

PENGROWTH ENERGY CORPORATION
2100, 222 Third Avenue SW, Calgary, Alberta T2P 0B4
Tel: (403) 233-0224 • Fax (403) 265-6251 • Toll Free 1-800-223-4122 • Website: www.pengrowth.com

Via E-Mail and Courier

File No. 03-056

June 30, 2011

Geoff Pearson, Sr. Project Analyst Innovative Energy Technologies Program Research and Technology Branch 9th Floor, North Petroleum Plaza 9945-108th Street Edmonton, AB T5K 2G6

Dear Mr. Pearson

Re: IETP Project No. 03-053/Judy Creek Quaternary Acid Gas Injection for EOR and Sequestration

Attached, please find the final report for the captioned project detailing pilot operations and results to December 31st, 2010.

If there are any questions, please do not hesitate to contact the undersigned at (403) 806-3262.

Thank you,

Ray Pollock, P. Eng.

Team Lead, Engineering, Swan Hills

Pengrowth Energy Corporation

MINES AND MINERALS ACT INNOVATIVE ENERGY TECHNOLOGIES REGULATION STATUTORY DECLARATION

Definitions

In this Statutory Declaration,	
(a) "Allocable Costs" means allocable costs as defined in the Regulation;	

- (b) "Approval" means Approval No. 63 056 granted pursuant to the Regulation;
- (c) "Operator" has the same meaning as in the Approval;
- (d) "Project" has the same meaning as in the Approval;
- (e) "Regulation" means the Innovative Energy Technologies Regulation (AR 250/2004);
- (f) "Period of Time" means from January 1, 2010 to December 31, 2010.

De	ecl	ล	ra	fi	ሰ	n
-		-	I 64	44	v	44

I, Jame	s E (ausgrove			,
of the City/Town/Vill	age ofC	algery	in the Province of _	Alberta	,

DO SOLEMNLY DECLARE THAT:

- 1. I am an authorized signing officer of the Operator.
- 2. The Project commenced in accordance with the commencement provision of the Approval.
- 3. In respect to the Period of Time,
 - (a) Allocable Costs have not been applied for and established in relation to
 - (i) equipment or facilities located outside of the Province of Alberta;
 - (ii) the cost of borrowed money that has been or will be deducted from income under section 21 of the *Income Tax Act* (Canada);
 - (iii) an amount deducted as a capital cost allowance or as amortization of eligible capital property under the *Income Tax Act* (Canada) or the *Income Tax Regulations* under that Act;
 - (iv) any item or service obtained from a person who is connected to the Operator or any owner of the Project, pursuant to the definition of a connected person under section 6 of the Regulation;

1 of 2 20100505

MINES AND MINERALS ACT INNOVATIVE ENERGY TECHNOLOGIES REGULATION STATUTORY DECLARATION

- (v) materials or capital items that have not been used in the Project; and
- (b) all government grants and benefits provided in relation to the Project, including, without limitation, amounts provided under other royalty regulations administered by the Alberta Department of Energy, have been disclosed to the Alberta Department of Energy.

AND I MAKE THIS SOLEMN DECLARATION CONSCIENTIOUSLY BELIEVING IT TO BE TRUE AND KNOWING THAT IT IS OF THE SAME FORCE AND EFFECT AS IF MADE UNDER OATH.

DECLARED before me at City/Town/Village of
Calgary
in the Province of Alberta,
this 30 th day of June, 2011 Month Year
A Catte
A Commissioner for Oaths or Notary Public
in and for the Province of Alberta Hugo S. A. Potts
Being a Barrister and Solicitor

Signature of Declarant

Jim Causgrove, P. Eng.

V.P. Production & Operations

Title/Position

Inte			io	μ	4.	Ċ
orting	(name of the specific Technology)	Quaternary Acid Gas Miscible EOR				·
Type	(Background Technology, New Technology or Commercial Technology)	New Technology				
Owner	(name of the owner of the Technology i.e. the name of the Operator if the Operator is the owner or the name of the licensor of the Operator is a licensee)	Pengrowth Energy Corporation				
Description	(description of the Technology)	Enhanced oil recovery using CO2 and H@S as a miscible agent as a followup to a tertiary recovery process (namely Hydrocarbon Miscible Solvent)				
Operator Use (Legal Terms and Conditions)	(i.e. if the Operator is a licensee, or is restricted in the use of the Technology, any legal terms or conditions which may restrict the Operator's use of the Technology)	No known restrictions				
	(i.e. if a third party licensee wishes to retain a license to that Technology, set out the significant terms and conditions of that license)	N?A				
	(name of the person who developed the Technology)	Pengrowth Energy Corporation Not known at this time				
Statutory Protection	(if known, indicate whether Statutory Protection will be sought for the Technology i.e. patenting)	Not known at this time				

Innovative Energy Technologies Program: 03-056 Quaternary Acid Gas Injection at Judy Creek BHL "A" Pool

2010 Final Report

Pengrowth Corporation June, 2011

1.0 Report Abstract	4
2.0 Summary	4
2.1 Team Members	4
2.2 Activity Summary	5
2.3 / 2.4 Production & Reserves Summary	6
3.0 Well Information	7
3.1 Well Layout & Pattern Description	7
3.2 2010 Drilling, Completion and Workover Operations	
3.3 Well Operation	
3.4 Well List and Status.	9
3.5 Wellbore schematics	9
3.6 Spacing and Pattern	9
4.0 Production performance	9
4.1 Injection & Production history	9
4.2 Composition of produced / injected fluids	12
4.3 Predicted vs. Actual Performance	
4.4 Pressure Data	13
4.4.1 - Static Reservoir Pressure	14
4.4.2 – Producer 02-02 & 06-02-064-11 Bottomhole Flowing Pressure	14
4.4.3 - Injector 07-02-064-11 Tubing Wellhead Pressure	16
5.0 Pilot Data	
5.1 Other Data (geology, geophysical, lab studies, simulation, PVT, other)	
5.1.1 Pilot Performance History Match Using Streamline-based Model	17
5.1.2 - Isolation Testing	
5.1.3 - Water Tracer Analysis	
5.1.4 - Corrosion Monitoring	20
5.1.4 – 4D Seismic	
5.2 Interpretation of pilot data	
6.0 Pilot Economics	
6.1 Sales volumes of natural gas and by-products.	
6.2 Revenue.	
6.3 Capital costs (include a listing of items with installed cost greater than \$10,000)	
6.4 Direct and indirect operating costs by category (e.g. fuel, injectant costs, electricity)	
6.5 Crown royalties, applicable freehold royalties, and taxes.	
6.6 Cash flow	
6.7 Cumulative project costs and net revenue.	
6.8 Explanation of material deviations from budgeted costs	
7.0 Facilities	
7.1 Major capital items incurred in 2010.	
7.2 Capacity limitation, operational issues & equipment integrity	
7.3 Process flow and site diagram	
8.0 Environmental/Regulatory/Compliance	
8.1 Summary of project regulatory requirements & compliance	
8.1.1 - Regulatory Compliance	
8.1.2 - Environmental Procedures	25

9.0 Future Operating Plan	26
9.1 Project Schedule Update	
9.2 Changes in pilot operation & optimization strategies	
9.3 Salvage Update	
10. Interpretations and Conclusions	28
10.1 Overall Pilot Performance	28
Energy and Material Balance Information for the Final Project Report	30

Innovative Energy Technologies Program: 03-056 Quaternary Acid Gas Injection at Judy Creek BHL "A" Pool 2010 Final Report

1.0 Report Abstract

A quaternary CO₂ EOR pilot is being conducted at the Judy Creek Beaverhill Lake "A" Pool, a middle Devonian age carbonate reservoir. The pilot pattern has previously undergone waterflood and hydrocarbon miscible flooding.

CO₂ injection in WAG mode began in February 2007. Acid gas injectant consists of waste CO₂ with a small percentage of H₂S from the Judy Creek Gas Plant, supplementing a pure CO₂ stream which is purchased and trucked. In April 2009, injection of CO₂ concluded at 26.2% HCPV. Water injection and production response monitoring continues through the end of the report period.

This report outlines production and operational data for the period ending December 31, 2010.

Overall pilot performance to date indicates encouraging results for incremental recovery of oil, hydrocarbon solvent and CO₂ breakthrough. CO₂ reproduction has been cyclic, lagging CO₂ injection, and peak reproduction periods which were somewhat predictable resulted in some operational downtime.

2.0 Summary

2.1 Team Members

Current Team Members

Ray Pollock – Team Lead, Engineering
Craig Johnson – Operations Superintendent
Ken Suchan – Operations Foreman
Al Myles – Well Servicing Coordinator
Bruce Malcolm – Senior Royalty Coordinator
Glenn Malcolm – Manager, Geophysics
Darcy Ries – Manager, Reservoir Technology
Michael Boutette – Consulting Engineer

Former Team Members

Mario Struik – Facilities Engineer Randy Sutherland – Construction Supervisor Rob Moriyama – Director, Exploitation Engineering Andrew Seto – Manager, Reservoir Studies Norm Schultheis - Geologist Ashok Singhal – Consulting Research Engineer Rohan Balkaran – Facilities Engineer David Fowler – Geophysicist Colin Muir – Exploitation Engineer

2.2 Activity Summary

Following is a summary of key activities associated with the Judy Creek acid gas injection pilot.

Q2 2006	10-02-064-11W5 producer acid fracture stimulation Injector 07-02-064-11W5 injection string upgrade
Q3 2006	Producer 02-02-064-11W5 flowline replacement Construct & install acid gas pipeline from 04-23-064-11W5 to injector 07-02-064-11W5 Wellhead upgrades at pilot producers
Q4 2006	Construction & installation of surface facilities at injector 07-02-064-11W5 Dec - Acquire baseline 3D seismic survey of pilot area
Q1 2007	Jan - ERCB D51 & D65 Approval Jan - Static pressure surveys Jan - Fluid sampling initiated Feb - Commence CO ₂ injection (Purchased CO ₂ only) Mar - CO ₂ injection profile log
Q2 2007	Apr - Water injection profile log Apr - Supplement injection stream with acid gas Apr - Water tracer injection May - 02-02-064-11 ESP repair; install downhole pressure probes; Saturation (RST) log May - 06-02-064-11 ESP repair; install downhole pressure probes
Q4 2007	Nov - Water injection profile log Dec - 02-02-064-11W5 ESP repair & static pressure survey
Q1 2008	Mar - 07-02-064-11W5 Injection fall off test
Q2 2008	May - 06-02-064-11W5 ESP repair May - Static pressure surveys June – Alter target WAG ratios & injection schedule
Q3 2008	Sept – Static pressure surveys Nov – Judy Creek Gas Plant completes "jefftreat" upgrades
Q1 2009	Feb – Acquire 3D seismic survey of pilot area (4D)

Q2 2009	Apr – Manage CO ₂ breakthrough
	Apr – Static pressure surveys
	Apr – Terminate CO ₂ injection
Q3 2009	Aug – Injection profile
Q4 2009	Oct – Static pressure surveys
	Dec – Adjust water injection target
Q2 2010	Mar – Static pressure survey
Q2 2011	Apr – Static pressure survey

2.3 / 2.4 Production & Reserves Summary

Table 1 below outlines the injection and production results relative to the forecast provided with the project approval. Table 2 shows the ultimate reserves expectation of the pilot relative to the original project approval.

Table 1: 2010 Monthly and Calendar Year Production and Injection Data

		CURRENT DATA						IETP APPROVAL FORECAST			
	CO2 Inject.	Oil w/o 10-02 frac	Oil w/ 10-02 frac	Hydrocarbon Gas (Raw)	Acid Gas Prod.	CO2 Inject.	Oil	Hydrocarbon Gas (Raw)	Acid Gas Prod.		
2010 Mon	e3m3 thly Data –	M3	m3	e3m3	e3m3	E3m3	m3	e3m3	e3m3		
Jan-10	0	220	281	62	177	0	125	97	310		
Feb-10	0	192	235	45	150	0	113	97 97	280		
Mar-10	0	232	319	36	156	0	125	97	310		
Apr-10	0	263	297	49	139	0	121	97	300		
May-10	0	259	322	82	143	0	125	97	310		
Jun-10	0	187	252	89	137	0	121	97	300		
Jul-10	0	161	226	79	126	0	125	97	310		
Aug-10	0	144	198	68	110	0	125	97	310		
Sep-10	0	151	198	56	93	0	121	97	300		
Oct-10	0	154	198	49	85	0	125	97	310		
Nov-10	0	169	208	39	72	0	121	97	300		
Dec-10	0	159	196	33	66	0	125	97	310		
(Actual &											
2006	0	0	749	0	0	0	0	0	0		
2007	12,253	722	2,111	1,639	416	13,385	0	0	0		
2008	16,007	3,073	4,221	2,406	2,736	13,385	2,848	580	1,825		
2009	6,172	3,509	4,861	1,351	3,837	0	3,197	1,160	3,650		
2010	0	2,188	2,929	686	1,456	0	1,478	1,160	3,650		
2011	0	1,010	1,428	112	382	0	1,128	580	1,825		
2012	0	374	493	6	92	0	550	0	0		
2013	0	0	0	0	0	0	336	0	0		
TOTAL	34,431	10,876	16,791	6,200	8,918	26,770	9,538	3,481	10,951		

Table 2: FORECAST RESERVES @ YE 2010									
	Oil (w/o frac) [e ³ m ³]	Oil (w/ frac) [e ³ m ³]	Sales Gas [e ⁶ m ³]	Ethane [e ³ m ³]	Propane [e ³ m ³]	Butane [e ³ m ³]	C5+ [e ³ m ³]	MOE 6:1 (w/ frac)	BOE 6:1 (w/ frac)
Current	10.9	16.8	3.0	5.5	1.2	0.8	0.3	25.1	172.2
Approval	10.0	10.0	0.9	0.9	0.7	0.4	0.2	12.4	82.5

3.0 Well Information

3.1 Well Layout & Pattern Description

The pilot is located in an existing 80 acre pattern located within the Judy Creek Beaverhill Lake (BHL) "A" Pool (Figure 1). The pool spans portions of four townships in Central Alberta from 63-10W5 to 64-11W5, and is a carbonate reservoir of middle Devonian age, located at a depth of approximately 2400 m.

The pattern area is small relative to other "A" Pool patterns. The smaller pattern was selected to allow a higher percentage of the pattern pore volume to be flooded with a given volume of injectant and to provide timely pattern response.

Pilot Area

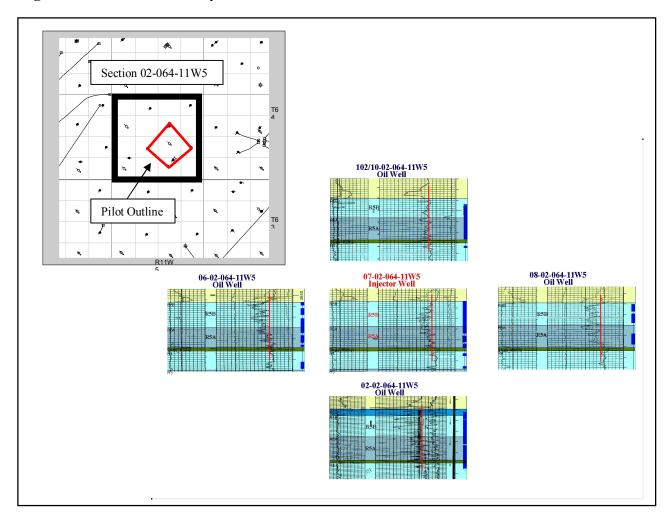

Pilot Area

Figure 1: Judy Creek BHL "A" Pool

The pattern is centered on injector 07-02-064-11W5 (abbreviated 07-02), and includes four vertical oil producers. The pattern has historically undergone both waterflood and hydrocarbon miscible flood operations. Miscible operations were conducted between February 2002 and August 2003.

The montage shown in Figure 2 shows the pattern well layout within section 02-064-11W5. Also included is the open hole logs associated with each pattern well.

Figure 2: CO₂ Pilot Well Layout

3.2 2010 Drilling, Completion and Workover Operations

<u>April 2009</u>: 06-02-064-11W5 electrical submersible pump (ESP) repair after 12 month run life. Failure analysis found the cause to be a result of frequent startups and shutdowns. 06-02 was shut-in frequently during high CO₂ cycling periods due to CO₂ handling capacity at the Judy Creek Gas Conservation Plant. CO₂ corrosion was not observed during the replacement of this pump.

August 2010: The ESP in 02-02 was pulled and repaired after more than a 2 1/2 year run life.

3.3 Well Operation

Well service factor has been satisfactory over the review period, with downtime events occurring mainly due to routine maintenance and pressure data acquisition. Producers were shut in to control CO₂ production in the early part of 2009. This is discussed in later sections.

3.4 Well List and Status

Following is a listing of each of the pattern wells, and their function and status.

<u>Well</u>	Status and Function
00/07-02-064-11W5/0 (Abbreviated 07-02)	Operating water & acid gas injector
00/02-02-064-11W5/0 (Abbreviated 02-02)	Operating oil producer (ESP)
00/06-02-064-11W5/0 (Abbreviated 06-02)	Operating oil producer (ESP)
00/08-02-064-11W5/0 (Abbreviated 08-02)	Operating oil producer (ESP)
02/10-02-064-11W5/0 (Abbreviated 10-02)	Operating oil producer (rod pump)

3.5 Wellbore schematics

See Appendix I for wellbore schematics.

3.6 Spacing and Pattern

Discussed in section 3.1

4.0 Production performance

4.1 Injection & Production history

The daily injection & production history for each pattern well are shown in detail in Figures 3a to 3d . Appendix II contains the monthly & daily plots & monthly tabular data associated with each producer.

Figure 3a: 02-02-064-11W5 production and 07-02-064-11W5 Injection

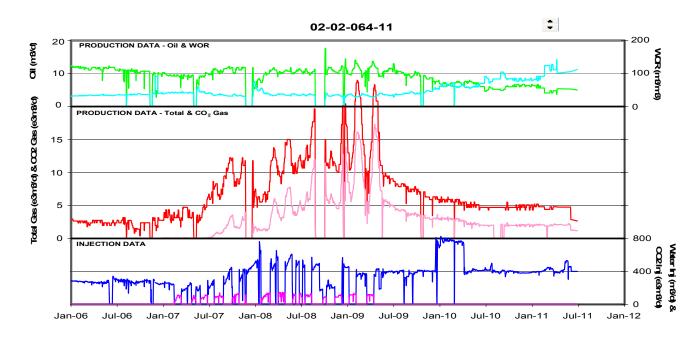


Figure 3b: 06-02-064-11W5 production and 07-02-064-11W5 Injection

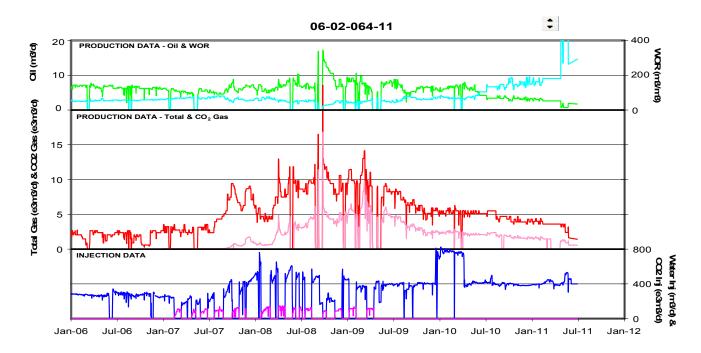


Figure 3c: 08-02-064-11W5 production and 07-02-064-11W5 Injection

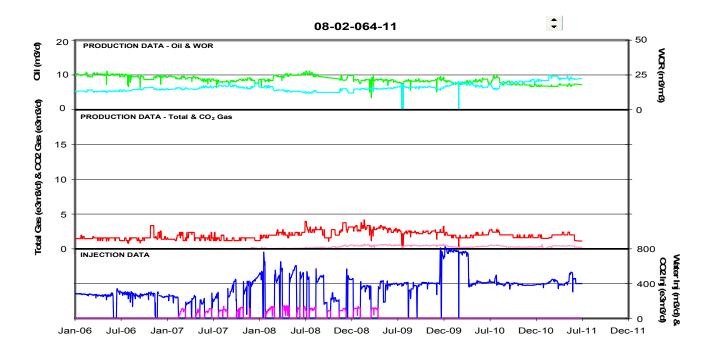
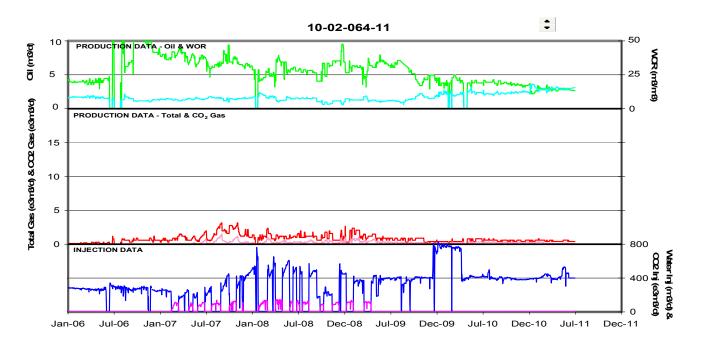
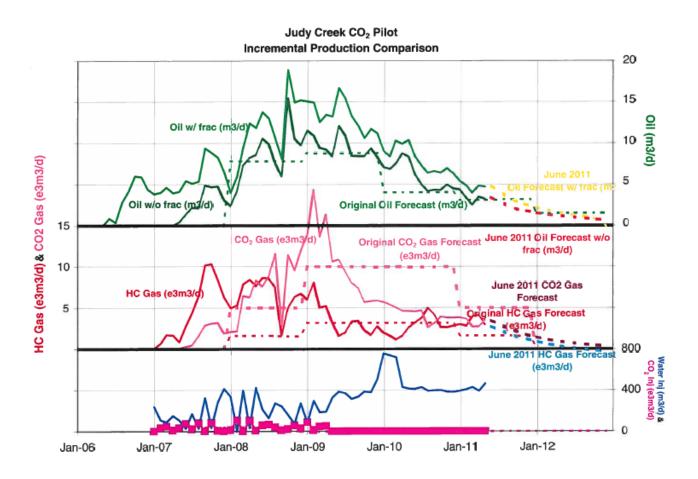



Figure 3d: 10-02-064-11W5 production and 07-02-064-11W5 Injection


4.2 Composition of produced / injected fluids

Please reference Appendix II for composition tabular data.

4.3 Predicted vs. Actual Performance

Figure 4 provides a graphical comparison between actual pilot performance and the IETP Approval forecasts. The data is also provided in tabular form in Appendix III.

Figure 4: Pattern Production and Injection vs. Approval Forecast

Discussion

Injection

Initial CO₂ injection rates at 07-02 were lower than expected based on rates observed under hydrocarbon miscible flood. Over several months an increase in the injection rates of both water and CO₂ was

observed. This is believed to be in part the result of increasing reservoir permeability caused by dissolution of reservoir rock from injected CO₂. In the latter portions of 2008, CO₂ injection rate was reduced to manage peak CO₂ production rates. CO₂ injection was terminated in April 2009 due to increased difficulties in handling CO₂ production at the Judy Creek Gas Conservation Plant. Water target rates were set to $400 \, \mathrm{m}^3 / \mathrm{d}$ to maintain voidage. The injection target was increased to $800 \, \mathrm{m}^3 / \mathrm{d}$ in Dec 2009 to the end of March 2010. The rate was then returned to $400 \, \mathrm{m}^3 / \mathrm{d}$ of water in April 2010. The increased injection resulted in a positive response with a gain of approximately 3 m3/d of oil after two months of increased injection. The oil rate dropped and the oil decline returned to the historical trend after the injection was returned to $400 \, \mathrm{m}^3 / \mathrm{d}$ of water.

Production

In general, initial production response in terms of oil, hydrocarbon gas and CO₂ reproduction was seen earlier than had been predicted. The higher productivity producers 02-02 and 06-02 showed some response within the first six months of injection, compared to the predicted response time of 18 months. Significant response began between 12 and 18 months. After 18 months of injection, peak oil and gas response to injection began to correlate strongly with injection events in a cyclic nature, with the magnitude of the peaks also increasing. Since terminating CO₂ injection gas production declined sharply, while oil production has been declining gradually.

Producer 10-02 experienced minor gas cycling after the first injection cycle. This was a direct result of an acid fracture stimulation which had been performed to improve communication with the 07-02 injector. In previous hydrocarbon miscible flood operations, 10-02 saw no response to solvent injection at 07-02. The acid fracture treatment improved oil production at this producer significantly. For the sake of clarity certain of the reported oil recovery values included in this report will show incremental oil production with and without the incremental oil associated with this workover. This is done so as not to combine impacts of the workover with direct CO₂ flood impacts (although a portion of this production can be attributed to the flood).

The magnitude of the peak acid gas reproduction rates began to impact gas plant operations in August 2008. This resulted in modification to the injection cycles and modifications to gas plant facilities. These will be discussed further in a later section.

Current estimates of the cumulative recovery of hydrocarbon gas are higher than in the original forecast. This is the result of additional oil recovery (associated solution gas) from the 10-02 fracture stimulation, and a higher volume of residual solvent within the pattern boundaries than was estimated in the original forecast. The average hydrocarbon gas production rate for 2010 is similar to the forecasted rate but the trend in 2011 appears to be higher than predicted.

4.4 Pressure Data

The following pressure data was collected from the Judy Creek CO₂ pilot:

- Static reservoir pressure
- Producer 02-02-064-11W5: flowing pressure data
- Producer 06-02-064-11W5: flowing pressure data
- Injector 07-02-064-11W5: tubing wellhead pressure

4.4.1 - Static Reservoir Pressure

To ensure miscibility of the acid gas solvent with the Judy Creek oil, reservoir pressure is maintained above 23.0 MPa. To monitor static reservoir pressure, pressure measurements are taken at two of the pattern producers annually. The static pressure measurements acquired for pilot producers are shown in Table 3 below. Note that 06-02 builds to 23.0MPa in ~7 days, while 02-02 takes ~21 days. The last pressure survey on the 06-02 well was conducted over an extended shut-in period in order to obtain a reservoir pressure above the hydrocarbon minimum miscible pressure of 26.2MPa due to a nearby pattern actively injecting hydrocarbon solvent.

Table 3: Static Reservoir Pressure Data

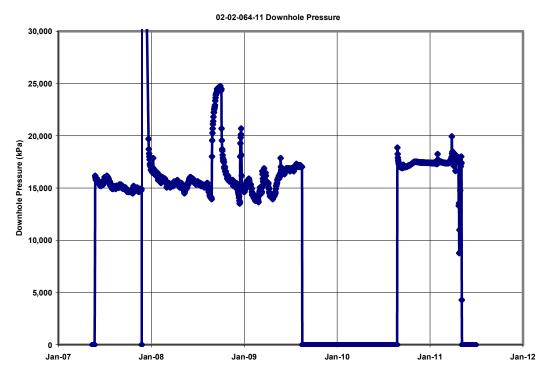
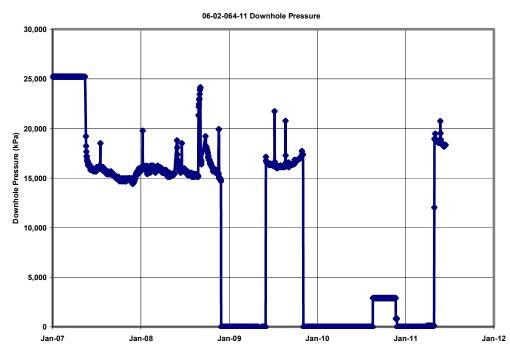
			Shut in	Datum Pressure
Well	Shut-in Date	Survey Date	Days	(MPa)
06-02-064-11	24-Jan-07	31-Jan-07	7	24.0
02-02-064-11	24-Nov-07	03-Dec-07	9	22.3
02-02-064-11	24-Nov-07	17-Dec-07	23	23.5
06-02-064-11	19-May-08	25-May-08	6	25.0
02-02-064-11	26-Aug-08	04-Sep-08	9	22.8
02-02-064-11	26-Aug-08	18-Sep-08	23	24.4
06-02-064-11	9-Apr-09	16-Apr-09	7	24.7
02-02-064-11	18-Oct-09	28-Oct-09	10	23.8
06-02-064-11	26-Mar-10	31-Mar-10	5	26.7
06-02-064-11	14-Mar-11	19-Apr-11	35	26.5

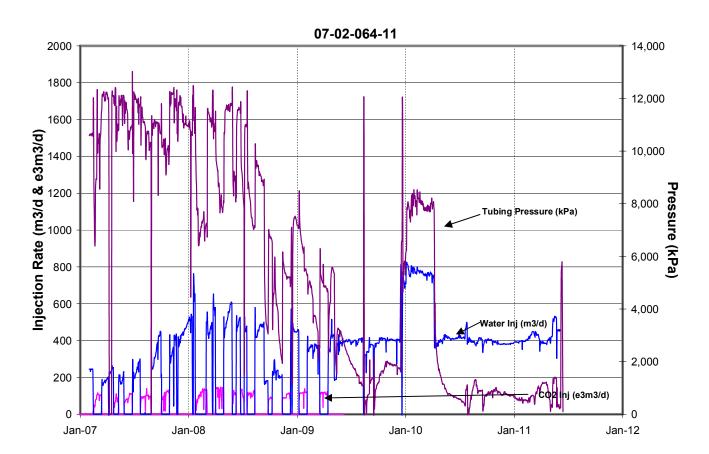
4.4.2 - Producer 02-02 & 06-02-064-11 Bottomhole Flowing Pressure

Producers 02-02 & 06-02 were equipped with downhole pressure sensors in conjunction with ESP replacements in May 2007. Both wells maintain a bottomhole flowing pressure (P_{wf}) of ~15 MPa. Periodic increases in P_{wf} are typically associated with downtime or gas cycling. (Figure 5a & 5b). The pressure sensor at 06-02 quit transmitting in Nov 2008, but was repaired during the ESP replacement in April 2009 and then failed again in November 2009. The sensor did not provide any useful data during 2010. The sensor in 06-02 was repaired and began data acquisition in May 2011.

The pressure sensor at 02-02 failed in August 2009 and was repaired during the pump replacement in August 2010. In May 2011 the sensor in the 02-02 well has failed again.

Figure 5a: 02-02-064-11 Flowing Bottomhole Pressure


Figure 5b: 06-02-064-11 Flowing Bottomhole Pressure

4.4.3 - Injector 07-02-064-11 Tubing Wellhead Pressure

Tubing pressure data is collected at injector 07-02. Figure 6 displays this tubing pressure data with water and CO₂ injection rate data. Water injection rates began to increase in Q3 2007. A choke was installed in Q3 2008 to manage voidage replacement VRR and WAG ratio. Water injection target was set to $400 \text{m}^3 \text{/d}$, which resulted in wellhead pressure to continue to decline to 1000 kPa. The target was increased to $800 \text{m}^3 \text{/d}$ from Dec 2009 to Apr 2010 which increased the wellhead injection pressure to 8,000 kPa. The injection rate was returned to 400 m3/d of water (to maintain a voidage replacement ratio of 1) in April 2010 and the wellhead injection pressure returned to the previous level of approximately 1,000 kPa.

Figure 6: 07-02 Injection Pressure Data and Injection Rates

5.0 Pilot Data

5.1 Other Data (geology, geophysical, lab studies, simulation, PVT, other)

5.1.1 Pilot Performance History Match Using Streamline-based Model

To supplement existing forecasts, based on compositional simulation results and analog analysis, a screening level streamline based model was employed to generate forecasts of ultimate oil and CO₂ recovery from the pilot. The software was developed by Texaco Exploration and Production Technology Department in the mid-1990s. It is a relatively fast and simple screening tool and can be used to simulate waterflood and various modes of CO₂ flooding (e.g. WAG, Immiscible).

Based on the early history match of pilot performance, the model forecasted an ultimate incremental oil recovery of 2.3% OOIP and recovery of 25% of the injected CO₂ (CO₂ bank size: 30% HCPV). Prior to terminating CO₂ injection, this coincided with our previous forecasts (2.5-3.0% OOIP recovery). However, oil rates have not declined as severely as predicted with the current incremental oil recovery factor exceeding 3.1% and forecasted to be as high as 3.5% OOIP. The project has recovered 27% of the CO2 injected and is forecasted to recover up to 30% by the end of 2012. See Figures 7a and b for a comparison of the model history match and forecast.

Figure 7a: Model History Match & Forecast: Oil Recovery

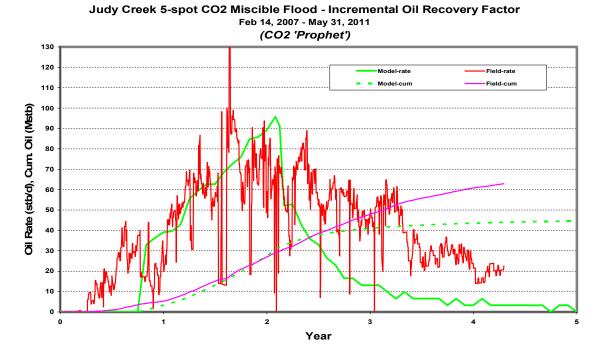
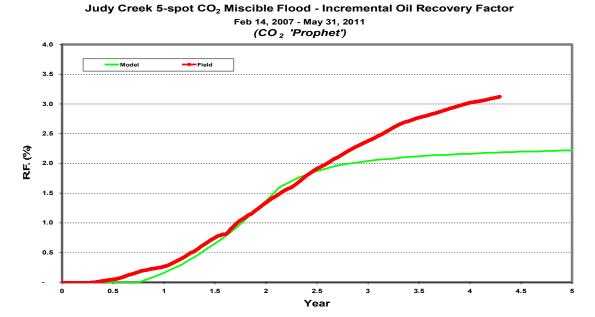



Figure 7b: Model Forecast and History Match: Oil Recovery Factor

5.1.2 - Isolation Testing

In Q4 2007 an increase in the water injection rate at the 07-02 injector was noted. Likely causes of this increase were:

- a) Loss of isolation between the target R5 zones and lower zones. The lower zones in the wellbore had been shut off with a bridge plug in preparation for the pilot, and/or
- b) Reservoir permeability increase due to CO₂ injection, yielding carbonic acid.

An injection profile log & temperature log were run in November 2007 and an injection fall off test was performed in March 2008 in an attempt to confirm isolation.

Given the short interval between the R5 perforations and the top of the bridge plug (0.3 m), the injection/temperature log was inconclusive, since the lowermost portion of the interval could not be logged. However, since the injection profile was essentially the same as the original profile run in April 2007, it was rationalized that permeability was increasing and isolation was intact.

The fall off test indicated that either the well had fractured (unlikely since injection is below fracture pressure), that permeability had increased or that isolation was lost to the lower zones.

It was concluded that an increase in reservoir permeability was being observed. This conclusion was supported given:

- Sustained reservoir pressure (static & flowing), and
- Consistent voidage replacement, calculated assuming full injection into the R5
- Similar response at the Swan Hills Unit 1 CO₂ pilot
- Ongoing miscible response to all pattern producers

An additional injection profile log was performed in Aug 2009 to help validate this conclusion. Profiles were measured at 2 injection rates (400 & 1000m³/d). Both spinner surveys indicate that at least 88-92% of injectant is entering the target R5 perforations. The static flow check was once again inconclusive at the bridge plug, due to the potential for fill & potential offdepth measurement (~0.1m). After consulting with Weatherford we concluded that the bridge plug was holding.

After discussions with service companies, a temperature log was determined to more accurately show isolation of the bridge plug rather than a spinner survey. A logging program was devised to confirm depth (Run 1 GR-CCL) and then a temperature log (Run 2 Temp-GR-CCL), with the temperature logging tool on the bottom of the stack. During the initial run in Dec 2009, it was determined that fill was on top of the bridge plug and that future logs would continue to be inconclusive unless the fill was remove. Considerations were given to cleanout the fill, but due to the low ID of the XN-Nipple our well servicing department advised that it would be a low chance of success to cleanout to the bridge plug.

Due to the reasons mentioned above, we maintain our original conclusions that injectivity is increasing due to enhanced permeability.

The injection profiles, interpretations and proposed temperature log program for 2009 are provided in appendix IV.

5.1.3 - Water Tracer Analysis

A non-radioactive tracer was injected with the water phase after the first CO₂ injection cycle in 2007. Water samples have been taken quarterly through 2007, monthly in 2008 and quarterly in 2009. The tracer study was undertaken to determine if CO₂ injection was sweeping in markedly different pathways than the water injection. Since CO₂ acts as its own tracer, only the water phase was traced. To date results have shown water tracer arriving at all pattern producers. Below are the early conclusions that were reached with the Alberta Research Council.

- Tracer returns helped quantify distribution of the injected water towards the four producers.
- Water tracer returns indicate the strongest communication between the injector 07-02 and 06-02, whereas returns of oil, CO₂ and ethane suggest strongest communication between the injector and well 02-02, with somewhat less direct communication with well 06-02.
- There is thus some persuasive evidence that injected water and CO₂ travel towards the four producing wells via different paths and that WAG is only partially effective.
- There exist relatively high quality permeability 'streaks' between the injector and well 08-02 but their aerial extents are much smaller than those between the injector and wells 02-02 and 06-02.
- Flow towards well 10-02 was dominated by the hydraulic fracture. It possibly extends in the NW direction towards well 16-02.

• Flow of water tracer and CO₂ via hydraulic fracture around well 10-02 is episodic, suggesting it may be opening and closing depending upon pressure gradients.

Data collection and analysis is ongoing. The results from the tracer surveys to date are supplied in Appendix V.

5.1.4 - Corrosion Monitoring

Operational and equipment issues resulted in delays in the implementation of the corrosion monitoring and mitigation program and some loss of collected data.

Corrosion inhibitor batch treatments were started after CO₂ breakthrough occurred. Corrosion rate data collected prior to the startup of the pilot was supplemented with manual readings after pilot operation was underway.

The test separator at 8-2-64-11 satellite and the inlet vessel S19 at the Judy Creek Production Complex were both internally inspected in mid 2010. Both are internally coated vessels and each required sandblasting and re-coating. There was no clear evidence of CO2 corrosion at either vessel. No repairs to any steel components were required.

5.1.4 - 4D Seismic

A baseline 3D seismic was obtained in Dec 2006 prior to commencing CO₂ injection. In Feb 2009 a second set of 3D seismic was shot to observe any changes in pathways & saturations. Both surveys were acquired with identical field parameters and processed with the same processing flow. The acquisition parameters had the source lines and receiver lines at intervals of 420 m and the source points and receiver stations at intervals of 60 m. The 30 m by 30 m bin size was chosen as it is the bin size used on our previous 3Ds in the area. The source was 2 kg of dynamite buried at 15 m depth. With the small size of the survey the whole survey was live for all shots and it was shot with frozen ground conditions for both surveys. Figure 8 illustrates the change in acoustic impedance.

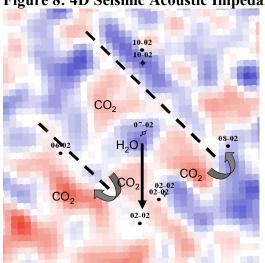


Figure 8: 4D Seismic Acoustic Impedance (2009 minus 2006)

A negative change in acoustic impedance (Blue) indicates water swept pathways, while a positive change in acoustic impedance (Red) indicates CO₂ swept pathways. The dashed lines represent baffles in the reservoir that channel the CO₂ along preferred pathways. This interpretation of pathways is consistent with; production history to 02-02 & 06-02, geology to 08-02 & 10-02 and pattern tracer response. Understanding this reservoir heterogeneity is important in understanding not only the pilot performance but how this could affect a commercial CO₂ flood. While this 4D technology assists in interpreting pilot response, it is not likely viable for a long term commercial application. The seismic response to CO₂ is similar to its response to gas; most of the change is manifested with the first 10-20% saturation. Further increases in CO₂ saturation have little effect on the seismic response. Research shows that electrical methods are better at mapping these increased saturations.

5.2 Interpretation of pilot data

Production response is being seen to some degree at all pattern producers. Early comparisons between CO₂ response and water tracer response might suggest a variation in sweep between CO₂ and water, but a final conclusion awaits additional data collection and analysis.

A discussion of the performance of each of the pattern wells follows.

Producer 10-02 was acid fracture stimulated in June 2006. 10-02 was the first well to respond to 07-02, as it cycled minor amounts of gas during the first few CO₂ injection cycles. Typically this would not be an encouraging response, however, since 10-02 is a low rate producing well that did not respond to historical hydrocarbon miscible floods (HCMF) the results can be viewed as encouraging. Further, such an acid treatment on a larger spacing pattern might yield more muted or delayed response. Cyclic gas response has reduced over the duration of the pilot. This acid fracture stimulation has identified opportunities to optimize future miscible patterns.

Producer 02-02 oil and gas response began in Q2 2007. The response sequence was as expected with an oil response followed by hydrocarbon gas (methane & ethane). CO₂ response did not begin until Q3 2007. 02-02 has maintained a steady oil production of ~10m³/d, which is a modest increment from the base decline. Significant CO₂ breakthrough in August 2008 resulted in 02-02 and 06-02 being shut-in until late September 2008 (see sections 9 & 10 for operation details). The reproduction of injected acid gas at 02-02 is cyclic and highly correlated with 07-02 injection. This has been shown to make the gas response predictable and to some extent controllable by managing CO₂ injection rates and WAG ratio. Since completing CO₂ injection, 02-02 oil production has steadily been declining.

Producer 06-02 gas response began in July 2007 and oil response in Sept 2007. Gas response was primarily methane and ethane until April 2008. As noted above, 06-02 had significant CO₂ breakthrough in August 2008 and was shut-in until late Sept 2008. 06-02 cyclic response is offset in time from 02-02 response, which allows for additional flexibility in managing CO₂ breakthrough response. 06-02 continued to be shut-in periodically to handle peak CO₂ production in early 2009. 06-02 production has declined steadily since completing CO₂ injection.

As producer 08-02 did not respond to miscible injection at 07-02, predicted response under acid gas injection was likewise fairly small. 08-02 began subtle oil and gas response in Feb 2008. 08-02 had about a 2 m^3 /d oil increment and <1e³ m^3 /d increment of methane & ethane. CO₂ recycling has also been

limited to $<1e^3m^3/d$. The results are encouraging that CO_2 has contacted new reservoir. 08-02 will be considered for acid fracture stimulation after monitoring of production is complete.

07-02 injectivity was initially lower than anticipated but began to increase in Q3 2007. This resulted in modifying WAG ratio targets and CO₂ injection schedule. A water injection choke was installed in June 2008 to manage voidage and WAG ratios. The injection schedule was modified in June 2008 to lower WAG ratios, with shorter injection cycles. This potentially resulted in CO₂ breakthrough in August 2008. The injection cycles were modified again while the Judy Creek Gas Plant completed work on the acid gas handling facilities. 07-02 remained choked at 400m³/d to manage voidage replacement. The rate was increased to 800m³/d in December 2009 and reduced back to 400 m³/d in March 2010 to observe any production changes. The increased injection resulted in a positive response with a gain of approximately 3 m3/d of oil after two months of increased injection. The oil rate dropped and the oil decline returned to the historical trend after the injection was returned to 400 m³/d of water. The increased water injection rate to 800m³/d from Dec 2009 to Apr 2010 increased the wellhead injection pressure to 8,000 kPa. When the injection rate was returned to 400 m³/d of water (to manage voidage replacement) the wellhead injection pressure returned to the previous level of approximately 1,000 kPa.

6.0 Pilot Economics

6.1 Sales volumes of natural gas and by-products.

See Appendix VI

6.2 Revenue.

See Appendix VI

6.3 Capital costs (include a listing of items with installed cost greater than \$10,000)

Table 5 shows the expenditures since the inception of the project. 2009 capital was primarily expended on CO₂ purchases, skid rental, sampling & 3D seismic.

Table 5: Capital Expenditures to date

	IETP (\$M)	2006 (\$M)	2007 (\$M)	2008 (\$M)	2009 (\$M)	2010 (\$M)	TOTAL (\$M)
Pipeline &							
Surface Piping	2,931.7	2,430.0	357.8	0.0	0.0	0.0	2,787.8
Downhole Work	975.0	890.8	53.1	6.1	0.0	0.0	950.0
Other	45.5	0.0	22.7	0.0	0.0	0.0	22.7
Sampling	284.2	0.0	70.0	105.0	105.0	105.0	385.0
CO2 Purchases							
& Skid Rental	4,118.1	0.0	2,369.6	2,655.2	1,339.6	140.0	6,504.3
3D Seismic							
(3 surveys)	1,160.0	353.3	25.7	0.0	247.5	5.6	632.1
07-02 Isolation							
Testing	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTALS	9514.5	3,674.1	2,898.8	2,766.3	1,692.1	250.7	11,281.9

6.4 Direct and indirect operating costs by category (e.g. fuel, injectant costs, electricity).

See Appendix VI

6.5 Crown royalties, applicable freehold royalties, and taxes.

See Appendix VI

6.6 Cash flow.

See Appendix VI

6.7 Cumulative project costs and net revenue.

See Appendix VI

6.8 Explanation of material deviations from budgeted costs

As per the table in section 6.3, the major deviations from budgeted costs are: Sampling, CO₂ purchases & skid rental and 3D seismic. The sampling & CO₂ purchases increased due to the change in scope of the project to inject CO₂ to 30% HCPV instead of the original 20% HCPV (50% increase). The 3D seismic cost was reduced with only 2 surveys shot, while up to three were provided for in the plan.

7.0 Facilities

7.1 Major capital items incurred in 2010

As noted in section 6.3, key capital expenses in 2010 were associated with skid rental & sampling (\$750.7 M).

7.2 Capacity limitation, operational issues & equipment integrity

Acid Gas System

The acid gas portion of the injectant is sourced from the Judy Creek Gas Conservation Plant, and includes CO₂ and H₂S removed from produced gas streams prior to sale.

Acid gas is removed from the produced gas stream using an amine based "Jefftreat" system. The design capacity of the Jefftreat System is 90 e³m³/d of CO₂ removal, based on an assumed inlet flow rate of 2000 e³m³/d with a maximum CO₂ composition of 4.63 mole%. The system has performed as predicted.

The integrity and reliability of the acid gas compressor has been satisfactory over the review period. Minor operational issues have been experienced with the lubricating and cooling systems.

Praxair CO₂ Skid

The Praxair CO_2 skid has a 400 tonne bullet and pump at 02-02-064-11. CO_2 is pumped to the 07-02-064-11 injection site. During the initial injection cycles, the CO_2 injection rate was lower than expected. New plungers were installed in the pump to optimize the equipment. As the injectivity began to increase over time, the plungers were again modified. Although after 12 months the pump was still undersized for the potential injectivity, the pump capacity was set at $\sim 110e^3 m^3/d$. This would delay the rate of peak CO_2 breakthrough and the attendant operational issues, which ultimately occurred in August 2008. The integrity and reliability of the acid gas compressor was satisfactory over the final period. The CO_2 skid was removed in the first quarter of 2010.

7.3 Process flow and site diagram

See appendix VII for process flow diagrams.

8.0 Environmental/Regulatory/Compliance

8.1 Summary of project regulatory requirements & compliance

8.1.1 - Regulatory Compliance

The Judy Creek Pilot is governed under ERCB EOR approval number 10269. The pilot is operating with 100% compliance to the requirements of this approval. Highlights of these requirements include:

ERCB EOR Approval 10269 Highlights (see appendix VIII)

- Miscible injectant fluid at least 0.970 mole fraction H₂S & CO₂ and not greater than 7% H₂S
- Inject at least 15% HCPV
- Maintain reservoir pressure above 23.0 MPa & complete two pressure surveys per year
- Monitor molar composition of injection & production gas
- Complete 2 part annual reporting process (annual presentation to ERCB and data submission)

8.1.2 - Environmental Procedures

Emergency Response Procedures

If a release should occur Pengrowth would implement the First Hour Response and the Emergency Response Plan (ERP), if required.

The First Hour Response manual outlines initial critical facts and procedures when dealing with an emergency. Pengrowth, regulatory and service company contacts are listed to assist in the initial stages of an emergency. This document is used in conjunction with the ERP.

The ERP outlines the details of responding to various emergency situations.

Environmental Procedures

Pengrowth demonstrates its commitment to environmental principles through involvement at all levels of the Environmental Management System (EMS). The EMS contains Pengrowth's Environmental Policy & six Operating Practices (OP). These OPs outline Pengrowth's expectation of employees and contractors and ensure compliance with applicable legislation. The six OPs are listed as follows with a brief explanation:

Environmental Incident Reporting

This OP outlines the process followed to identify reporting requirements (Internal vs. regulatory office notification) for environmental incidents. All releases or environmental incidents are reported to the Field Environmental Coordinator to assist with determining the reporting requirements.

Spill Prevention and Clean-up

This OP outlines Pengrowth's expectation and standard for preventing releases to the environment. If a release should occur this practice guides in the clean-up and control of the release event. Depending on the severity of the release, this practice is used in conjunction with the ERP.

General Housekeeping

This OP outlines Pengrowth's expectation to keep worksites clean and free of hazards or pollution.

Surface Water Run-Off Management

This OP outlines Pengrowth's expectation to minimize pollution or damage caused by surface water from rainfall or snow melt. Within this practice the regulatory release limits are outlined.

Production Waste Management

This OP provides guidance in minimizing, effectively managing & properly disposing of wastes generated from production operations. All waste generated by Pengrowth is the responsibility of Pengrowth and is handled according to provincial and federal regulations.

Vegetation Management

This OP outlines Pengrowth's expectation to effectively manage vegetation and minimize problem or noxious weeds. Within this practice various control methods and a restricted pesticide list are identified

9.0 Future Operating Plan

9.1 Project Schedule Update

CO2 Quaternary Pilot Milestones

October 2005: Approval-in-principle for the quaternary flood concept Laboratory testing and Compositional Simulation initiated

March 2006: Management approval for Pilot: \$8.5 million
April 2006: Laboratory and simulation work completed
May 2006: Application filed with EUB for scheme approval

December 2006: Baseline 3-D seismic data obtained

January 2007: Well re-completion, facility upgrade, pipeline construction completed

January 2007: ERCB Scheme approval is granted

February 2007: First CO2 injection

April 2007: Acid gas injection begins in the WAG mode

August 2008 (April 2009): Acid gas injection completed and straight water injection resumes

August 2008 (**February 2009**): Follow-up 3-D seismic survey

August 2009 (**December 2010**): Monitoring and Evaluation of the Pilot completed

Milestones pushed out from 2008-2009 to 2009-2010 due to increased target banksize.

9.2 Changes in pilot operation & optimization strategies

Water Injection Rate

As mentioned in section 5.1, with the increasing water injection rate, a surface choke was installed at the 07-02-064-11W5 injector to control water injection rates and thereby maintain voidage replacement and WAG ratio.

ESP Failures

02-02 & 06-02-064-11W5 failed in May 2007. Both wells had older vintage equipment and were expected to fail during the CO₂ pilot. 02-02 failed again in December 2007 and 06-02 in May 2008. Failure analysis indicated that both failures resulted from a manufacturer error and not from operation in the CO₂ pilot. There were similar failures in other parts of Judy Creek and other Pengrowth operated properties. 06-02 failed in May 2009. There were no signs of corrosion and the pump condition was similar to units from non-CO₂ portions of the field. The ESP in 02-02 was pulled and repaired in August 2010 after more then a 2 1/2 year run life.

Acid Gas Handling (injection changes, shut-in production)

Acid gas handling issues were anticipated when the target total injection volume was increased above 20% HCPV. The original acid gas handling system was designed to accommodate peak rates associated with a 20% HCPV injection target. Modifications to the acid gas handling systems were executed to handle the incremental CO_2 .

In August 2008 the Judy Creek Gas Plant began experiencing acid gas handling problems as 02-02 & 06-02 began to breakthrough CO₂ gas. Both wells were shut-in and CO₂ injection was deferred while the upgrades to the acid gas handling system (Jeff treat) were undertaken. The water injection rate into the pilot was reduced to prevent an escalating WAG ratio and pressure buildup. In late September 2008, both wells were re-started and CO₂ injection resumed. To manage the peak CO₂ reproduction, the CO₂ injection cycle time was reduced from 28 to 14 days and the CO₂ injection rate was reduced.

In November 2008, the JCGP completed work on the Jeff treat system. The JCGP was able to handle the additional acid gas, but struggled during peak periods of gas production at 02-02 & 06-02. During December 2008 & April 2009, 06-02 was shut in during peak CO₂ production periods at 02-02.

9.3 Salvage Update

Inasmuch as the pattern injector and producers will continue operation after the conclusion of the pilot, salvage opportunities are limited to the CO₂ injection facilities (CO₂ bullet and pipeline).

Pengrowth purged all acid gas & CO₂ lines upon completion of injection to reduce any environmental impact in the event of a flowline failure. All lines remain in place for future acid gas injection.

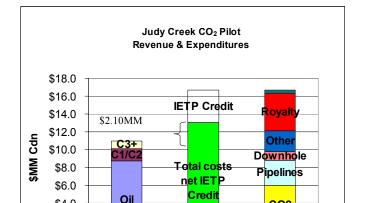
10. Interpretations and Conclusions

10.1 Overall Pilot Performance

Lessons learned & difficulties encountered

Increasing injectivity over time is thought to be at least partly the result of increasing reservoir permeability through dissolution of reservoir rock from CO₂ & water injection (carbonic acid). This resulted in installing a choke during water injection to manage VRR and WAG ratio, and multiple diagnostics to assess downhole isolation. Constraints on diagnostics existed based on the selection of isolation techniques (isolation with bridge plug) and downhole equipment, most notably the permanent packer. While alternate techniques may have increased flexibility for diagnostics, they would have also increased the risk of loss of isolation, in the case of a zonal isolation using only cementing and costs.

As expected, acid gas handling limitations were experienced when the injection target was increased above 20% HCPV. Modifications to the amine system and installing larger coolers helped to improve removal of acid gas, but some disruptions to pilot and gas plant operation were still experienced.


Technical & Economic Viability

\$4.0

\$2.0 \$-

Revenue

The Judy Creek CO₂ pilot can be deemed technically successful as it has resulted in incremental oil production & hydrocarbon solvent (methane & ethane) from all pattern producers. As well, the ability to handle and inject a waste acid gas stream combined with purchased CO₂ has been demonstrated. As expected, due to the high cost of infrastructure and CO₂ purchases, the pilot will not generate positive economics, but will guide the design and forecasts for commercial scale development. See figure 9 for a breakdown of revenue & expenditures for the CO₂ Pilot.

IETP Credit

Figure 9: Revenue & Expenditures for Judy Creek CO₂ Pilot

CO₂ Pu<mark>rchas</mark>es

Expenditures

Overall Effect on Oil & Gas Recovery

The expected oil recovery from the pilot is ~3.4% OOIP (10,876 m³). In addition 40 to 45% of previously injected hydrocarbon solvent will be recovered. Target recoveries were originally estimated at an incremental oil recovery 3.0% OOIP and 40% of previously injected hydrocarbon solvent.

Assessment of Commercial Field Application and Discussion of Reasons

Data is being used to update both simulation and analytical models for other reservoir types within Judy Creek such that full field commercial production forecasts can be updated. Operational data is also being used to advance engineering work in facility design.

Pengrowth is also working with, and sharing pilot results with, other Swan Hills Area operators to assess joint venture facilities and common CO₂ supply, to optimize capital investment in any future commercial development.

The economics of a commercial scale CO₂ scheme at Judy Creek continue to be updated, and the range of possible outcomes remains wide. Key drivers for the project remain CO₂ delivered costs, oil recovery, oil price, and the EOR royalty relief program. Alternative EOR royalty relief concepts to the current program have been investigated. Multiple development scenarios have now been formulated that account for: Reservoir quality (impacts on oil and solvent recovery), banksize, development pace, joint facilities, and joint CO₂ supply.

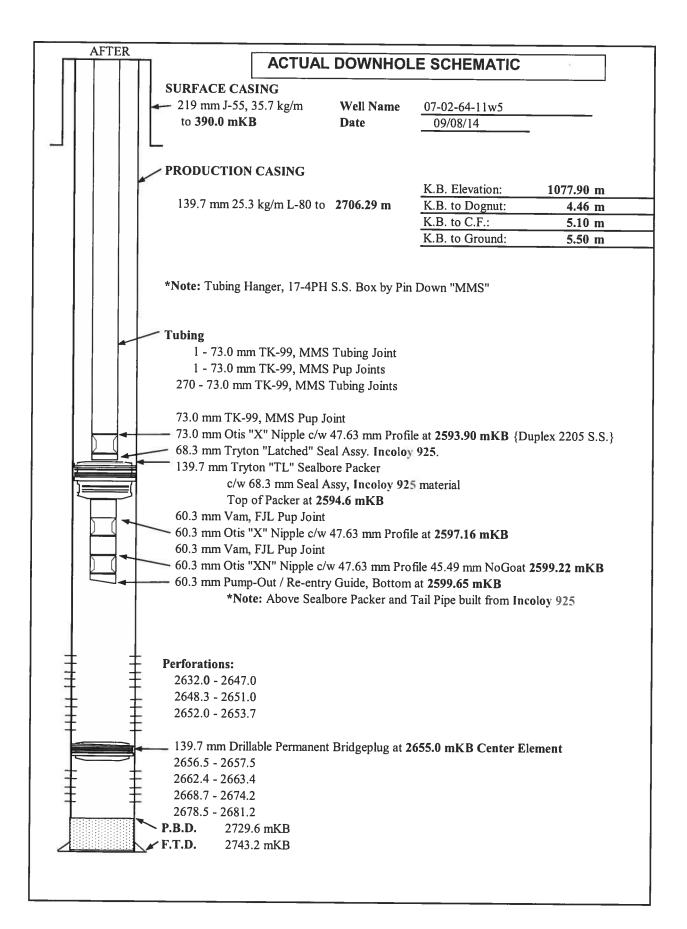
Energy and Material Balance Information for the Final Project Report

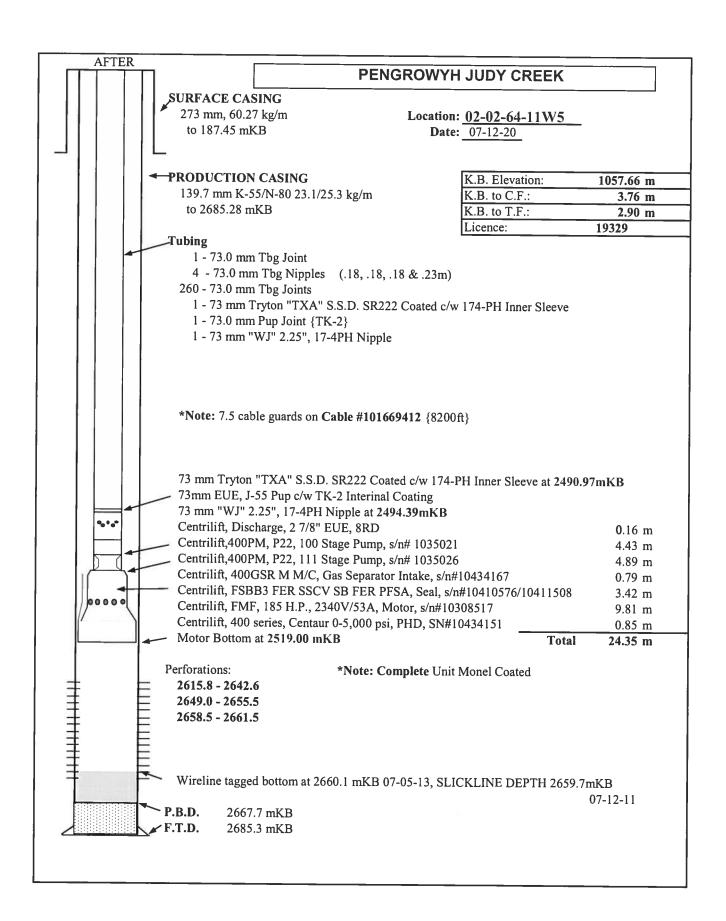
The following energy sources and produced materials for the period 2007 to 2010 were used or produced during this IETP project.

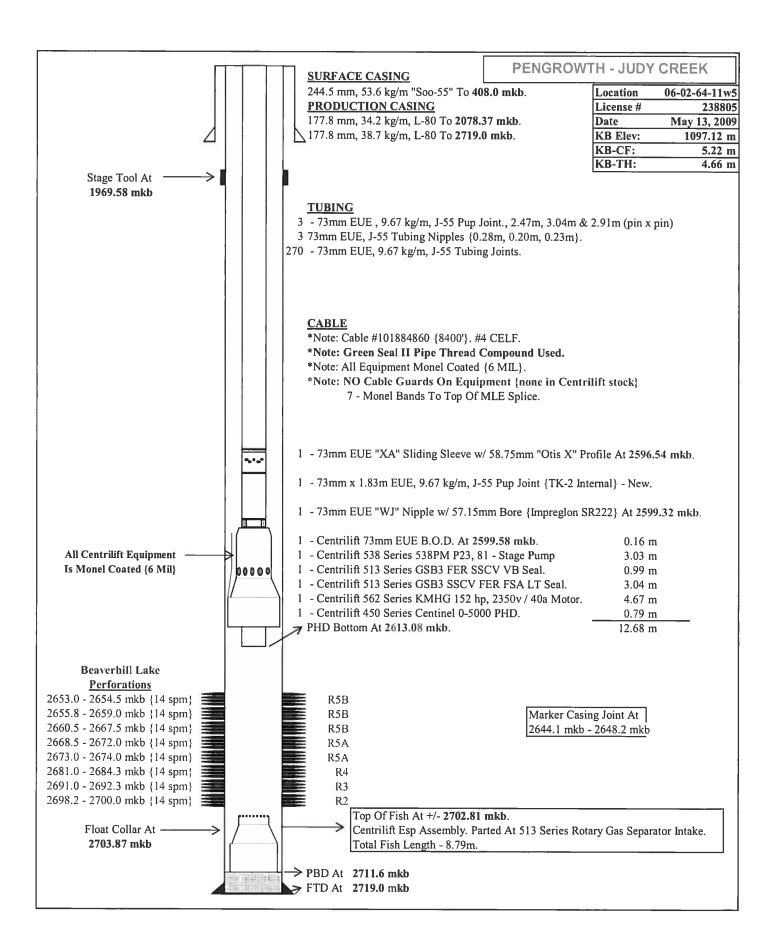
Type	amount	source	
Gross Balances:			
Electricity (MWh):	13,702	From Grid	
Steam:	None		
In-Situ Combustion:	None		
Process air:	None		
Fresh Water:	None		
Produced Materials			
Water (m3):	449,703		
Oil (m3):	14,122	41° API	
Diluents (m3):	None		
Sales Oil (m3):	14,122	41° API	no diluents used
Sand (m3):	None		
Gas (m3):	6,082,000		
Gas (GJ):	243,966		

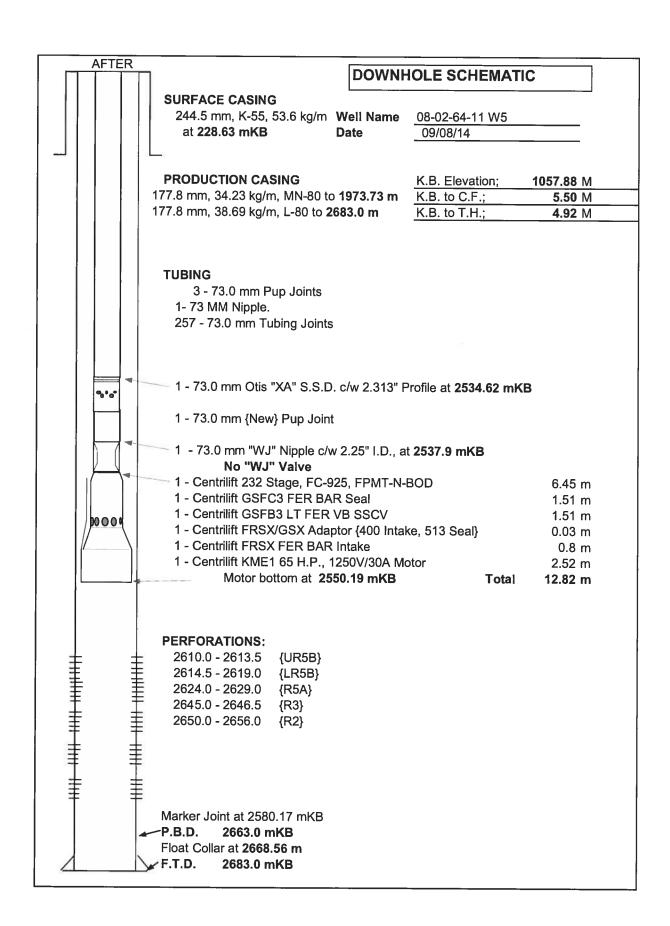
The following table shows the electricity usage by site by year

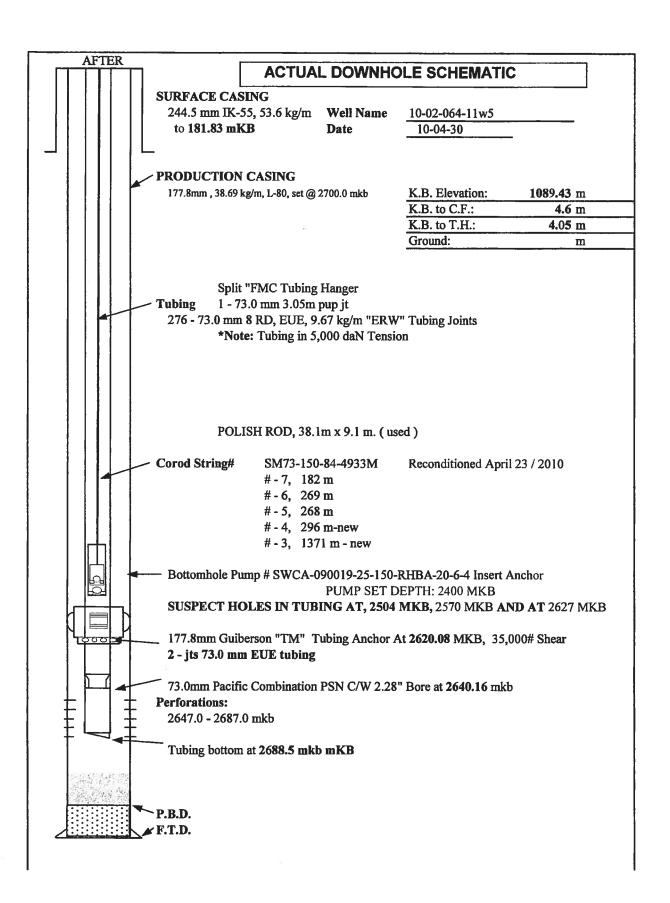
Table: Electricity consumed (from grid):

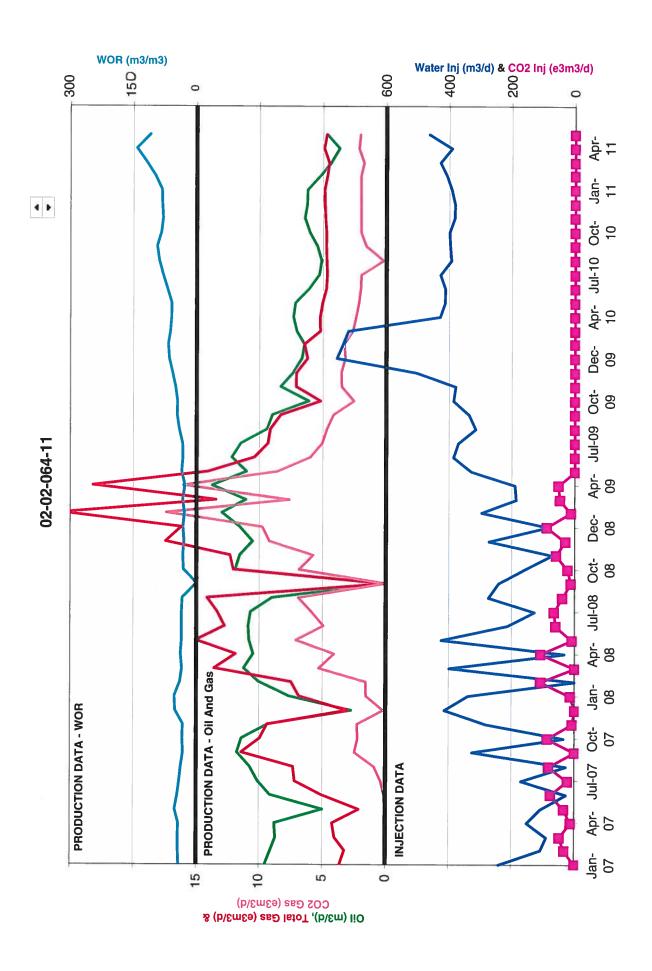

Site	07-02	02-02	06-02	08-02	10-02	CO2 Skid	CO2 Booster	Acid Gas Plant	Total
	MWHrs	MWHrs	MWHrs	MWHrs	MWHrs	MWHrs	MWHrs	MWHrs	MWHrs
Year									
2007	20.0	1401.0	984.4	573.6	317.1	113.6	22.7	141.9	5581.3
2008	26.6	1424.0	970.3	573.0	222.1	128.1	25.6	160.1	5537.8
2009	22.1	1434.1	974.2	555.0	247.4	45.1	9.0	56.4	5352.3
2010	24.6	1327.1	1108.4	568.7	225.9	0.0	0.0	0.0	5264.8
Total	93.4	5586.3	4037.3	2270.3	1012.5	286.7	57.3	358.4	13702.1

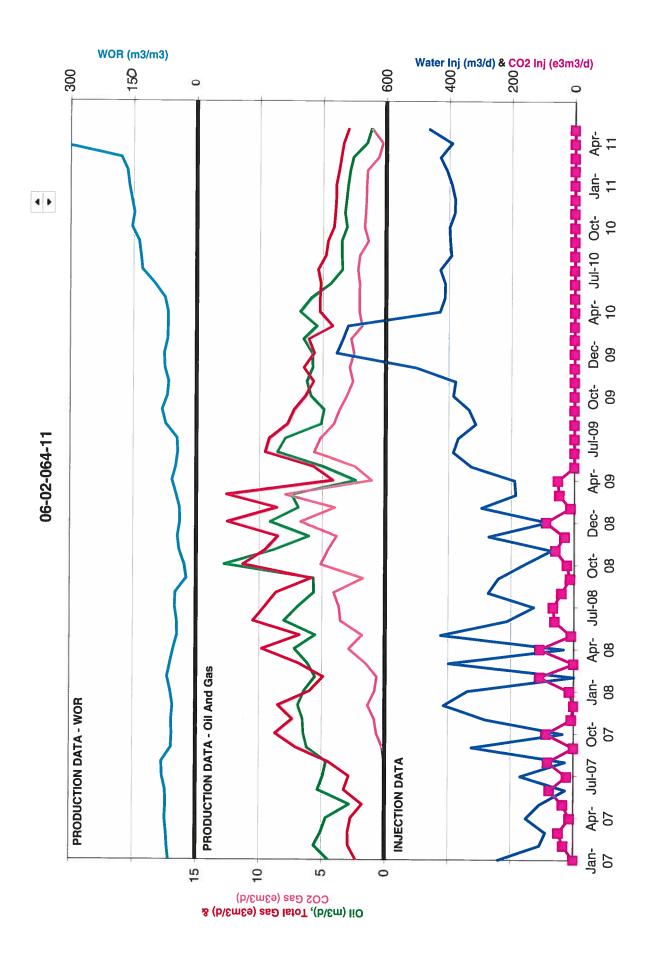

PENGROWTH CORPORATION

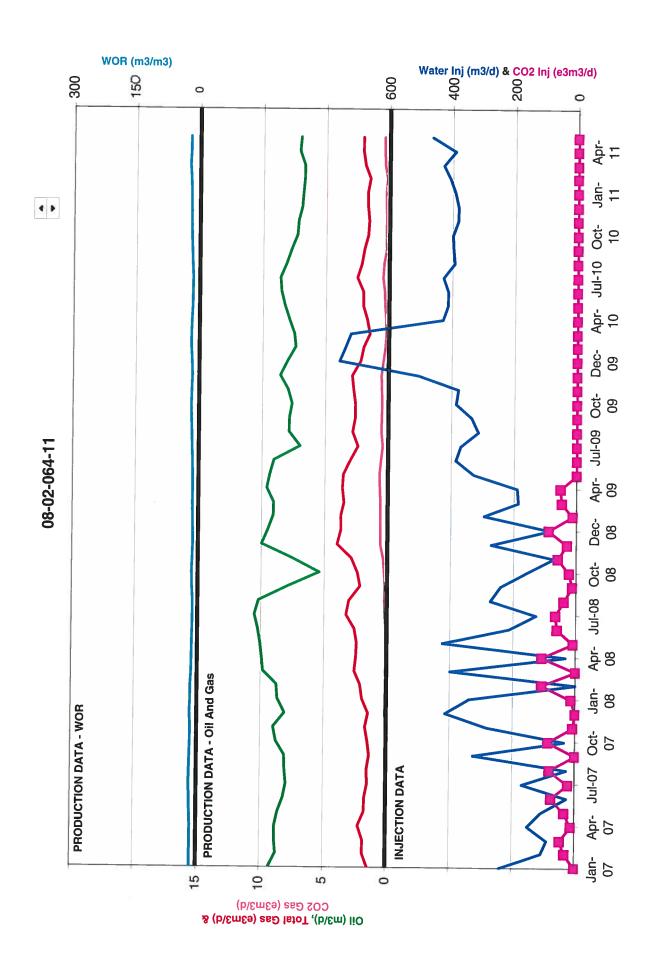

APPENDIX I WELLBORE SCHEMATICS

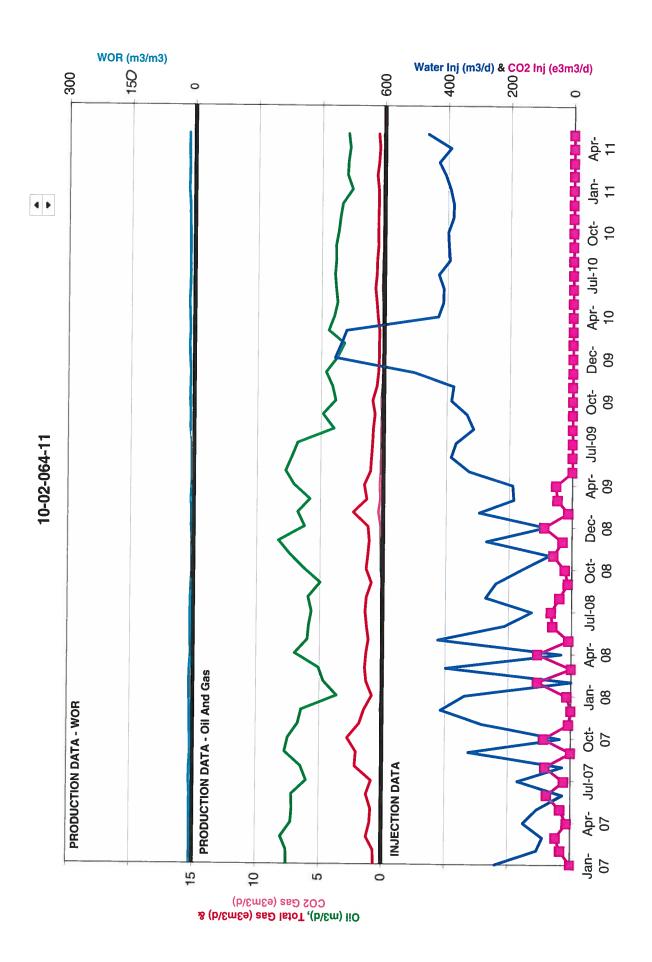

INNOVATIVE ENERGY TECHNOLOGIES PROGRAM 2010 FINAL REPORT

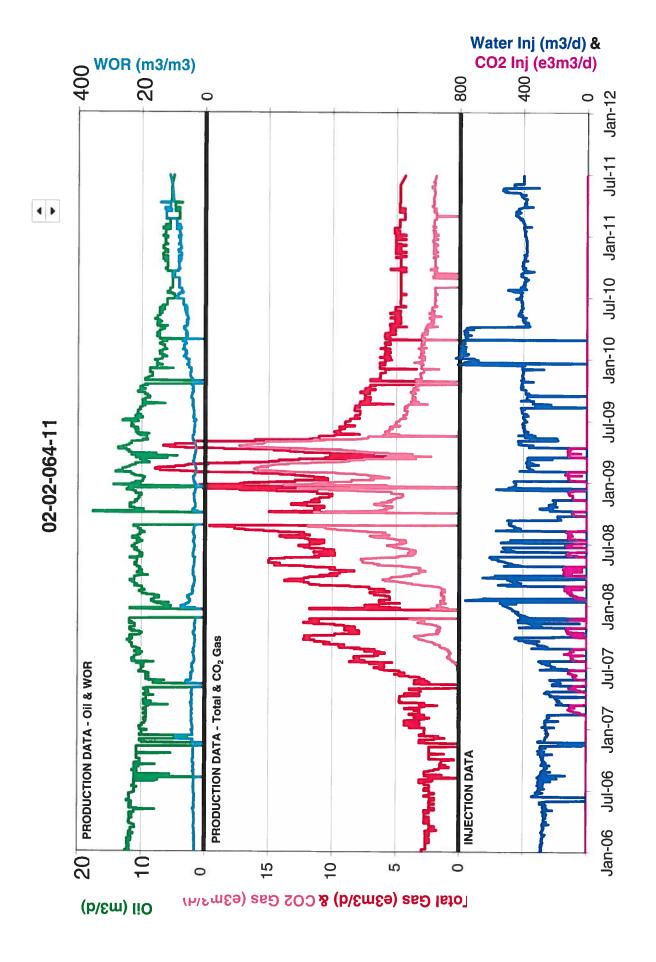

JUDY CREEK PATTERN 102 CO₂ PILOT

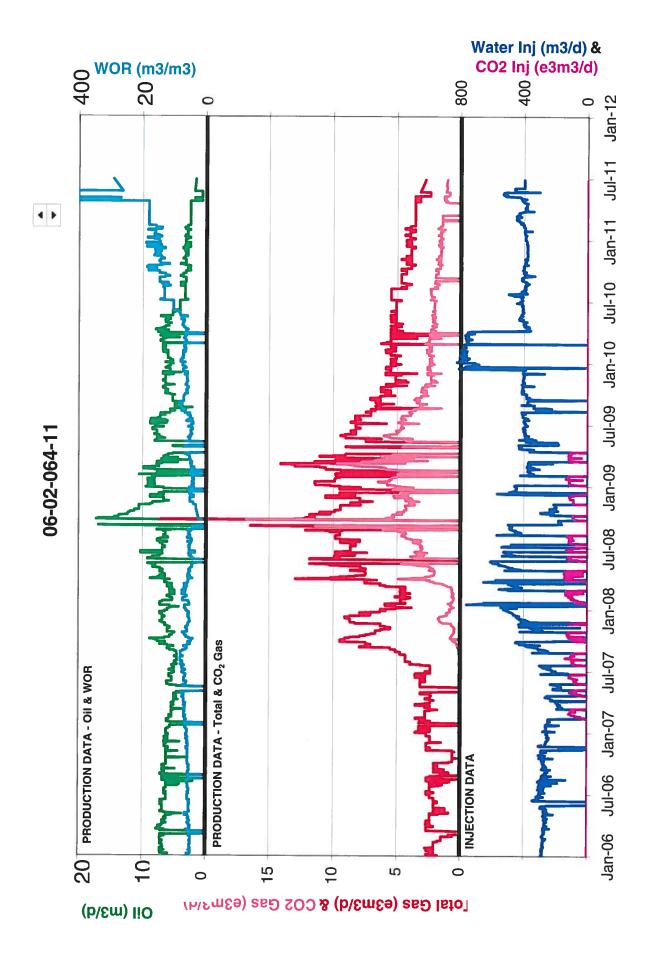


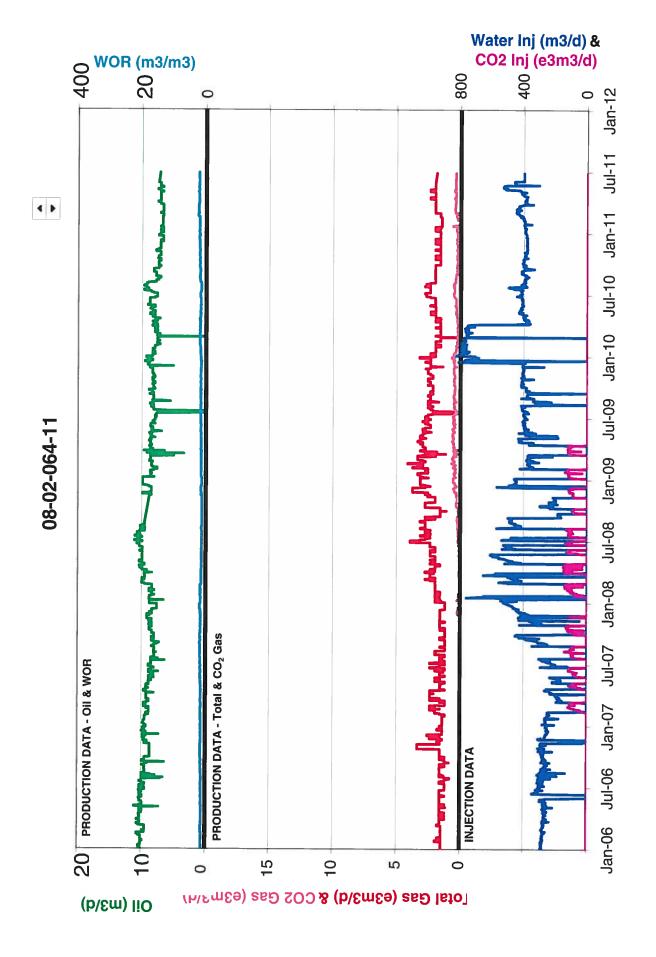

PENGROWTH CORPORATION

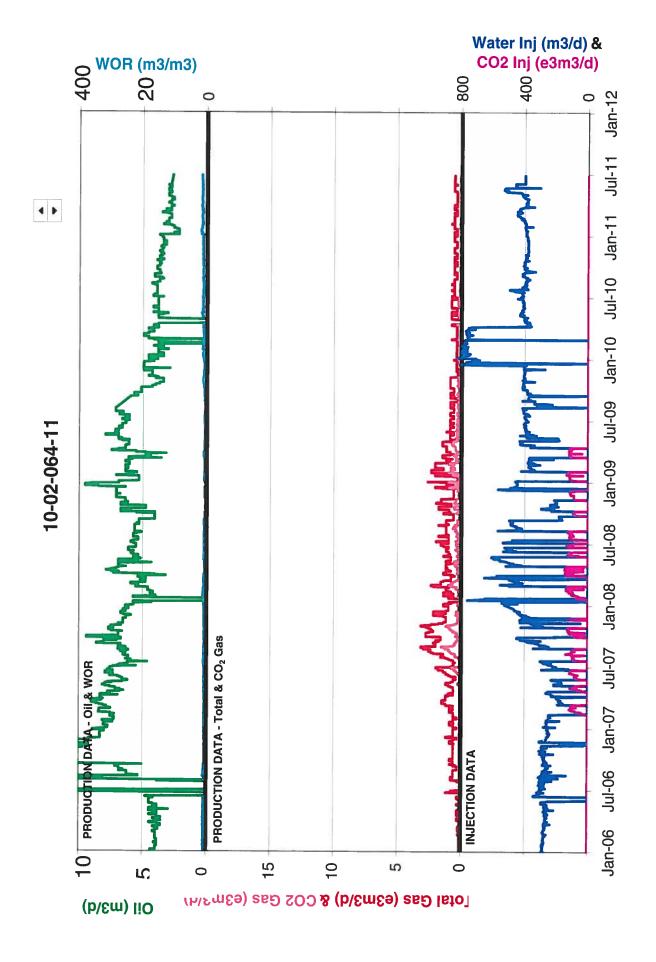

APPENDIX II PRODUCTION DATA


INNOVATIVE ENERGY TECHNOLOGIES PROGRAM 2010 FINAL REPORT


JUDY CREEK PATTERN 102 CO₂ PILOT





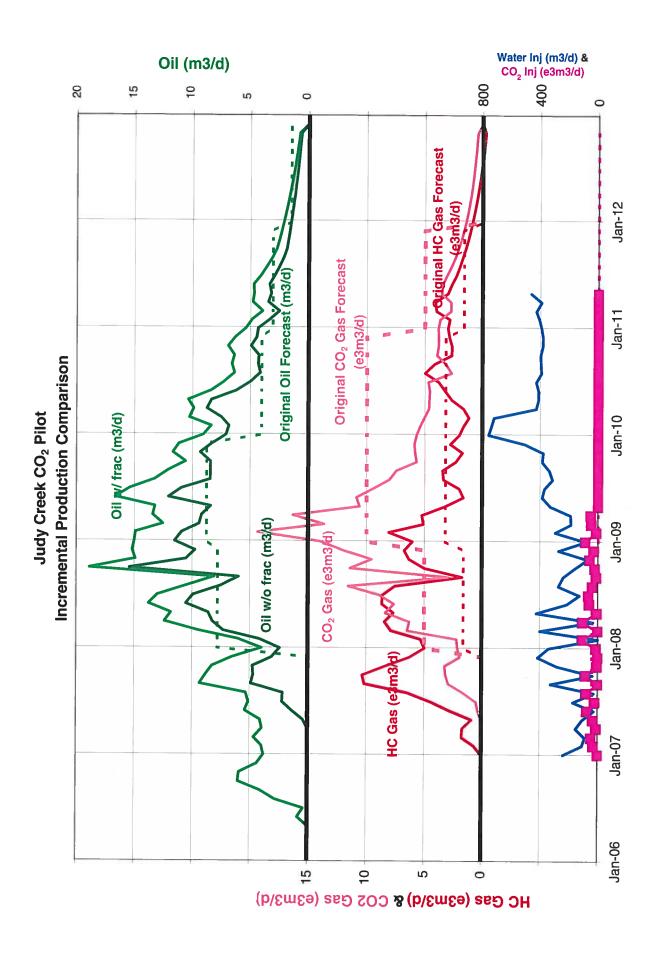


	OTHER	,	0.20%	0.20%	0.18%	0.17%	0.16%	0.20%	0.16%	0.00%	0.17%	0.14%	0.00%	0.15%	0.16%	0.16%	0.15%	0.20%	0.15%	0.14%	0.14%	0.16%	0.14%	0.14%	0.14%	0.14%	0.14%	0.14%	0.13%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	¢/2	L	0.00%	0.00%	0.00%	0.00%	0.07%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	2000	0.00%	0.03%	0.01%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	93		0.00%	0.00%	0.00%	0.00%	0.02%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	NCS		0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.02%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	5		0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.02%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	NC4		0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	1C4		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.00%	0.01%	0.01%	0.02%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	ຍ	-	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.00%	0.00%	0.01%	0.00%	0.00%	0.01%	0.01%	0.00%	0.01%	0.01%	0.01%	0.00%	0.01%	0.01%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	C.5	-	200.0	0.00%	0.02%	0.02%	0.00%	0.00%	0.02%	0.00%	0.04%	0.02%	0.00%	0.02%	0.01%	0.01%	0.02%	0.00%	0.01%	0.03%	0.08%	0.06%	0.11%	0.09%	0.15%	0.01%	0.05%	0.06%	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	CI	-	0.00%	0.00%	0.03%	0.06%	0.03%	0.00%	0.03%	0.00%	0.04%	0.03%	0.00%	0.02%	0.02%	0.02%	0.10%	0.00%	0.03%	0.03%	0.03%	0.03%	0.07%	0.06%	0.05%	0.03%	0.05%	0.03%	0.19%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
osition	H2S		0.00%	0.00%	0.98%	1.68%	0.80%	0.00%	1.53%	0.00%	1.31%	1.55%	0.00%	1.26%	1.20%	0.97%	1.19%	0.00%	1.06%	1.47%	1.03%	0.97%	1.70%	1.50%	1.61%	1.13%	1.28%	1.19%	1.45%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	200.0	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Injection Gas Composition	C02	1	%08.66	99.80%	98.79%	98.08%	98.88%	99.80%	98.25%	0.00%	98.44%	98.25%	0.00%	98.53%	98.61%	98.83%	98.53%	%08.66	98.74%	98.31%	98.65%	98.76%	97.96%	98.17%	98.03%	%89.86	98.44%	98.56%	98.12%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Injection	N2	'	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Prod. Day CO2 Inj	e3m3/d	0.0	60.3	98.1	53.0	80.8	91.1	85.6	74.7	0.0	26.5	61.1	0.0	54.7	108.5	0.0	116.2	8.89	8.901	97.5	111.7	76.3	88.9	93.3	104.0	115.3	90.1	105.7	8.111	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0:0	0.0
Cal. Day CO2 Inj	e3m3/d	0.0	32.3	47.5	C.21	35.9	6.67	1.77	0.28	0.0	8/.7		0:0	14.1	108.5	0.0	108.4	8.9	60.5	0.99	39.6	12.7	23.0	59.1	30.2	89.2	12.9	47.7	52.2	0:0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0:0	0:0	0.0
.=	e3m3	0.0	904.6	14/1.8	5,020	1050.8	1.//27	085.0	7.745.7	0.0	870/7	244.5	0.0	437.6	3146.4	0.0	3253.3	275.0	1815.9	2047.5	1228.7	381.6	711.5	1772.8	936.3	2766.1	360.3	1479.8	1565.4	0:0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0:0	0:0	0.0	0.0
.5	m3/d	238.4	97.0	50.5	5.001	77/01	C.02	1.601	27.0	25.0	33.0	787.3	413.4	337.9	0.0	398.3	32.5	423.6	213.2	127.0	272.6	240.6	160.2	71.1	271.3	83.9	295.1	186.4	189.9	328.4	385.7	316.0	336.1	385.8	378.9	504.1	755.6	735.8	719.7	429	413.6	412.4	428.0	393.1	397.1	399.3	383.1	382.3
.5	days	0	5] ;	2 -	-	5,5	30	0 [17 0	٥	97	4 0	+	× s	67	٥		+	+	+	+	+		_	+	-	+	\dashv	+	+	+		+	\vdash	0	$\frac{1}{1}$	1	\dashv	+	+	+	+	\dagger	+	+	0	+	\exists
Ē	days		<u> </u>	200	3 01	وار	٤ ا	3 -	, <u>5</u>	2 ~	25	07		57	- - ;	31	2	27	13	2 3	700	25	23	=	22	7	24	12	9 :	15	30	31	30	31	30	31	31	28	31	30	31	900		3	30	31	2	31
W		1/1/2007	2/1/2007	3/1/2007	5/1/2007	7/1/2007	7/1/2007	7007177	0/1/2007	10/1/2007	11/1/2007	1002/1/11	/007/1/71	2/1/2008	2/1/2008	3/1/2008	4/1/2008	5/1/2008	6/1/2008	7/1/2008	8/1/2008	9/1/2008	10/1/2008	11/1/2008	12/1/2008	1/1/2009	2/1/2009	3/1/2009	4/1/2009	5/1/2009	6/1/2009	0/1/2002	9/1/2009	10/1/2009	11/1/2009		\perp				\perp		7/1/2010	8/1/2010	9/1/2010	10/1/2010	11/1/2010	12/1/2010

		ľ		2000			3	3	3	2 2	\$	S	ප	ප	3	H2S
1/1/2007		406.68	3.61	0.077	2.74%	2.13%	26.08%	24.91%	7.47%	2.85%	1.04%	0.83%	0.71%	1.16%	0.00%	0.08%
2/1/2007	١	399.46	3.22	0.069	2.74%	2.13%	26.08%	24.91%	7.47%	2.85%	1.04%	0.83%	0.71%	1.16%	0.00%	0.08%
3/1/2007	\perp	387.1	4.01	0.085	2.74%	2.13%	26.08%	24.91%	7.47%	2.85%	1.04%	0.83%	0.71%	1.16%	0.00%	0.08%
4/1/2007	8.78	382.72	4.2	0.089	2.74%	2.13%	56.08%	24.91%	7.47%	2.85%	1.04%	0.83%	0.71%	1.16%	0.00%	0.08%
5/1/2007	\perp	259.99	2.1	0.047	2.79%	2.22%	26.51%	24.04%	7.32%	2.87%	1.03%	0.89%	0.75%	1.49%	0.00%	0.08%
6/1/2007	_	414.08	5.06	0.099	2.61%	1.95%	54.18%	27.82%	6.41%	2.61%	0.91%	0.90%	0.74%	1.81%	0.00%	0.07%
7/1/2007	4	416.12	7.18	0.374	2.19%	5.21%	48.72%	33.11%	4.94%	2.03%	0.70%	0.77%	0.64%	1.65%	0.00%	0.06%
8/1/2007	10.71	401.99	7.31	0.901	1.99%	12.32%	44.64%	30.85%	4.63%	1.90%	0.65%	0.73%	0.59%	1.63%	0.00%	0.07%
9/1/2007	11.74	381.19	11.41	2.445	1.73%	21.43%	38.81%	28.91%	3.88%	1.61%	0.54%	0.64%	0.51%	0.64%	0.95%	0.10%
10/1/2007	11.39	390.03	9.95	2.191	1.79%	22.02%	39.93%	26.38%	4.27%	1.77%	0.59%	0.68%	0.56%	0.61%	1.05%	0.13%
11/1/2007	9.3	306.04	9.36	2.245	1.53%	23.99%	35.03%	24.16%	3.67%	1.53%	0.51%	0.60%	0.47%	0.54%	0.95%	0.15%
12/1/2007	\perp	139.4	3.04	0.196	0.59%	6.44%	12.39%	6.41%	1.51%	0.59%	0.21%	0.20%	0.16%	0.15%	0.24%	0.06%
1/1/2008		404.84	6.85	1.556	1.85%	22.72%	40.49%	23.79%	4.90%	2.06%	0.69%	0.76%	0.62%	0.64%	1.03%	0.22%
2/1/2008		400.56	7.49	1.578	1.82%	21.07%	41.46%	24.52%	4.86%	2.03%	0.69%	0.75%	0.61%	0.65%	1.05%	0.23%
3/1/2008		394.68	13.59	5.288	1.27%	38.91%	30.64%	20.70%	3.42%	1.45%	0.48%	0.58%	0.45%	0.53%	0.97%	0.35%
4/1/2008		402.48	11.88	4.068	1.40%	34.24%	33.59%	21.69%	3.76%	1.60%	0.53%	0.63%	0.50%	0.57%	1.02%	0.35%
5/1/2008	- 1	388.95	15.07	7.108	1.15%	47.16%	26.53%	18.27%	2.46%	1.26%	0.41%	0.51%	0.40%	0.48%	0.93%	0.44%
6/1/2008	- 1	389.77	12.76	4.918	1.27%	38.55%	30.56%	20.74%	3.63%	1.49%	0.50%	0.59%	0.48%	0.54%	0.98%	0.41%
7/1/2008	_	382.5	13.33	5.870	1.17%	44.03%	27.93%	18.56%	3.35%	1.40%	0.46%	0.56%	0.45%	0.52%	0.96%	0.45%
8/1/2008	œ.	310.05	14.17	6.917	1.15%	48.81%	26.27%	15.85%	3.26%	1.32%	0.45%	0.50%	0.41%	0.44%	0.82%	0.46%
9/1/2008		0	0	0.000	0.20%	2.55%	4.17%	2.00%	0.54%	0.21%	0.07%	290.0	0.05%	0.04%	0.03%	0.02%
10/1/2008		379.55	12.07	6.850	0.84%	56.76%	21.08%	14.24%	2.73%	1.18%	0.39%	0.47%	0.37%	0.43%	0.79%	0.60%
11/1/2008		386.49	12.33	5.742	1.03%	46.57%	26.29%	17.80%	3.41%	1.43%	0.47%	0.56%	0.44%	0.51%	0.95%	0.48%
12/1/2008		321.52	17.45	9.202	0.97%	52.73%	23.73%	14.50%	3.20%	1.34%	0.45%	0.52%	0.41%	0.47%	0.84%	0.54%
1/1/2009	11.54	378.71	16.20	9.775	0.70%	60.35%	19.10%	12.88%	2.46%	1.11%	0.36%	0.46%	0.36%	0.44%	0.88%	0.65%
2/1/2009	12.96	386.33	25.62	17.395	0.58%	67.90%	15.99%	11.04%	0.73%	0.94%	0.30%	0.40%	0.31%	0.40%	0.84%	0.74%
6007/1/6	11.06	3/3.05	13.44	7.640	0.71%	56.84%	21.05%	14.37%	2.42%	1.19%	0.39%	0.48%	0.38%	0.46%	0.91%	0.63%
4/1/2009	13.75	394.29	23.19	16.058	0.37%	69.26%	14.54%	9.95%	1.93%	0.88%	0.28%	0.37%	0.29%	0.37%	0.83%	0.75%
6007/1/9	00.11	394.30	14.10	8.596	0.43%	60.95%	15.63%	10.23%	2.13%	0.97%	0.31%	0.41%	0.32%	0.39%	0.83%	0.70%
2/1/2000		404.76	10.41	5.998	0.53%	57.60%	20.68%	13.25%	2.89%	1.29%	0.42%	0.52%	0.42%	0.49%	0.96%	0.72%
00007170	1	392.78	7.34	3.045	0.64%	24.04%	22.11%	13.99%	3.14%	1.41%	0.46%	0.56%	0.48%	0.52%	1.02%	0.71%
0/1/2002	04.6	350.38	9.10	4.073	1.37%	21.01%	24.51%	14.29%	3.29%	1.47%	0.48%	0.58%	0.51%	0.54%	1.06%	0.64%
10/1/2000	6.70	783 71	21.5	25.42	1.12.70	49.62%	25.700	14.44%	3.43%	1.53%	0.50%	0.01%	0.51%	0.56%	1.09%	0.62%
11/1/2009	8.33	422 66	7.10	3 504	1 22%	49.23.00	26 2002	14 000%	3.51%	72021	0.51%	0.62%	0.51%	0.57%	1.12%	0.59%
12/1/2009	7.36	427.01	7 00	3 540	1 330%	40 010%	26.040%	13 2902	20102	0 25.1	0.22.70	0.70.0	0.71.00	0.27%	1.10%	0.59%
1/1/2010	99'9	439.46	6.23	3 225	1 28%	51.80%	25 11 02	12.060%	2 2007	1.00%	0.45%	0.00%	0.53%	0.00%	0,111.	0.54%
2/1/2010	6.46	442.26	6.48	3 306	1 250%	51 0602	25 80%	13 00 02	2 2 1 02.	1.30%	0.4570	0.10.0	0.30%	0.77.0	0,.01.1	0.55%
3/1/2010	7.07	447 28	5 20	2 634	1 230%	50 63%	25.87%	12 1402	2 2702	1.49.70	0.49%	0.00%	0.49%	0.30%	0,71.1	0.56%
4/1/2010		444.19	5.22	2.390	1 27%	45.79%	26.08%	13.11%	3 380%	1.32%	0.50%	0.000%	0.11%	0.36%	1.15%	0.55%
5/1/2010	7.18 4	433.92	5.04	2.168	1.38%	43.03%	27.85%	13.64%	3.61%	1.56%	0.53%	0.58%	0.50%	0.55%	1.00 /0	0.51%
6/1/2010	6.10 4	429.69	H	2.0256	1.49%	42.69%	27.92%	13.69%	3.56%	1.59%	0.53%	0.58%	0.30%	0.56%	1.07.70	0.31%
7/1/2010	L	429.29	4.68	1.97688	1.55%	42.26%	28.12%	13.38%	3.63%	1.60%	0.53%	0.60%	0.56%	0.58%	1.00%	0.51%
8/1/2010		459.72	П	0.20983	0.43%	4.45%	11.57%	9.12%	0.90%	0.38%	0.13%	0.14%	0.12%	0.13%	0.24%	0.06%
9/1/2010		517.82	Н	1.58877	1.18%	33.45%	21.33%	9.35%	2.76%	1.24%	0.41%	0.47%	0.43%	0.45%	0.93%	0.41%
10/1/2010	4	514.59	\dashv	1.9992	1.61%	42.17%	28.59%	12.61%	3.68%	1.65%	0.54%	0.62%	0.56%	0.60%	1.24%	0.51%
11/1/2010	6.45 5	520.71	\forall	1.99689		41.44%	28.96%	12 88%	27402	1 660%	2000	2000	0000			100
12/1/2010	_		707		ı		2000	2000	2.1770	0,00.1	0.55%	0.70.0	0.23%	0.00%	1.22%	0.45%

4.47 291.03 5.58 382.37 4.65 345.61 4.89 385.61 4.89 395.14 4.89 395.14 4.64 380.41 6.16 36.91 6.16 36.91 6.16 36.91 6.17 382.13 6.18 382.72 6.18 38.27 6.18 38.27 6.19 37.19 6.11 382.13 6.12 38.19 6.13 38.36 6.14 38.72 6.15 38.36 6.16 38.37 6.17 38.33 6.18 38.33 6.19 37.03 6.03 37.19 6.03 37.19 6.03 37.26 6.03 37.26 6.03 37.14 6.04 37.74 6.05 38.43 6.07 28.43 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>3</th> <th>5</th> <th></th>								-	3	5	
5.58 382.37 2.89 6.50 355.61 2.92 7.29 20.43 2.69 7.29 386.91 3.25 7.29 386.91 3.25 4.89 395.14 2.86 6.43 380.41 4.5 6.43 375.36 8.71 6.88 388.72 4.91 6.89 393.61 5.94 6.12 382.13 6.85 6.13 382.13 6.85 6.14 385.25 6.78 8.81 332.12 4.91 6.12 382.13 6.85 6.13 382.13 6.85 6.14 385.21 10.5 8.85 377.2 4.91 5.64 286.04 8.68 5.64 286.04 8.68 6.03 375.36 6.73 6.91 377.61 8.54 6.91 377.61 8.54 6.92 377		2.20% 54.08%	Щ	7.38%	2.74%	1.03%	0.60%	0.58%	0.47%	0.00%	0.09%
5.05 355.61 2.92 4.65 344.54 2.69 2.79 380.13 3.25 4.89 395.14 2.86 4.89 395.14 2.86 6.16 367.02 7.07 6.43 382.7 2.84 6.88 338.27 2.91 6.88 38.27 4.91 6.12 382.72 4.91 6.13 382.13 6.85 6.14 385.21 4.91 6.15 382.13 6.85 6.12 382.13 6.85 6.13 382.13 6.85 7.17 385.31 6.85 8.81 37.57 4.91 6.03 328.99 9.57 8.85 371.29 8.54 8.81 37.51 8.84 8.82 335.12 4.10 8.83 317.51 4.12 8.84 37.54 8.54 8.85 335.1	2.61%	2.20% 54.08%	, 28.22%	7.38%	2.74%	1.03%	0.60%	0.58%	0.47%	0.00%	0.09%
4.65 344.54 2.69 2.79 201.53 1.79 4.64 380.41 4.5 6.16 367.02 7.07 6.43 375.36 8.71 6.43 375.36 8.71 6.43 375.36 8.71 6.43 375.37 8.48 6.16 367.02 7.07 6.88 338.27 8.48 6.13 382.72 4.9 6.14 382.13 6.84 6.15 382.12 4.9 6.17 382.13 6.84 6.18 332.13 6.85 7.17 395.25 9.79 8.85 371.99 9.57 8.85 371.99 9.57 8.85 371.99 9.57 8.85 371.99 9.57 8.85 371.99 9.57 8.85 371.06 5.81 4.97 226.38 8.54 6.03 385	2.61%	2.20% 54.08%	28.22%	7.38%	2.74%	1.03%	0.60%	0.58%	0.47%	0.00%	0.09%
2.79 201.53 1.79 4.89 38.6.91 3.25 4.48 38.6.91 3.25 4.48 38.0.1 4.5 6.43 38.12 8.71 6.43 38.27 8.48 6.43 33.3.61 2.94 6.58 38.27 8.48 6.12 38.21 8.49 6.13 39.2.5 9.79 6.12 38.21 4.91 6.13 38.27 4.91 6.14 38.27 4.91 6.15 38.29 9.79 7.17 395.25 9.79 8.61 37.57 10.5 6.03 37.57 10.5 6.03 37.59 9.57 8.85 371.99 9.55 6.03 375.01 12.41 1.2.71 385.12 4.10 8.85 371.66 5.87 4.90 28.438 8.62 7.74 365.41	2.61%	2.20% 54.08%	28.22%	7.38%	2.74%	1.03%	0.60%	0.58%	0.47%	0.00%	0.09%
5.29 386.91 3.25 4.89 386.91 3.25 4.64 380.21 4.5 4.64 367.02 7.07 6.43 375.36 8.71 6.43 375.36 8.71 6.58 388.27 2.848 6.58 382.72 4.91 6.53 382.72 4.91 6.53 382.72 4.91 6.53 382.72 4.91 6.03 375.46 6.78 8.01 375.71 4.91 5.51 385.33 11.29 6.03 276.18 8.54 8.01 371.57 11.29 1.277 385.3 11.29 1.274 365.41 2.51 8.85 371.59 9.57 6.03 276.18 8.54 8.49 250.78 5.71 4.97 250.78 5.71 4.80 404.81 7.26 5.72		ΙI	Ш	5.97%	1.93%	0.73%	0.51%	0.45%	0.74%	0.00%	0.04%
4.89 395.14 2.86 4.64 380.41 4.5 6.16 380.41 4.5 6.18 38.20 8.71 6.23 38.82 7.35 6.88 38.27 8.48 6.38 393.61 5.94 6.12 382.13 6.85 6.12 382.13 6.81 6.12 382.13 6.81 7.17 395.25 6.79 7.17 395.25 6.79 7.17 385.3 11.29 8.01 377.57 10.5 6.93 378.99 9.57 6.93 378.04 8.68 5.64 286.04 8.68 6.93 376.18 8.54 7.44 370.03 12.54 8.85 371.57 10.5 8.85 371.60 8.62 7.44 370.03 12.41 8.85 37.6 8.54 6.90 284.3		- 1	\Box	5.52%	2.34%	0.80%	0.82%	0.68%	1.59%	0.00%	0.08%
4.64 380.41 4.5 6.16 380.41 4.5 6.43 37.30 8.71 6.48 38.27 8.48 6.38 338.27 8.48 6.12 382.13 6.85 6.12 382.13 6.85 7.17 382.13 6.85 7.17 382.13 6.88 6.12 382.13 6.88 7.17 385.3 11.29 8.01 377.57 10.5 8.02 37.57 10.5 8.03 37.57 10.5 8.17 10.5 8.54 8.04 37.51 10.5 8.17 10.5 5.71 8.18 37.57 10.5 8.19 37.51 10.5 8.10 37.54 3.5 8.24 385.3 11.29 8.25 337.6 9.23 8.25 337.6 9.23 8.25 337.6				5.60%	2.39%	0.82%	0.85%	0.71%	1.56%	0.00%	0.07%
6.16 36702 707 6.43 36736 8.71 6.88 38.82 7.35 6.88 38.82 7.35 6.89 382.13 6.85 6.12 382.13 6.85 6.12 382.13 6.85 7.17 395.25 9.79 8.51 37.24 6.78 8.85 37.19 9.57 6.03 338.39 9.57 6.03 338.39 9.57 8.85 37.19 9.57 6.03 338.39 9.57 8.81 37.19 8.54 9.14 370.03 12.54 6.03 376.18 8.54 12.77 385.31 11.29 8.85 37.10 8.54 6.03 337.06 9.23 7.44 365.41 12.61 8.59 9.57 7.79 8.59 9.67 7.79 8.50 40.81		┙	_	4.63%	1.96%	0.66%	0.75%	0.60%	1.57%	0.00%	0.06%
6,43 375.36 8.11 6,5 384.82 7.35 6,5 38.48.2 7.49 6,18 393.61 5.94 6,12 38.13 6.85 7,17 395.25 9.79 8,23 33.75 4.91 6,12 38.11 6.88 7,17 395.25 9.79 8,01 255.4 10.5 8,03 338.93 9.57 8,04 286.04 8.68 5,67 144.06 5.87 12,77 385.31 11.29 8,85 311.39 9.57 6,03 276.18 8.54 12,77 385.41 12.61 7.44 370.04 8.68 7.24 365.41 12.61 7.24 365.41 12.61 8.59 270.18 8.73 8.59 404.81 7.26 8.50 27.3 41.43 6.23			_	4.20%	1.79%	0.59%	0.70%	0.56%	0.70%	0.89%	0.07%
6.5 38.48.2 7.35 6.18 38.27 8.48 6.12 38.2.13 6.81 6.12 38.2.13 6.83 6.12 38.2.13 6.83 7.17 395.25 9.79 7.17 395.25 9.79 8.03 37.57 10.5 8.04 38.64 8.68 5.67 144.06 5.87 6.03 38.53 11.29 8.85 371.99 9.55 6.03 250.78 8.71 8.85 371.09 9.57 1.24 365.41 12.61 1.24 365.41 12.61 2.36 139.12 4.19 4.97 250.78 8.71 8.59 365.41 12.61 1.25 380.42 7.79 4.97 250.78 8.71 8.59 40.481 7.26 5.21 40.481 7.26 6.23 <			_	3.64%	1.53%	0.50%	0.62%	0.49%	0.56%	0.97%	0.07%
6.88 388.27 8.48 6.38 388.27 8.48 6.51 393.61 5.94 6.52 382.72 4.91 6.53 382.23 6.78 7.17 395.25 9.79 8.01 377.57 10.5 6.93 388.99 9.57 6.03 377.64 8.68 5.64 286.04 8.68 5.64 286.04 8.68 6.03 376.03 11.29 8.85 371.99 9.55 6.03 276.18 8.54 9.14 377.03 11.29 4.97 230.78 8.62 7.49 365.41 12.61 2.36 139.12 4.19 4.97 230.78 8.71 4.97 230.78 5.71 4.89 404.81 7.26 5.72 418.95 6.35 6.23 420.57 5.71 5.46 <				4.02%	1.70%	0.56%	0.66%	0.53%	0.59%	0.97%	0.09%
6.38 393.61 5.94 5.51 382.72 4.91 6.12 382.13 6.85 7.71 382.13 6.87 7.51 382.13 6.87 7.51 382.13 6.87 8.01 377.57 10.5 6.93 38.99 9.57 5.64 286.04 8.68 5.67 144.06 5.87 1.277 385.3 11.29 8.85 371.99 9.55 6.90 284.38 8.62 6.91 370.03 12.54 9.14 370.03 12.54 9.14 370.03 12.54 6.90 284.38 8.62 7.44 365.41 12.61 8.59 395.07 9.27 8.59 395.07 9.27 8.59 395.07 9.27 8.59 397.42 7.79 4.89 404.81 7.26 5.21	l		- 1	4.24%	1.71%	0.58%	0.62%	0.51%	0.51%	0.83%	0.12%
5.51 382.72 4.91 6.12 382.13 6.85 7.17 382.13 6.87 7.17 385.24 6.78 8.01 377.57 10.5 6.93 38.89 9.77 5.64 286.04 8.68 5.64 286.04 8.68 8.83 33.83 9.55 1.277 385.3 11.29 8.85 371.99 9.55 6.90 284.38 8.62 6.90 284.38 8.62 7.44 370.03 12.54 9.14 370.03 12.61 2.36 139.12 4.19 6.90 284.38 8.62 7.44 365.41 12.61 8.59 397.42 7.79 4.89 390.42 7.79 4.89 404.81 7.26 5.21 404.81 7.26 5.22 448.35 6.11 5.24 <t< td=""><td></td><td>4</td><td>- 1</td><td>4.42%</td><td>1.87%</td><td>0.62%</td><td>0.72%</td><td>0.58%</td><td>0.62%</td><td>1.01%</td><td>0.13%</td></t<>		4	- 1	4.42%	1.87%	0.62%	0.72%	0.58%	0.62%	1.01%	0.13%
6.12 382.13 6.85 7.17 392.25 6.78 8.51 377.57 10.5 8.64 286.04 8.68 5.64 286.04 8.68 5.67 144.06 5.87 12.77 385.3 11.29 8.85 37.19 9.55 6.90 27.61.8 8.54 6.90 284.38 8.62 6.91 370.03 12.54 9.14 370.03 12.54 6.90 284.38 8.62 7.44 365.41 12.61 2.36 139.12 4.19 4.97 236.78 9.23 7.24 365.41 12.61 2.36 139.72 4.19 4.89 404.81 7.26 5.12 380.42 7.79 4.89 404.81 7.26 5.21 441.45 6.48 5.21 4423.66 5.66 6.23		_	_ [4.62%	2.01%	0.67%	0.75%	0.61%	0.64%	1.01%	0.15%
1.17 393.22 5.19 8.51 355.46 6.78 8.01 375.71 10.5 5.64 286.04 8.68 5.67 144.06 5.87 12.77 385.3 11.29 8.85 371.99 9.55 6.03 276.18 8.54 6.90 284.38 8.62 7.44 370.03 12.54 6.90 284.38 8.62 7.44 365.41 12.61 4.97 250.78 8.71 8.59 404.81 7.26 8.59 404.81 7.26 6.23 404.81 7.26 6.23 404.81 7.26 8.50 404.81 7.26 8.51 450.64 5.64 5.71 441.45 6.48 5.71 453.66 5.66 6.23 404.81 7.26 5.80 442.36 6.11 5.46 <		- 1		4.01%	1.75%	0.58%	0.68%	0.54%	0.59%	0.97%	0.20%
5.31 2.53.40 0.18 6.93 235.40 10.5 6.93 338.99 9.57 5.64 286.04 8.68 5.67 144.06 5.87 12.77 385.3 11.29 8.85 371.99 9.55 6.03 276.18 8.54 6.04 284.38 8.62 7.44 370.01 12.54 6.90 284.38 8.62 7.44 365.41 12.61 7.44 365.41 12.61 7.44 365.41 12.61 7.44 365.41 12.61 7.44 365.41 12.61 7.95 377.66 9.23 8.59 404.81 7.26 5.21 380.42 7.79 4.89 404.81 7.26 5.21 423.66 6.35 6.23 420.57 5.71 5.46 379.74 4.25 6.736	[3.23%	1.62%	0.48%	0.55%	0.74%	0.55%	0.93%	0.44%
8.01 371.57 10.5 6.93 351.97 10.5 5.64 288.99 9.57 12.77 385.3 11.29 8.85 371.99 9.55 8.85 371.99 9.55 8.85 371.99 9.55 8.85 371.99 9.55 9.14 36.41 12.61 1.24 365.41 12.61 1.24 365.41 12.61 2.36 139.12 4.19 4.97 250.78 8.71 8.59 395.72 9.23 7.19 404.81 7.79 4.89 404.81 7.79 4.89 404.81 7.26 5.71 411.45 6.48 5.72 420.57 5.71 5.46 379.74 4.25 6.23 423.66 5.66 6.24 453.04 5.25 8.89 442.54 5.71 8.74 <	- 1	4	_	1.63%	1.11%	0.36%	0.44%	0.35%	0.41%	0.74%	0.24%
6.54 258.59 9.57 5.64 25.64 8.68 5.64 12.77 12.60 12.77 385.3 11.29 8.85 371.99 9.55 6.03 276.18 8.54 9.14 370.03 12.54 6.90 284.38 8.62 7.44 365.41 12.61 2.36 139.12 4.19 4.97 250.78 5.71 4.97 250.78 5.71 4.97 250.78 5.71 4.89 404.81 7.26 5.72 4418.95 6.35 6.23 420.57 5.71 5.77 441.45 6.48 6.52 420.57 5.71 5.46 319.74 4.25 6.73 471.56 5.25 5.8974 453.04 5.25 6.73 482.94 4.16 3.5168 416.8 4.16 3.1129		_		3.27%	1.37%	0.45%	0.54%	0.43%	0.48%	0.82%	0.32%
5.04 286.04 8.68 5.67 144.06 5.87 18.25 38.3 11.29 8.87 371.99 9.55 6.03 276.18 8.54 9.14 370.03 12.54 6.90 284.38 8.62 7.44 365.41 12.61 2.36 139.12 4.19 4.97 250.78 5.71 8.59 395.72 9.57 7.95 377.66 9.23 5.12 380.42 7.79 4.89 404.81 7.26 6.23 441.45 6.48 5.77 4411.45 6.48 5.71 441.45 6.56 6.73 47.65 5.25 5.46 379.74 4.25 5.46 379.74 4.25 6.773 471.56 5.25 5.897 453.04 5.25 5.807 472.17 5.39 3.405		_	4	3.37%	1.46%	0.48%	0.58%	0.46%	0.51%	0.88%	0.37%
5.67 144.06 5.87 8.87 311.99 5.87 8.85 371.99 9.55 6.90 284.38 8.62 7.44 370.03 12.54 6.90 284.38 8.62 7.44 365.41 12.61 2.36 139.12 4.19 4.97 380.42 7.79 4.89 395.42 7.79 4.89 330.42 7.79 4.89 404.81 7.26 5.92 418.95 6.35 6.23 404.81 7.26 5.81 453.66 5.66 6.23 404.81 7.26 5.21 488.35 6.11 5.46 379.74 4.25 5.87 442.36 5.66 6.73 441.45 5.25 5.80 442.36 5.61 6.73 442.36 5.25 5.46 379.74 4.25 6.7736	_]			2.85%	1.24%	0.40%	0.51%	0.40%	0.46%	0.84%	0.46%
12.71 385.3 11.29 8.85 371.99 9.55 9.03 276.18 8.54 9.04 370.03 12.54 6.90 284.38 8.62 7.44 365.41 12.61 2.36 139.12 4.19 4.97 236.78 8.51 8.59 395.72 9.57 7.95 377.66 9.23 5.12 380.42 7.79 4.89 404.81 7.26 5.92 418.95 6.35 6.23 404.81 7.26 5.71 443.36 5.16 5.71 441.45 6.48 5.71 441.45 6.25 6.23 404.81 7.26 5.81 453.66 5.66 6.73 442.36 5.16 5.46 379.74 4.25 6.7736 471.26 5.25 5.8974 453.04 5.26 5.8074		_	4	1.05%	0.48%	0.16%	0.19%	0.15%	0.18%	0.33%	0.31%
8.85 31.19 9.55 6.03 376.18 8.54 6.90 284.38 8.62 7.44 365.41 12.54 2.36 139.12 4.19 4.97 250.78 5.71 8.59 395.72 9.57 7.95 317.66 9.23 5.92 418.95 6.35 6.23 420.57 5.71 5.71 441.45 6.48 5.72 453.66 5.66 6.23 420.57 5.71 5.46 379.74 4.25 6.736 5.48 5.61 5.87 453.66 5.65 6.73 442.36 5.11 5.46 379.74 4.25 6.7736 471.56 5.25 5.8974 453.04 5.25 3.4076 472.17 5.39 3.5108 411.38 4.16 3.5108 4.16 5.29 3.1129	_ [4	\perp	3.17%	1.34%	0.44%	0.53%	0.42%	0.47%	0.82%	0.45%
6.03 276.18 8.54 9.14 234.003 12.54 9.14 365.41 12.61 2.36 139.12 4.19 4.97 250.78 5.71 8.59 385.72 9.57 7.95 377.66 9.23 5.12 380.42 7.79 4.89 404.81 7.26 5.92 418.95 6.35 6.23 420.57 5.71 5.77 441.45 6.48 5.78 433.66 5.66 6.52 458.35 6.11 5.46 379.74 4.25 6.7736 471.56 5.25 6.7736 442.54 5.17 3.8974 453.04 5.25 4.7136 442.54 5.17 3.5168 441.38 4.80 3.5108 488.69 4.62 3.5108 4.16 5.39 488.69 4.05 4.16 3.207 </td <td>_1</td> <td>4</td> <td></td> <td>3.00%</td> <td></td> <td>0.43%</td> <td>0.54%</td> <td>0.42%</td> <td>0.50%</td> <td>0.89%</td> <td>0.49%</td>	_1	4		3.00%		0.43%	0.54%	0.42%	0.50%	0.89%	0.49%
9.14 370.03 12.54 6.90 364.38 8.62 7.44 365.41 8.62 7.49 365.12 4.19 4.97 250.78 5.71 8.59 395.72 9.57 7.95 377.66 9.23 5.12 380.42 7.79 4.89 404.81 7.26 5.92 418.95 6.35 6.23 420.57 5.71 5.77 441.45 6.48 6.52 420.57 5.71 5.46 379.74 4.25 6.73 471.56 5.25 5.897 453.04 5.25 6.7736 471.56 5.25 5.897 453.04 5.25 5.897 442.54 5.17 3.5168 441.68 3.36 3.1129 482.98 4.16 3.267 482.98 4.05	. 1	_		2.60%		0.36%	0.46%	0.36%	0.43%	0.80%	0.46%
6.90 284.38 8.62 7.44 365.41 12.61 4.37 250.78 5.71 8.59 395.72 9.57 7.95 377.66 9.23 5.12 380.42 7.79 4.89 404.81 7.26 5.22 418.95 6.35 6.23 420.57 5.71 5.41 441.45 6.48 5.81 453.66 5.66 6.73 471.56 5.25 5.46 379.74 4.25 5.46 379.74 4.25 5.46 379.74 4.25 5.46 379.74 4.25 5.46 379.74 4.25 5.46 471.56 5.25 5.8974 453.04 5.25 5.8078 441.34 4.80 3.4676 471.38 4.80 3.5303 488.69 4.62 3.1129 488.50 4.05 3.267	- 1	- 1	- 1	2.30%	_]	0.38%	0.48%	0.38%	0.46%	0.86%	0.53%
1,444 353,41 12,01 2,36 139,12 4,19 4,37 230,22 5,71 8,59 355,72 9,57 7,95 377,66 9,23 5,12 380,42 7,79 4,89 404,81 7,26 6,23 420,57 5,71 6,23 420,57 6,48 5,77 441,45 6,48 5,71 43,366 5,66 6,52 48,35 6,11 5,46 379,74 4,25 6,773 471,56 5,25 5,897 453,04 5,25 5,897 442,17 5,39 3,467 471,38 4,80 3,5303 488,69 4,62 3,1129 482,98 4,16 3,267 488,50 4,05			- 1	2.51%		0.36%	0.44%	0.35%	0.41%	0.74%	0.45%
2.36 139.12 4.19 4.97 250.78 5.71 4.97 350.78 5.71 7.95 377.66 9.23 5.12 380.42 7.79 4.89 404.81 7.26 5.92 418.95 6.35 6.23 420.57 5.71 5.77 441.45 6.48 5.71 453.66 5.66 6.52 488.35 6.11 5.46 379.74 4.25 6.7736 471.56 5.25 5.8974 453.04 5.25 3.4676 471.36 5.25 3.5103 488.69 4.62 3.5103 488.69 4.62 3.1129 488.50 4.05 3.267 488.50 4.05	_	_				0.36%	0.66%	0.49%	0.81%	1.58%	0.64%
4.57 2.50.78 5.71 8.59 35.72 9.57 7.12 380.42 7.79 4.89 404.81 7.26 5.92 418.95 6.35 6.23 400.57 5.71 6.23 420.57 5.71 5.77 441.45 6.48 5.81 453.66 5.66 6.53 6.11 5.66 6.736 471.56 5.25 5.8974 453.04 5.25 4.3723 442.54 5.17 3.4676 471.36 4.62 3.5168 471.38 4.62 3.1129 488.69 4.62 3.1129 488.69 4.06 3.267 488.50 4.06	- 1	_				0.25%	0.24%	0.20%	0.19%	0.34%	0.26%
6.29 359.17 6.21 7.95 377.66 9.23 4.89 404.81 7.76 4.89 404.81 7.26 5.92 418.95 6.35 6.23 420.57 5.71 5.77 441.45 6.48 5.81 453.66 5.66 6.52 488.35 6.11 5.46 379.74 4.25 6.7736 471.56 5.25 5.8974 453.04 5.25 4.3723 442.54 5.17 3.4676 471.36 4.80 4.3733 488.69 4.62 3.5168 4.11.38 4.16 3.129 488.59 4.16 3.267 488.50 4.05		_				0.28%	0.36%	0.28%	0.33%	0.61%	0.43%
5.72 367.70 4.89 404.81 7.75 4.89 404.81 7.26 5.92 418.95 6.35 6.23 420.57 5.71 5.77 441.45 6.48 5.81 453.66 6.11 5.46 379.74 4.25 6.7736 471.56 5.25 6.7736 453.04 5.25 7.473 442.54 5.17 3.4676 453.04 5.25 4.3723 442.54 5.17 3.5168 441.138 4.80 488.69 4.62 3.51129 488.69 4.16 3.267 488.50 4.05	0.54% 59	59.08% 20.31%	\perp			0.37%	0.47%	0.37%	0.44%	0.84%	0.60%
4.89 404.81 7.26 5.92 418.95 6.35 6.23 420.57 5.71 5.77 441.45 6.48 6.52 433.66 5.66 6.52 433.6 5.66 6.52 6.11 5.46 379.74 4.25 6.7736 471.56 5.25 5.8974 453.04 5.25 4.3723 442.54 5.17 3.4676 423.17 5.39 3.5168 471.38 4.80 3.5168 471.38 4.80 3.5168 482.98 4.16 3.267 488.59 4.05	_[_	20.06% 22.06%	13.83%			0.40%	0.51%	0.42%	0.48%	0.93%	0.56%
5.92 418.95 6.35 6.23 420.57 5.71 5.77 441.45 6.48 5.81 433.66 5.66 6.52 458.35 6.11 5.46 319.74 4.25 6.7736 471.56 5.25 5.8974 453.04 5.25 4.3723 442.54 5.17 3.4676 472.17 5.39 4.71.38 48.80 4.62 3.5168 4.11 48.69 3.1129 482.98 4.16 3.267 488.50 4.05		1	14.24%	2.040%	1.28%	0.41%	0.25.0	0.44%	0.49%	0.97%	0.53%
6.23 420.57 5.71 5.77 441.45 6.48 5.81 453.66 5.66 6.52 488.35 6.11 5.46 379.74 4.25 6.773 471.56 5.25 5.8974 423.04 5.25 4.3723 442.54 5.75 3.466 472.17 5.39 3.5168 411.38 4.80 3.5303 488.69 4.62 3.1129 482.98 4.16 3.267 488.50 4.05		┸	14.69%	3.21%		0.44%	0.00%	0.40%	0.17.0	1 020%	0.53%
5.77 441.45 6.48 5.81 453.66 5.66 6.52 458.35 6.11 5.46 379.74 4.25 6.7736 453.04 6.25 5.8974 453.04 6.25 4.3723 442.54 5.75 3.466 452.17 5.39 3.5168 411.38 4.80 3.1129 482.98 4.16 3.267 488.50 4.05		┖	15.51%	3.42%		0.51%	0.63%	0.51%	0.57%	1.04%	0.54%
5.81 453.66 5.66 6.52 488.56 6.11 5.46 339.74 4.25 6.7736 471.56 5.25 5.8974 453.04 5.25 4.3723 442.54 5.25 3.466 452.17 5.39 3.5168 411.38 4.80 3.5303 488.69 4.62 3.1129 482.98 4.16 3.267 488.50 4.05	1.48% 44	44.50% 29.79%	16.07%	2.89%	1.54%	0.50%	0.62%	0.49%	0.56%	1.05%	0.55%
6.52 458.35 6.11 5.46 379.74 4.25 6.7736 471.56 5.25 5.8974 453.04 5.25 4.3723 442.54 5.17 3.4676 452.17 5.39 3.5303 488.69 4.62 3.1129 482.98 4.16 3.267 488.50 4.05	,	44.85% 29.07%	15.61%	3.38%		0.50%	0.61%	0.50%	0.55%	1.05%	0.61%
5.46 379.74 4.25 6.7736 471.56 5.25 5.8974 453.04 5.25 4.3723 442.54 5.17 3.4676 452.17 5.39 3.5168 471.38 4.80 3.5303 488.69 4.62 3.1129 482.98 4.16 3.267 488.50 4.05		45.21% 28.91%	15.67%	3.29%	1.50%	0.49%	209.0	0.48%	0.55%	1.04%	0.68%
6.7736 471.56 5.25 5.8974 433.04 5.25 4.3723 442.54 5.17 3.4676 452.17 5.39 3.5303 488.69 4.62 3.1129 482.98 4.16 3.267 488.50 4.05		Ш	15.85%	3.32%	1.50%	0.49%	0.59%	0.49%	0.54%	1.05%	0.71%
5.8974 453.04 5.25 4.3723 442.34 5.17 3.4676 452.17 5.39 3.5168 471.38 4.80 3.5303 488.69 4.62 3.1129 482.98 4.16 3.267 488.50 4.05		_	15.35%	3.02%	1.35%	0.44%	0.51%	0.42%	0.42%	0.93%	0.64%
4.3723 442.54 517 3.4676 452.17 5.39 3.5108 488.69 4.62 3.1129 482.98 4.16 3.267 488.50 4.05			H	3.18%	1.43%	0.47%	0.55%	0.45%	0.45%	0.98%	0.60%
3.4676 452.17 5.39 3.5168 471.38 4.80 3.5303 488.69 4.62 3.1129 482.98 4.16 3.267 488.50 4.05		- 1		3.02%	1.37%	0.44%	0.53%	0.43%	0.43%	0.97%	0.58%
3.5168 471.38 4.80 3.5303 488.69 4.62 3.1129 482.98 4.16 3.267 488.50 4.05		1			1.44%	0.46%	0.57%	0.51%	0.51%	1.10%	0.60%
3.5303 488.69 4.62 3.1129 482.98 4.16 3.267 488.50 4.05		_				0.44%	0.57%	0.52%	0.52%	1.15%	0.62%
3.1129 482.98 4.16 3.267 488.50 4.05	_ [\Box	10.58%			0.31%	0.40%	0.36%	0.36%	0.85%	0.44%
3.26/ 488.50 4.05	- [_	14.33%		i	0.43%	0.56%	0.48%	0.48%	1.17%	0.57%
		ΙI	ΙI			0.43%	0.55%	0.45%	0.45%	1.14%	0.53%
12/1/2010 3.15 491.01 4.00 1.604	1.57% 40.	40.10% 30.33%	14.81%	2.83%	1.35%	0.43%	0.55%	0.45%	0.45%	1.14%	0.51%

	m3/d	m3/d (e3m3/d	e3m3/d	N2	200	<u>۔</u>	2	3	7 Z	7			_	3	\ \(\)
1/1/2007	7 9.3	150.08	1.42	0.031	2.77%	2.18%	59.23%	19.81%	9 25%	2 97%	1150%	0.750	0.66%	1 10%	0000	0.04%
2/1/2007		146.29	1.83		2.77%	2.18%	59.23%	19.81%	9.25%	2.97%	115%	0.75%	0.00.0	1 10%	0.00%	0.04%
3/1/2007	7 8.83	145.1	1.81	L	2.77%	2.18%	59.23%	19.81%	9 250%	2 07%	1 150%	0.75%	0.00.0	1 100%	0.00 0	0.04
4/1/2007	L	142.52	2.18		2.77%	2.18%	59.23%	19.81%	9.25%	2.97%	1.15%	0.75%	0.66%	1 19%	0.00	0.04%
5/1/2007	7 8.59	150.09	1.71	0.038	2.85%	2.21%	59.20%	19.87%	9.08%	2.96%	1.13%	0.77%	0.68%	1.19%	0.00%	0.05%
6/1/2007	7 8.17	149.09	1.68	0.037	2.86%	2.20%	59.04%	19.76%	9.20%	3.03%	1.15%	0.79%	0.70%	1.20%	0.00%	0.06%
7/1/2007	7.95	152.3	1.47	0.032	2.87%	2.16%	59.53%	19.70%	8.99%	2.95%	1.14%	0.78%	0.70%	1.13%	0.00%	0.06%
8/1/2007		148.07	1.51	0.033	2.96%	2.17%	29.62%	20.34%	8.52%	2.72%	1.05%	0.73%	0.64%	1.14%	0.00%	0.06%
9/1/2007	\perp	145.03	1.34	0.030	3.01%	2.22%	59.53%	20.23%	8.56%	2.75%	1.05%	0.73%	0.64%	0.51%	0.66%	0.06%
10/1/2007	\perp	148.45	1.48	0.034	2.88%	2.29%	57.21%	20.12%	8.03%	2.57%	0.98%	0.68%	0.60%	0.49%	0.65%	0.06%
11/1/2007	8.98	150.15	1.67	0.053	2.81%	3.16%	57.76%	22.02%	8.00%	2.56%	0.97%	0.68%	0.60%	0.49%	0.66%	0.06%
12/1/2007		148.36	1.44	0.109	2.77%	7.55%	54.18%	23.67%	6.32%	2.06%	0.77%	0.61%	0.52%	10.09%	0.72%	0.08%
1/1/2008		148.11	1.92	0.101	2.96%	5.26%	55.63%	23.41%	6.88%	2.27%	0.85%	0.65%	0.56%	0.50%	0.73%	0.08%
2/1/2008	8.75	147.97	2.08	0.049	3.12%	2.38%	58.93%	21.31%	7.91%	2.60%	0.98%	0.70%	0.62%	0.50%	0.65%	0.06%
3/1/2008		146.94	2.54		2.86%	2.57%	57.54%	22.46%	8.15%	2.67%	1.01%	0.71%	0.63%	0.50%	0.64%	0.06%
4/1/2008	_	146.39	2.42	0.070	2.73%	2.90%	26.61%	23.68%	7.65%	2.61%	0.97%	0.72%	0.63%	0.52%	0.69%	0.07%
5/1/2008	_	142.85	2.37	0.083	2.79%	3.49%	56.05%	23.40%	7.75%	2.71%	1.02%	0.72%	0.64%	0.50%	0.64%	0.07%
6/1/2008	4	140.74	2.57	0.098	2.62%	3.83%	55.11%	23.76%	8.18%	2.67%	1.01%	0.72%	0.63%	0.50%	0.64%	0.07%
7/1/2008		139.51	3.22	0.161	2.54%	5.01%	53.82%	24.47%	7.86%	2.61%	0.98%	0.71%	0.62%	0.49%	0.64%	0.07%
8/1/2008	\perp	135.38	3.01	0.211	2.40%	7.01%	51.80%	24.86%	7.66%	2.57%	0.96%	0.70%	0.62%	0.49%	0.63%	0.08%
9/1/2008	,	118.06	2.13	0.172	2.23%	8.07%	50.22%	24.41%	8.36%	2.82%	1.05%	0.76%	0.67%	0.51%	0.62%	0.09%
10/1/2008		86.44	2.35	0.244	2.25%	10.37%	50.24%	23.67%	7.50%	2.42%	0.91%	0.66%	0.58%	0.47%	209.0	0.11%
11/1/2008	\sqcup	113.74	2.84	0.350	2.20%	12.33%	48.75%	23.19%	7.34%	2.53%	0.94%	0.71%	0.62%	0.50%	299.0	0.10%
12/1/2008	_	135.55	3.98	0.582	2.02%	14.61%	46.31%	23.22%	7.49%	2.59%	0.96%	0.72%	0.63%	0.51%	0.64%	0.11%
1/1/2009		134.15	3.69	0.580	2.43%	15.72%	45.74%	22.92%	7.06%	2.50%	0.92%	0.71%	0.62%	0.51%	0.65%	0.11%
2/1/2009		133.81	3.70	0.588	2.10%	15.89%	46.17%	22.57%	7.02%	2.55%	0.93%	0.74%	0.64%	0.53%	0.66%	0.11%
3/1/2009		137.82	3.46	0.584	2.51%	16.86%	44.27%	21.86%	%69.9	2.62%	0.93%	0.91%	0.75%	0.87%	1.44%	0.13%
4/1/2009	\Box	141.12	3.59	0.643	1.92%	17.90%	45.13%	22.07%	6.73%	2.51%	0.91%	0.73%	0.63%	0.52%	0.70%	0.13%
5/1/2009	_	142.54	3.53	0.675	2.47%	19.13%	44.42%	21.16%	6.54%	2.42%	0.87%	0.70%	0.61%	0.50%	299.0	0.14%
6/1/2009	\downarrow	144.08	2.97	0.568	2.73%	19.13%	44.55%	21.07%	6.54%	2.38%	0.87%	0.69%	0.60%	0.49%	0.66%	0.16%
7/1/2009	4	119.09	2.37	0.432	3.00%	18.24%	45.17%	20.87%	6.68%	2.44%	0.89%	0.70%	0.61%	0.49%	299.0	0.14%
8/1/2009	_	140.93	2.81	0.547	4.37%	19.47%	43.19%	20.45%	6.51%	2.40%	0.87%	0.69%	0.60%	0.49%	0.67%	0.14%
9/1/2009	_	148.64	2.60	0.522	2.33%	20.06%	44.62%	20.31%	6.63%	2.43%	0.88%	0.69%	0.61%	0.50%	0.68%	0.15%
10/1/2009	_	147.91	2.60	0.513	2.42%	19.75%	44.68%	20.43%	6.64%	2.44%	0.88%	0.70%	0.62%	0.50%	0.69%	0.15%
11/1/2009	4	147.28	2.76	0.545	2.59%	19.76%	44.65%	20.16%	6.70%	2.47%	0.89%	0.71%	0.62%	0.51%	0.69%	0.15%
12/1/2009	4	149.70	2.87	0.583	2.61%	20.31%	45.31%	20.78%	5.54%	2.40%	0.87%	0.68%	0.60%	0.49%	0.68%	0.16%
1/1/2010	\Box	149.22	2.21	0.428	2.71%	19.35%	46.97%	20.33%	4.67%	2.43%	0.90%	0.68%	0.60%	0.49%	0.70%	0.18%
2/1/2010	_	151.53	1.97	0.277	2.85%	14.09%	49.77%	19.91%	7.09%	2.45%	0.91%	0.67%	0.60%	0.48%	0.68%	0.17%
3/1/2010	_	152.87	1.52	0.195	2.81%	12.85%	50.51%	20.17%	7.32%	2.52%	0.94%	0.69%	0.61%	0.49%	0.69%	0.18%
4/1/2010	7.923	153.34	1.72	0.233	2.66%	13.53%	46.84%	19.58%	7.00%	2.44%	0.00%	0.64%	0.57%	0.48%	0.66%	0.17%
5/1/2010		148.97	2.03	0.321	2.56%	15.76%	45.49%	19.47%	6.65%	2.32%	0.86%	0.62%	0.54%	0.46%	0.65%	0.18%
6/1/2010	8.556	150.25	2.04	0.365591	2.53%	17.94%	44.16%	19.39%	6.31%	2.21%	0.82%	0.59%	0.52%	0.44%	0.64%	0.18%
7/1/2010 8.6345	8.6345	147.58	2.51	0.495	2.55%	19.70%	42.24%	18.76%	6.21%	2.30%	0.83%	0.65%	0.57%	0.50%	0.71%	0.20%
8/1/2010 8.1532	8.1532	149.85	2.16	0.420	2.52%	19.46%	42.35%	18.33%	6.42%	2.41%	0.87%	0.68%	209.0	0.52%	0.75%	0.21%
9/1/2010		153.23	1.97	0.219	2.15%	11.13%	35.15%	14.07%	5.38%	1.99%	0.72%	0.55%	0.48%	0.42%	0.58%	0.14%
10/1/2010		152.52	1.69	0.253	2.71%	15.02%	45.23%	18.31%	7.09%	2.63%	296.0	0.73%	0.64%	0.55%	0.77%	0.20%
11/1/2010	7.2373	152.63	19.1	0.238	2.77%	14.78%	45.65%	18.20%	7.11%	2.62%	0.95%	0.72%	0.63%	0.54%	0.74%	0.20%
12/1/2010 6.9548	6.9548	150.66	1.72	0.262	3.56%	15.26%	44.50%	18.35%	6.94%	2.56%	0.93%	0.71%	0.62%	0.54%	0.73%	0.20%


	Ö	Fluid		C02	Produced	Produced Gas Composition	osition									
	m3/d		e3m3/d	e3m3/d	N2	C02	ວ	CZ	ස	NC4	IC4	NCS	SOI	92	72	H2S
1/1/2007	7.54	61.83	0.61	0.013	2.77%			19.81%	9.25%	2.97%	1.15%	0.75%	0.66%	1.19%	0.00%	0.04%
2/1/2007		9	0.64	0.014	2.77%	2.18%	59.23%	19.81%	9.25%	2.97%	1.15%	0.75%	0.66%	1.19%	0.00%	0.04%
3/1/200	7.99	2	1.2		2.77%	2.18%	59.23%	19.81%	9.25%	2.97%	1.15%	0.75%	0.66%	1.19%	0.00%	0.04%
4/1/200	7.19	58	0.92	_ I	2.77%	2.18%	59.23%	19.81%	9.25%	2.97%	1.15%	0.75%	0.66%	1.19%	0.00%	0.04%
5/1/200	_		0.85	0.019	2.85%		59.20%	19.87%	9.08%	2.96%	1.13%	0.77%	0.68%	1.19%	0.00%	0.05%
6/1/2007	_	9	1.22	0.027	2.86%	2.20%	59.04%	- 1	9.20%	3.03%	1.15%	0.79%	0.70%	1.20%	0.00%	0.06%
7/1/2007	_	59	0.83	0.018	2.87%	2.16%	59.53%		8.99%	2.95%	1.14%	0.78%	0.70%	1.13%	0.00%	0.06%
8/1/2007		59	2.14	0.046	2.96%		29.67%		8.52%	2.72%	1.05%	0.73%	0.64%	1.14%	0.00%	0.06%
9/1/2007		55	2.05	0.046	3.01%		59.53%		8.56%	2.75%	1.05%	0.73%	0.64%	0.51%	0.66%	0.06%
10/1/2007			2.76	0.063	2.88%	2.29%	57.21%	20.12%	8.03%	2.57%	0.98%	0.68%	0.60%	0.49%	0.65%	0.06%
11/1/2007	7 6.68	.,	1.79	0.057	2.81%		27.76%		8.00%	2.56%	0.97%	0.68%	0.60%	0.49%	0.66%	0.06%
12/1/2007	Ц	55.51	1.43	0.108	2.77%	7.55%	54.18%	23.67%	6.32%	2.06%	0.77%	0.61%	0.52%	10.09%	0.72%	0.08%
1/1/2008	Ш		0.81	0.043	2.96%		55.63%	1	6.88%	2.27%	0.85%	0.65%	0.56%	0.50%	0.73%	0.08%
2/1/2008	Щ		1.27	0.030	3.12%		58.93%	21.31%	7.91%	2.60%	0.98%	0.70%	0.62%	0.50%	0.65%	0.06%
3/1/2008		48	1.38	0.035	2.86%	2.57%	57.54%	22.46%	8.15%	2.67%	1.01%	0.71%	0.63%	0.50%	0.64%	0.06%
4/1/2008			1.28	0.037	2.73%	2.90%	56.61%	23.68%	7.65%	2.61%	0.97%	0.72%	0.63%	0.52%	0.69%	0.07%
5/1/2008		49	1.11	0.039	2.79%	3.49%	56.05%	23.40%	7.75%	2.71%	1.02%	0.72%	0.64%	0.50%	0.64%	0.07%
6/1/2008	8 5.86	46	1.26	0.048	2.62%	3.83%	55.11%	23.76%	8.18%	2.67%	1.01%	0.72%	0.63%	0.50%	0.64%	0.07%
7/1/2008		4	1.37	0.069	2.54%	5.01%	53.82%	24.47%	7.86%	2.61%	0.98%	0.71%	0.62%	0.49%	0.64%	0.07%
8/1/2008		48	1.29	0.090	2.40%	7.01%	51.80%	24.86%	7.66%	2.57%	296.0	0.70%	0.62%	0.49%	0.63%	0.08%
9/1/2008		34	6.0	0.073	2.23%	8.07%	50.22%	24.41%	8.36%	2.82%	1.05%	0.76%	0.67%	0.51%	0.62%	0.09%
10/1/2008		29	1.31	0.136	2.25%	10.37%	50.24%	23.67%	7.50%	2.42%	0.91%	0.66%	0.58%	0.47%	0.60%	0.11%
11/1/2008	Ш	41	1.18	0.146	2.20%	12.33%	48.75%	23.19%	7.34%	2.53%	0.94%	0.71%	0.62%	0.50%	0.66%	0.10%
12/1/2008	Щ	44	1.08		2.02%	14.61%	46.31%	23.22%	7.49%	2.59%	0.96%	0.72%	0.63%	0.51%	0.64%	0.11%
1/1/2009		44.96	1.18		2.43%	15.72%	45.74%	22.92%	7.06%	2.50%	0.92%	0.71%	0.62%	0.51%	0.65%	0.11%
2/1/2009		46	2.36		2.10%	15.89%	46.17%	22.57%	7.02%	2.55%	0.93%	0.74%	0.64%	0.53%	0.66%	0.11%
3/1/2009		47	1.30	0.219	2.51%	16.86%	44.27%		6.69%	2.62%	0.93%	0.91%	0.75%	0.87%	1.44%	0.13%
4/1/2009	_	46	1.50	0.269	1.92%	17.90%	45.13%		6.73%	2.51%	0.91%	0.73%	0.63%	0.52%	0.70%	0.13%
5/1/2009	_	46	1.03	0.196	2.47%	19.13%	44.42%	- 1	6.54%	2.42%	0.87%	0.70%	0.61%	0.50%	299.0	0.14%
6/1/2009	_	46	0.94	0.180	2.73%	19.13%	44.55%		6.54%	2.38%	0.87%	0.69%	0.60%	0.49%	0.99%	0.16%
7/1/2009		4	0.86	0.158	3.00%	18.24%	45.17%	20.87%	6.68%	2.44%	0.89%	0.70%	0.61%	0.49%	0.66%	0.14%
8/1/2009		40	0.81	0.158	4.37%	19.47%	43.19%	20.45%	6.51%	2.40%	0.87%	0.69%	0.60%	0.49%	0.67%	0.14%
9/1/2009	4	45	0.69	0.138	2.33%	20.06%	44.62%	20.31%	6.63%	2.43%	0.88%	0.69%	0.61%	0.50%	0.68%	0.15%
10/1/2009	_	43	0.88	0.175	2.42%	19.75%	44.68%	20.43%	6.64%	2.44%	0.88%	0.70%	0.62%	0.50%	0.69%	0.15%
11/1/2009	4	42	0.55	0.109	2.59%	19.76%	44.65%	20.16%	6.70%	2.47%	0.89%	0.71%	0.62%	0.51%	0.69%	0.15%
12/1/2009	_	4	0.4	0.088	2.61%	20.31%	45.31%	20.78%	5.54%	2.40%	0.87%	0.68%	0.60%	0.49%	0.68%	0.16%
1/1/2010	_	4	0.39	0.076	2.71%	19.35%	46.97%	20.33%	4.67%	2.43%	0.90%	0.68%	0.60%	0.49%	0.70%	0.18%
2/1/2010	4	40	0.38	0.054	2.85%	14.09%	49.77%	%16.61	7.09%	2.45%	0.91%	0.67%	0.60%	0.48%	0.68%	0.17%
3/1/2010	_	46	0.37	0.048	2.81%	12.85%	50.51%	20.17%	7.32%	2.52%	0.94%	0.69%	0.61%	0.49%	0.69%	0.18%
4/1/2010		49.	0.51	0.070	2.66%	13.53%	46.84%	19.58%	7.00%	2.44%	0.90%	0.64%	0.57%	0.48%	0.66%	0.17%
5/1/2010		51.	09:0	0.094	2.56%	15.76%	45.49%	19.47%	6.65%	2.32%	0.86%	0.62%	0.54%	0.46%	0.65%	0.18%
6/1/2010		48.	0.72	0.129	2.53%	17.94%	44.16%	19.39%	6.31%	2.21%	0.82%	0.59%	0.52%	0.44%	0.64%	0.18%
7/1/2010		46.	0.61	0.120	2.55%	19.70%	42.24%	18.76%	6.21%	2.30%	0.83%	0.65%	0.57%	0.50%	0.71%	0.20%
8/1/2010			0.59	0.114	2.52%	19.46%	42.35%	18.33%	6.42%	2.41%	0.87%	0.68%	0.60%	0.52%	0.75%	0.21%
9/1/2010		46.	0.51	0.056	2.15%	11.13%	35.15%	14.07%	5.38%	1.99%	0.72%	0.55%	0.48%	0.42%	0.58%	0.14%
10/1/2010	4	46.	0.52	0.077	2.71%	15.02%	45.23%	18.31%	7.09%	2.63%	0.96%	0.73%	0.64%	0.55%	0.77%	0.20%
11/1/2010	4	46.	0.51	0.076	2.77%	14.78%	45.65%	18.20%	7.11%	2.62%	0.95%	0.72%	0.63%	0.54%	0.74%	0.20%
12/1/2010	9 3.36	45.40	0.49	0.075	3.56%	15.26%	44.50%	18.35%	6.94%	2.56%	0.93%	0.71%	0.62%	0.54%	0.73%	0.20%

PENGROWTH CORPORATION

APPENDIX III COMPARISON DATA

INNOVATIVE ENERGY TECHNOLOGIES PROGRAM 2010 FINAL REPORT

JUDY CREEK PATTERN 102 CO₂ PILOT

Judy Creek CO2 Pilot - INCREMENTAL PRODUCTION

Year	CO2 Inj e3m3/d	Oil w/ frac m3/d	Oil w/o Frac m3/d	C1	C2	C3	C4	C5+	CO2 Prod	Other
1/1/2006	0.0	0.0	0.0	e3m3/d 0.00	<u>m3/d</u>	m3/d	<u>m3/d</u>	<u>m3/d</u>	e3m3/d	<u>e3m3/d</u>
2/1/2006	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3/1/2006	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4/1/2006	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5/1/2006	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6/1/2006	0.0	0.9	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7/1/2006	0.0	0.4	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8/1/2006	0.0	2.8	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9/1/2006	0.0	4.2	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10/1/2006	0.0	6.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11/1/2006	0.0	5.9	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12/1/2006	0.0	4.4	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1/1/2007	0.0	3.8	0.0	0.02	0.02	0.00	0.00	0.00	0.00	0.00
2/1/2007	32.3	4.0	0.0	0.34	0.30	0.02	0.01	0.00	0.00	0.00
3/1/2007	47.5	4.6	0.0	0.86	0.76	0.05	0.02	0.00	0.04	0.00
4/1/2007	12.5	4.0	0.0	0.84	0.74	0.05	0.02	0.01	0.03	0.00
5/1/2007	33.9	4.1	0.4	0.43	0.38	0.03	0.01	0.00	0.03	0.00
6/1/2007	75.9	5.4	1.4	1.40	1.23	0.08	0.03	0.01	0.31	0.00
7/1/2007	22.1	5.1	2.2	2.21	1.95	0.13	0.04	0.01	0.48	0.00
8/1/2007	82.0	5.3	2.2	3.24	2.84	0.19	0.06	0.02	1.59	0.00
9/1/2007	0.0	9.4	4.9	5.10	4.48	0.30	0.10	0.03	2.89	0.00
10/1/2007	87.2	8.8	4.7	5.19	4.56	0.30	0.10	0.03	3.12	0.00
11/1/2007	8.1	8.2	4.8	4.19	3.69	0.25	0.08	0.03	3.20	0.00
12/1/2007	0.0	6.5	3.1	3.16	2.78	0.18	0.06	0.02	1.92	0.00
1/1/2008	14.1	4.0	2.4	2.50	2.19	0.15	0.05	0.02	2.11	0.00
2/1/2008	108.5	6.0	4.2	2.67	2.34	0.16	0.05	0.02	2.19	0.00
3/1/2008	0.0	9.5	7.3	3.96	3.48	0.23	0.08	0.03	6.46	0.00
4/1/2008	108.4	12.4	8.2	4.23	3.72	0.25	0.08	0.03	6.30	0.00
5/1/2008	8.9	11.8	8.6	3.85	3.38	0.23	0.08	0.02	8.35	0.00
6/1/2008	60.5	13.8	10.6	4.34	3.82	0.25	0.09	0.03	7.61	0.00
7/1/2008	66.0	13.0	9.9	4.33	3.80	0.25	0.09	0.03	8.86	0.00
8/1/2008	39.6	10.6	7.5	3.79	3.33	0.22	0.07	0.02	11.56	0.00
9/1/2008	12.7	8.1	6.0	0.86	0.75	0.05	0.02	0.01	2.88	0.00
10/1/2008	23.0	18.9	15.4	2.50	2.20	0.15	0.05	0.02	11.41	0.00
11/1/2008	59.1	14.9	10.5	3.18	2.79	0.19	0.06	0.02	9.55	0.00
12/1/2008	30.2	15.2	9.8	3.39	2.98	0.20	0.07	0.02	11.97	0.00
1/1/2009	89.2	15.0	11.5	3.04	2.67	0.18	0.06	0.02	13.99	0.00
2/1/2009	12.9	14.9	10.9	4.06	3.57	0.24	80.0	0.03	19.38	0.00
3/1/2009	47.7	12.5	9.4	2.56	2.25	0.15	0.05	0.02	13.66	0.00
4/1/2009	52.2	13.4	9.2	2.62	2.30	0.15	0.05	0.02	16.34	0.00
5/1/2009	0.0	13.2	8.4	1.62	1.42	0.09	0.03	0.01	10.60	0.00
6/1/2009	0.0	16.7	12.1	0.82	0.72	0.05	0.02	0.01	10.87	0.00
7/1/2009	0.0	15.4	11.0	1.00	0.88	0.06	0.02	0.01	9.43	0.00
8/1/2009	0.0	13.2	8.5	1.68	1.48	0.10	0.03	0.01	8.04	0.00
9/1/2009	0.0	12.1	8.4	1.72	1.51	0.10	0.03	0.01	7.43	0.00
10/1/2009	0.0	10.6	8.4	1.16	1.02	0.07	0.02	0.01	5.69	0.00
11/1/2009	0.0	11.7	9.3	0.86	0.75	0.05	0.02	0.01	5.82	0.00
12/1/2009	0.0	11.2	8.3	1.39	1.22	0.08	0.03	0.01	5.89	0.00

Judy Creek CO2 Pilot - INCREMENTAL PRODUCTION

	CO2 Inj	Oil w/ frac	Oil w/o Frac	C1	C2	C3	C4	C5+	CO2 Prod	Other
<u>Year</u>	<u>e3m3/d</u>	<u>m3/d</u>	<u>m3/d</u>	e3m3/d	m3/d	m3/d	m3/d	m3/d	e3m3/d	e3m3/d
1/1/2010	0.0	9.1	7.1	1.00	0.88	0.06	0.02	0.01	5.70	0.00
2/1/2010	0.0	8.4	6.9	0.81	0.71	0.05	0.02	0.01	5.37	0.00
3/1/2010	0.0	10.3	7.5	0.58	0.51	0.03	0.01	0.00	5.04	0.00
4/1/2010	0.0	9.9	8.8	0.82	0.72	0.05	0.02	0.01	4.63	0.00
5/1/2010	0.0	10.4	8.4	1.33	1.17	0.08	0.03	0.01	4.61	0.00
6/1/2010	0.0	8.4	6.2	1.62	1.43	0.09	0.03	0.01	4.56	0.00
7/1/2010	0.0	7.3	5.0	1.90	1.67	0.11	0.04	0.01	4.70	0.00
8/1/2010	0.0	6.4	4.2	2.50	2.20	0.15	0.05	0.02	2.66	0.00
9/1/2010	0.0	6.6	4.3	2.09	1.84	0.12	0.04	0.01	3.16	0.00
10/1/2010	0.0	6.4	4.3	1.34	1.18	0.08	0.03	0.01	3.93	0.00
11/1/2010	0.0	6.9	5.0	1.33	1.17	0.08	0.03	0.01	3.82	0.00
12/1/2010	0.0	6.3	4.5	1.44	1.26	0.08	0.03	0.01	3.81	0.00
1/1/2011	0.0	5.4	4.4	1.50	1.32	0.09	0.03	0.01	3.83	0.00
2/1/2011	0.0	4.9	3.3	1.42	1.25	0.08	0.03	0.01	3.67	0.00
3/1/2011	0.0	4.0	2.5	2.00	1.76	0.12	0.04	0.01	2.74	0.00
4/1/2011	0.0	4.8	3.5	2.06	1.81	0.12	0.04	0.01	2.74	0.00
5/1/2011	0.0	4.7	3.2	1.51	1.32	0.09	0.03	0.01	3.55	0.00
6/1/2011	0.0	4.7	3.4	1.34	1.18	0.08	0.03	0.01	3.47	0.00
7/1/2011	0.0	4.1	2.9	1.15	1.01	0.07	0.02	0.01	3.10	0.00
8/1/2011	0.0	3.6	2.5	1.00	0.88	0.06	0.02	0.01	2.72	0.00
9/1/2011	0.0	3.1	2.2	0.86	0.76	0.05	0.02	0.01	2.38	0.00
10/1/2011	0.0	2.8	1.9	0.74	0.65	0.04	0.01	0.00	2.10	0.00
11/1/2011	0.0	2.5	1.8	0.63	0.55	0.04	0.01	0.00	1.85	0.00
12/1/2011	0.0	2.3	1.6	0.53	0.47	0.03	0.01	0.00	1.64	0.00
1/1/2012	0.0	2.1	1.5	0.44	0.39	0.03	0.01	0.00	1.45	0.00
2/1/2012	0.0	2.0	1.4	0.36	0.31	0.02	0.01	0.00	1.28	0.00
3/1/2012	0.0	1.8	1.3	0.28	0.25	0.02	0.01	0.00	1.14	0.00
4/1/2012	0.0	1.7	1.2	0.21	0.19	0.01	0.00	0.00	1.01	0.00
5/1/2012	0.0	1.5	1.1	0.15	0.13	0.01	0.00	0.00	0.90	0.00
6/1/2012	0.0	1.4	1.0	0.09	0.08	0.01	0.00	0.00	0.79	0.00
7/1/2012	0.0	1.2	1.0	0.04	0.03	0.00	0.00	0.00	0.71	0.00
8/1/2012	0.0	1.1	0.9	-0.01	-0.01	0.00	0.00	0.00	0.62	0.00
9/1/2012	0.0	1.0	0.8	-0.06	-0.05	0.00	0.00	0.00	0.55	0.00
10/1/2012	0.0	0.9	0.7	-0.10	-0.09	-0.01	0.00	0.00	0.49	0.00
11/1/2012	0.0	0.8	0.7	-0.13	-0.12	-0.01	0.00	0.00	0.42	0.00
12/1/2012	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1/1/2013	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2/1/2013	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3/1/2013	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4/1/2013	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5/1/2013	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6/1/2013	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7/1/2013	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8/1/2013	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9/1/2013	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10/1/2013	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11/1/2013	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12/1/2013	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00

IETP APPLICATION - INCREMENTAL PRODUCTOIN

Year	CO2 Inj e3m3/d	Oil m3/d	C1 e3m3/d	C2 m3/d	C3 m3/d	C4 m3/d	C5+	CO2 Prod	Other
1/1/2006	0.0	0.0	0.00	0.00	0.00	0.00	m3/d 0.00	<u>e3m3/d</u>	e3m3/d
2/1/2006	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3/1/2006	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4/1/2006	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5/1/2006	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6/1/2006	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7/1/2006	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8/1/2006	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9/1/2006	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10/1/2006	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11/1/2006	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12/1/2006	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1/1/2007	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2/1/2007	40.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3/1/2007	40.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4/1/2007	40.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5/1/2007	40.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6/1/2007	40.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7/1/2007	40.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8/1/2007	40.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9/1/2007	40.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10/1/2007	40.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11/1/2007	40.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12/1/2007	40.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1/1/2008	40.0	7.8	0.71	0.71	0.58	0.35	0.13	5.00	0.07
2/1/2008	40.0	7.8	0.71	0.71	0.58	0.35	0.13	5.00	0.07
3/1/2008	40.0	7.8	0.71	0.71	0.58	0.35	0.13	5.00	0.07
4/1/2008	40.0	7.8	0.71	0.71	0.58	0.35	0.13	5.00	0.07
5/1/2008	40.0	7.8	0.71	0.71	0.58	0.35	0.13	5.00	0.07
6/1/2008	40.0	7.8	0.71	0.71	0.58	0.35	0.13	5.00	0.07
7/1/2008	40.0	7.8	0.71	0.71	0.58	0.35	0.13	5.00	0.07
8/1/2008	40.0	7.8	0.71	0.71	0.58	0.35	0.13	5.00	0.07
9/1/2008	40.0	7.8	0.71	0.71	0.58	0.35	0.13	5.00	0.07
10/1/2008	40.0	7.8	0.71	0.71	0.58	0.35	0.13	5.00	0.07
11/1/2008	40.0	7.8	0.71	0.71	0.58	0.35	0.13	5.00	0.07
12/1/2008	0.0	7.8	0.71	0.71	0.58	0.35	0.13	5.00	0.07
1/1/2009	0.0	8.8	0.79	0.80	0.65	0.39	0.15	10.00	80.0
2/1/2009	0.0	8.8	0.79	0.80	0.65	0.39	0.15	10.00	80.0
3/1/2009	0.0	8.8	0.79	0.80	0.65	0.39	0.15	10.00	0.08
4/1/2009	0.0	8.8	0.79	0.80	0.65	0.39	0.15	10.00	0.08
5/1/2009 6/1/2009	0.0	8.8	0.79	0.80	0.65	0.39	0.15	10.00	80.0
7/1/2009	0.0	8.8	0.79	0.80	0.65	0.39	0.15	10.00	80.0
8/1/2009	0.0	8.8	0.79	0.80	0.65	0.39	0.15	10.00	80.0
9/1/2009	0.0	8.8	0.79	0.80	0.65	0.39	0.15	10.00	80.0
10/1/2009	0.0	8.8	0.79	0.80	0.65	0.39	0.15	10.00	80.0
11/1/2009	0.0	8.8	0.79	0.80	0.65	0.39	0.15	10.00	80.0
12/1/2009		8.8	0.79	0.80	0.65	0.39	0.15	10.00	80.0
12/1/2009	0.0	8.8	0.79	0.80	0.65	0.39	0.15	10.00	0.08

IETP APPLICATION - INCREMENTAL PRODUCTOIN

Year		CO2 Inj e3m3/d	Oil	C1	C2	C3	C4	C5+	CO2 Prod	Other
1/1/2010			<u>m3/d</u>	e3m3/d	<u>m3/d</u>	m3/d	m3/d	<u>m3/d</u>	e3m3/d	<u>e3m3/d</u>
2/1/2010		0.0	4.0	0.37	0.37	0.30	0.18	0.07	10.00	0.04
3/1/2010	-	0.0	4.0	0.37	0.37	0.30	0.18	0.07	10.00	0.04
4/1/2010		0.0	4.0	0.37	0.37	0.30	0.18	0.07	10.00	0.04
5/1/2010		0.0	4.0	0.37	0.37	0.30	0.18	0.07	10.00	0.04
6/1/2010	-	0.0	4.0	0.37	0.37	0.30	0.18	0.07	10.00	0.04
7/1/2010		0.0	4.0	0.37	0.37	0.30	0.18	0.07	10.00	0.04
	-	0.0	4.0	0.37	0.37	0.30	0.18	0.07	10.00	0.04
8/1/2010		0.0	4.0	0.37	0.37	0.30	0.18	0.07	10.00	0.04
9/1/2010	-	0.0	4.0	0.37	0.37	0.30	0.18	0.07	10.00	0.04
10/1/2010		0.0	4.0	0.37	0.37	0.30	0.18	0.07	10.00	0.04
11/1/2010	_	0.0	4.0	0.37	0.37	0.30	0.18	0.07	10.00	0.04
12/1/2010 1/1/2011		0.0	4.0	0.37	0.37	0.30	0.18	0.07	10.00	0.04
2/1/2011		0.0	3.1	0.28	0.28	0.23	0.14	0.05	5.00	0.03
3/1/2011		0.0	3.1	0.28	0.28	0.23	0.14	0.05	5.00	0.03
4/1/2011		0.0	3.1	0.28	0.28	0.23	0.14	0.05	5.00	0.03
5/1/2011	_	0.0	3.1	0.28	0.28	0.23	0.14	0.05	5.00	0.03
6/1/2011		0.0	3.1	0.28	0.28	0.23	0.14	0.05	5.00	0.03
7/1/2011	_	0.0	3.1	0.28	0.28	0.23	0.14	0.05	5.00	0.03
8/1/2011		0.0	3.1	0.28	0.28	0.23	0.14	0.05	5.00	0.03
9/1/2011	-	0.0	3.1	0.28 0.28	0.28	0.23	0.14	0.05	5.00	0.03
10/1/2011	Н	0.0	3.1		0.28	0.23	0.14	0.05	5.00	0.03
11/1/2011	Н	0.0	3.1	0.28 0.28	0.28	0.23	0.14	0.05	5.00	0.03
12/1/2011	Н	0.0	3.1	0.28	0.28 0.28	0.23	0.14	0.05	5.00	0.03
1/1/2012	Н	0.0	1.5	0.28		0.23	0.14	0.05	5.00	0.03
2/1/2012	\vdash	0.0	1.5	0.14	0.14	0.11	0.07	0.03	0.00	0.01
3/1/2012	H	0.0	1.5	0.14	0.14	0.11	0.07	0.03	0.00	0.01
4/1/2012	H	0.0	1.5	0.14	0.14	0.11	0.07	0.03	0.00	0.01
5/1/2012	H	0.0	1.5	0.14	0.14			0.03	0.00	0.01
6/1/2012	\vdash	0.0	1.5	0.14	0.14	0.11 0.11	0.07	0.03	0.00	0.01
7/1/2012	H	0.0	1.5	0.14	0.14	0.11	0.07	0.03	0.00	0.01
8/1/2012	Н	0.0	1.5	0.14	0.14	0.11	0.07	0.03		0.01
9/1/2012	Н	0.0	1.5	0.14	0.14	0.11	0.07	0.03	0.00	0.01
10/1/2012	\vdash	0.0	1.5	0.14	0.14	0.11	0.07	0.03	0.00	0.01
11/1/2012		0.0	1.5	0.14	0.14	0.11	0.07	0.03	0.00	0.01
12/1/2012		0.0	1.5	0.14	0.14	0.11	0.07	0.03	0.00	0.01
1/1/2013		0.0	0.9	0.08	0.08	0.07	0.04	0.02	0.00	0.01
2/1/2013	\neg	0.0	0.9	0.08	80.0	0.07	0.04	0.02	0.00	0.01
3/1/2013		0.0	0.9	0.08	0.08	0.07	0.04	0.02	0.00	0.01
4/1/2013		0.0	0.9	0.08	0.08	0.07	0.04	0.02	0.00	0.01
5/1/2013		0.0	0.9	0.08	0.08	0.07	0.04	0.02	0.00	0.01
6/1/2013		0.0	0.9	0.08	0.08	0.07	0.04	0.02	0.00	0.01
7/1/2013		0.0	0.9	0.08	0.08	0.07	0.04	0.02	0.00	0.01
8/1/2013		0.0	0.9	0.08	0.08	0.07	0.04	0.02	0.00	0.01
9/1/2013		0.0	0.9	0.08	0.08	0.07	0.04	0.02	0.00	0.01
10/1/2013		0.0	0.9	0.08	0.08	0.07	0.04	0.02	0.00	0.01
11/1/2013		0.0	0.9	0.08	0.08	0.07	0.04	0.02	0.00	0.01
12/1/2013	\Box	0.0	0.9	80.0	0.08	0.07	0.04	0.02	0.00	0.01

JUDY CREEK CO2 PILOT minus IETP APPLICATION

		CO2 Inj		Oil w/o Frac	C1	C2	C3	C4	C5+	CO2 Prod	Other
<u>Year</u>		e3m3/d	m3/d	<u>m3/d</u>	e3m3/d	m3/d	<u>m3/d</u>	<u>m3/d</u>	<u>m3/d</u>	<u>e3m3/d</u>	<u>e3m3/d</u>
1/1/2006		0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2/1/2006	Н	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3/1/2006	Н	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4/1/2006	Ш	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5/1/2006	Ш	0.0	0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6/1/2006	Ш	0.0	0.9	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7/1/2006	Ш	0.0	0.4	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
8/1/2006	Ш	0.0	2.8	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9/1/2006	Ш	0.0	4.2	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10/1/2006	\sqcup	0.0	6.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11/1/2006		0.0	5.9	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12/1/2006	\square	0.0	4.4	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1/1/2007		0.0	3.8	0.0	0.02	0.02	0.00	0.00	0.00	0.01	0.00
2/1/2007		-7.7	4.0	0.0	0.34	0.30	0.02	0.01	0.00	0.00	0.00
3/1/2007	\dashv	7.5	4.6	0.0	0.86	0.76	0.05	0.02	0.01	0.04	0.00
4/1/2007	-1	-27.5	4.0	0.0	0.84	0.74	0.05	0.02	0.01	0.03	0.00
5/1/2007		-6.1	4.1	0.4	0.43	0.38	0.03	0.01	0.00	0.03	0.00
6/1/2007		35.9	5.4	1.4	1.40	1.23	0.08	0.03	0.01	0.31	0.00
7/1/2007		-17.9	5.1	2.2	2.21	1.95	0.13	0.04	0.01	0.48	0.00
8/1/2007	-	42.0	5.3	2.2	3.24	2.84	0.19	0.06	0.02	1.59	0.00
9/1/2007	-	-40.0	9.4	4.9	5.10	4.48	0.30	0.10	0.03	2.89	0.00
10/1/2007	_	47.2	8.8	4.7	5.19	4.56	0.30	0.10	0.03	3.12	0.00
11/1/2007	\dashv	-31.9	8.2	4.8	4.19	3.69	0.25	0.08	0.03	3.20	0.00
12/1/2007	-	-40.0	6.5	3.1	3.16	2.78	0.18	0.06	0.02	1.92	0.00
1/1/2008	\rightarrow	-25.9	-3.8	-5.4	1.79	1.48	-0.44	-0.30	-0.12	-2.89	-0.07
2/1/2008	\rightarrow	68.5	-1.8	-3.6	1.96	1.63	-0.43	-0.30	-0.12	-2.81	-0.07
3/1/2008	\rightarrow	-40.0	1.7	-0.5	3.25	2.76	-0.35	-0.27	-0.11	1.46	-0.07
4/1/2008	\dashv	68.4	4.6	0.4	3.52	3.01	-0.34	-0.27	-0.10	1.30	-0.07
5/1/2008	\rightarrow	-31.1	4.0	8.0	3.14	2.67	-0.36	-0.27	-0.11	3.35	-0.07
6/1/2008	\rightarrow	20.5	6.0	2.7	3.64	3.11	-0.33	-0.26	-0.10	2.61	-0.07
7/1/2008	\rightarrow	26.0	5.2	2.1	3.62	3.09	-0.33	-0.26	-0.10	3.86	-0.07
8/1/2008	\dashv	-0.4	2.8	-0.3	3.08	2.62	-0.36	-0.27	-0.11	6.56	-0.07
9/1/2008	-	-27.3	0.3	-1.8	0.15	0.04	-0.53	-0.33	-0.13	-2.12	-0.07
10/1/2008	-+	-17.0	11.1	7.6	1.80	1.49	-0.44	-0.30	-0.12	6.41	-0.07
11/1/2008	-	19.1	7.1	2.7	2.47	2.08	-0.40	-0.29	-0.11	4.55	-0.07
12/1/2008	-	30.2	7.4	2.0	2.68	2.26	-0.39	-0.28	-0.11	6.97	-0.07
1/1/2009	-	89.2	6.3	2.8	2.25	1.87	-0.48	-0.33	-0.13	3.99	-0.08
2/1/2009		12.9	6.2	2.2	3.27	2.77	-0.42	-0.31	-0.12	9.38	-0.08
3/1/2009	-	47.7	3.8	0.7	1.76	1.45	-0.51	-0.34	-0.13	3.66	-0.08
4/1/2009	\dashv	52.2	4.7	0.4	1.83	1.50	-0.50	-0.34	-0.13	6.34	-0.08
5/1/2009	-	0.0	4.5	-0.4	0.83	0.62	-0.56	-0.36	-0.14	0.60	-0.08
6/1/2009	-	0.0	7.9	3.3	0.02	-0.08	-0.61	-0.38	-0.14	0.87	-0.08
7/1/2009	-	0.0	6.6	2.2	0.21	0.08	-0.60	-0.37	-0.14	-0.57	-0.08
8/1/2009	-+	0.0	4.5	-0.3	0.89	0.68	-0.56	-0.36	-0.14	-1.96	-0.08
9/1/2009	-	0.0	3.3	-0.3	0.93	0.71	-0.55	-0.36	-0.14	-2.57	-0.08
10/1/2009	-+	0.0	1.8	-0.3	0.36	0.22	-0.59	-0.37	-0.14	-4.31	-0.08
11/1/2009	-+	0.0	2.9	0.6	0.06	-0.05	-0.60	-0.38	-0.14	-4.18	-0.08
12/1/2009		0.0	2.4	-0.4	0.60	0.42	-0.57	-0.36	-0.14	-4.11	-0.08

JUDY CREEK CO2 PILOT minus IETP APPLICATION

		CO2 Inj		Oil w/o Frac	C1	C2	C3	C4	C5+	CO2 Prod	Other
<u>Year</u>	_	<u>e3m3/d</u>	<u>m3/d</u>	<u>m3/d</u>	e3m3/d	<u>m3/d</u>	<u>m3/d</u>	<u>m3/d</u>	<u>m3/d</u>	e3m3/d	e3m3/d
1/1/2010	Щ	0.0	5.0	3.0	0.63	0.51	-0.24	-0.16	-0.06	-4.30	-0.04
2/1/2010	ш	0.0	4.3	2.8	0.44	0.34	-0.26	-0.17	-0.06	-4.63	-0.04
3/1/2010	Ш	0.0	6.2	3.4	0.21	0.14	-0.27	-0.17	-0.06	-4.96	-0.04
4/1/2010	Щ	0.0	5.9	4.7	0.45	0.35	-0.25	-0.17	-0.06	-5.37	-0.04
5/1/2010		0.0	6.3	4.3	0.96	0.80	-0.22	-0.16	-0.06	-5.39	-0.04
6/1/2010	Щ	0.0	4.4	2.2	1.25	1.06	-0.21	-0.15	-0.06	-5.44	-0.04
7/1/2010	Щ	0.0	3.2	1.0	1.53	1.30	-0.19	-0.14	-0.06	-5.30	-0.04
8/1/2010	Щ	0.0	2.3	0.1	2.14	1.83	-0.16	-0.13	-0.05	-7.34	-0.04
9/1/2010	Ш	0.0	2.6	0.3	1.72	1.47	-0.18	-0.14	-0.06	-6.84	-0.04
10/1/2010	Щ	0.0	2.3	0.3	0.97	0.81	-0.22	-0.15	-0.06	-6.07	-0.04
11/1/2010	Ш	0.0	2.9	0.9	0.96	0.80	-0.23	-0.16	-0.06	-6.18	-0.04
12/1/2010	Щ	0.0	2.3	0.4	1.07	0.89	-0.22	-0.15	-0.06	-6.19	-0.04
1/1/2011	Ш	0.0	2.3	1.3	1.22	1.04	-0.14	-0.11	-0.04	-1.17	-0.03
2/1/2011	Ш	0.0	1.8	0.2	1.14	0.97	-0.15	-0.11	-0.04	-1.33	-0.03
3/1/2011	\Box	0.0	0.9	-0.6	1.72	1.48	-0.11	0.10	-0.04	-2.26	-0.03
4/1/2011	\Box	0.0	1.7	0.4	1.78	1.53	-0.11	-0.10	-0.04	-2.26	-0.03
5/1/2011	\Box	0.0	1.6	0.1	1.23	1.04	-0.14	-0.11	-0.04	-1.45	-0.03
6/1/2011	\Box	0.0	1.6	0.3	1.06	0.90	-0.15	-0.11	-0.04	-1.53	-0.03
7/1/2011		0.0	1.0	-0.2	0.87	0.73	-0.16	-0.12	-0.05	-1.90	-0.03
8/1/2011		0.0	0.5	-0.6	0.72	0.59	-0.17	-0.12	-0.05	-2.28	-0.03
9/1/2011		0.0	0.0	-0.9	0.58	0.48	-0.18	-0.12	-0.05	-2.62	-0.03
10/1/2011		0.0	-0.3	-1.2	0.46	0.37	-0.19	-0.12	-0.05	-2.90	-0.03
11/1/2011		0.0	-0.5	-1.3	0.35	0.27	-0.19	-0.13	-0.05	-3.15	-0.03
12/1/2011		0.0	-0.7	-1.4	0.25	0.18	-0.20	-0.13	-0.05	-3.36	-0.03
1/1/2012		0.0	0.6	0.0	0.30	0.25	-0.09	-0.06	-0.02	1.45	-0.01
2/1/2012		0.0	0.5	-0.1	0.22	0.18	-0.09	-0.06	-0.02	1.28	-0.01
3/1/2012	_	0.0	0.3	-0.2	0.14	0.11	-0.10	-0.06	-0.02	1.14	-0.01
4/1/2012	-	0.0	0.1	-0.3	80.0	0.05	-0.10	-0.06	-0.02	1.01	-0.01
5/1/2012	\rightarrow	0.0	0.0	-0.4	0.01	-0.01	-0.10	-0.06	-0.02	0.90	-0.01
6/1/2012		0.0	-0.1	-0.5	-0.05	-0.06	-0.11	-0.07	-0.02	0.79	-0.01
7/1/2012	\dashv	0.0	-0.3	-0.5	-0.10	-0.11	-0.11	-0.07	-0.03	0.71	-0.01
8/1/2012	-	0.0	-0.4	-0.6	-0.15	-0.15	-0.11	-0.07	-0.03	0.62	-0.01
9/1/2012	_	0.0	-0.5	-0.7	-0.19	-0.19	-0.12	-0.07	-0.03	0.55	-0.01
10/1/2012	-	0.0	-0.6	-0.8	-0.24	-0.22	-0.12	-0.07	-0.03	0.49	-0.01
11/1/2012	-	0.0	-0.7	-0.8	-0.27	-0.25	-0.12	-0.07	-0.03	0.42	-0.01
12/1/2012	-	0.0	-1.5	-1.5	-0.14	-0.14	-0.11	-0.07	-0.03	0.00	-0.01
1/1/2013	-	0.0	-0.9	-0.9	-0.08	-0.08	-0.07	-0.04	-0.02	0.00	-0.01
2/1/2013	-	0.0	-0.9	-0.9	-0.08	-0.08	-0.07	-0.04	-0.02	0.00	-0.01
3/1/2013		0.0	-0.9	-0.9	-0.08	-0.08	-0.07	-0.04	-0.02	0.00	-0.01
4/1/2013	-	0.0	-0.9	-0.9	-0.08	-0.08	-0.07	-0.04	-0.02	0.00	-0.01
5/1/2013	-	0.0	-0.9	-0.9	-0.08	-0.08	-0.07	-0.04	-0.02	0.00	-0.01
6/1/2013	-	0.0	-0.9	-0.9	-0.08	-0.08	-0.07	-0.04	-0.02	0.00	-0.01
7/1/2013	-	0.0	-0.9	-0.9	-0.08	-0.08	-0.07	-0.04	-0.02	0.00	-0.01
8/1/2013	_	0.0	-0.9	-0.9	-0.08	-0.08	-0.07	-0.04	-0.02	0.00	-0.01
9/1/2013	_	0.0	-0.9	-0.9	-0.08	-0.08	-0.07	-0.04	-0.02	0.00	-0.01
10/1/2013	_	0.0	-0.9	-0.9	-0.08	-0.08	-0.07	-0.04	-0.02	0.00	-0.01
11/1/2013	_	0.0	-0.9	-0.9	-0.08	-0.08	-0.07	-0.04	-0.02	0.00	-0.01
12/1/2013		0.0	-0.9	-0.9	-0.08	-0.08	-0.07	-0.04	-0.02	0.00	-0.01

PENGROWTH CORPORATION

APPENDIX IV INJECTION PROFILE DATA

INNOVATIVE ENERGY TECHNOLOGIES PROGRAM 2010 FINAL REPORT

JUDY CREEK PATTERN 102 CO₂ PILOT

Judy Creek - 07-02-064-11W5 CO2 Pilot Pattern Injection Profiles

Zones (m) Invection (%	13	2634		2636	2637					2642	2643	2644	2645	2646		2649.3	2650.3	1596	, (ZH32.9	2411 CA R2 11 N	
	R5B 26							R5B 26					R5A 2644									
Injection (%)	9.72	18'0	4.27	0	0	0	10.95	10.49	4.74	9.64	7.58	3.08	7.22	5.81	4.52	5.24	2.86	0.79	17.71	1171	\$8.20%	
Zones (m)	2633	2634	2635	2636	2637		2639	2640	2641	2642	2643	2644	2645	2646	2647	2649,3	2650,3		E	- TOO	RSH	100
7	2632	2633	2634	2635	2636	2637	2638	2639	2640	2641	2642	2643	2644	2645	2646	2648	2649,3	2650.3	2657			
	RSB	RSB	RSB	RSB	RSB	R5B	RSB	RSB	RSB	R5B	RSB	RSA	RSA	RSA	R5A	RSA	RSA	RSA	RSA			
Injection (%)	1 46	1.53	1.54	3.95	12.13	5.1	5,11	5.13	5.11	5.12	5.28	3.3	4.11	1,29	2.29	4.43	3.64	3.05	26.43	1	51 46%	22 1100
Zones (m)	2633	2634	2635	2636	2637	2638	2639	2640	2641	2642	2643	3644	2645	2646	2647	2649.3	2650,3	2651	Below		RSB	17.5
Zon	2632	2633	2634	2635	2636	2637	2638	2639	2640	2641	2642	2643	2644	2645	3646	2648.3	26493	2650.3	2652		_	
	R5B	RSB	RSB	RSB	RSB	RSB	R5B	R5B	R5B	R5B	RSB	RSA	R5A	RSA	RSA	RSA	RSA	RSA	RSA			
Injection (%)	1.99	4,31	3.03	5.05	0.7	2.01	6.02	5,5	68'9	2.98	98'9	5 68	1.5	0.47	3.87	860	16'9	4.79	23.6	6,86	45.34%	20000
(m)	2633	2634	2635	2636	2637	2638	2639	2640	2641	2642	2643	2644	2645	2646	2647	2649.3	2650.3	2651	2653	2653.7	RSB	11.6
Zones (m)	2632	2633	2634	2635	2636	2637	2638	2639	2640	2641	2642	2643	2644	2645	2646	2648,3	2649.3	2650.3	2652	2653		
	RSB	RSB	RSB	RSB	RSB	R5B	RSB	RSB	RSB	RSB	RSB	RSA	RSA	RSA	RSA	RSA	RSA	RSA	RSA	RSA		
*/ un	oc.	4	2	6	3	2	_	8	3				**		2	6	9	99	5	3	961	70
-ful	3 4		5 4.85	6 749	7 4.1	8 3.25		7		C1	3 1.7								3 24.25	7 573	3 44.12%	1870 33 V
Zones	2632 2633											43 2644				_	_	10.3 2651	52 2653	53 2653.7	RSB	D.S.A.
	26	26	26	26	26	26	R5B 26				R5B 26	2643		R5A 2645	2646	2648	2649.	2650.3	2652	2653		

** "below" indicates below lowest logged interval and not necessarily below RSA **

	0	7-02-064-1	07-02-064-1 INJECTION PROFILE SUMMARY	V PROFIL	SUMMAR	<u></u>		
	(w) 10/01	02/02 (s)	03/07 (co2)	04/07 (w)	(w) 20/11	(w) 60/80	(w) 60/80	
RSB	64.7%	44 OP.	44,1%	45.3%	51.5%	58.2%	62,1%	
RSA	27.0%	43.0%	55.9%	54.7%	48.5%	41,8%	37.9°a	
R2-R4	7.5%	8.0%	0.0%	%00	0.0%	0.00	0.0%	
WATER PR	WATER PROFILE - OCTOBER 29TH, 2001	TOBER 29	9TH, 2001		SOLVENT P	SOLVENT PROFILE - FEBRUARY 26, 2002	BRUARY 2	6, 2002
RSB	64.7				RSB	44.0%		
RSA	27.0%				RSA	43.0%		
R2-R4	7.5%				R2-R4	8.0%		
TOTAL	. 1 66				TOTAL	95.0%		
					*NOT SURE	WHERE TH	E REMAINI	*NOT SURE WHERE THE REMAINING 5% WENT*

Production Logging Services

Injection Profile - 430 m3/Day & 1000 m3/Day

Company: PENGROWTH CORPORATION

Field: JUDY CREE

Well: PENGROWTH JUDY CREEK 7-2-64-11W5

Survey Date: August 14, 2009

Service Company: Weatherford Canada Partnership

Interpretation Date: August 17, 2009

Prepared By: MUNIR/ASIF KARDAR

Weatherford Canada Partnership • 1600, 333 – 5th Avenue SW • Calgary • Alexita • TZP 386 • Canada Telaphone • 40x 693-7500

Disclamm: All interpretations are opinion based on inferences from electrical surface measurements and an element and do not quarantee the accuracy or connections of any interpretation, and are shall not excluding case of place or within represents of but part its fields or responsible for any loss come, demographic exceptions occurred or estimating hypertaminating home any interpretations and opinion of our officers, agents of employees. These interpretations do also support to our general terms and confidence on our caused once arrows as

Production Logging Services

Injection Profile - 430 m3/day

Company: PENGROWTH CORPORATION

Field: JUDY CREEK

Well: PENGROWTH JUDY CREEK 7-2-64-11W5

Survey Date: August 14, 2009

Service Company: Weatherford Canada Partnership

Interpretation Date: August 17, 2009

Prepared By: MUNIR/ASIF KARDAR

Weatherford Canada Partnership • 1600, 333 - Mr Avenue SW • Calgary • Atlanta • T2P 386 • Canada Teranhora: 303 893, 7600

Os clámer, All misiportations are occuprate based on interuncial from Vizetical scribbs in assurances and inside and inside sector quarantees for executary or comechines of any interpretation, and we enable of executary or comechines of any interpretation, and we enable of executary or executary or executary of the executary of

PENGROWTH CORPORATION Pengrowth Judy Creek 7-2-64-11W5

Purpose of Survey.

To profile water injection into the perforated intervals.

General Interpretation Comments.

Log correlated to Weatherford Injection Profile date November 13, 2007.

Well was shut in 48 hours prior to logging the base temperature.

Well was a CO2 injector and changed to water injector approximately a month ago.

Well on vacuum when not on injection.

First reported injection rate was 380 -430 m3/day at 1200 KPa.

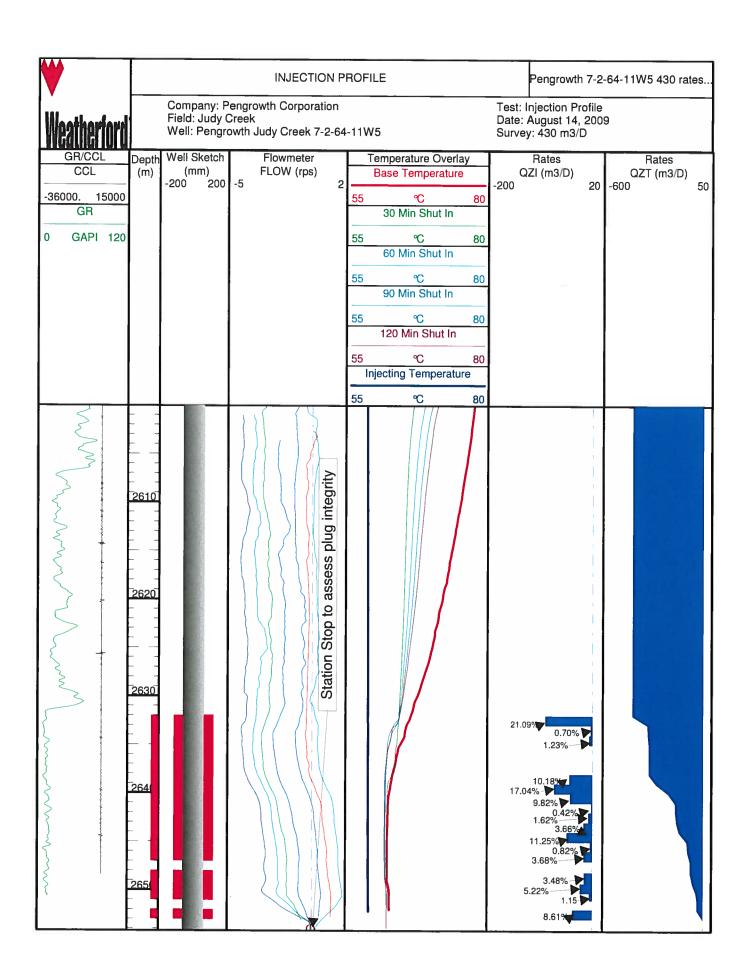
Second reported injection rate was 1000 m3/day at 6000 Kpa.

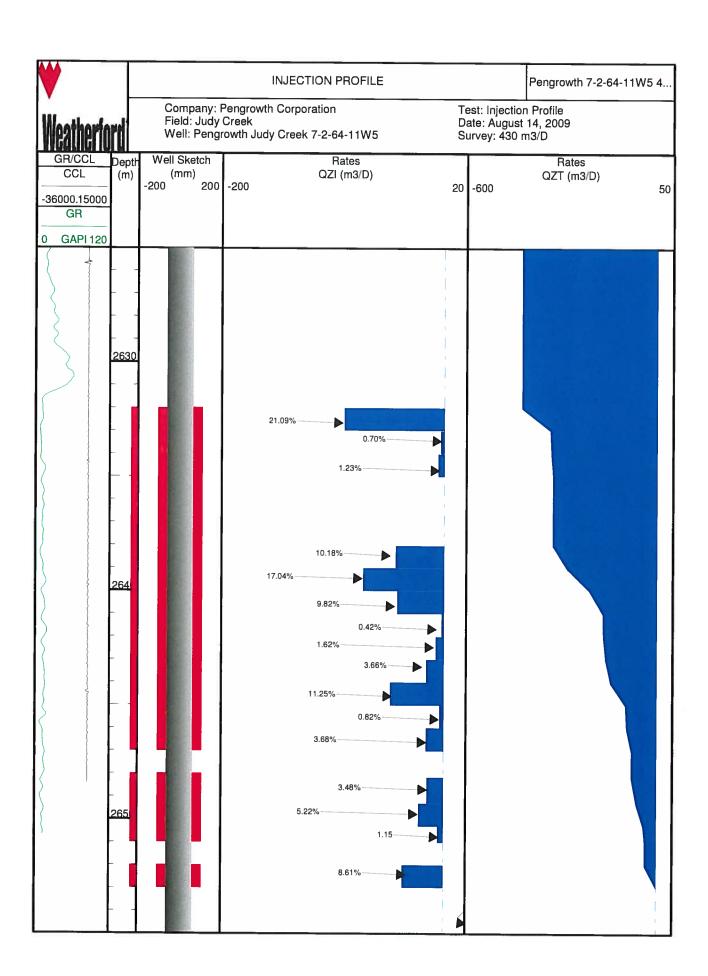
Existing perforations:

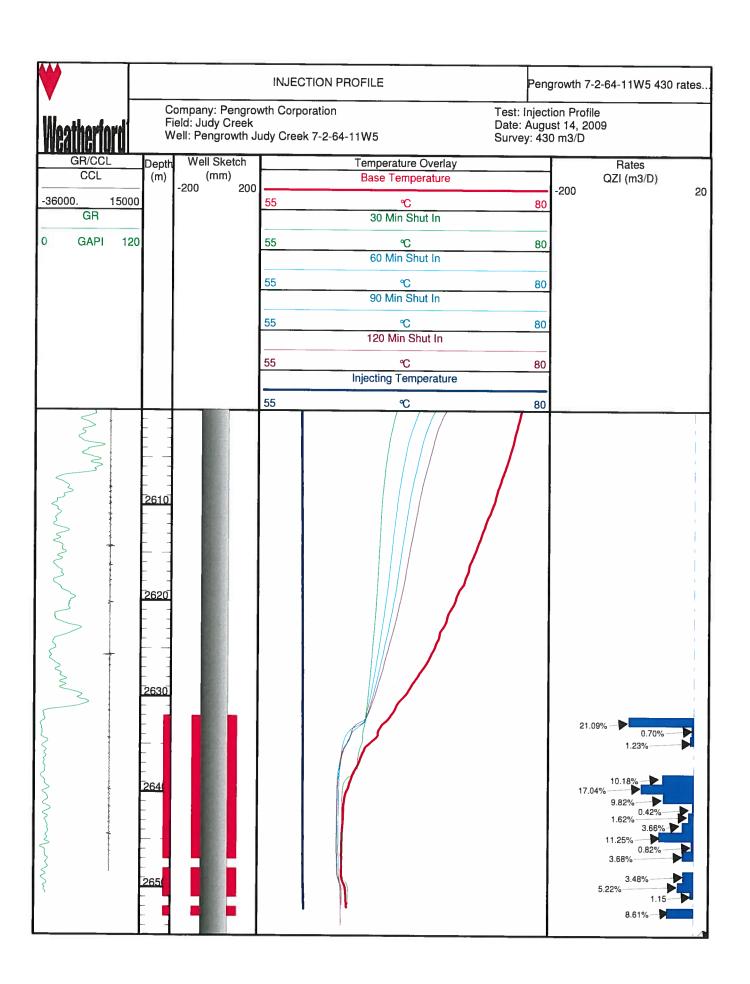
2632.0 - 2647.0, 2648.3 - 2651 & 2652.0 - 2653.7 mKB.

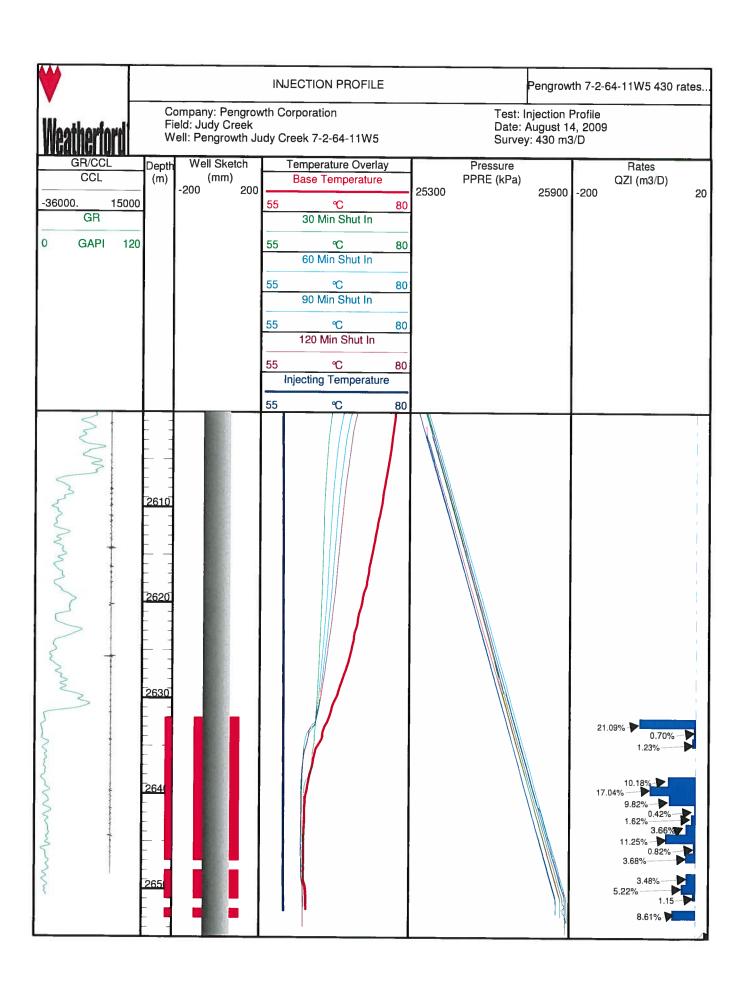
Base temperature log displays a stable gradient from the top logged depth of 2400 m down to the top of perforations with minor anomalies due to lithology and tubing bottom. A cold storage is present over the perforated zones and extends down to the bottom log interval at 2653.0 mKB.

Injecting temperature passes run during injection indicates that some fluid is moving down below the bottom log interval at 2653.5 mKB.

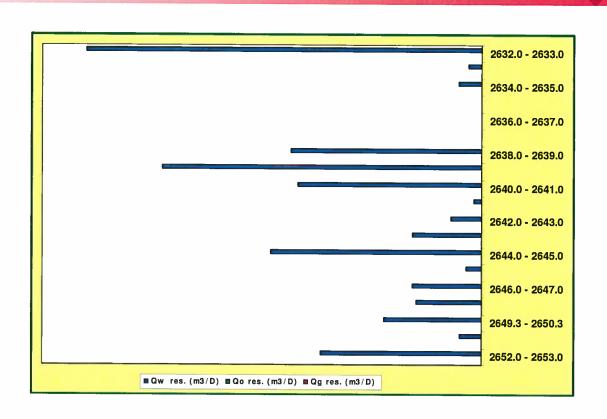

Four shut in temperature passes display a stable gradient from the top logged interval of 2400.0 m down to the top of perforations with minor anomalies due to lithology and tubing bottom. There is no indication of up hole migration of fluid above the packer or perforations. A cold storage is present over the logged perforation intervals.


Flow meter data analysis indicate that 81.54% of the injected fluid is being injected into the top set of perforated interval, 9.85% is taken by the second perforated zone, and the rest of 8.61% is injected into bottom perforation.


Flow meter static check was done by placing the tool at 2654.0mKB, whereas the spinner was positioned at 2653.7mKB. No spinner movement is seen at this depth.


Injection rates for each zone are summerized on the following pages.

Confidential 8/20/2009



PENGROWTH CORPORATION Pengrowth Judy Creek 7-2-64-11W5

Computed Downhole Rates

Water total contribution SC: -423.845 m3/D

Oil total contribution SC: 0 m3/D Gas total contribution SC: 0 Mm3/D

Recorded (Actual) Rates

Water -380 to -430 m3/D

Oil 0 m3/D Gas 0 Mm3/D

Confidential 8/19/2009

Zonal Contributions.

Contributions by Phase (Downhole)

Zones (m)	Qw res. (m3/D)	Qo res. (m3/D)	Og res. (m3/D)
2632.0 - 2633.0	-90.00	N/A	N/A
2633.0 - 2634.0	-3.00	N/A	N/A
2634.0 - 2635.0	-5.23	N/A	N/A
2635.0 - 2636.0	0.00	N/A	N/A
2636.0 - 2637.0	0.00	N/A	N/A
2637.0 - 2638.0	0.00	N/A	N/A
2638.0 - 2639.0	-43.42	N/A	N/A
2639.0 - 2640.0	-72.74	N/A	N/A
2640.0 - 2641.0	-41.93	N/A	N/A
2641.0 - 2642.0	-1.81	N/A	N/A
2642.0 - 2643.0	-6.96	N/A	N/A
2643.0 - 2644.0	-15.62	N/A	N/A
2644.0 - 2645.0	-48.01	N/A	N/A
2645.0 - 2646.0	-3.51	N/A	N/A
2646.0 - 2647.0	-15.71	N/A	N/A
2648.2 - 2649.3	-14.86	N/A	N/A
2649.3 - 2650.3	-22.29	N/A	N/A
2650.3 - 2651.0	-4.92	N/A	N/A
2652.0 & below	-36.74	N/A	N/A

Percentage Total Production (Downhole)

Zones (m)	Qt res. (m3/D)	Injection % (%)
2632.0 - 2633.0	-90.00	21.09
2633.0 - 2634.0	-3.00	0.70
2634.0 - 2635.0	-5.23	1.23
2635.0 - 2636.0	0.00	0.00
2636.0 - 2637.0	0.00	0.00
2637.0 - 2638.0	0.00	0.00
2638.0 - 2639.0	-43.42	10.18
2639.0 - 2640.0	-72.74	17.04
2640.0 - 2641.0	-41.93	9.82
2641.0 - 2642.0	-1.81	0.42
2642.0 - 2643.0	-6.96	1.63
2643.0 - 2644.0	-15.62	3.66
2644.0 - 2645.0	-48.01	11.25
2645.0 - 2646.0	-3.51	0.82
2646.0 - 2647.0	-15.71	3.68
2648.2 - 2649.3	-14.86	3.48
2649.3 - 2650.3	-22.29	5.22
2650.3 - 2651.0	-4.92	1.15
2652.0 & below	-36.74	8.61

Survey Summary

Survey Name:

430 m3/D

Tools Summary

String OD

42.8625 mm

Capacitance

None (Calib. Type)

100% Water

N/A

100% HC

N/A

Density

None

Spinner blade OD

101.6 mm

Interpretation Summary

Interpretation Name:

Interpretation # 1

Density offset

N/A

Capacitance offset

N/A

Flow type

Single-phase

Flow model

Flow model L-G

Flow model W-O

Vpcf multipler

1

Vslip multipler

N/A

Vslip mult.W-O

N/A

Confidential 8/19/2009

Fluid Parameters Summary

Fluid Type: Water

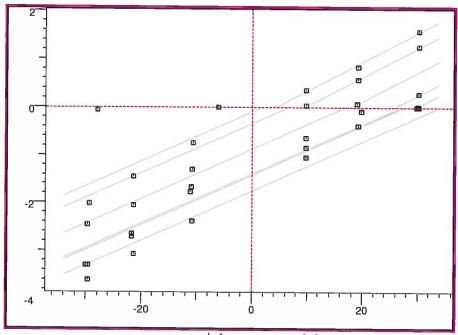
Gas: (NO)
Specific gravity N/A
N2 % N/A
CO2 % N/A
H2S % N/A

Z factor µg

Oil: (NO)
Gravity N/A
GOR N/A

WOR Rs, Pb Bo Co

Condensate: (NO) Tank GOR N/A Tank gas gravity N/A Separator GOR N/A Separator gas gravity N/A Separator P N/A Separator T N/A Dew point P N/A Dew point T N/A Liq. Gravity N/A N2 % N/A CO2 % N/A H2S % N/A


Water: ()
Salinity, ppm 30000
Rsw Katz

 $\begin{array}{ll} \text{Cw} & \text{Dodson and Standing} \\ \mu \, \text{w} & \text{Van-Wingen+Frick} \end{array}$

Confidential 8/19/2009

Spinner Calibration Summary

rps versus m/minrps versus m/min

Threshold (+) 0 m/minThreshold (-) 0 m/min

Calib. Zone (m)	Slope (+)	Slope (-)	Int (+) (m/min)	Int (-) (m/min)	Int. Diff. (m/min)
2600.8 - 2625.6	0.061	0.052	29.591	26.824	2.766
2628.6 - 2630.3	0.061	0.052	17.784	27.411	-9.627
2634.0 - 2635.4	0.061	0.052	25.709	33.748	-8.039
2639.9 - 2642.3	0.061	0.052	9.495	16.833	-7.338
2647.2 - 2647.7	0.061	0.052	4.398	6.550	-2.152
2653.6 - 2654.1	N/A	0.052	N/A	1.787	0.000

Confidential 8/19/2009

Production Logging Services

Injection Profile - 1000 m3/Day

Company: PENGROWTH CORPORATION

Field: JUDY CREEK

Well: PENGROWTH JUDY CREEK 7-2-64-11W5

Survey Date: August 14, 2009

Service Company: Weatherford Canada Partnership

Interpretation Date: August 17, 2009

Prepared By: MUNIR/ASIF KARDAR

Washerford Canada Partnership • 1600, 333 – 5th Avenue SW • Oalgary • Alberta • 70P 986. • Daniella Tuleshore • 403 697, 75th

Outcomer: All interpretations are opinions based on inferences from electrical or office granular winds and via control and on a purchased for the present of the engineer of the purchased for the purchased for

Purpose of Survey.

To profile water injection into the perforated intervals.

General Interpretation Comments.

Log correlated to Weatherford Injection Profile date November 13, 2007.

Well was shut in 48 hours prior to logging the base temperature.

Well was a CO2 injector and changed to water injector approximately a month ago.

Well on vacuum when not on injection.

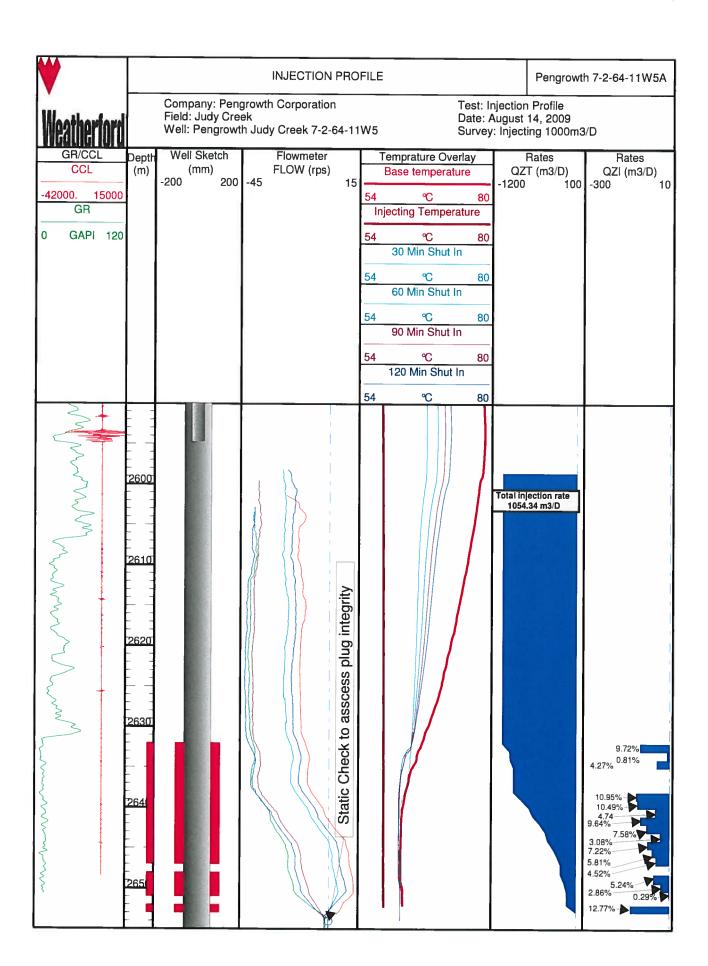
First reported injection rate was 380 -430 m3/day at 1200 KPa.

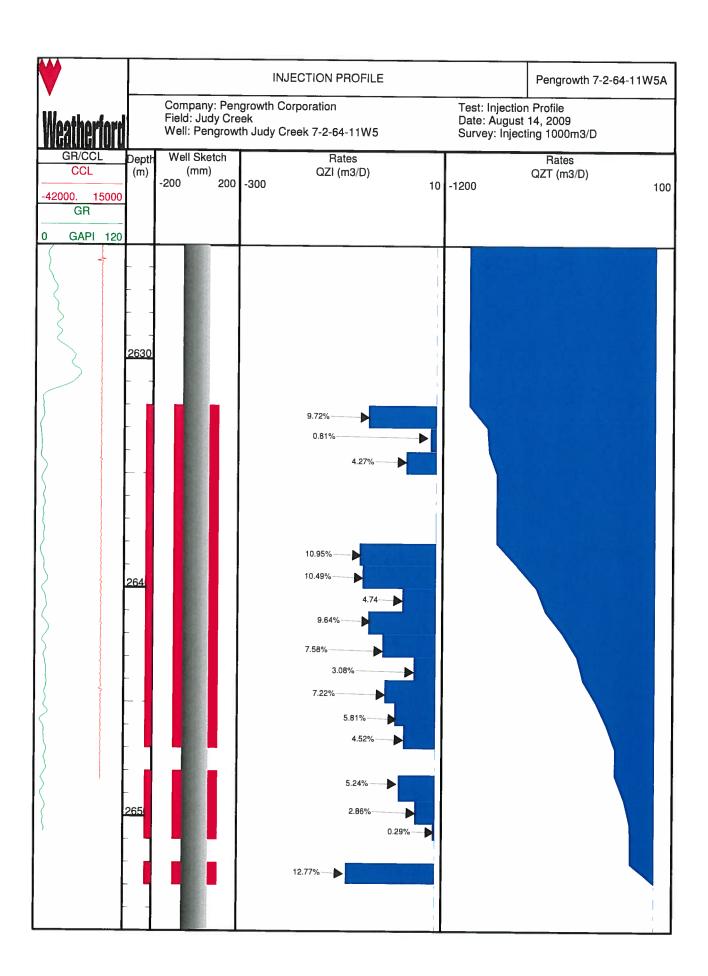
Second reported injection rate was 1000 m3/day at 6000 Kpa.

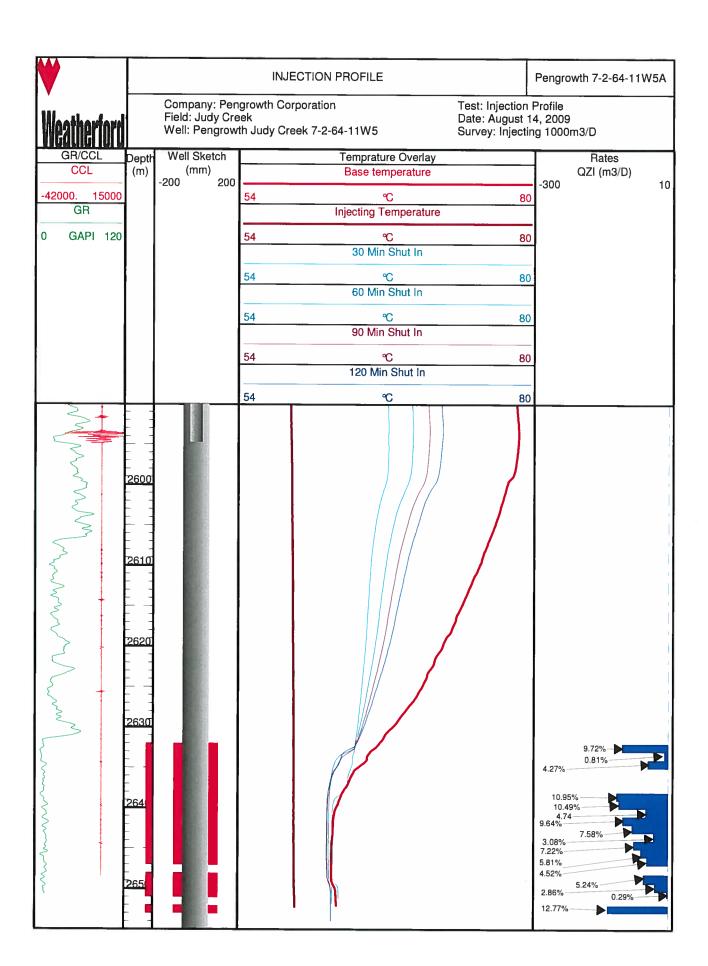
Existing perforations:

2632.0 - 2647.0, 2648.3 - 2651 & 2652.0 - 2653.7 mKB.

Base temperature log displays a stable gradient from the top logged depth of 2400 m down to the top of perforations with minor anomalies due to lithology and tubing bottom. A cold storage is present over the perforated zones and extends down to the bottom log interval at 2653.0 mKB.


Injecting pass run during injection indicates that some fluid is moving down below the bottom log interval at 2653.5 mKB.


Four shut in temperature passes display a stable gradient from the top logged interval of 2400.0 m down to the top of perforations with minor anomalies due to lithology and tubing bottom. There is no indication of up hole migration of fluid above the packer or perforations. A cold storage is present over the logged perforation intervals.


Flow meter data analysis indicate that 77.28% of the injected fluid is being injected into the top set of perforated interval, 10.05% is taken by the second perforated zone, and the rest of 12.77% is injected into bottom perforation.

Flow meter static check was done by placing the tool at 2654.0mKB, whereas the spinner was positioned at 2653.7mKB. No spinner movement is seen at this depth.

Injection rates for each zone are summerized on the following pages.



V		INJECTION PROFILE		Pengrowth 7-2-64-11W5A				
Weatherford	Field: Judy Cre Well: Pengrowt	th Judy Creek 7-2-64-11W5	Test: Injection Date: August Survey: Injecti	n Profile 14, 2009 ting 1000m3/D				
GR/CCL D	epth Well Sketch	Temprature Overlay	Pressure Overlay	Rates				
CCL	(m) (mm) -200 200	Base temperature	Injecting Pressure	QZI (m3/D) -300 10				
-42000. 15000 GR	200		25300 kPa 269 Pressure 30 Min Shut I	900				
0 GAPI 120		54 °C 80 30 Min Shut In	25300 kPa 269 Pressure 60 Min Shut I	900 n				
		54	25300 kPa 269 Pressure 90 Min Shut I	900				
				900				
		90 Min Shut In	Pressure 120 Min Shut	In —				
		54	25300 kPa 269	900				
		54 ℃ 80						
	620			9.72%- 0.81% 4.27% 10.95%- 10.49%- 4.74 9.64% 7.58% 3.08% 7.22% 5.81% 4.52% 2.86% 0.29%				

Computed Downhole Rates

Water total contribution SC: -1052.34 m3/D

Oil total contribution SC: 0 m3/D Gas total contribution SC: 0 Mm3/D

Recorded (Actual) Rates

Gas

Water -1000 m3/D Oil 0 m3/D

Confidential 8/20/2009

0 Mm3/D

Zonal Contributions.

Contributions by Phase (Downhole)

Zones (m)	Qw res. (m3/D)	Qo res. (m3/D)	Og res. (m3/D)
2632.0 - 2633.0	-102.81	N/A	N/A
2633.0 - 2634.0	-8.55	N/A	N/A
2634.0 - 2635.0	-45.10	N/A	N/A
2635.0 - 2636.0	0.00	N/A	N/A
2636.0 - 2637.0	0.00	N/A	N/A
2637.0 - 2638.0	-0.00	N/A	N/A
2638.0 - 2639.0	-115.81	N/A	N/A
2639.0 - 2640.0	-110.97	N/A	N/A
2640.0 - 2641.0	-50.12	N/A	N/A
2641.0 - 2642.0	-101.93	N/A	N/A
2642.0 - 2643.0	-80.16	N/A	N/A
2643.0 - 2644.0	-32.58	N/A	N/A
2644.0 - 2645.0	-76.31	N/A	N/A
2645.0 - 2646.0	-61.45	N/A	N/A
2646.0 - 2647.0	-47.83	N/A	N/A
2648.2 - 2649.3	-55.42	N/A	N/A
2649.3 - 2650.3	-30.20	N/A	N/A
2650.3 - 2651.0	-3.11	N/A	N/A
2652.0 & below	-135.08	N/A	N/A

Percentage Total Production (Downhole)

Zones (m)	Qt res. (m3/D)	Injection % (%)
2632.0 - 2633.0	-102.81	9.72
2633.0 - 2634.0	-8.55	0.81
2634.0 - 2635.0	-45.10	4.27
2635.0 - 2636.0	0.00	0.00
2636.0 - 2637.0	0.00	0.00
2637.0 - 2638.0	-0.00	0.00
2638.0 - 2639.0	-115.81	10.95
2639.0 - 2640.0	-110.97	10.49
2640.0 - 2641.0	-50.12	4.74
2641.0 - 2642.0	-101.93	9.64
2642.0 - 2643.0	-80.16	7.58
2643.0 - 2644.0	-32.58	3.08
2644.0 - 2645.0	-76.31	7.22
2645.0 - 2646.0	-61.45	5.81
2646.0 - 2647.0	-47.83	4.52
2648.2 - 2649.3	-55.42	5.24
2649.3 - 2650.3	-30.20	2.86
2650.3 - 2651.0	-3.11	0.29
2652.0 - & below	-135.08	12.77

Pengrowth Corporation Pengrowth Judy Creek 7-2-64-11W5

Survey Summary

Survey Name:

Injecting 1000m3/D

Tools Summary

String OD

42.8625 mm

Capacitance

None (Calib. Type)

100% Water

N/A

100% HC

N/A

Density

None

Spinner blade OD

101.6 mm

Interpretation Summary

Interpretation Name:

Interpretation #2

Density offset

N/A

Capacitance offset

N/A

Flow type

Single-phase

Flow model

Flow model L-G

Flow model W-O

Vpcf multipler

Vslip multipler

Vslip mult.W-O

N/A N/A

1

Confidential 8/18/2009

Pengrowth Corporation Pengrowth Judy Creek 7-2-64-11W5

Fluid Parameters Summary

Fluid Type: Water

Gas: (NO)
Specific gravity N/A
N2 % N/A
CO2 % N/A
H2S % N/A

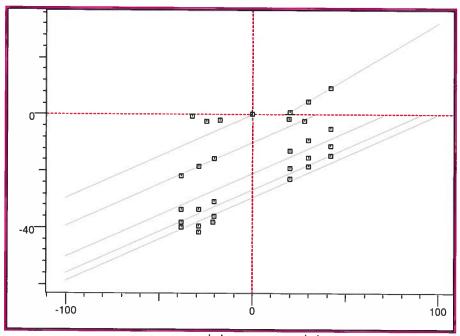
Z factor

μg

Oil: (NO)
Gravity N/A
GOR N/A
WOR

WOR Rs, Pb Bo Co µo

Condensate: (NO) Tank GOR N/A Tank gas gravity N/A Separator GOR N/A Separator gas gravity N/A Separator P N/A Separator T N/A Dew point P N/A Dew point T N/A Liq. Gravity N/A N2 % N/A CO2 % N/A H2S % N/A


Water: ()

Salinity, ppm 30000 Rsw Katz

 $\begin{array}{cc} \text{Cw} & \text{Dodson and Standing} \\ \mu \, \text{w} & \text{Van-Wingen+Frick} \end{array}$

Spinner Calibration Summary

rps versus m/minrps versus m/min

Threshold (+) 0 m/minThreshold (-) 0 m/min

Calib. Zone (m)	Slope (+)	Slope (-)	Int (+) (m/min)	Int (-) (m/min)	Int. Diff. (m/min)
2604.7 - 2625.7	N/A	0.293	N/A	100.063	0.000
2632.2 - 2633.5	N/A	0.293	N/A	90.902	0.000
2638.6 - 2640.2	N/A	0.293	N/A	71.744	0.000
2644.3 - 2645.6	0.394	0.293	17.938	34.104	-16.166
2653.4 - 2654.7	N/A	0.293	N/A	0.441	0.000

Confidential 8/18/2009

JOB REPORT

Client:

PENGROWTH CORPORATION

Well:

100/07-02-064-11W5/00

Date:

August 14, 2009

Field:

JUDY CREEK

Log Type:

INJECTION PROFILE

Consultant:

Andy Doucette

SO# :

10201205

Specialty Engineer:

Corinne Coghlan

Time:	ORGANIZED EVENTS	.las File	Logged Interval (mKB)
07:30	Arrive at Judy Creek bone yard and wait for Pengrowth representative Andy Doucette.	-	-
07:45	Andy leads Weatherford Wireline to location.	-	-
08:00	Arrive on location and MIRU wireline unit.	-	-
08:15	Safety meeting.	-	_
08:30	Continue rig up.	-	-
10:00	Assemble PLT string vertically and function test.	-	-
10:15	RIH.		
11:00	Base Temp DN. Well SI 48 hrs. P _{WH} = 0 Kpa.	INJ01A	2400-2655
11:24	Correlation strip /X-Flow check 15 m/min UP.	INJ02A	2655-2595
11:52	X-Flow check 20 m/min DN.	INJ03A	2595-2655
11:56	X-Flow check 25 m/min UP.	-	-
12:07	Well on injection. Wait for stabilization.	-	-
	INJECTING PASSES P _{WH} = 1200 KPa, Reported Q = 380 - 430 m ³ /day. No choke.	-	-
13:51	Injecting Pass 10 DN.	INJ06A	2595-2655
14:01	Injecting Pass 10 UP.	INJ07A	2655-2595
14:09	Injecting Pass 20 DN.	INJ08A	2595-2655
14:13	Injecting Pass 20 UP.	INJ09A	2655-2595
14:17	Injecting Pass 30 DN.	INJ10A	2595-2655
14:20	Injecting Pass 30 UP.	INJ11A	2655-2595
14:24	Injecting Pass 40 DN.	INJ12A	2595-2655
14:28	Injecting Pass 40 UP.	INJ13A	2655-2595
14:35	Injecting Temp 10 DN.	INJ14A	2400-2655
15:09	STATION STOP @ 2654 mKB to assess plug integrity.	INJ15	2654

15:20	INJECTION RATE CHANGE; P _{WH} = 6000 KPa, Reported Q = 1000 m ³ /day.	-	-
16:02	Injecting Pass 10 DN.	INJ16A	2595-2655
16:08	Injecting Pass 10 UP - Winchman stops accidentally, pass not presented.	INJ17A	2655-2595
16:17	Injecting Pass 20 DN.	INJ18A	2595-2655
16:21	Injecting Pass 20 UP.	INJ19A	2655-2595
16:26	Injecting Pass 30 DN.	INJ20A	2595-2655
16:30	Injecting Pass 30 UP.	INJ21A	2655-2595
16:33	Injecting Pass 40 DN.	INJ22A	2595-2655
16:37	Injecting Pass 40 UP.	INJ23A	2655-2595
16:44	STATION STOP @ 2654 mKB to assess plug integrity.	INJ24	2654
16:51	Injection Pass 10 UP.	INJ25A	2655-2595
17:10	Well Shut-In and on immediate vaccum. Shut-In Passes.		
17:13	30 MIN SI.	INJ26A	2400-2655
17:50	60 MIN SI.	INJ27A	2400-2655
18:23	90 MIN SI.	INJ28A	2400-2655
18:59	120 MIN SI.	INJ29A	2400-2655
20:00	Surface toolstring and rig out.	-	-
21:00	Leave location.	-	-

Specialty Division AFTER **ACTUAL DOWNHOLE SCHEMATIC** SURFACE CASING 219 mm J-55, 35.7 kg/m Well Name 07-02-64-11w5 to 390.0 mKB Date 09/08/17 PRODUCTION CASING K.B. Elevation: 1077.90 m 139.7 mm 25.3 kg/m L-80 to 2706.29 m K.B. to Dognut: 4.46 m K.B. to C.F.: 5.10 m K.B. to Ground: 5.50 m *Note: Tubing Hanger, 17-4PH S.S. Box by Pin Down "MMS" **Tubing** 1 - 73.0 mm TK-99, MMS Tubing Joint 1 - 73.0 mm TK-99, MMS Pup Joints 270 - 73.0 mm TK-99, MMS Tubing Joints 73.0 mm TK-99, MMS Pup Joint 73.0 mm Otis "X" Nipple c/w 47.63 mm Profile at 2593.90 mKB {Duplex 2205 S.S.} 68.3 mm Tryton "Latched" Seal Assy. Incoloy 925. 139.7 mm Tryton "TL" Sealbore Packer c/w 68.3 mm Seal Assy, Incoloy 925 material Top of Packer at 2594.6 mKB 60.3 mm Vam, FJL Pup Joint 60.3 mm Otis "X" Nipple c/w 47.63 mm Profile at 2597.16 mKB 60.3 mm Vam, FJL Pup Joint 60.3 mm Otis "XN" Nipple c/w 47.63 mm Profile 45.49 mm NoGoat 2599.22 mKB 60.3 mm Pump-Out / Re-entry Guide, Bottom at 2599.65 mKB *Note: Above Sealbore Packer and Tail Pipe built from Incoloy 925 **Perforations:** 2632.0 - 2647.0 2648.3 - 2651.0 2652.0 - 2653.7 139.7 mm Drillable Permanent Bridgeplug at 2655.0 mKB Center Element 2656.5 - 2657.5 2662.4 - 2663.4 2668.7 - 2674.2 2678.5 - 2681.2 P.B.D. 2729.6 mKB F.T.D. 2743.2 mKB 3

Tubing Bottom Seating Nipple	Cement	احا	i. I	Bridge Plug	Service		Witnessed By			ze (mm)		Fluid in Hole	Btm.Log Inter.	Depth-Logger	Depth-Driller	附		Service Order	Date	FI WE CO	OVINCE ELD LL MPANY	PENG 7-2-	CREEI ROWTH 64-11	JUDY (
2594.7 Junk Basket Type Gauge Ring Size		,		1 7 7 6	Other ser	046	ANDY DOLLCETTE	CORTINUE COCHIAN	14170	N/A	н	PRODUCED WATER	2653.5	2653.7	4	80 °C	ONE	95	AUGUST 14,2009	UWI 100/07-02-064-11W5/00 Licence 255847	LSD 07 Sec. 02 Twp. Perm. Datum Ground Level Log measured from K.B., Permanent Datum.	PROVINCE ALBERTA	FIELD JUDY CREEK	WELL PENGROWTH	COMPANY PENGROWTH	**
) ie				31.5	TCES		10.0	73 0 25.3	35.	Size mm Wt. Kg/m	Tubing/Casing	Gun Type					т	Shot No. of	_	L1W5/00	p. 064 Rge. 11 el Elev.1072.40 , 5.50 m above			JUDY CREEK 7-2-0	CORPORATION	INJECTION P
				בפטנוו			30N-ACE 2394. / III	2786.3	SURFACE 390.0 m		ng Record						From To	Perf. Interval		ELEV.K.B.1077.90 G.L.1072.40	Other Services:			7-2-64-11		PROFILE

All interpretations of log data are opinions based on inferences from electrical or other measurements. We do not guarantee the accuracy or correctness of any interpretation or recommendation and we shall not be liable or responsible for any loss, cost, damages or expenses incurred or sustained by anyone resulting from any interpretation or recommendation made by any of our employees or agents.

REMARKS

Rig: WFT PICKER 15012

Service Order # 10201205

WELL WAS A CO2 INJECTOR AND CHANGED TO WATER INJECTION APPROXIMATELY A MONTH AGO.

WELL SHUT-IN APPROXIMATELY 48 HOURS PRIOR TO LOGGING BASE TEMPERATURE PASS.

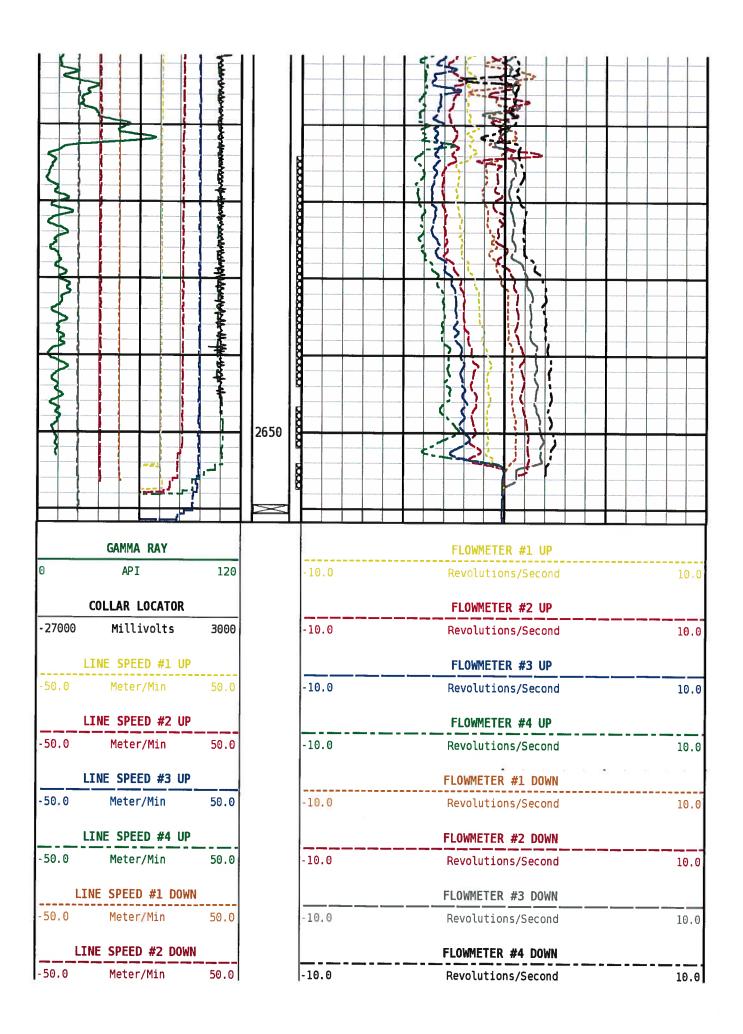
WELL ON VACCUM WHEN NOT ON INJECTION.

FIRST REPORTED INJECTION RATE = 380 - 430 m^3/day @ 1200 KPa.

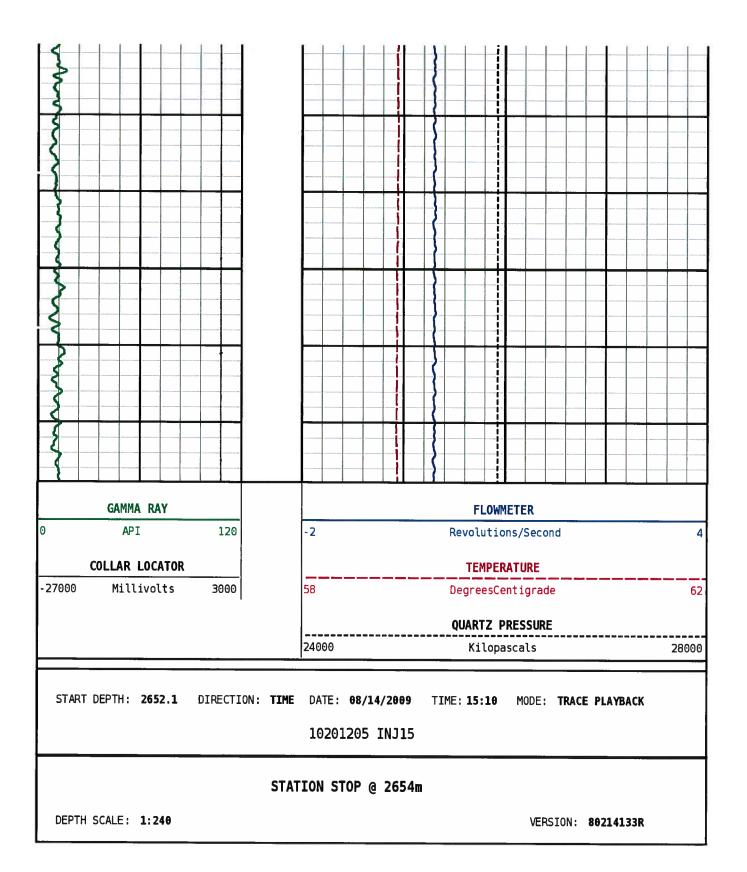
SECOND REPORTED INJECTION RATE = 1000 m^3/day @ 6000 KPa.

STATION STOPS COMPLETED TO ASSESS PLUG INTEGRITY.

LOG CORRELTAED TO A WEATHERFORD INJECTION PROFILE DATED NOVEMBER 13, 2009.


	EQUIPMENT DATA										
Run No.	Tool Type	Tool No.	Other								
ONE	TELEMETRY/CCL	CTLA133	RAN 4 X HD SINKER BAR ABOVE.								
	CENTRALIZER	CENRW127	BIDIRECTIONAL BOWSPRING CENTRALIZER.								
	GAMMA RAY	GRTW149	GAMMA RAY								
		QPGD122	QUARTZDYNE PRESSURE								
	TEMPERATURE	CFTAA118	TEMPERATURE PROBE								
	FLOWMETER	FBAB114	FULLBORE FLOWMETER (IMPELLER DIAMETER = 101.6 mm)								

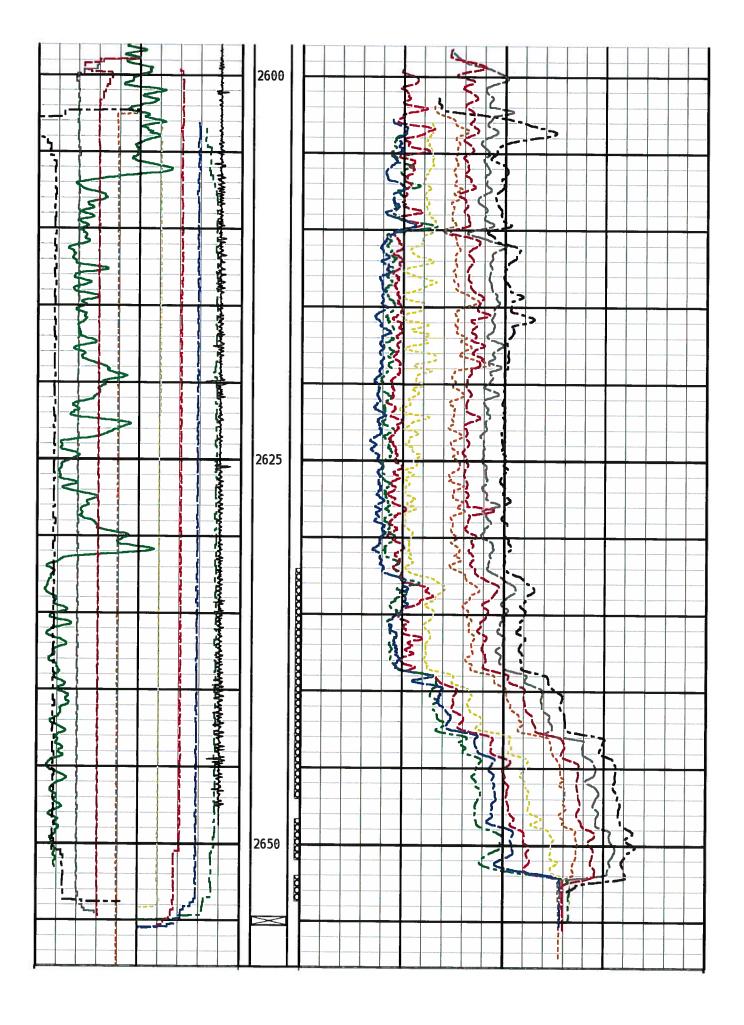
		0	
	-	 .	
		 -	


	08/14/09 09:11:58 Ver. 8	0214133R SELVI	ce: coarpeome	tilalie Joi	7 10201205
	** DE	PTH TRACK GRAPH	IICS **		80214133R
() E	Exit () Add Graphic	() Add Multip	ole Graphics	() Save	'Restore
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	******	
edit	Image	Bottom Depth	Top Depth	Color	Offset
edit	Image Existing Perforations	Bottom Depth	Top Depth 2632.00	Color black	Offset depthtrack
	,				

	REMARKS												
REPORTED Q = 380 - 43	REPORTED Q = 380 - 430 m^3/day.												
DEPTH SCALE: 1:240		•	VERS10	N: 80214133R									
	INJECTING F	LOWMETERS											
	102012	05 FMS1	-										
FINISH DEPTH: 2590.0 Meters DIF	RECTION: UP	DATE: 08/14/2009	TIME: 15:02	MODE: TRACE PLAYBACK									
LINE SPEED #3 DOWN													
-50.0 Meter/Min 50.0	1												
LINE SPEED #2 DOWN		FLOV	METER #4 DOWN										
-50.0 Meter/Min 50.0	-10.0	Rev	olutions/Second	10.0									
ITNE CDEED #1 DOWN		FINA	WELLD #3 DUMN										

TINE SEED AT DOL	111	I	LOUBLIER WO DOM	
-50.0 Meter/Min	50.0	-10.0	Revolutions/Second	10.0
LINE SPEED #4 UP			FLOWMETER #2 DOWN	
-50.0 Meter/Min	50.0	-10.0	Revolutions/Second	10.0
LINE SPEED #3 UF			FLOWMETER #1 DOWN	
-50.0 Meter/Min	50.0	-10.0	Revolutions/Second	10.0
LINE SPEED #2 UP	,		FLOWMETER #4 UP	
-50.0 Meter/Min	50.0	-10.0	Revolutions/Second	10.0
LINE SPEED #1 UP			FLOWMETER #3 UP	
-50.0 Meter/Min	50.0	-10.0	Revolutions/Second	10.0
COLLAR LOCATOR			FLOWMETER #2 UP	
-27000 Millivolts	3000	-10.0	Revolutions/Second	10.0
GAMMA RAY				
0 API	120	-10.0	FLOWMETER #1 UP Revolutions/Second	10.0
	* 1		The Vota Cronsy Second	10.0
		X		
	1	00		
	20	90		
>	1 1			
3	125 April 1			
\$				
5 3	da d			
3	{ }			
	1 1			
			355	
E	 			
8				
	262	25	1 1 1 1 1 1	

LINE SPEED #3 DOWN -50.0 Meter/Min 50.0	I .
START DEPTH: 2655.9 DIRECTION: UP	DATE: 08/14/2009 TIME: 15:02 MODE: TRACE PLAYBACK 10201205 FMS1
INJI	ECTING FLOWMETERS
DEPTH SCALE: 1:240	VERSION: 80214133R
926	
	REMARKS
STATION STOP TO ASSESS PLUG $Q = 380 \text{ m}^3/\text{day}$.	INTEGRITY.
DEPTH SCALE: 1:240	VERSION: 80214133R
	10201205 INJ15
FINISH DEPTH: 2652.1 Meters DIRECTION	: TIME DATE: 08/14/2009 TIME: 15:14 MODE: TRACE PLAYBACK
	QUARTZ PRESSURE
1	24000 Kilopascals 28000
COLLAR LOCATOR 27000 Millivolts 3000	TEMPERATURE 58 DegreesCentigrade 62
GAMMA RAY	FLOWMETER
API 120	-2 Revolutions/Second 4


DEPTH SCALE: 1:249 VERSION: 80214133R

INJECTING FLOWMETERS

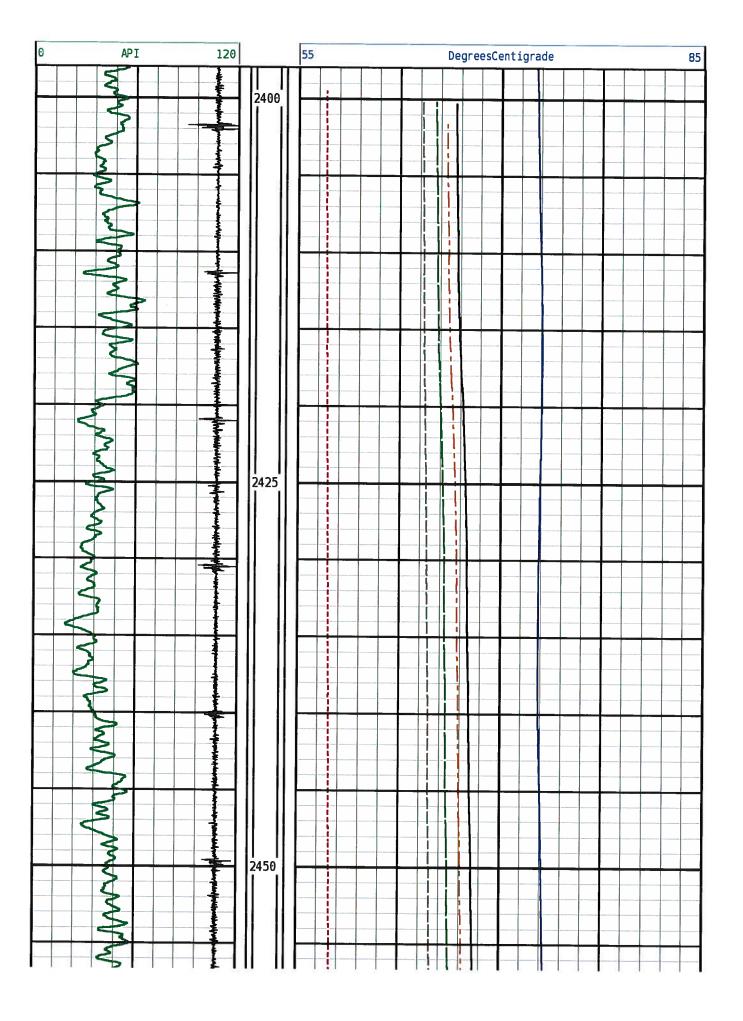
10201205 FMS2

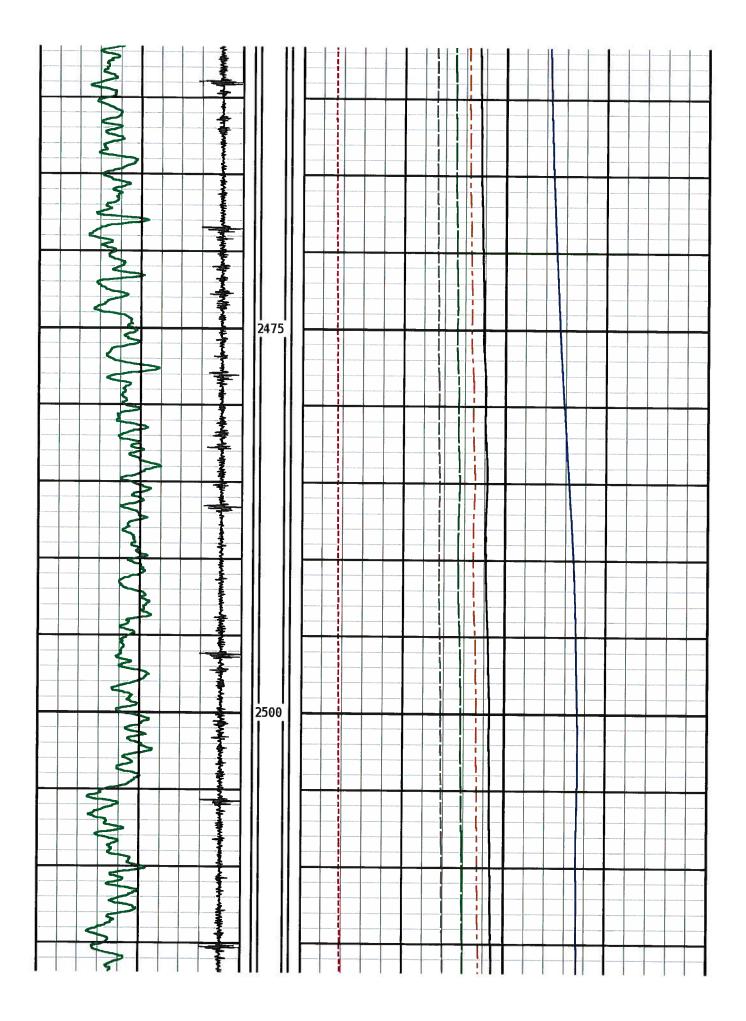
FINISH DEPTH: 2590.0 Meters DIRECTION: UP DATE: 08/14/2009 TIME: 18:51 MODE: TRACE PLAYBACK

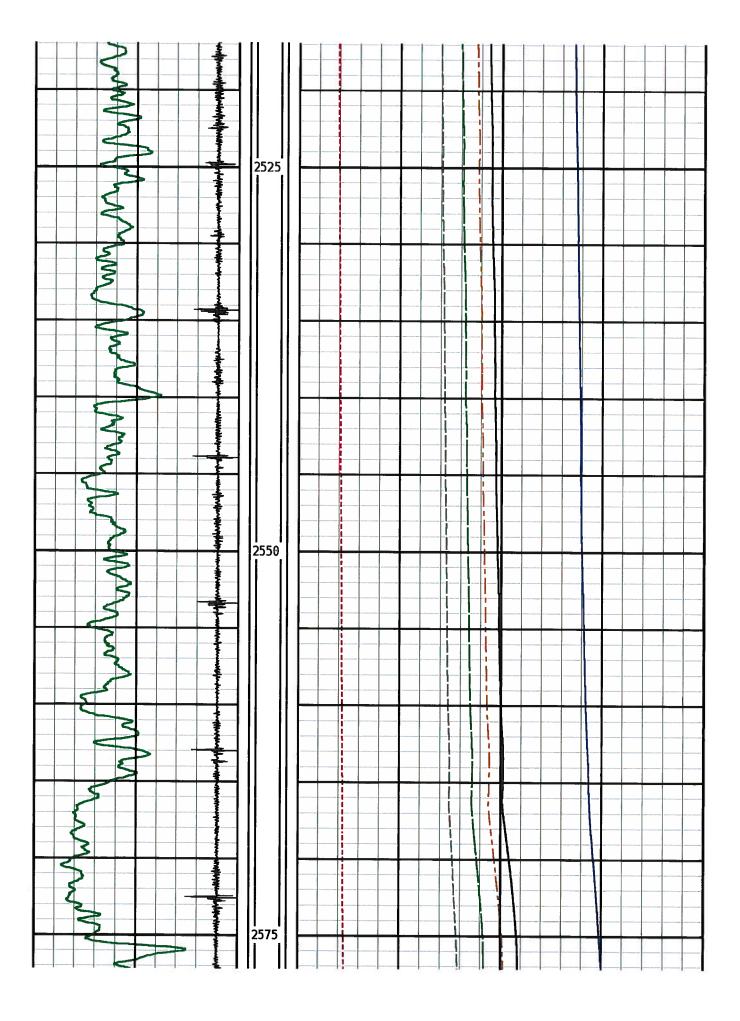
	INE SPEED #4 DOWN				
50.0	Meter/Min	50.0			
L	INE SPEED #3 DOWN				
50.0	Meter/Min	50.0	1		
L	.INE SPEED #2 DOWN			FLOWMETER #4 DOWN	
50.0	Meter/Min	50.0	-10.0	Revolutions/Second	5.0
L	INE SPEED #1 DOWN			FLOWMETER #3 DOWN	
50.0	Meter/Min	50.0	-10.0	Revolutions/Second	5.0
	LINE SPEED #4 UP			FLOWMETER #2 DOWN	
50.0	Meter/Min	50.0	-10.0	Revolutions/Second	5.0
	LINE SPEED #3 UP	l		FLOWMETER #1 DOWN	
50.0	Meter/Min	50.0	-10.0	Revolutions/Second	5.6
	LINE SPEED #2 UP			FLOWMETER #4 UP	
50.0	Meter/Min	50.0	-10.0	Revolutions/Second	5.0
	LINE SPEED #1 UP			FLOWMETER #3 UP	
50.0	Meter/Min	50.0	-10.0	Revolutions/Second	5.0
	COLLAR LOCATOR			FLOWMETER #2 UP	
27000	Millivolts	3000	-10.0	Revolutions/Second	5,0
	GAMMA RAY			FLOWMETER #1 UP	

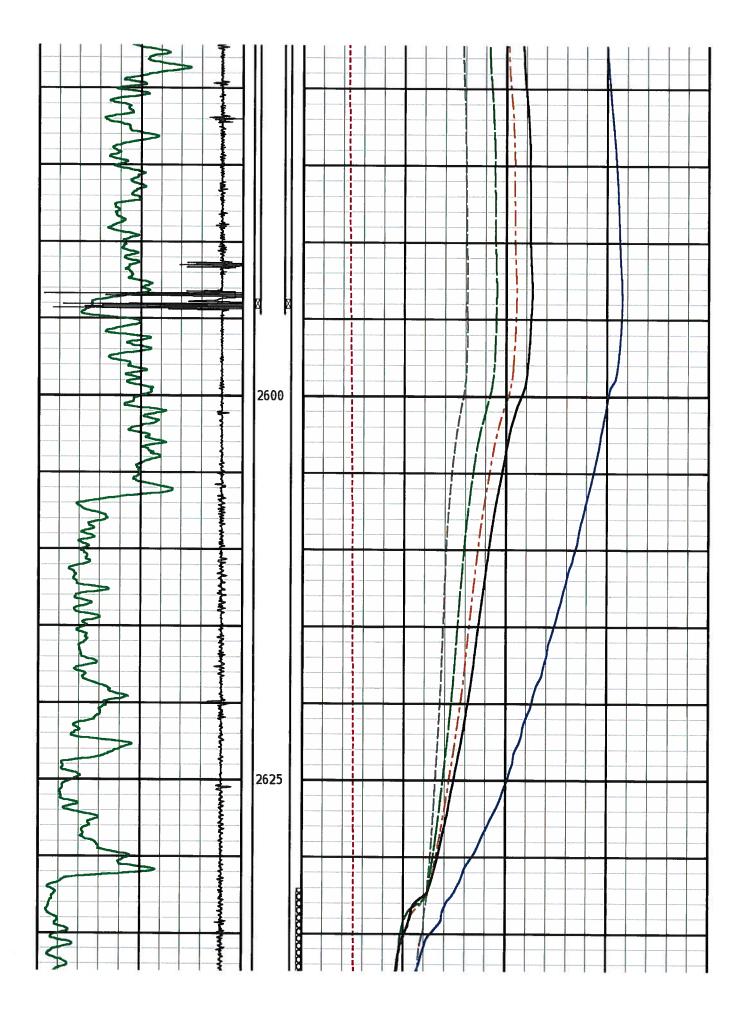
	GAMMA RAY		FLOWMETER #1 UP	
9	API	120	-10.0 Revolutions/Second	5.0
	COLLAR LOCATOR		FLOWMETER #2 UP	
27006	Millivolts	3000	-10.0 Revolutions/Second	5.0
	LINE SPEED #1 UP		FLOWMETER #3 UP	
50.0	Meter/Min	50.0	-10.0 Revolutions/Second	5.6
	LINE SPEED #2 UP		FLOWMETER #4 UP	
50.0	Meter/Min	50.0	-10.0 Revolutions/Second	5.0
	LINE SPEED #3 UP		FLOWMETER #1 DOWN	
50.0	Meter/Min	50.0	-10,0 Revolutions/Second	5.0
	LINE SPEED #4 UP		FLOWMETER #2 DOWN	
50.0	Meter/Min	50.0	-10.0 Revolutions/Second	5.0
	LINE SPEED #1 DOWN		FLOWMETER #3 DOWN	
50.0	Meter/Min	50.0	-10.0 Revolutions/Second	5.0
	LINE SPEED #2 DOWN		FLOWMETER #4 DOWN	
50.0	Meter/Min	50.0	-10.0 Revolutions/Second	5.0
	LINE SPEED #3 DOWN			
50.0	Meter/Min	50.0		
	LINE SPEED #4 DOWN			
50.0	Meter/Min	50.0		

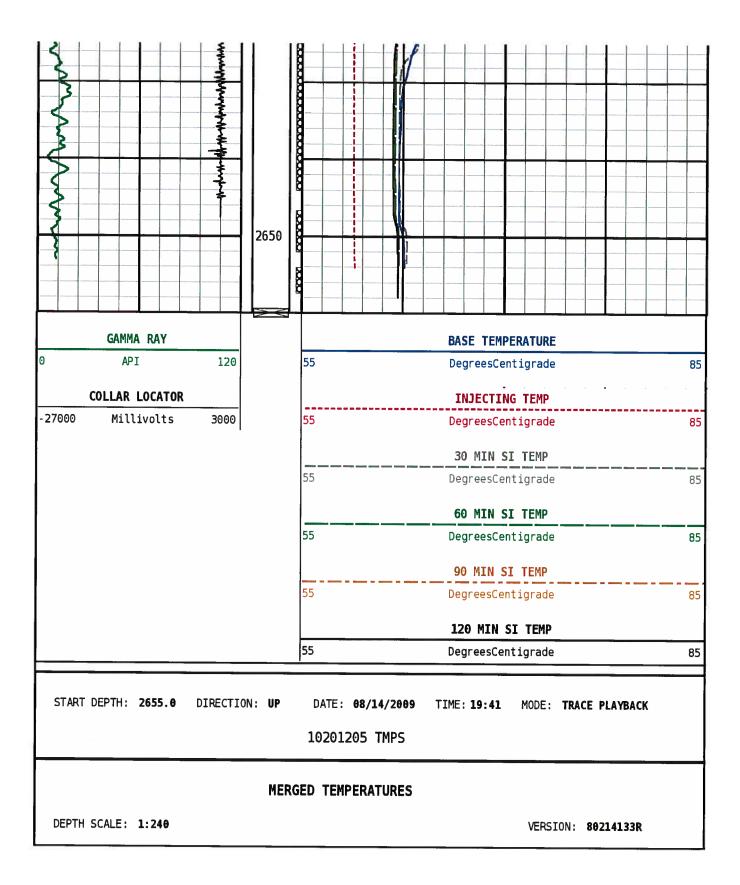
DEPTH	Q :	= 1017 	m^3/	day.												- 6	VF	RST)N:	802	141	33R	<u> </u>		
					STAT	ION	l S	ТОР	9 @	26	54m										- 10				
						16	920	120	5]	[NJ:	24														
FINIS	H DEPTH:	2650.	7 Met	ters	DIRECTION:	T:	IME	Di	ATE:	89	14	/28	6 9	T	[ME:	10	5 : 51		MOD	E:	TRA	CE	PLA	/BAC	CK
						240	00.						QL	JART				E							
						240	. 00	U						VI	ropa	sca	LS						2	800	υ. υ
27000	COLLAR I		R	2000										TEM											
∠/⊍⊍⊍	M1l(:	ivolts		3000		60.	U						De	gree	esCe	enti	gra	de						6	5.6
	GAMMA				.										_	IETE				190					
13	API			120		-2.	0	11	_			_	Rev	volu	tio	ns/S	Sec	ond			-				4.0
{																									
3					-								-								-				-
\$					-							\dashv													
3																					 -				
																					-				
\blacksquare												1								<u> </u>	<u> </u> 				
}												-								1					
}																					-				
>]																				
{																									
\$																									
\$																				-					-
3																				-					
}												_													
}																									
\$																									
												\pm								 					
$\zeta \vdash$																									
5												1													-

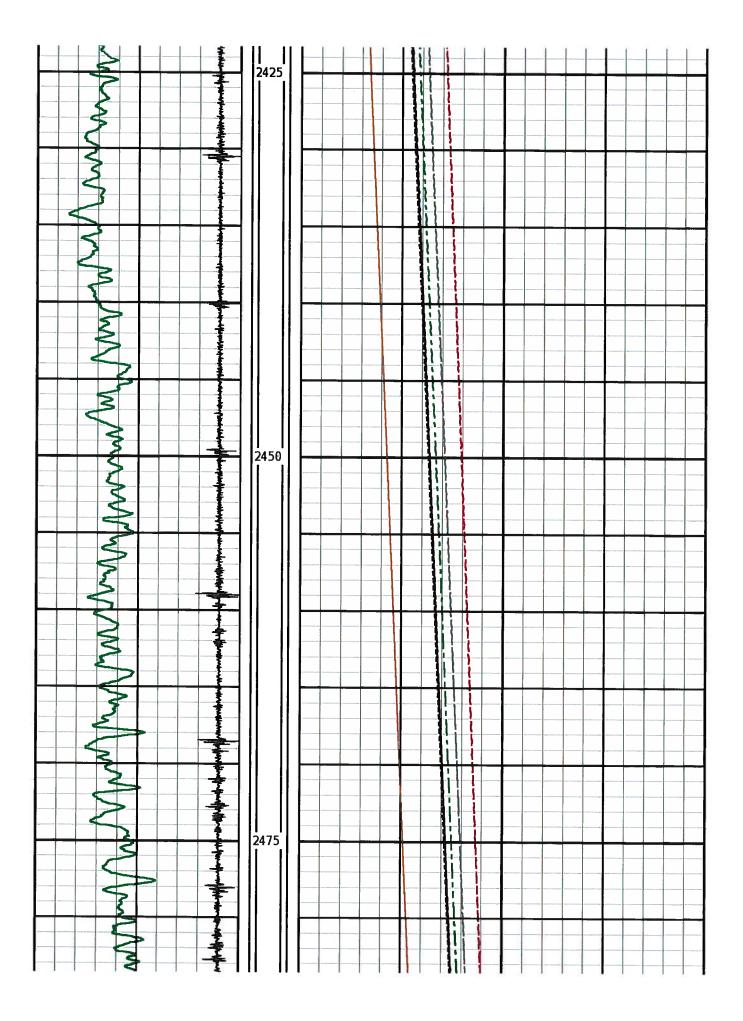

and the second second																	
0	GAMMA RAY	120		-2.	0				R	evolu		/Seco	ond				4.6
-27000	Millivolts	3000		60.0						egree UART	Z PRI	igra SSUR					 65.0
START	DEPTH: 2658.7	DIRECTION:	TIME		TE:	68/	14/206 INJ2		TIME	Kil	46	MODE	TR	ACE	PLAY	BACK	 1000.6
DEPTH	SCALE: 1:240		STAT	ION	ST	OP	@ 265	54m			-	VEF	RSIO	N: 8	9214	133R	

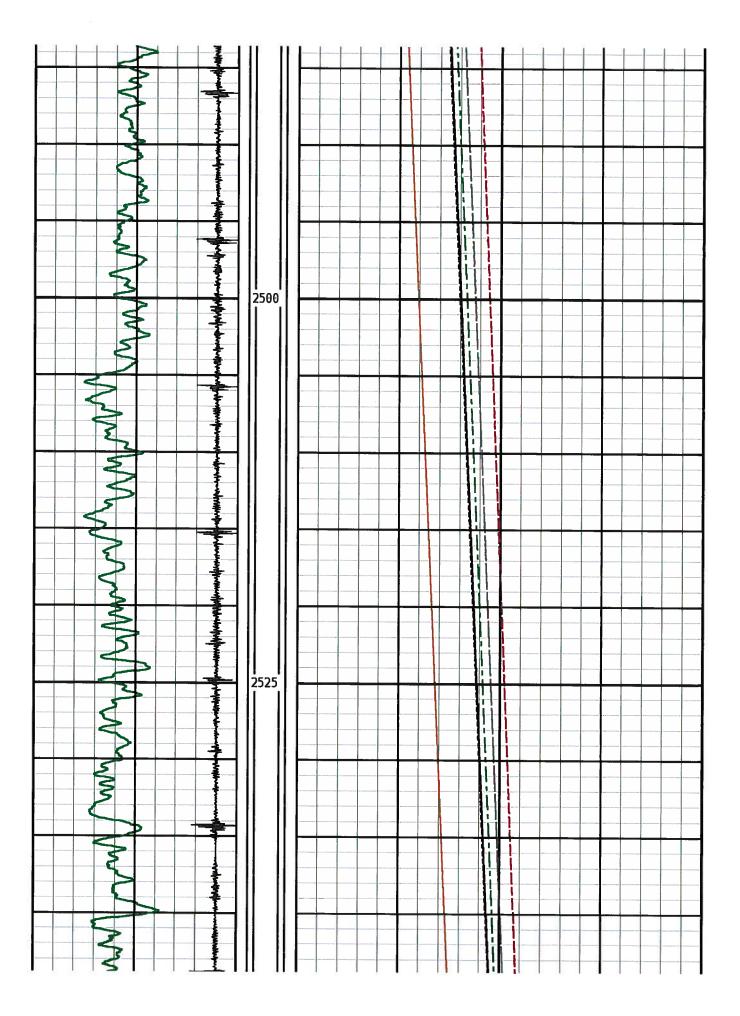

				XFLOW	СНЕСК					
				1020	1205 XFLOW					
FINISH DEPTH	: 2624.8 N	leters	DIRECTION:	UP	DATE: 08/14/2009	TIME:	16:15	MODE:	TRACE	PLAYBACK

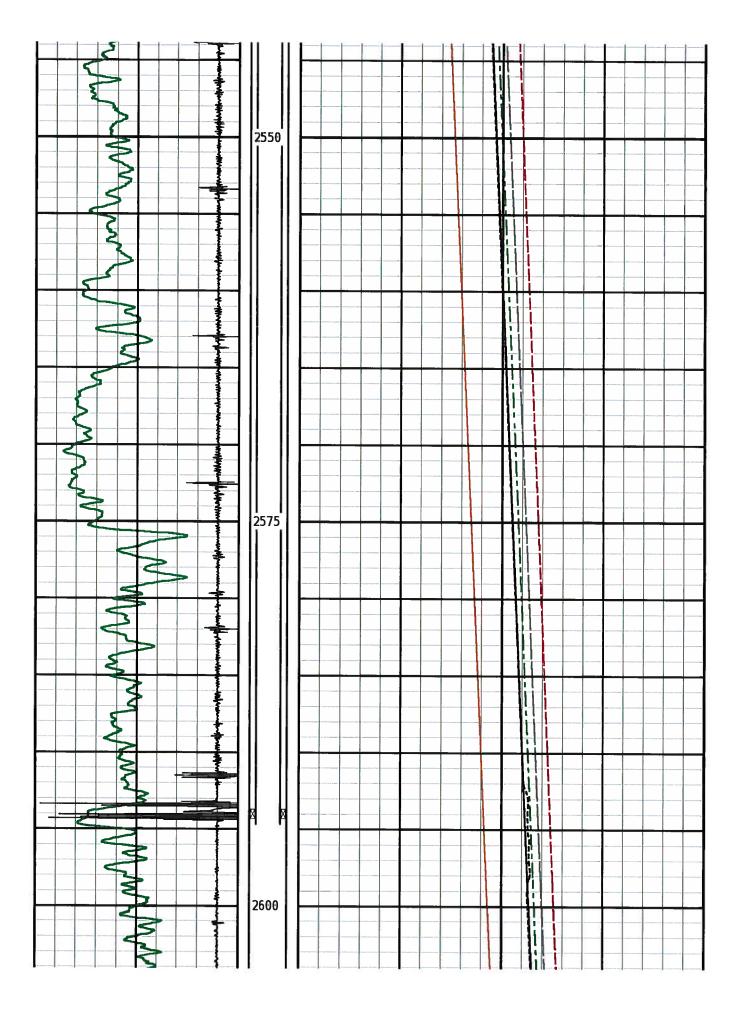

-50	Meter/Min	50		ě													
	LINE SPEED 25 UP							FI	.OWME	TER	30	DN					
-50	Meter/Min	50		- E		 			volut								
	LINE SPEED 15 UP							FL	.OWME	TER	10	DN					
50	Meter/Min	50		-6		 			volut								
	COLLAR LOCATOR			ě				FL	.OWME	TFR	25	UP					
-27000		3000		- 6		 			volut								
	GAMMA RAY							FL	.OWME	TFR	15	ΠΡ					
)	API	120		- 6		 			volut								
75				T		Ш	Ţ			7			-				I
>		- }			-					₹			>				-
	3	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \								3		<u> </u>					
								-		-	₹	7	•		-		-
		- }								_	1	िंद					
5		3		8	-					Į-				_			-
		3							1				}				-
\$		1 1	1 1	000000000								Щ	?				
		3		ğ-	-					- /-			3	<u> </u>			
3		3	1 1	ğ					3	1		\$		3			
-		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			-	 				_ /			خ				
2		\$				++			1	-	+	+ +	ξ.	4		+	+
1		Į.	1										1				
7		Aprendince of the sales							_(1	-		3	′			
3		\$		2.1						4			>	;			-
\supset		ŧ							1			5		2			\top
1		专		<u>u</u> _					-	1	-	15	,				_
₹			1 1							7		1		4			_
{			2650						_	2	3 38		٢.				
-				4_						2							
	1 000									+-		-		-			+
				4					300								
	GAMMA RAY					 		FL	OWME	TER	15	UP					
	API	120		- 6				Rev	/olut								
	COLLAR LOCATOR			_		 		FL	OWME	TER	25 I	UP	10	9 * 8 10	T 5	54	či.
27000	Millivolts	3000		-6				Rev	olut	ions	/Sec	ond					
	LINE SPEED 15 UP					 		FL	OWME	TER	10	DN					
50	Meter/Min	50		- 6				Rev	olut:	ions	/Sec	ond					

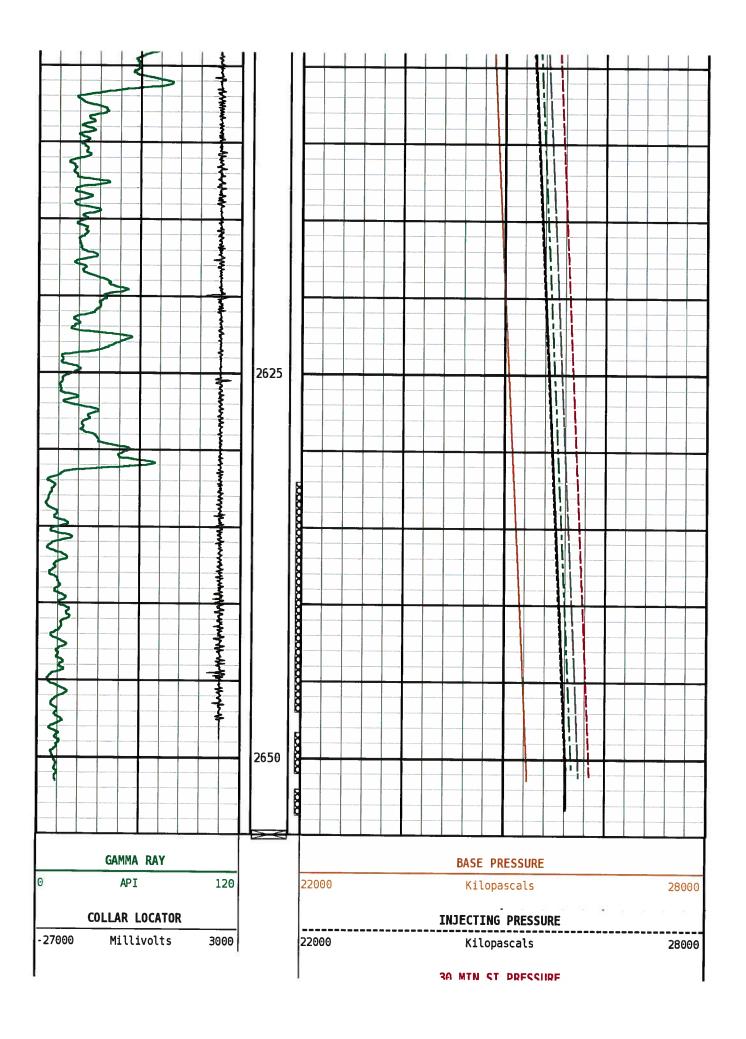

 	LINE SPEED 25 UP			FLUWMEIER 30 DN	i
- 50	Meter/Min	50	-6	Revolutions/Second	4
	LINE SPEED 10 DN	i			
- 50	Meter/Min	50			
	LINE SPEED 30 DN				
-50	Meter/Min	50			1
STA	RT DEPTH: 2653.7	DIRECTION: UP	DATE: 08/14/2009 10201205 XFLOW	TIME: 16:15 MODE: TRACE PLAYBAC	к
			XFLOW CHECK		
DEP	TH SCALE: 1:240			VERSION: 80214133R	


DEPT	H SCALE: 1:240		-			VERSION: 80	214133R
			MERGED TE	MPERATURES			
			1020	1205 TMPS			
FINI	SH DEPTH: 2398.0 Me	ters	DIRECTION: UP	DATE: 08/14/2009	TIME: 19	9:41 MODE:	TRACE PLAYBACK
				120	MIN SI T	EMP	
			55	Degi	reesCentig	rade	85
				90	MIN SI TE	EMP	
			55	Degr	eesCentig	rade	85
				60	MIN SI TE	EMP	
			55	Degr	eesCentig	rade	85
				30	MIN SI TE	EMP	
			55	Degr	eesCentig	rade	85
	COLLAR LOCATOR			INJ	ECTING TE	EMP	
27000	Millivolts	3000	55	Degr	eesCentig	rade	85
	GAMMA RAY			BASE	TEMPERAT	TURE	








DEPTH SCALE: 1:248 VERSTON: 80214133R

							102	2012	205	QP													
FINIS	SH DEPTH:	2395.0	Meters	DI	RECTI	ON	: UP		DAT	Έ:	08/ 1	L4/:	2009)	TIME	: 20	: 64	MO	DE:	TRACE	PLA	YBA	10
													120	MI	N SI	PRES	SSUR	E					
							22000	9						Κi	lopa	scals						280	0
													90	MIN	SI	PRES	SURE						
							22000	9						Ki	lopa	scals						280	9
													60	MIN	SI	PRES	SURE						
							22000	9						Ki	lopa	cals						280	Э
													30	MIN	SI	PRES	SURE						
				ı			22000	9						Ki	lopa	cals						286	0
	COLLAR LO	CATOR											INJ	ECT	ING	PRES	SURE						
27000	Milli	olts/	3000				22006)						Ki	lopas	cals						286	0
	GAMMA	RAY												BASE	PRI	ESSUF	RE						
	API		120		No.		22000	9						Ki	lopas	cals						280)
				$\ \ $																			-
	3			$\ \ $							***												
	4		#	↓	 2400						+	i											
	\$											j											
	25			4					$\ -$			ij		-					*********				
	3		-	4								i											
				П	1	۱																	1
	1			Н		H				-				-									
	5]		9																	L
	43		-	11						-	i								-				
	1		We had	$\ \ $	1	П				-			<u> </u>										
			1	11		Ш																	
	3		1	$\ \ $		$\ \ $				-	1												
											11:												-
	13		1			П					Hi		-									_	_
- <	\$		1	11		П			1		T	1											
	100																			1			

OU HAR OF TRESSORE 22000 Kilopascals 28000 **60 MIN SI PRESSURE** 22000 Kilopascals 28000 90 MIN SI PRESSURE 22000 Kilopascals 28000 120 MIN SI PRESSURE 22000 Kilopascals 28000

START DEPTH: 2655.0 DIRECTION: UP DATE: 08/14/2009 TIME: 20:03 MODE: TRACE PLAYBACK

10201205 QP

MERGED PRESSURES

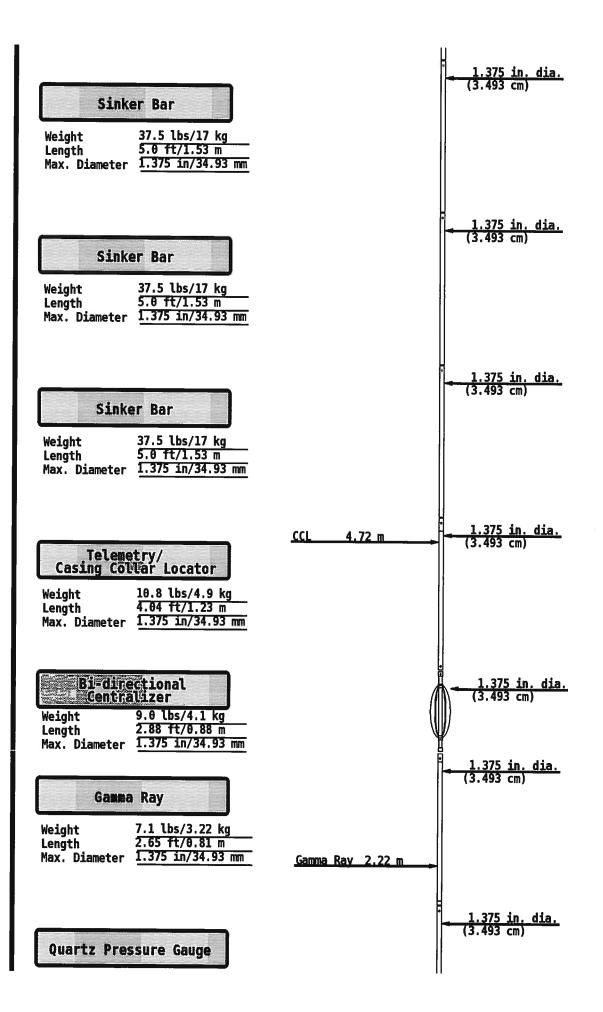
DEPTH SCALE: 1:240 VERSION: 80214133R

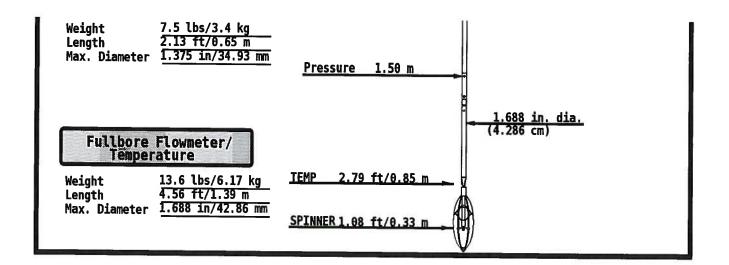
Cased Hole Cablehead

Weight 1.0 kg Length 0.30 m Max. Diameter 36.51 mm

Total Stack Weight 113.62 kg in air Total Stack Length 12.6 m

Sinker Bar


Weight 37.5 lbs/17 kg
Length 5.0 ft/1.53 m
Max. Diameter 1.375 in/34.93 mm


Sinker Bar

Weight 37.5 lbs/17 kg
Length 5.0 ft/1.53 m
Max. Diameter 1.375 in/34.93 mm

1.000 in. dia. (2.540 cm) 1.438 in. dia. (3.651 cm) 1.375 in. dia. (3.493 cm)

1.375 in. dia. (3.493 cm)

COMPANY PENGROWTH CORPORATION

WELL PENGROWTH JUDY CREEK 7-2-64-11

FIELD JUDY CREEK PROVINCE ALBERTA

Pollock, Ray

From:

Pollock, Ray

Sent:

Wednesday, December 23, 2009 10:59 AM

To:

Pollock, Ray; Myles, Al

Cc:

Johnson, Craig; Suchan, Ken; Muir, Colin; Oleksow, Joe; McLean, Corey; Pettigrew, Rod;

Witherly, Evan; Moriyama, Rob; Steele, Randy

Subject:

RE: 07-02-064-11 Temperature & Water Profile Log

Attachments: 07-02 Schem.xls

Hi all,

Al attempted to run these logs yesterday. During the first run (GR/CCL) to determine PBTD, they hit fill at 2652.69mKB, which is ~1m above the base of perfs (2653.7mKB) and ~2m above the top of the BP. Needless to say, we are unable to get below the bottom set of perfs to confirm isolation (however, the bridge is holding lots of fill...so that might be all the evidence we need).

So we will have to continue this conversation again in the New Year to determine if we want to put a rig on this well to do some isolation diagnostics.

A schematic is attached for your reference. Let me know if you have any questions.

Thanks

Ray

From: Pollock, Ray

Sent: Tuesday, December 15, 2009 3:33 PM

To: Myles, Al

Cc: Johnson, Craig; Suchan, Ken; Muir, Colin; Oleksow, Joe; McLean, Corey; Pettigrew, Rod; Witherly, Evan; JC

Field Ops; Moriyama, Rob; Steele, Randy; Pollock, Ray **Subject:** 07-02-064-11 Temperature & Water Profile Log

Al,

As discussed, please arrange to have the following wireline work done at 07-02-064-11. The attached program from Weatherford has most of the details. Note that the logging runs have been reduced from 3 to 2.

Run 1 - GR/CCL

Run 2 - Flow/Temp/GR/CCL

As per Al's note, this work is scheduled for Dec 22nd, so please shut-in 07-02 the morning of Sunday Dec 20th.

We are doing this work to:

- confirm isolation of the well
- see if the injection profile has changed due to the higher rates/low Pwh

We have changed the configuration of the logging tools in an attempt to get lower into the wellbore and to confirm PBTD.

GammaRay / CCL:

Run this tool / log string as low as possible to tag the BP & confirm PBTD.

Temperature Logging:

- The well must be shut in for 48 hours to allow the wellbore temperature to return to near geothermal.
- With the well shut-in, run a baseline temperature log (logged down) and a baseline gamma ray (logged up) from approximately 200m above the Beaverhill Lake to PBTD
- Inject produced water (from supply line) at normal injection pressure
- Subsequently, with well shut in conduct 4 temperature runs (logging down) at a minimum of 1/2 hour intervals to assist in identifying storage areas.

Water Injection Profile Logging:

- Please have the interpretation completed at 1m intervals.
- Please have the logging company get the spinner as close as possible to PBTD so we can establish if there is any flow going below the retainer.
- Please run spinner log(s) at maximum rate conditions. Operations should have already increased injection rate at 07-02.

Pstatic reservoir = ~24 MPa.

07-02-064-11

Rate & Wellhead pressure are unknown as the rate was increased on Dec 14th or 15th to maximum - please check FDC prior to shut-in

AFE: 2007DT0951 - 9300.331

If you have any questions or require any further information please contact me.

Ray Pollock, P. Eng.

Exploitation Engineer Pengrowth Corporation Ph: (403) 806-3262 Fax: (403) 234-6753

ray.pollock@pengrowth.com

PENGROWTH CORPORATION

APPENDIX V WATER TRACER ANALYSIS

INNOVATIVE ENERGY TECHNOLOGIES PROGRAM 2010 FINAL REPORT

JUDY CREEK PATTERN 102 CO₂ PILOT

Pengrowth: Judy Creek Field Sample Analysis Results

Report date 11-Jun-10

Injection well 07-02-64-11-W5M Injection date 28-Mar-07

IWT IWT-1200 Amount, L 20

Color code

N.D. indicates that tracer was not detected

	11-Apr-07 11-May-07 11-Jul-07 14-Sep-07 11-Nov-07 9-Jan-08	14 44 105 170	(ppt) N.D. N.D. N.D.	
	11-Jul-07 14-Sep-07 11-Nov-07 9-Jan-08	105 170		
	14-Sep-07 11-Nov-07 9-Jan-08	170	N.D.	
	11-Nov-07 9-Jan-08			1
	9-Jan-08	200	<50	
		228	197	
	40 = 1 00	287	200	
	13-Feb-08	322	650	
	12-Mar-08	350	470	
	11-Apr-08	380	690	
	11-May-08	410	950	
	11-Jun-08	441	840	
02-02-64-11-W5M	10-Jul-08	470	730	
	10-Aug-08	501	810	
	11-Oct-08	563	890	
	12-Nov-08	595	630	
	18-Jan-09	662	660	
	12-Feb-09	687	522	
	12-May-09	776	390	
	14-Jul-09	839	433	
	11-Oct-09	928	540	
	12-Jan-10	1021	300	
	11-Feb-10	1051	410	
	11-May-10	1140	297	Latest data
	29-Aug-08	520	N.D.	
6-1-64-11-W5M	11-Oct-08	563	N.D.	
O-1-04-11-842M	18-Jan-09	662	N.D.	
	11-Feb-10	1051	480	Latest data
	11.0 0=			
	11-Apr-07	14	N.D.	
	11-May-07	44	N.D.	
	11-Jul-07	105	N.D.	
	14-Sep-07	170	N.D.	
THE PERSON NAMED IN	11-Nov-07 9-Jan-08	228 287	N.D.	
	9-Jan-08 13-Feb-08		N.D.	
	13-Feb-08 12-Mar-08	322	760	
	11-Apr-08	350	850	
	11-May-08	380 410	1010	
	11-May-08	441	1790	
06-02-64-11-W5M	10-Jul-08	470	1660 1510	
OU OF OUT IT STORY	10-Jul-08	501	1240	
and the same of the same	11-Oct-08	563	1230	
MILES VERY TOP OF THE	12-Nov-08	595	863	
	18-Jan-09	662	620	
	12-Feb-09	687	563	
	14-May-09	778	310	
the state of the s				
	14-Jul-09	6.39	384	1
	14-Jul-09 11-Oct-09	839 928	389 430	
	14-Jul-09 11-Oct-09 12-Jan-10	928 1021	430 310	

	11-May-07	AA .	N.D.	
	11-May-07 11-Jul-07	44	N.D.	
	14-Sep-07	105 170	N.D.	
	9-Jan-08	287	N.D. 900	
	13-Feb-08	322	900 <50	
	12-Mar-08	350	N.D.	
	11-Apr-08	380	<50	
	11-May-08	410	180	
	11-Jun-08	441	380	
08-02-64-11-W5M	10-Jul-08	470	560	
	10-Aug-08	501	730	
	11-Oct-08	563	1030	
	18-Jan-09	662	910	
	12-May-09	776	470	
	11-Oct-09	928	1120	
	12-Jan-10	1021	870	
	11-Feb-10	1051	1610	
	11-May-10	1140	1381	Latest data
	11-Apr-07	14	70	
	11-May-07	44	7728	
	11-Jun-07	75	2840	
	11-Jul-07	105	3960	
	14-Sep-07	170	<50	
	9-Jan-08	287	N.D.	
10-02-64-11-W5M	13-Feb-08	322	670	
OL OT ITTOM	11-May-08	410	1220	
	11-Jun-08	441	1390	
	10-Aug-08	501	1630	
	11-Oct-08	563	1920	
	18-Jan-09	662	N.D.	not enough water
	12-Jan-10	1021	910	
	29-Aug-08	520	N.D.	
	29-AUU-UO I		14.0.	
2 04 64 44 14/24	11-Oct-08	563	N.D.	1
2-01-64-11-W5M	11-Oct-08 18-Jan-09		N.D. N.D.	
2-01-64-11-W5M	11-Oct-08	563	N.D. N.D.	
2-01-64-11-W5M	11-Oct-08 18-Jan-09	563		
2-01-64-11-W5M	11-Oct-08 18-Jan-09	563 662 228		
	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08	563 662 228 520	N.D. N.D. N.D.	
	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08	563 662 228 520 563	N.D. N.D. N.D. N.D.	
	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08	563 662 228 520	N.D. N.D. N.D.	
	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08	563 662 228 520 563	N.D. N.D. N.D. N.D.	
	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09	563 662 228 520 563 662	N.D. N.D. N.D. N.D. N.D. N.D.	
	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09	563 662 228 520 563 662	N.D. N.D. N.D. N.D. N.D. N.D.	
4-02-64-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08	563 662 228 520 563 662 410 520	N.D. N.D. N.D. N.D. N.D. N.D.	
4-02-64-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08 11-Oct-08	563 662 228 520 563 662 410 520 563	N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
4-02-64-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08	563 662 228 520 563 662 410 520	N.D. N.D. N.D. N.D. N.D. N.D.	
4-02-64-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08 11-Oct-08	563 662 228 520 563 662 410 520 563	N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
4-02-64-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08 11-Oct-08 18-Jan-09	563 662 228 520 563 662 410 520 563 662	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
4-02-64-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08 11-Oct-08 18-Jan-09	563 662 228 520 563 662 410 520 563 662	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
4-02-64-11-W5M 4-35-63-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08 11-Oct-08 18-Jan-09	563 662 228 520 563 662 410 520 563 662	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
4-02-64-11-W5M 4-35-63-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08 11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08	563 662 228 520 563 662 410 520 563 662	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
4-02-64-11-W5M 4-35-63-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08 11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08	563 662 228 520 563 662 410 520 563 662 228 520 563	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
4-02-64-11-W5M 4-35-63-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08 11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09	563 662 228 520 563 662 410 520 563 662 228 520 563 662	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
4-02-64-11-W5M 4-35-63-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08 11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09	563 662 228 520 563 662 410 520 563 662 228 520 563 662	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
4-02-64-11-W5M 4-35-63-11-W5M 6-02-64-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08 11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 11-Oct-08 11-Oct-08 11-Oct-08 11-Oct-08	563 662 228 520 563 662 410 520 563 662 228 520 563 662	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	
12-01-64-11-W5M 14-02-64-11-W5M 14-35-63-11-W5M 6-02-64-11-W5M	11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09 11-May-08 29-Aug-08 11-Oct-08 18-Jan-09 11-Nov-07 29-Aug-08 11-Oct-08 18-Jan-09	563 662 228 520 563 662 410 520 563 662 228 520 563 662	N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D.	

02-02-64-11-W5M

- 1. Most consistant presence of tracer. A single tracer wave.
- 2. One of two lowest maximum concentrations, suggesting this is a more homogenous area of the reservoir.
- 3. The lower concentration also suggests the permeability in this area is lower than high concentration wells.
- 4. Slight increase in tracer concentration on the last sample collection date, possibly suggesting a second tracer wave

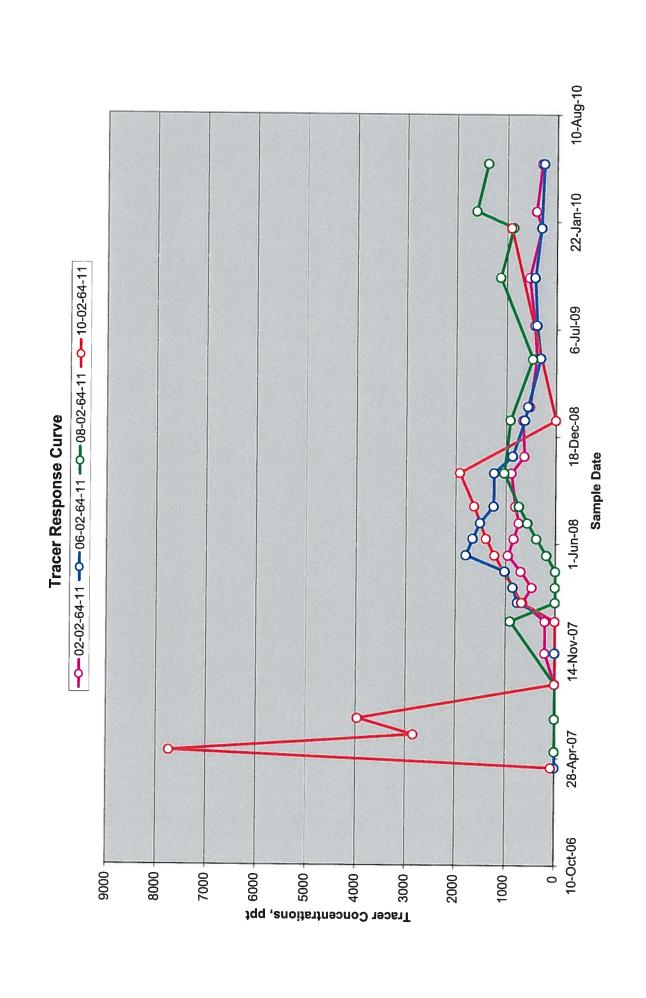
06-02-64-11-W5M

- 1. Consistant tracer presence.
- 2. Higher concentration of tracer, suggesting a more significant pathway.
- 3. Last sample has a slight increase in tracer concentration, possibly suggesting a second tracer wave is starting to

10-02-64-11-W5N

- 1. Significantly highest tracer concentration.
- 2. Earliest date of tracer showing up.
- 3. Above two suggest more heterogeneity in this area, as awell as a higher permeability streak between the injector
- 4. A second tracer wave collaborates the greater heterogeneity in this area.

08-02-64-11-W5M


- 1. Somewhat similar to 10-02 in that tracer showed up here the second fastest, and there was two elution curves.
- 2. Second elution curve suggests the second pathway has a lower permeability, but has a larger portion of the

16-02-64-11-W5N

- 1. Tracer showed up at this production well quicker and at a higher concentration than at 02-02 and 06-02 producers
- 2. The moderate single date tracer presence, suggests a thin, high permeability streak in the NE direction. This

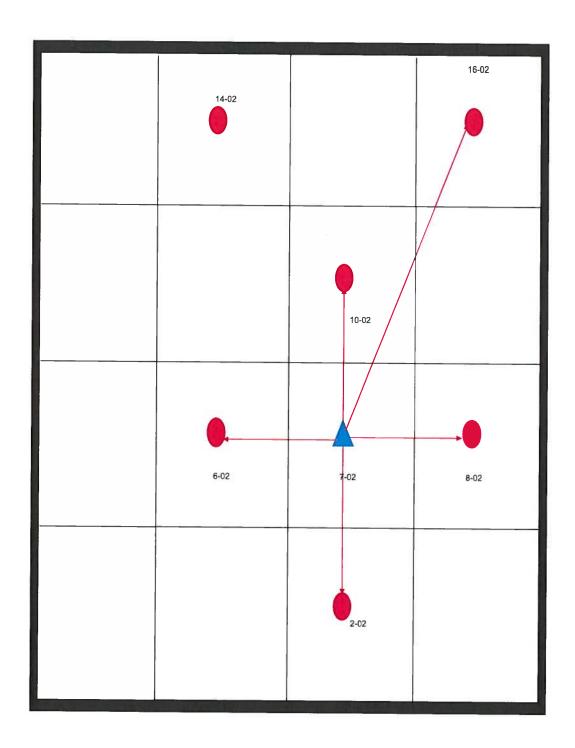
Summary

1. There appears to be more homogeneity in a SW direction, and greater heterogeneity in a NE direction.

6-Jul-09 14-Oct-09 22-Jan-10 2-May-10 10-Aug-10 9-Sep-08 18-Dec-08 28-Mar-09 Time 14-Nov-07 22-Feb-08 1-Jun-08 Tracer Concentrations, ppt

Elution Curve: 02-02-64-11 from 07-02-64-11-W5M: IWT-1200

10-Aug-10 22-Jan-10 60-JnF-9 18-Dec-08 1-Jun-08 14-Nov-07 28-Apr-07 0 10-Oct-06 2000 Tracer Concentrations, ppt 1800 200 1600 1400 400 009


Elution Curve: 06-02-64-11 from 07-02-64-11-W5M: IWT-1200

10-Aug-10 22-Jan-10 6-Jnr-9 18-Dec-08 Time 1-Jun-08 14-Nov-07 28-Apr-07 0 10-Oct-06 Tracer Concentrations, ppt 2000 1800 1600 1400 200 009 400

Elution Curve: 08-02-64-11 from 07-02-64-11-W5M: IWT-1200

10-Aug-10 22-Jan-10 60-Inf-9 18-Dec-08 1-Jun-08 14-Nov-07 28-Apr-07 0 10-Oct-06 Tracer Concentrations, ppt 0006 8000 2000 2000 1000

Elution Curve: 10-02-64-11 from 07-02-64-11-W5M: IWT-1200

PENGROWTH CORPORATION

APPENDIX VI ECONOMICS

INNOVATIVE ENERGY TECHNOLOGIES PROGRAM 2010 FINAL REPORT

JUDY CREEK PATTERN 102 CO₂ PILOT

Table 1: PRODUCTION SUMMARY

Project clasified as conventional oil, natural gas, or oilsands?	conventional oil
Oil Density (Kg/m³), if applicable:	41 API
Production Start Date (MM/YYYY):	01/2006
Production End Date (MM/YYYY):	01/2015

		# of Wells					Produc	Production Volumes	nes				
	# of	# Of	# of										
	Producing	Producing	Injection	ō	Raw Gas	Sales Gas	Ethane	Propane	Butane	Condensate	Sulpher		
	Oil Wells	Gas Wells	Wells	[MSTB]	[MMSCF]	MMSCF	MSTB	MSTB	MSTBI	MSTBI	IMI	Other	BOF (6-1)
2006	6 4.0	0.0	1.0	4.7	0.0	0.2	-0.6	0.2	0.2	0.1	100		4 6 'C' 1/
2007	7 4.0	0.0	1.0	13.3	57.7	27.0	10.8	1.4	0.8	0.3	0		31.0
2008	8 4.0	0.0	1.0	26.5	84.6	39.9	15.0	2.4	1.5	9.0		200	50.7
2009	4.0	0.0	1.0	30.6	48.1	23.4	6.6	2.0	14	0.5		000	45.1
2010	0 4.0	0.0	1.0	18.4	24.2	11.9	3.0	10	80	0.3			13.1 2.1
2011	1 4.0	0.0	1.0	9.0	4.0	2.2	-0.2	0.5	0.3	0.0	200	0.0	40.0
2012	4.0	0.0	1.0	3.0	0.2	0.2	-0.3	0.1	0	00	200	0.0	0.0
2013	3 4.0	0.0	1.0	0.0	0.0	0.0	0.0	00	0.0	0.0	000	200	
Tot.	4.0	0.0	1.0	105.5	218.7	104.8	34.3	7.8	5.1	2.0	000	000	172.2
										i			7.7

^{*} Remaining years to be summed up.

Notes: - M \$ stands for thousand dollars

Table 2: COST SUMMARY

													Operating Cost	ng Cost			
Î				ပ	Capital Cost	Cost					٥	Direct			Indirect		
						3D	Isolation	CO2			Man						Total
	Pipelines		Downhole Sampling	Skid Rental	Other	Seismic	Testing	r Seismic Testing Purchases		Fuel Cost	Power		TOTAL			TOTAL	Operating
	[M &]	[M \$]	[M &]	[M 8]	[% ₩]	<u>[</u> ¥	[M &]	[¥ [¥]	TOTAL CAPITAL	[¥	[M	WAG IM \$1	Direct	Item #1	Item #2		Costs
2006	2,230.4	950.0	0.0	0.0	0.0	353.3	0.0	0.0	3,533.7		0.0	0.0	0.0				00
2007	557.6	0.0	70.0	143.0	22.5	25.7	0.0	2,226.6	3,045.4		11.0	33.0	44.0				44.0
2008	0.0	0.0	105.0	156.0	0.0	0.0	0.0	2,499.2	2,760,2		12.0	36.0	48.0			,	48.0
2009	0.0	0.0	105.0	52.0	0.0	247.5	0.0	1,287.6	1.692.1	,	4.0	12.0	16.0	1	Ţ.		16.0
2010	0.0	0.0	105.0	140.0	0.0	5.6	0.0	0.0	250.6	,	0	200	2	1	1		200
2011	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0		000	000	2	1			0.00
2012	0.0	0.0	0.0	0.0	0.0	0.0	000	0.0	0.0		000	0.0	200				000
2013	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0:0		0.0	0.0	00				200
П	2,788.0	950.0	385.0	491.0	22.5	632.1	0.0	6,013.3	11,281.9		27.0	81.0	108.0				108.0

TOTAL COSTS [M \$] 3,533.7 3,089.4 2,808.2 1,708.1 250.6 0,0 0.0 0.0

Remaining years to be summed up.

Notes:
- M \$ stands for thousand dollars
- Direct costs include such items as: operating labor, fuel, water, electricity, well service & maintenace, etc.
- Direct costs such as overhead, insurance, property taxes that are directly attributable to the innovation technology.

Table 3: ROYALTY SUMMARY

Old/New 2006-2008. NRF 2009-2013

Crown Land %: Vintage (Old, New, or Thrid Tier), if applicable - Provide Base Case Royalty Regime (e.g. Hz. Reentry Royalty

				Royalty Rate	ate						Royalty Due	ne		
		Gas	Ethane	Propane	Butane	Condensate	AVERAGE		Gas	Ethane	Propane	Butane	Condensate	TOTAL
	Oil royalty	royalty	royalty	royalty	royalty	royalty rate	ROYALTY	Oil royalty	royalty	rovaltv	rovaltv	rovalt	rovalty due	—
	rate [%]	rate [%]	rate [%]	rate [%]	rate [%]	[%]	RATE [%]	due [MS]	due [M\$]	due [M\$]	due [M\$]	due [M\$]	\$1 [M\$1	DUE IM \$1
2006	22.2%	33.0%	33.0%	30.0%	%0 [*] 0E	42.0%	31.7%	125.7	0.3	-4.1	2.6	2.7	2.1	
2007	23.0%	33.0%	33.0%	30.0%	30.0%	42.0%	31.8%	364.3	67.7	73.4	19.7	15.0	11.6	551.6
2008		33.0%	33.0%	30.0%	30.0%	42.0%	32.0%	1,011.5	118.7	121.3	36.8	29.5	29.6	1,347.4
2009	27.4%	10.9%	10.9%	30.0%	30.0%	42.0%	25.2%	857.0	22.9	19.7	16.8	14.8	15.3	946.4
2010	29.7%	5.3%	5.3%	30.0%	30.0%	40.0%	23.4%	598.7	3.2	2.3	20.9	15.7	10.7	651,6
2011	30.2%	5.0%	2.0%	30.0%	30.0%	40.0%	23.4%	396.1	0.4	-0.1	8.7	7.9	5.8	418.7
2012	25.7%	2.0%	2.0%	30.0%	30.0%	40.0%	22.6%	146.4	0.0	-0.2	2.6	2.4	1.7	152.9
2013	20.5%	5.0%	2.0%	30.0%	30.0%	40.0%	21.7%	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tot.	25.3%	16.3%	16.3%	%0'0E	30.0%	41.0%	26.5%	3,499.6	213.3	212.2	108.0	88.0	76.8	4.198.0

^{*} Remaining years to be summed up.

Notes:
- M \$ stands for thousand dollars
Actual prices 2006-2010. April 2010 GLJ Forecast

`	
-	
	í
_	į
-	
5	į
=	
	ì
u	i
v	í
-	
-5	
-	
_	í
=	•
ш	
_	
I	
77	ì
U	į
◂	ľ
C	Į
÷	
~	
ď	,
4	
٥	
٩	
ahla	
Table	

	-					e co		R-0						E 60	
			AFTER TAX	CASH FLOW	IM SI	666 8	CV 4 6	260	2000	-575	616	KINE	6000	EUS.	-5.488
	Tayee				Taxes [M S] Total Taxes	00-	3	240	440	167	104	17	47	14	534
	۴	3		Blended	Taxes [M \$]	g	45	2 4	2	16/	5	17	147	184	534
			BEFORE	TAX CASH	FLOW IM SI	-3.321	2 129	405	200	904-	720	523	146	0	-4,956
	Γ		Total	Costs	Σ	3.672	3.680	4 250	2,5.50	21/12	8	443	161		15.862
			Total	ORR	S N	6	95	9	5 8	ន	42	24	i «	0	Τ.,
			Total	Royalties	æ ∑	129	552	1 347	5 5	240	652	419	153)	4.198
	Costs		Total CO2	Purchases	[W &]	0	2,227	2 499	000	007	0	0	c	c	6,013
			Total	5	<u>[</u> ¥	0	44	48	9	2	0	0	0		108
-1			Total	Capital	<u>⊊</u>	3,534	819	261	2	Ş	251	0	0	0	5,269
			Total	Revenue	[M S]	350	1.551	3.754	2000	2,00	1,664	996	317	0	10,907
			Other	Revenue	[M \$]	0	0	0	c		0	0	0	0	0
			Sulpher	Revenue	S M	0	0	0	-		٥	0	o	0	0
	e			Condensate	Hevenue [M S]	5	27	69	88	3 8	77	14	4	0	185
	Revenue		Butane	Revenue		4	18	96	49	2 2	20	56	8	0	256
			Propane	Œ	M	6	99	123	95	6	2	53	6	0	360
			Ethane	匹_	£	-12	219	362	74		3	-3	4-	0	699
				<u> </u>	Α Σ	-	202	354	95	ą	P	. 8	1	0	602
			ō	Revenue		-	1,020	3 2,747	1.993	ľ	1	891	299	0	8,728
						2006	2007	2008	2009	2010		2011	2012	2013	Tot.

* Remaining years to be summed up.

Notes:
- M \$ stands for thousand dollars

Actual prices 2006-2010. April 2010 GLJ Forecast

Judy Creek CO2 Pilot - Incremental Economics

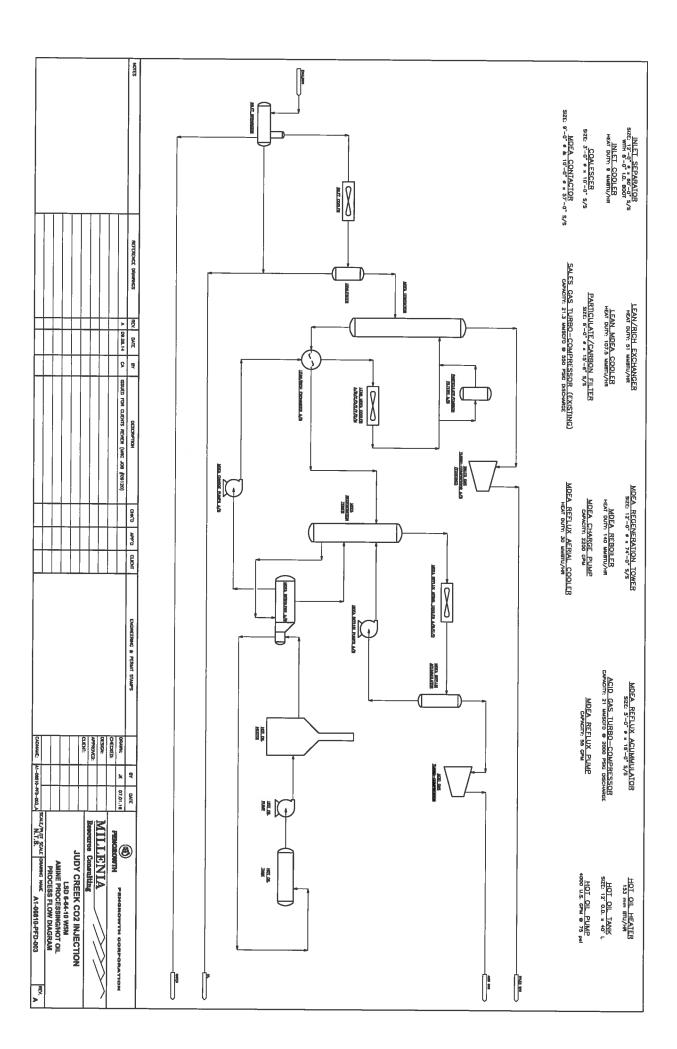
Table 5	Table 5: ECONOMIC INDICATORS	IDICATORS	
	Before Tay & Douglay	Before Tax	After
1) Rate of Return [%]	N/A	N/A	I ax & Hoyairy N/A
2) Payout [months]	NO PAYOUT	NO PAYOUT	NO PAYOUT NO PAYOUT NO PAYOUT
3) Project NPV NPV ₅ [M \$]	-1.513	-5.796	-6.220
NPV ₁₀ [M \$]	-2,362	-6,716	-7,191
NPV ₁₂ [M \$]	-2,712	-7,098	-7,590
NPV ₁₅ [M \$]	-3,250	-7,689	-8,200
4) NPV of Crown royalty			
NPV ₅ [M \$]		3,984	3,984
NPV ₁₀ [M \$]		4,049	4,049
NPV ₁₂ [M \$]		4,078	4,078
NPV ₁₅ [M \$]		4,126	4,126

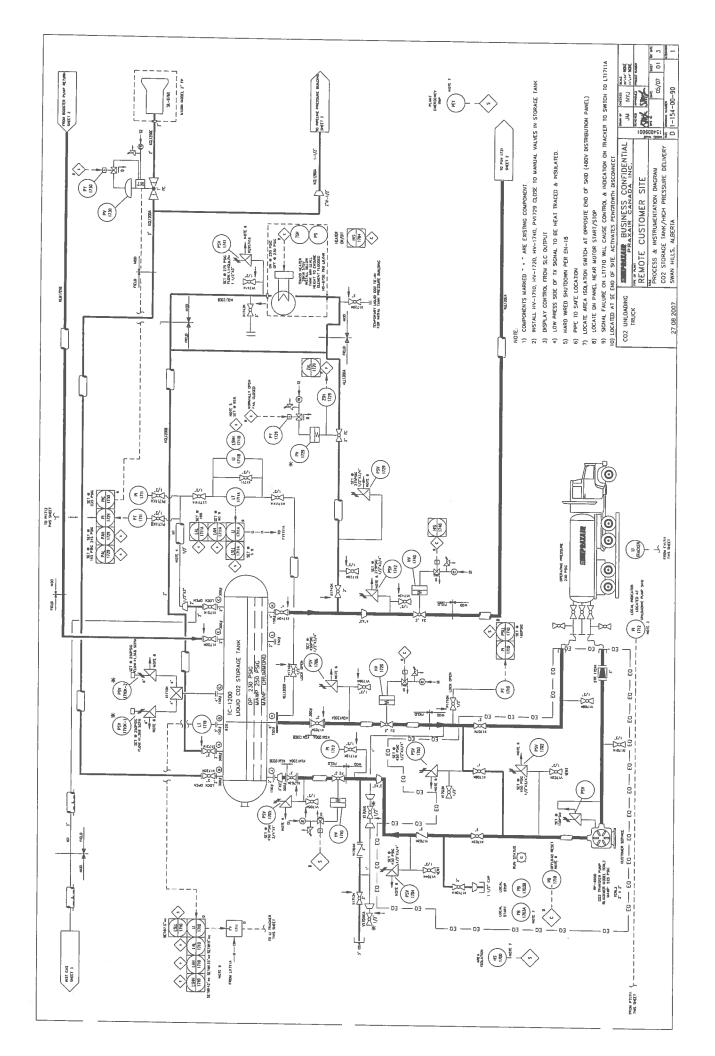
Notes:
- M \$ stands for thousand dollars
Actual prices 2006-2010. April 2010 GLJ Forecast

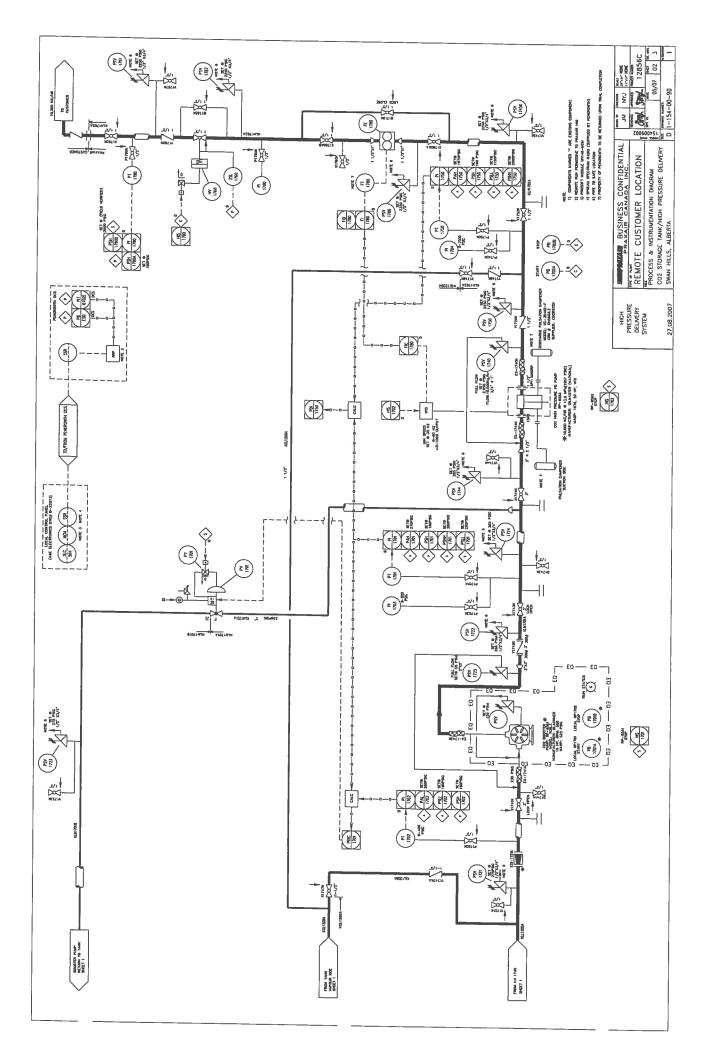
Judy Creek CO2 Pilot - Incremental Economics

¥	
Ċ	
ä	•
ш	1
\mathbf{c}	
ă	
ο.	
Œ	
-	
7	١
۲	

	Light sweet As spent	AECO Spot As Spent	Spec Ethane As Spent	Propane As Spent	Butane As Spent	C5+ As Spent
	C\$/ppi	C\$/mmBTU	C\$/ppl	C\$/ppl	C\$/ppl	C\$/ppl
2006	73.08	7.61	18.24	42.15	55.73	76.75
2007	76.85	7.20	22.20	45.93	59.09	80.97
2008	103.48	8.57	22.20	50.98	66.15	117.82
2009	65.18	4.22	14.32	27.35	35.88	70.06
2010	77.87	4.17	16.61	59.89	65.91	84.27
2011	99.19	4.01	17.52	63.67	78.83	107.81
2012	101.02	4.74	15.72	63.64	77.79	104.05
2013	100.51	5.31	17.66	63.32	77.39	102.52


Actual prices 2006-2010. April 2010 GLJ Forecast


PENGROWTH CORPORATION


APPENDIX VII PROCESS FLOW DIAGRAMS

INNOVATIVE ENERGY TECHNOLOGIES PROGRAM 2010 FINAL REPORT

JUDY CREEK PATTERN 102 CO₂ PILOT

PENGROWTH CORPORATION

APPENDIX VIII ERCB EOR APPROVAL 10269

INNOVATIVE ENERGY TECHNOLOGIES PROGRAM 2010 FINAL REPORT

JUDY CREEK PATTERN 102 CO₂ PILOT

Calgary Office 640 - 5 Avenue SW Calgary, Alberta Canada T2P 3G4 Tel 403 297-8311 Fax 403 297-7336

January 19, 2007

Ray Pollock
Pengrowth Corporation
2900, 240 - 4 Avenue SW
Calgary AB T2P 4H4

Dear Mr. Pollock:

JUDY CREEK BEAVERHILL LAKE A POOL ENHANCED OIL RECOVERY (EOR) APPLICATION NO. 1463712 APPROVAL NO. 10269E

The Alberta Energy and Utilities Board (EUB) has considered your application dated May 31, 2006 and supporting submissions dated September 12 and November 2, 2006, requesting an amendment to Approval No. 10269. Your application has been granted and Approval No. 10269E is enclosed for this purpose.

Pengrowth is advised that the operations in the carbon dioxide flood area must be annually reported and presented along with the current hydrocarbon miscible flood operations as per the EUB's IL 96-2: Progress Report Requirements for Miscible Flood Schemes. Annual reports and presentations should provide separate coverage for each of the carbon dioxide flood area and the hydrocarbon solvent flood area for clarity.

Pengrowth is reminded that all other required EUB approvals and requirements for the carbon dioxide flood operations must be applied for and met in the normal manner. All requirements and provisions of *Directive 056: Energy Development Applications and Schedules* regarding the potential increase in the H₂S concentration in the produced gas must be adhered to.

The EUB recommends that resources applications be submitted through the Electronic Application Submission (EAS) system. Access to EAS for resources applications is available on the Digital Data Submission (DDS) page on the EUB's Web site (www.eub.ca). To setup a DDS account, contact the EUB DDS Administrator at (403) 297-5802 or by email at EUB.DDSAdministrator@eub.gov.ab.ca.

Questions on this matter should be directed to Steve Thomas at 297-6950.

Yours truly,

Tom Byrnes, P.Eng.

Staff Reservoir Engineering Specialist

000

Resources Applications

TB/am Enclosure

ENHANCED OIL RECOVERY Approval No. 10269E

MADE at the City of Calgary, in the Province of Alberta, on

19th day of January 2007.

ALBERTA ENERGY AND UTILITIES BOARD

The Alberta Energy and Utilities Board, pursuant to the Oil and Gas Conservation Act, chapter O-6 of the Revised Statutes of Alberta, 2000, orders as follows:

- 1) The scheme of Pengrowth Corporation (hereinafter called "the Operator") for enhanced recovery of oil by miscible displacement using hydrocarbon solvent, chase gas, carbon dioxide and water injection in that part of the Judy Creek Beaverhill Lake A Pool as outlined on Appendix A of the approval, as described in
 - a) Application No. 1088305,
 - b) Application No. 1094123,
 - c) Application No. 1243118,
 - d) Application No. 1247874.
 - e) Application No. 1246844,
 - f) Application No. 1268927,
 - g) Application No. 1268929,
 - h) Application No. 1274163,
 - i) Application No. 1275022,
 - j) Application No. 1275025,
 - k) Application No. 1284185,
 - l) Application No. 1289469,
 - m) Application No. 1292918,
 - n) Application No. 1296768,
 - o) Application No. 1296323,
 - p) Application No. 1303547,
 - q) Application No. 1303794,
 - r) Application No. 1307710,
 - s) Application No. 1307725,
 - t) Application No. 1311173,
 - u) Application No. 1315278,
 - v) Application No. 1322961,

- w) Application No. 1328170,
- Application No. 1332924, x)
- Application No. 1331892. y)
- Application No. 1336975, Z)
- aa)
- Application No. 1336981, bb) Application No. 1337023,
- cc) Application No. 1342553,
- dd) Application No. 1344016, ee) Application No. 1347069,
- Application No. 1354570, ff)
- gg) Application No. 1377596,
- hh) Application No. 1377772,
- ii) Application No. 1382738,
- Application No. 1379687, ii)
- kk) Application No. 1390535, II) Application No. 1393834,
- mm) Application No. 1428296,
- nn) Application No. 1443242,
- 00) Application No. 1455268,
- pp) Application No. 1468870,
- qq) Application No. 1463712,

is approved, subject to the terms and conditions herein contained.

PART 1 WATER FLOOD AND HYDROCARBON SOLVENT FLOOD AREA

2) For the purpose of this approval, "solvent" means a suitable mixture of hydrocarbons ranging from methane to pentanes plus, but consisting largely of methane, ethane and propane,

wherein the ethane plus content of the solvent shall be of sufficient quantity to obtain first-contact miscibility with reservoir oil as determined by the procedure outlined on the attached Appendix B.

3) In accordance with the scheme, the injection of solvent, chase gas and water shall proceed into the subject pool in accordance with the following schedule of commencement dates for the wells with the following unique identifiers. Fluids to be injected, having commenced in accordance with the schedule may continue. The pattern numbers given below correspond to those identified by the operator.

Well Location	Operator's <u>Pattern No.</u>	Commence Injection Water	<u> Date</u> <u>Solvent/Gas & Water</u>
00/10-19-063-10W5/0	58	-	terminal waterflood
00/04-28-063-10W5/0	10	currently injecting	-
00/11-28-063-10W5/2	116	-	currently injecting
00/12-28-063-10W5/0	87	-	terminal waterflood
02/12-28-063-10W5/2	22A	-	terminal waterflood
00/04-29-063-10W5/0	122	-	currently injecting
02/10-29-063-10W5/0	70	-	terminal waterflood
00/12-29-063-10W5/0	69	-	terminal waterflood
00/02-30-063-10W5/0	75	-	terminal waterflood
00/04-30-063-10W5/0	12	-	terminal waterflood
00/10-30-063-10W5/0	59	•	terminal waterflood
00/12-30-063-10W5/0	72	-	terminal waterflood
00/02-31-063-10W5/0	67	-	terminal waterflood
00/04-31-063-10W5/0	20	•	terminal waterflood
00/12-31-063-10W5/0	27	-	terminal waterflood
00/16-31-063-10W5/0	79	-	terminal waterflood
00/02-32-063-10W5/0	68	-	terminal waterflood
00/10-32-063-10W5/0	24	-	terminal waterflood
00/14-32-063-10W5/0	25	-	terminal waterflood
00/04-33-063-10W5/0	22	-	terminal waterflood
00/07-33-063-10W5/3	80A	-	terminal waterflood
00/11-33-063-10W5/3	110	-	terminal waterflood
00/13-33-063-10W5/2	39A	-	terminal waterflood
00/15-33-063-10W5/2	64A	-	terminal waterflood
00/12-14-063-11W5/0	89	-	terminal waterflood
00/10-15-063-11W5/0	1	-	terminal waterflood
00/10-22-063-11W5/0	111	currently injecting	-
00/04-23-063-11W5/0	4	-	terminal waterflood
00/10-23-063-11W5/0	14	-	terminal waterflood
00/12-23-063-11W5/0	90	-	terminal waterflood
00/04-24-063-11W5/0	5	-	terminal waterflood
00/10-24-063-11W5/0	57	-	terminal waterflood
00/12-24-063-11W5/0	76	-	terminal waterflood
00/02-25-063-11W5/0	74	-	terminal waterflood
00/04-25-063-11W5/0	13	-	terminal waterflood

02/10-25-063-11W5/0	19	=	terminal waterflood
00/12-25-063-11W5/0	91	. —	terminal waterflood
00/02-26-063-11W5/0	73	2	terminal waterflood
00/04-26-063-11W5/0	15		
00/10-26-063-11W5/0	18	ALC: 4	terminal waterflood
00/12-26-063-11W5/0	106	-	terminal waterflood
00/02-27-063-11W5/0	114	-	currently injecting
00/10-27-063-11W5/0	62	-	currently injecting
00/02-34-063-11W5/0	117	3	terminal waterflood
00/02-34-063-11W5/0		-	currently injecting
00/10-34-063-11W5/0	63	currently injecting	-
	31	-	terminal waterflood
00/02-35-063-11W5/0	83	-	terminal waterflood
00/04-35-063-11W5/0	7	= :	terminal waterflood
00/10-35-063-11W5/0	32	-	terminal waterflood
00/12-35-063-11W5/0	93	-:	terminal waterflood
00/02-36-063-11W5/0	71	© Y	terminal waterflood
00/04-36-063-11W5/0	29	- >	terminal waterflood
02/10-36-063-11W5/0	28	=	terminal waterflood
00/12-36-063-11W5/0	86		terminal waterflood
S0/02-04-064-10W5/2	92	<u> </u>	terminal waterflood
00/12-04-064-10W5/0	84	=	terminal waterflood
00/02-05-064-10W5/0	38	_	terminal waterflood
00/04-05-064-10W5/0	37	-	terminal waterflood
00/07-05-064-10W5/0	96	-	terminal waterflood
00/11-05-064-10W5/2	115	<u>=</u>	currently injecting
00/12-05-064-10W5/0	78	-	terminal waterflood
00/15-05-064-10W5/2	41A	12	terminal waterflood
00/02-06-064-10W5/0	36	w n e	terminal waterflood
00/04-06-064-10W5/0	35	: = : = : = : = : = : = : = : = : = : =	terminal waterflood
02/12-06-064-10W5/0	66		terminal waterflood
00/15-06-064-10W5/2	42A	:=	terminal waterflood
00/01-07-064-10W5/2	112	-	currently injecting
00/03-07-064-10W5/3	109	,	terminal waterflood
00/10-07-064-10W5/0	65	_	
00/02-08-064-10W5/0	88		terminal waterflood
00/04-08-064-10W5/0	52	: -	terminal waterflood
00/05-08-064-10W5/0	52A	-	terminal waterflood
00/02-01-064-11W5/0	34	-	terminal waterflood
00/04-01-064-11W5/0	33	-	terminal waterflood
02/10-01-064-11W5/0	43	-	terminal waterflood
00/04-02-064-11W5/0	45 45	-	terminal waterflood
<pre><rescinded¹>00/07-02-064-11W5/0</rescinded¹></pre>		. ₹	terminal waterflood
00/12-02-064-11W5/0	102	-	terminal waterflood
00/12-02-064-11W5/0 00/02-03-064-11W5/0	97	-	terminal waterflood
	94	-	terminal waterflood
00/04-03-064-11W5/0	47	currently injecting	2007
00/11-03-064-11W5/0	100	-	terminal waterflood
00/02-09-064-11W5/0	48	currently injecting	-

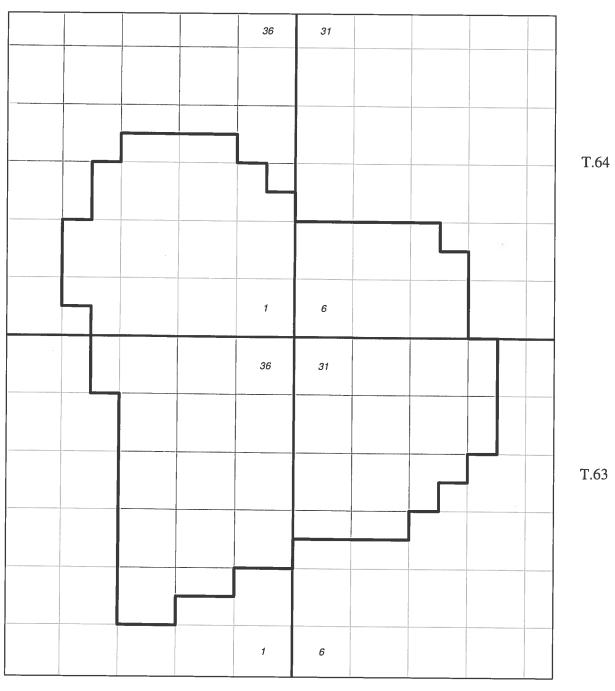
00/03-10-064-11W5/0	118	-	currently injecting
00/14-10-064-11W5/0	119	currently injecting	2006
00/02-11-064-11W5/0	98	-	terminal waterflood
00/04-11-064-11W5/0	49	_	terminal waterflood
02/10-11-064-11W5/0	101	currently injecting	-
02/12-11-064-11W5/0	103	-	terminal waterflood
02/04-12-064-11W5/0	104	currently injecting	-
00/07-12-064-11W5/0	121	2006	-
00/09-12-064-11W5/0	120	2006	_
00/14-12-064-11W5/0	105	currently injecting	-
00/06-13-064-11W5/0	108	currently injecting	-
00/04-14-064-11W5/0	54	-	currently injecting
00/08-14-064-11W5/0	53	currently injecting	-
00/12-14-064-11W5/0	113	currently injecting	
00/06-15-064-11W5/0	107	currently injecting	_
00/10-16-064-11W5/0	132	currently injecting	-
	102	currently injecting	-

- 4) Fluid injection may commence in the well(s) referred to in clause 3 once the EUB has confirmed in writing that Directive 51 requirements have been met.
- 5) (1) Injection through the wells referred to in clause 3
 - a) must maintain a voidage replacement ratio of 1.0 on the basis of cumulative production and injection volumes following the commencement of injection on a pattern basis, and
 - b) shall target a voidage replacement ratio of 1.0 on a monthly basis on a pattern basis.
 - (2) Patterns subject to active solvent injection shall be operated in such a manner as to minimize solvent migration outside of that pattern.
- 6) (1) A minimum operating pressure (MOP) of 26 200 kilopascals (gauge) shall be maintained in that part of the subject pool referred to in clause 1 in all patterns undergoing any active hydrocarbon¹ miscible flood displacement process, while a MOP of 15 800 kilopascals (gauge) shall be maintained in all patterns outside any active miscible flood areas.
 - (2) A hydrocarbon¹ miscible flood pattern is deemed to be on terminal waterflood and shall be governed by a reduced MOP of 15 800 kilopascals (gauge) after completion of a minimum solvent injection of 15 per cent of the pattern's floodable continuous hydrocarbon pore volume (FCHCPV) and following 12 months of water injection post solvent.
 - (3) Production shall not be taken from any producing wells in patterns subject to active hydrocarbon¹ solvent injection wherein the reservoir pressure is less than 26 200 kilopascals (gauge) and in patterns outside active miscible areas wherein the reservoir pressure is less than 15 800 kilopascals (gauge).

- (4) Any representative pressure survey must include pressure measurement at producing wells along the boundary between active miscible flood patterns and the adjacent water flood patterns.
- 7) The cumulative volume of solvent to be injected during the life of the scheme shall be not less than 19.4 million reservoir cubic metres as described in Application No. 920333. The cumulative injected solvent shall be distributed such that each pattern receives a volume of solvent not less than 15 per cent of the pattern's "floodable continuous hydrocarbon pore volume" (FCHCPV), as described in the Operator's letter dated November 2, 1992 and entitled "Detailed Explanation of Floodable Continuous Hydrocarbon Pore Volume".
- 8) Alternate volumes of solvent and water shall be injected in accordance with the scheme, in the wells referred to in clause 3, in such volumes that the water-alternating-gas (WAG) ratio will vary from pattern to pattern depending upon the capability of the injector, with the WAG generally increasing with time as detailed in Applications No. 910457 and 1051297.
- 9) (1) The Operator shall monitor the vertical distribution of injected fluids by an injection profile survey to be run at least once for each type of fluid injected, in each of the wells referred to in clause 3.
 - (2) If an injection well is reworked, an injection profile shall immediately be taken.
 - (3) The 00/04-14-064-11W5/0 well is exempt from any further injection profile surveys.
- 10) The Operator shall implement, or continue with, a program for the subject pool to determine:
 - a) the average molar composition of the solvent and chase gas injected each month,
 - b) when solvent breakthrough occurs by monitoring each well's producing gas-oil ratio,
 - c) the average molar composition of the solvent and chase gas produced each month, by continuously monitoring the produced gas stream.
- 11) (1) The Operator shall be subject to the two-part reporting process as outlined in the Board's Informational Letter IL 96-2 entitled: "Progress Report Requirements for Miscible Flood Schemes".
 - (2) Any solvent migration outside of active patterns shall be reported in the annual performance presentation, in accordance with IL 96-2, and shall include a discussion of completed or planned remedial measures to reduce/minimize solvent migration.

Part 2 CARBON DIOXIDE FLOOD AREA¹

- 12) For the purposes of this approval "miscible fluid" means a mixture that contains:
 - a) at least 0.970 mole fraction of H₂S and CO₂, with the remainder composed of other natural gas components, and
 - b) an H_2S content not more than 0.07 mole fraction at any time.
- In accordance with the scheme, the injection of miscible fluid and water shall proceed into the subject pool as described in the following schedule of commencement dates and minimum miscible fluid injection volumes, corresponding to a minimum hydrocarbon pore volume (HCPV) of 15 per cent for the target zones in the pattern, for the wells listed. Fluids to be injected, having commenced in accordance with the schedule, may continue. The pattern numbers below correspond to those identified by the Operator.


Well Location	Operator's <u>Pattern No.</u>	Minimum Miscible Fluid Injection Volume (10 ⁶ standard m ³)	Commence Injection Date Miscible Fluid and Water
00/07-02-064-11W5/	0 102	20	within three months of the date of this approval

- 14) The injection of miscible fluid and water may commence in the well(s) referred to in clause 13 once the EUB has confirmed in writing that Directive 51 requirements have been met.
- 15) Water and miscible fluid injection through the wells referred to in clause 13
 - a) must maintain a voidage replacement ratio of 1.0 on the basis of cumulative production and injection volumes following the commencement of injection on a pattern basis, and
 - b) shall target a voidage replacement ratio of 1.0 on a monthly basis on a pattern basis.
- 16) (1) A minimum operating pressure (MOP) of 23 000 kilopascals (gauge) shall be maintained in that part of the subject pool referred to in clause 1 in all patterns undergoing any active carbon dioxide miscible flood displacement process, while a MOP of 15 800 kilopascals (gauge) shall be maintained in all patterns outside any active miscible flood areas.
 - (2) A carbon dioxide miscible flood pattern is deemed to be on terminal waterflood and shall be governed by a reduced MOP of 15 800 kilopascals (gauge) after completion of the minimum miscible fluid injection volume specified in clause 13 and following 12 months of water injection post miscible fluid injection.

- (3) Production shall not be taken from any producing wells in patterns subject to active carbon dioxide injection wherein the reservoir pressure is less than 23 000 kilopascals (gauge) and in patterns outside active miscible areas wherein the reservoir pressure is less than 15 800 kilopascals (gauge).
- 17) (1) The Operator shall monitor the vertical distribution of injected fluids by an injection profile survey to be run at least once for each type of fluid injected, in each of the wells referred to in clause 13.
 - (2) If an injection well is reworked, an injection profile shall immediately be taken.
- 18) Upon commencement of miscible fluid injection, the Operator shall implement, or continue with, a monitoring program for the patterns under active miscible fluid injection to determine:
 - a) the average molar composition of the miscible gas injected each month,
 - b) when miscible fluid breakthrough occurs by monitoring each pattern well's producing gas-oil ratio and fluid compositions on a monthly basis, and
 - c) the average reservoir pressure in the pattern by annual pressure surveys on at least two pattern producers.
- In addition to the two-part reporting process outlined in the EUB's Information Letter (IL) 96-2: Progress Report Requirements for Miscible Flood Schemes, the Operator shall report in each progress report submitted for the scheme
 - a) the volume of incremental oil recovery due to miscible fluid injection,
 - b) the volume of hydrocarbon solvent (ethane and methane) recovered due to miscible fluid injection, and
 - c) when breakthrough has occurred, the volume of injected miscible fluid remaining in the reservoir, at reservoir and standard conditions, based on the difference between the volume of miscible fluid injected and the volume produced back to surface.
- 20) Approval No. 10269E rescinds Approval No. 10269D.

END OF DOCUMENT

R.11 R.10W.5M

JUDY CREEK BEAVERHILL LAKE A POOL APPENDIX A TO APPROVAL NO. 10269E

Scheme Approvals Areas of Change
//// Added
//// Deleted

APPENDIX B TO APPROVAL NO. 10269

IN THE JUDY CREEK FIELD

The ethane plus content of the solvent shall be a sufficient quantity to obtain first-contact miscibility with the reservoir oil as determined by the following relationship:

$$\sum \frac{x_i}{M_{ei}} \ge \frac{1}{2.009}$$

where x_i is the mole fraction of component i in the solvent and M_{ei} is the miscible-equivalence values for each component as shown in the following table:

	M_{ei}	
C_1	00	
C_2	1.00	
C_3	0.66	
C_4	0.54	
C_5	0.49	
C_6	0.43	
N_2	00	
CO_2	2.20	