

Appendix B – Historical Distribution of Riparian Forest (Dawson 1885) 271

Appendix C – Hydraulic Calibration and Simulation Results for Fish Habitat Modelling .. 271

Appendix D – Weighted Useable Area (WUA) Curves 271

Appendix E – Fish Habitat Evaluation Results 271

Appendix F – Channel maintenance Flow Calculations 271

Appendix G – Integrated Ecosystem IFN Determinations 271
LIST OF FIGURES

Figure 3.1. Major flow regulating structures on the mainstem reaches of the Red Deer, Bow, Oldman, St. Mary, Belly, and Waterton Rivers... 8
Figure 3.2. Location of the IFN reach boundaries for the Red Deer, Bow, Oldman, St. Mary, Belly, Waterton, and South Saskatchewan Rivers.. 9
Figure 3.3. The natural and recorded flow downstream of the St. Mary River Dam and the Oldman River Dam .. 13
Figure 3.4. The natural and recorded flow for the Bow River at Calgary and downstream of the Bassano Dam .. 14
Figure 3.5. The natural and recorded flow downstream of the Dickson Dam for the Red Deer River at Drumheller .. 15
Figure 3.6. Geographic ranges of the cottonwood species that occur in the SSRB. .. 17
Figure 3.7. Changes in density of poplar communities from 1951 to 1990. 35
Figure 4.1. Multi-disciplinary assessment framework applied for the SSRB WMP to determine the ecosystem IFN... 56
Figure 5.1. Conceptual representation of a stream reach by computational cells, with attributes of depth, velocity, and channel index, used in habitat modelling 59
Figure 5.2. Calculation of component suitability index values for the depth, velocity and channel index that generates the WUA versus discharge function. 60
Figure 5.3. Species periodicity charts for the Bow River.. 66
Figure 5.4. Species periodicity charts for the Red Deer River .. 67
Figure 5.5. Species periodicity charts for the Oldman River .. 68
Figure 5.6. Species periodicity charts for the St. Mary, Belly, and Waterton Rivers.... 69
Figure 5.7. Oldman River Reach 6 WUA curves for all target management species and life stages ... 73
Figure 5.8. Example of the 80% habitat exceedence procedure for defining the EBF from the Oldman River Reach 6 ... 76
Figure 5.9. Availability of site-specific fish habitat IFN (PHABSIM) study sites used to develop the fish habitat IFN determination for the SSRB WMP 84
Figure 5.10. The weekly Ecosystem Base Flows for the Red Deer River Reach 1 using the maximum value between the 80% habitat duration analysis for goldeye adult and the 95% flow exceedence .. 86
Figure 5.11. The weekly Ecosystem Base Flows for the Red Deer River Reach 3 using the maximum value between the 80% habitat duration analysis for goldeye adult and the 95% flow exceedence .. 88
Figure 5.12. The weekly Ecosystem Base Flows for the Red Deer River Reach 5 using the maximum value between the 80% habitat duration analysis for goldeye adult and walleye spawning and the 95% flow exceedence .. 90
Figure 5.13. The weekly Ecosystem Base Flows for the Red Deer River Reach 6 using the maximum value between the 80% habitat duration analysis for mountain whitefish and the 95% flow exceedence .. 91
Figure 5.14. The weekly Ecosystem Base Flows for the Red Deer River Reach 7 using the maximum value between the 80% habitat duration analysis for mountain whitefish juvenile and the 95% flow exceedence .. 92
Figure 5.15. The weekly Ecosystem Base Flows for the Bow River Reach 1 using the Tessmann calculation .. 93
Figure 5.16. The weekly Ecosystem Base Flows for the Bow River Reach 2 using the maximum value between the 80% habitat duration analysis for mountain whitefish juvenile and the 95% flow exceedence. .. 95

Figure 5.17. The weekly Ecosystem Base Flows for the Bow River Reach 3 using the maximum value between the 80% habitat duration analysis for mountain whitefish juvenile and the 95% flow exceedence. .. 96

Figure 5.18. The weekly Ecosystem Base Flows for the Bow River Reach 4 using the maximum value between the 80% habitat duration analysis for mountain whitefish adult and the 95% flow exceedence. .. 98

Figure 5.19. The weekly Ecosystem Base Flows for the Oldman River Reach 1 using the Tessmann calculation. .. 99

Figure 5.20. The weekly Ecosystem Base Flows for the Oldman River Reach 2 using the maximum value between the 80% habitat duration analysis for mountain whitefish adult and the 95% flow exceedence. .. 100

Figure 5.21. The weekly Ecosystem Base Flows for the Oldman River Reach 3 using the maximum value between the 80% habitat duration analysis for mountain whitefish adult and the 95% flow exceedence. .. 102

Figure 5.22. The weekly Ecosystem Base Flows for the Oldman River Reach 4 using the maximum value between the 80% habitat duration analysis for mountain whitefish adult and the 95% flow exceedence. .. 103

Figure 5.23. The weekly Ecosystem Base Flows for the Oldman River Reach 5 using the maximum value between the 80% habitat duration analysis for mountain whitefish juvenile and the 95% flow exceedence. .. 105

Figure 5.24. The weekly Ecosystem Base Flows for the Oldman River Reach 6 using the maximum value between the 80% habitat duration analysis for mountain whitefish juvenile and the 95% flow exceedence. .. 106

Figure 5.25. The weekly Ecosystem Base Flows for the Oldman River Reach 7 using the maximum value between the 80% habitat duration analysis for mountain whitefish juvenile and the 95% flow exceedence. .. 108

Figure 5.26. The weekly Ecosystem Base Flows for the Belly River Reach 1 using the maximum value between the 80% habitat duration analysis for mountain whitefish adult and the 95% flow exceedence. .. 109

Figure 5.27. The weekly Ecosystem Base Flows for the Belly River Reach 2 using the maximum value between the 80% habitat duration analysis for mountain whitefish juvenile and the 95% flow exceedence. .. 110

Figure 5.28. The weekly Ecosystem Base Flows for the Belly River Reach 3 using the Tessmann calculation. .. 111

Figure 5.29. The weekly Ecosystem Base Flows for the St. Mary River Reach 1 using the maximum value between the 80% habitat duration analysis for mountain whitefish juvenile and the 95% flow exceedence. .. 112

Figure 5.30. The weekly Ecosystem Base Flows for the St. Mary River Reach 2 using the Tessmann calculation. .. 113

Figure 5.31. The weekly Ecosystem Base Flows for the Waterton River Reach 1 using the maximum value between the 80% habitat duration analysis for mountain whitefish adult and the 95% flow exceedence. .. 114

Figure 5.32. The weekly Ecosystem Base Flows for the Waterton River Reach 2 using the maximum value between the 80% habitat duration analysis for mountain whitefish adult and the 95% flow exceedence. .. 115

Figure 5.33. The weekly Ecosystem Base Flows for the South Saskatchewan River Reach 1 using the Tessmann calculation. .. 116
Figure 5.34. The weekly Ecosystem Base Flows for the South Saskatchewan River Reach 2 using the Tessmann calculation .. 117
Figure 6.1. Alberta surface water quality index for southern rivers, 2000-2001....... 122
Figure 6.2. Availability of reach-specific water quality modelling for IFN determinations within the SSRB WMP ... 126
Figure 7.1. Cross-section of a streambank showing the extent of moistened substrates and the suitability of zones for cottonwood seedling establishment 143
Figure 7.2. Generalized flows required by cottonwoods along the Oldman River..... 151
Figure 7.3. Exceedence curve for naturalized streamflows along the Oldman River. 152
Figure 7.4. Threshold-based streamflow requirements for cottonwoods in relation to the exceedence curve for naturalized streamflow along the Oldman River 153
Figure 7.5. Three exceedence-based curves that each satisfy a portion of the streamflow requirements of cottonwoods along the Oldman River.................. 154
Figure 7.6. PRC for cottonwoods in relation to the exceedence curve for naturalized streamflow along the Oldman River .. 154
Figure 7.7. Major flow-regulatory structures and PRC study reaches in the SSRB... 157
Figure 7.8. Flow-chart of criteria-based decisions for calculating PRC flows........ 162
Figure 7.9. Actual vs. PRC weekly flows during a high flow year, a low flow year, and two average flow years along the upper and lower reaches of the Belly River..... 165
Figure 7.10. Naturalized vs. actual weekly flows during a high flow year, a low flow year, and two average flow years along the upper and lower reaches of the Belly River .. 166
Figure 7.11. Actual vs. PRC weekly flows during a high flow year, a low flow year, and two average flow years along the upper and lower reaches of the Waterton River. .. 168
Figure 7.12. Naturalized vs. actual weekly flows during a high flow year, a low flow year, and two average flow years along the upper and lower reaches of the Waterton River .. 169
Figure 7.13. Actual vs. PRC weekly flows during a high flow year, a low flow year, and two average flow years along the upper and lower reaches of the St. Mary River. .. 171
Figure 7.14. Naturalized vs. actual weekly flows during a high flow year, a low flow year, and two average flow years along the upper and lower reaches of the St. Mary River ... 172
Figure 7.15. a) Example of a weekly PRC vs. a naturalized exceedence curve for flows along the St. Mary River near Lethbridge, and b) individual exceedence curves for each criterion of the PRC .. 176
Figure 7.16. Ranges of naturalized flow affected by each PRC criterion 177
Figure 7.17. a) Average change from naturalized to actual weekly flows for a series of flow-regulated years, and b) summary of changes to flows affected by PRC criterion 1 .. 179
Figure 7.18. a) Average actual weekly flows relative to naturalized 90% exceedence flows during the growing season for a series of flow-regulated years, and b) averages of actual weekly flows affected by PRC criterion 2 182
Figure 7.19. a) Average change from naturalized to actual weekly flows during the growing season for a series of flow-regulated years, and b) summary of changes to flows affected by PRC criterion 3 .. 184
Figure 7.20. a) Average return interval shifts from actual to naturalized weekly flows during the growing season, and b) summary of changes to flows affected by PRC criterion 4 ... 186
Figure 7.21. Comparison of naturalized weekly flows greater than 125% bankfull with their corresponding actual weekly flows... 188
Figure 7.22. Availability of site-specific data required to develop a PRC for every reach in the SSRB WMP... 190
Figure 8.1. Example of channel maintenance instream flow needs, determined using the modified Wyoming Model. .. 198
Figure 8.2. Shields number versus discharge relationship for the Red Deer River. .. 200
Figure 8.3. Shields number versus discharge relationship for the Bow River 200
Figure 8.4. Shields number versus discharge relationship for the Oldman River. 201
Figure 8.5. Shields number versus discharge relationship for the South Saskatchewan River. .. 201
Figure 8.6. Availability of site-specific data required for the Shield's equation to calculate the channel maintenance flows... 204
Figure 9.1. Illustration of how each ecosystem component was integrated into the final ecosystem IFN curve for the Belly River near Standoff. 209
Figure 9.2. Illustration of the seasonality of each ecosystem component for a drier than average water year and the resulting integrated ecosystem IFN.......... 210
Figure 9.3. An illustration of the seasonality of the naturalized hydrograph and the resulting integrated ecosystem IFN for the Red Deer River................. 211
Figure 9.4. An illustration of inter-annual flow variability for the Oldman River near Monarch and the associated flow duration curves illustrating the variable ecosystem IFN determination... 213
Figure 9.5. Summary of the combined reach-specific data required for a detailed integrated ecosystem IFN throughout the SSRB. 215
Figure 9.6. The Red Deer River at Drumheller integrated ecosystem IFN............ 217
Figure 9.7. The Bow River below the Carseland weir integrated ecosystem IFN. ... 218
Figure 9.8. The Oldman River at Lethbridge integrated ecosystem IFN................ 219
Figure 9.9. The Belly River near Standoff integrated ecosystem IFN. 220
Figure 9.10. The Waterton River near Standoff integrated ecosystem IFN........... 221
Figure 9.11. The St. Mary River near Lethbridge integrated ecosystem IFN........ 222
Figure 9.12. The South Saskatchewan River at Medicine Hat integrated ecosystem IFN.. 223
Figure 10.1. Example of inter-annual and intra-annual flow variability of the ecosystem IFN determination for the Oldman River................................. 239
LIST OF TABLES

Table 3.1. Red Deer River reach boundaries and gauging stations 10
Table 3.2. Bow River reach boundaries and gauging stations 10
Table 3.3. South Saskatchewan River reach boundaries and gauging stations 10
Table 3.4. Oldman River reach boundaries and gauging stations 11
Table 3.5. Belly, St. Mary and Waterton river reach boundaries and gauging stations. .. 11
Table 3.6. Assessments of riparian forest abundances along the Red Deer River in the 1880s, 1950s, 1980s, and late 1990s ... 18
Table 3.7. Geographic characteristics of the Red Deer River and river valley 21
Table 3.8. Assessments of riparian forest abundances along the Bow River in the 1880s, 1950s, 1980s, and late 1990s ... 24
Table 3.9. Geographic characteristics of the Bow River and river valley 26
Table 3.10. Assessment of riparian forest abundance along the Oldman River in the 1880s, 1950s, 1980s, and late 1990s ... 28
Table 3.11. Geographic characteristics of the Oldman River and river valley 30
Table 3.12. Assessment of riparian forest abundance along the southern tributaries in the 1880s, 1950s, 1980s, and late 1990s ... 33
Table 3.13. A) Changes to cottonwood abundance in the Oldman River Basin from the 1950s to the 1980s. B) Summary of magnitude of changes in cottonwood abundance using ranked categories ... 34
Table 3.14. Geographic characteristics of the southern tributaries of the Oldman River .. 40
Table 3.15. Assessments of riparian forest abundances along the South Saskatchewan River in the 1880s, 1950s, 1980s, and late 1990s .. 43
Table 5.1. Habitat evaluation metrics for a 20% reduction from the natural flow with the added constraint of the EBF for Red Deer River Reach 1 85
Table 5.2. Habitat evaluation metrics for a 20% reduction from the natural flow with the added constraint of the EBF for Red Deer River Reach 3 87
Table 5.3. Habitat evaluation metrics for a 25% reduction from the natural flow with the added constraint of the EBF for Red Deer River Reach 5 88
Table 5.4. Habitat evaluation metrics for a 20% reduction from the natural flow with the added constraint of the EBF for Red Deer River Reach 6 90
Table 5.5. Habitat evaluation metrics for a 25% reduction from the natural flow with the added constraint of the EBF for Red Deer River Reach 7 92
Table 5.6. Habitat evaluation metrics for a 25% reduction from the natural flow with the added constraint of the EBF for Bow River Reach 2 93
Table 5.7. Habitat evaluation metrics for flows constrained only by the EBF for Bow River Reach 3 ... 95
Table 5.8. Habitat evaluation metrics for a 55% reduction from the natural flow with the added constraint of the EBF for Bow River Reach 4 97
Table 5.9. Habitat evaluation metrics for a 40% reduction from the natural flow with the added constraint of the EBF for Oldman River Reach 2 100
Table 5.10. Habitat evaluation metrics for a 30% reduction from the natural flow with the added constraint of the EBF for Oldman River Reach 3 101
Table 5.11. Habitat evaluation metrics for a 15% reduction from the natural flow with the added constraint of the EBF for Oldman River Reach 4 103
Table 5.12. Habitat evaluation metrics for a 30% reduction from the natural flow with the added constraint of the EBF for Oldman River Reach 5. 104
Table 5.13. Habitat evaluation metrics for a 20% reduction from the natural flow with the added constraint of the EBF for Oldman River Reach 6. 105
Table 5.14. Habitat evaluation metrics for a 20% reduction from the natural flow with the added constraint of the EBF for Oldman River Reach 7. 107
Table 5.15. Habitat evaluation metrics for a 30% reduction from the natural flow with the added constraint of the EBF for Belly River Reach 1 109
Table 5.16. Habitat evaluation metrics for a 20% reduction from the natural flow with the added constraint of the EBF for Belly River Reach 2 110
Table 5.17. Habitat evaluation metrics for a 40% reduction from the natural flow with the added constraint of the EBF for St. Mary River Reach 1. 112
Table 5.18. Habitat evaluation metrics for a 25% reduction from the natural flow with the added constraint of the EBF for Waterton River Reach 1. 114
Table 5.19. Habitat evaluation metrics for a 20% reduction from the natural flow with the added constraint of the EBF for Waterton River Reach 2. 115
Table 5.20. Summary of fish habitat IFN determinations to be incorporated into the ecosystem IFN. ... 119
Table 6.1. Red Deer River water quality IFN determinations. 125
Table 6.2. Bow River water quality IFN determinations. 132
Table 6.3. Oldman River water quality IFN determinations. 134
Table 6.4. Oldman Tributaries water quality IFN determinations. 136
Table 6.5. South Saskatchewan River water quality IFN determinations. 137
Table 7.1. Documented examples of riparian cottonwood declines associated with flow regulation along streams in North America. 144
Table 7.2. Riparian cottonwood phenology along the Oldman River at Lethbridge. 149
Table 7.3. Weekly flow requirements of riparian cottonwoods along the Oldman River at Lethbridge. ... 150
Table 7.4. Criteria for calculating PRC flows during a given week of the year. 155
Table 7.5. Weekly and bankfull flows used to calculate the PRC along test reaches in the Oldman River Basin. ... 161
Table 7.6. Average naturalized flow exceedences of 125% bankfull flow during peak flow weeks. ... 164
Table 7.7. A) Documented changes to cottonwood abundances from the 1950s to the 1980s along reaches upstream and downstream from the Belly River Diversion Weir, Waterton River Dam, and St. Mary River Dam. B) Summary of the magnitude of changes in cottonwood abundance. .. 173
Table 7.8. The ranges of flow affected by each PRC criterion. 175
Table 7.9. Summary comparing recorded flows to flows required by individual PRC criterion. ... 175
Table 7.10. Assessments of riparian forest abundances along various tributaries of the SSRB in the 1880s, 1950s, 1980s, and late 1990s. .. 180
Table 8.1. Recommended channel maintenance flows. 203