

∃⊂I Acoustical Consultants Inc. 5031 – 210 Street Edmonton, Alberta, Canada T6M 0A8 Phone: (780) 414-6373, Fax: (780) 414-6376 www.aciacoustical.com

Environmental Noise Impact Assessment For

STP McKay Thermal Project – Phase 2

Prepared for: Southern Pacific Resource Corp.

> Prepared by: S. Bilawchuk, M.Sc., P.Eng.

⊐⊏i Acoustical Consultants Inc. Edmonton, Alberta APEGGA Permit to Practice #P7735

> a⊏i Project #: 11-025 November 3, 2011

Executive Summary

aCi Acoustical Consultants Inc., of Edmonton AB, was retained by Southern Pacific Resource Corp. (STP) to conduct an environmental noise impact assessment (NIA) for the proposed STP McKay Thermal Project – Phase 2 (the Project) in northeast Alberta. The purpose of the work was to generate a computer noise model of the Project under Baseline Case and Application Case conditions and to compare the resultant sound levels to the Alberta Energy Resources Conservation Board (ERCB) permissible sound level guidelines (Directive 038 on Noise Control, 2007) as well as the Alberta Utilities Commission (AUC) Rule 012 on Noise Control.

The results of the noise modeling indicated Baseline Case noise levels associated with Phase 1 (with the average ambient sound level of 35 dBA included) will be below the ERCB Directive 038 PSL of 40 dBA L_{eq} Night¹ for all surrounding theoretical 1,500 m receptors. The noise levels without the average ambient sound level were more than 5 dBA below the PSL at all but one location.

The Application Case noise levels associated with Phase 1 and the Project (with the average ambient sound level of 35 dBA included) will be below the ERCB Directive 038 PSL of 40 dBA L_{eq} Night for all surrounding theoretical 1,500 m receptors. The noise levels without the average ambient sound level are modeled to be more than 5 dBA below the PSL at most locations.

For both the Baseline Case and Application Case, the dBC – dBA sound levels are projected to be less than 20 dB at most locations. There are some locations, however with values greater than 20 dB, resulting in the possibility of low frequency tonal noise. The dominant low frequency noise sources are the gas turbine exhaust stacks. These tend not to be specifically tonal in nature. They tend to have a more broadband low frequency quality. As such, the possibility of a low frequency tonal component (as specified by ERCB Directive 038 and AUC Rule 012) is low. In addition, there are no residential receptors nearby to express concerns for the low frequency noise. As a result, no additional noise mitigation is required.

¹ The term L_{eq} represents the energy equivalent sound level. This is a measure of the equivalent sound level for a specified period of time accounting for fluctuations.

Application Case Modeled Sound Levels

Receptor (1,500m From Project)	ASL- Night (dBA)	Application Case L _{eq} Night (dBA)	ASL + Application Case L _{eq} Night (dBA)	PSL- Night (dBA)	Compliant	Application Case L _{eq} Night (dBC)	dBC - dBA	Tonal
R_01	35.0	25.6	35.5	40.0	YES	48.1	22.5	POSSIBLE
R_02	35.0	24.3	35.4	40.0	YES	44.0	19.7	NO
R_03	35.0	28.4	35.9	40.0	YES	47.7	19.3	NO
R_04	35.0	29.3	36.0	40.0	YES	51.4	22.1	POSSIBLE
R_05	35.0	31.0	36.5	40.0	YES	52.7	21.7	POSSIBLE
R_06	35.0	35.5	38.3	40.0	YES	55.7	20.2	POSSIBLE
R_07	35.0	36.4	38.8	40.0	YES	58.5	22.1	POSSIBLE
R_08	35.0	32.0	36.8	40.0	YES	50.7	18.7	NO
R_09	35.0	29.1	36.0	40.0	YES	48.0	18.9	NO
R_10	35.0	29.0	36.0	36.0 40.0 YES 47.8 18.8		18.8	NO	
R_11	35.0	31.1	36.5	40.0 YES		50.1	19.0	NO
R_12	35.0	34.5	37.8 40.0 YES 52.9 18.		18.4	NO		
R_13	35.0	32.1	36.8	40.0	YES	51.4	19.3	NO
R_14	35.0	32.0	36.8	40.0	YES	51.4	19.4	NO
R_15	35.0	32.5	36.9	40.0	YES	51.3	18.8	NO
R_16	35.0	29.6	36.1	40.0	YES	46.7	17.1	NO
R_17	35.0	31.4	36.6	40.0	YES	50.7	19.3	NO
R_18	35.0	31.3	36.5	40.0	YES	47.5	16.2	NO
R_19	35.0	29.2	36.0	40.0	YES	46.0	16.8	NO
R_20	35.0	31.8	36.7	40.0	YES	49.2	17.4	NO
R_21	35.0	33.6	37.4	40.0	YES	51.3	17.7	NO
R_22	35.0	37.9	39.7	40.0	YES	54.9	17.0	NO
R_23	35.0	31.6	36.6	40.0	YES	49.3	17.7	NO
R_24	35.0	30.6	36.3	40.0	YES	50.3	19.7	NO
R_25	35.0	26.6	35.6	40.0	YES	47.7	21.1	POSSIBLE
R_26	35.0	26.9	35.6	40.0	YES	49.3	22.4	POSSIBLE

Table of Contents

1.0	Introduction	. 1
2.0	Project Location and Description	. 1
3.0	Measurement & Modeling Methods	. 2
3.1.	Baseline Noise Monitoring	. 2
3.2.	Computer Noise Modeling (General)	. 2
3.3.	Noise Sources	. 3
3.4.	Modeling Confidence	. 4
4.0	Permissible Sound Levels	. 5
5.0	Results and Discussion	. 7
5.1.	Baseline Case Results	. 7
5.2.	Application Case Results	. 9
5.3.	Noise Mitigation Measures	10
5.	3.1. Construction Noise	10
6.0	Conclusion	12
7.0	References	13
Appen	dix I NOISE MODELING PARAMETERS	17
Appen	dix II THE ASSESSMENT OF ENVIRONMENTAL NOISE (GENERAL)	29
Appen	dix III SOUND LEVELS OF FAMILIAR NOISE SOURCES	41
Appen	dix IV PERMISSIBLE SOUND LEVEL DETERMINATION	43
Appen	dix V APPLICATION CASE NOISE SOURCE ORDER-RANKING	14
Appen	dix VI NOISE IMPACT ASSESSMENT	18

List of Tables

Table 1.	Basic Night-Time Sound Levels (as per ERCB Directive 038 and AUC Rule 012)	. 6
Table 2.	Baseline Case Modeled Sound Levels	. 7
Table 3.	Baseline Case Modeled dBA and dBC Sound Levels	. 8
Table 4.	Application Case Modeled Sound Levels	. 9
Table 5.	Application Case Modeled dBA and dBC Sound Levels	10

List of Figures

Figure 1.	Study Area	14
Figure 2.	Baseline Case Modeled Night-time Noise Levels (Without ASL)	15
Figure 3.	Application Case Modeled Night-time Noise Levels (Without ASL)	16

1.0 <u>Introduction</u>

aCi Acoustical Consultants Inc., of Edmonton AB, was retained by Southern Pacific Resource Corp. (STP) to conduct an environmental noise impact assessment (NIA) for the proposed STP McKay Thermal Project – Phase 2 (the Project) in northeast Alberta. The purpose of the work was to generate a computer noise model of the Project under Baseline Case and Application Case conditions and to compare the resultant sound levels to the Alberta Energy Resources Conservation Board (ERCB) permissible sound level guidelines (Directive 038 on Noise Control, 2007) as well as the Alberta Utilities Commission (AUC) Rule 012 on Noise Control.

2.0 <u>Project Location and Description</u>

The Project is situated in the McKay River area within the Municipal District of Wood Buffalo and is located approximately 40 km north-west of the community of Fort McMurray, as shown in Figure 1. In 2010, STP received approval for the STP McKay Thermal Project – Phase 1 with a production capacity of 1908 m³ (12,000 barrels) of bitumen per day for 30 years (Phase 1). Phase 1 (currently under construction) consists of a central processing facility (CPF) located at NE-07-91-14-W4M and three well pads located within Section 07-91-14-W4M.

The Project is designed for 24,000 bpd Capacity which will bring the total capacity for Phase 1 and Phase 2 to 36,000 bpd. The Project will span Sections 3 - 10, 15 - 18, 20 - 22, 25 - 29, 34 - 36 in 91-14-W4M as well as Sections 1 and 12 of 91-15-W4M and Section 30-91-13-W4M. The Phase 2 CPF will be located in the middle of Section 10-91-14-W4M and the well pads will be located throughout the study area. As indicated in Figure 1, the initial stages of the Project will have the Phase 1 CPF and 3 well pads as well as the Phase 2 CPF and 8 well pads. In time, additional well pads will be brought online and existing well pads will be decommissioned. For the purposes of the noise impact assessment, however, all of the proposed well pad locations have been modeled as fully operational at the same time. This provides a more conservative result and covers all possible well pad operational configurations.

There are no major roadways nearby and there are no existing industrial facilities within 5 km of the Project lease boundary. In addition, there are no residents or Trappers' Cabins within at least 5 km of the Project lease area. Topographically, the land in the area has a general downward slope into the MacKay River from the CPF and the well pads (maximum elevation change of approximately 40 m). The land is covered with field grasses, trees and bushes (as observed through aerial photos). As such, the level of vegetative sound absorption is considered moderate.

1

3.0 <u>Measurement & Modeling Methods</u>

3.1. <u>Baseline Noise Monitoring</u>

Due to the lack of residential receptors or existing industrial noise sources in the surrounding area, baseline noise monitoring was not conducted. This conforms with the requirements of the ERCB Directive 038 and AUC Rule 012.

3.2. <u>Computer Noise Modeling (General)</u>

The computer noise modeling was conducted using the CADNA/A (version 4.1.137) software package. CADNA/A allows for the modeling of various noise sources such as road, rail, and stationary sources. Topographical features such as land contours, vegetation, and bodies of water and meteorological conditions such as temperature, relative humidity, wind-speed and wind-direction are considered in the assessment. The modeling methods utilized met or exceeded the requirements of the ERCB Directive 038 and AUC Rule 012.

The calculation method used for noise propagation follows the International Standards Organization (ISO) 9613-2. All receiver locations were assumed as being downwind from the source(s). In particular, as stated in Section 5 of the ISO 9613-2 document:

"Downwind propagation conditions for the method specified in this part of ISO 9613 are as specified in 5.4.3.3 of ISO 1996-2:1987, namely

- wind direction within an angle of $\pm 45^{\circ}$ of the direction connecting the centre of the dominant sound source and the centre of the specified receiver region, with the wind blowing from source to receiver, and
- wind speed between approximately 1 m/s and 5 m/s, measured at a height of 3 m to 11 m above the ground.

The equations for calculating the average downwind sound pressure level LAT(DW) in this part of ISO 9613, including the equations for attenuation given in clause 7, are the average for meteorological conditions within these limits. The term average here means the average over a short time interval, as defined in 3.1.

These equations also hold, equivalently, for average propagation under a well-developed moderate ground-based temperature inversion, such as commonly occurs on clear, calm nights".

Due to the large size of the study area and the density of vegetation within the study area, vegetative sound absorption was included in the model. A ground absorption coefficient of 0.5 was used along with a temperature of 10^{0} C and a relative humidity of 70%. Although there are trees in the area, they were not incorporated into the model. As a result, all sound level propagation calculations are considered a conservative representation of summertime conditions (as specified in ERCB Directive 038 and AUC Rule 012).

As part of the study, two noise modeling scenarios were conducted:

- 1) Baseline Case: Noise sources, buildings and tanks associated with the Phase 1 CPF and well pads.
- 2) Application Case: Baseline Case conditions along with noise sources, buildings and tanks associated with Phase 2 CPF and all proposed well pads.

The computer noise modeling results were calculated in two ways. First, sound levels were calculated at the theoretical 1,500 m receiver locations. Second, sound levels were calculated using a 20 m x 20 m receptor grid pattern within the entire study area. This provided color noise contours for easier visualization and evaluation of the results.

3.3. <u>Noise Sources</u>

The noise sources for the equipment associated with the Project are provided in <u>Appendix I</u>. The data were obtained from equipment specific noise level information provided by STP and assessments carried out for other projects using similar operating equipment combined with **aci** in-house information and calculations using methods presented in various texts. All sound power levels (PWLs) used in the modeling are considered conservative.

All noise sources have been modeled as point sources at their appropriate heights¹. Sound power levels for all noise sources were modeled using octave-band information. Buildings and tanks were included in the modeling calculations because of their ability to provide shielding as well as reflection for noise². Refer to <u>Appendix I</u> for building and tank dimensions.

¹ The heights for many of the sources are generally slightly higher than actual. This makes the model more conservative 2 Exterior building and tank walls were modeled with an absorption coefficient of 0.21 which is generally highly reflective.

Finally, ERCB Directive 038 and AUC Rule 012 require the assessment to include background ambient noise levels in the model. As specified in ERCB Directive 038 and AUC Rule 012, in most rural areas of Alberta where there is an absence of industrial noise sources the average night-time ambient noise level is approximately 35 dBA. This is known as the average ambient sound level (ASL). This value was used as the ambient condition in the modeling with the various Project related noise sources added.

3.4. Modeling Confidence

As mentioned previously, the algorithms used for the noise modeling follow the ISO 9613 standard. The published accuracy for this standard is ± 3 dBA between 100 m – 1,000 m. Accuracy levels beyond 1,000 m are not published. Professional experience based on similar noise models and measurements conducted over large distances shows that, as expected, as the distance increases, the associated accuracy in prediction decreases. Experience has shown that environmental factors such as wind, temperature inversions, topography and ground cover all have increasing effects over distances larger than approximately 1,500 m. As such, for all receptors within approximately 1,500 m of the various noise sources, the prediction confidence is considered high, while for all receptors beyond 1,500 m, the prediction confidence is considered moderate.

4.0 <u>Permissible Sound Levels</u>

Environmental noise levels from industrial noise sources are commonly described in terms of equivalent sound levels or L_{eq} . This is the level of a steady sound having the same acoustic energy, over a given time period, as the fluctuating sound. In addition, this energy averaged level is A-weighted to account for the reduced sensitivity of average human hearing to low frequency sounds. These L_{eq} in dBA, which are the most common environmental noise measure, are often given for day-time (07:00 to 22:00) L_{eq} Day and night-time (22:00 to 07:00) L_{eq} Night while other criteria use the entire 24-hour period as L_{eq} 24. Refer to <u>Appendix II</u> for a description of the acoustical terms used and to <u>Appendix III</u> for a list of common noise sources.

The documents which relate to the Permissible Sound Levels (PSLs) for this NIA are the ERCB Directive 038 on Noise Control (2007) and the AUC Rule 012 on Noise Control. Both documents are essentially identical, in particular, as they pertain to the PSLs for this project. Both documents set the PSL at the receiver location based on population density and relative distances to heavily traveled road and rail as shown in Table 1. In all instances, there is a Basic Sound Level (BSL) of 40 dBA for the night-time (night-time hours are 22:00 - 07:00) and 50 dBA for the day-time (day-time hours are 07:00 - 22:00). Note that for this location, none of the adjustments to the BSL apply. Finally, both documents specify that new or modified facilities must meet a PSL-Night of 40 dBA at 1,500 m from the facility fence-line if there are no closer dwellings. As such, the PSLs at a distance of 1,500 m are an L_{eq}Night of 40 dBA and an L_{eq}Day of 50 dBA. Refer to <u>Appendix IV</u> for a detailed determination of the permissible sound levels.

The PSLs provided are related to noise associated with activities and processes at the Project and are not related to vehicle traffic on nearby highways (or access roads). This includes all traffic related to the construction and operation of the Facility. Noises from traffic sources are not covered by any regulations or guidelines at the municipal, provincial, or federal levels. As such, an assessment of the noises related to vehicle traffic was not conducted. In addition, construction noise is not specifically regulated by ERCB Directive 038 or AUC Rule 012. However, construction noise mitigation recommendations are provided in <u>Section 5.3.1</u>.

	Dwelling Density per Quarter Section of Land					
Proximity to Transportation	1-8 Dwellings	9-160 Dwellings	>160 Dwellings			
Category 1	40	43	46			
Category 2	45	48	51			
Category 3	50	53	56			

Table 1. Basic Night-Time Sound Levels (as per ERCB Directive 038 and AUC Rule 012)

Category 1	Dwelling units more than 500m from heavily travelled roads and/or rail lines
	and not subject to frequent aircraft flyovers
Category 2	Dwelling units more than 30m but less than 500m from heavily travelled roads
	and/or rail lines and not subject to frequent aircraft flyovers
Category 3	Dwelling units less than 30m from heavily travelled roads and/or rail lines
	and not subject to frequent aircraft flyovers

5.0 <u>Results and Discussion</u>

5.1. Baseline Case Results

The results of the Baseline Case noise modeling are presented in Table 2 and illustrated in Figure 2. The modeled noise levels at the theoretical 1,500 m receptor locations are under the PSLs with the Phase 1 noise combined with the 35 dBA ASL. In addition, the noise levels resulting from the Phase 1 equipment alone (i.e. no ASL) are more than 5 dBA below the PSL at all but one location.

Receptor (1,500m From Project)	ASL-Night (dBA)	Baseline Case L _{eq} Night (dBA)	ASL + Baseline Case L _{eq} Night (dBA) 35.1 40.0		Compliant
R_01	35.0	16.1	35.1	40.0	YES
R_02	35.0	15.7	35.1	40.0	YES
R_03	35.0	16.9	35.1	40.0	YES
R_04	35.0	18.0	35.1	40.0	YES
R_05	35.0	18.3	35.1	40.0	YES
R_06	35.0	17.8	35.1	40.0	YES
R_07	35.0	16.9	35.1	40.0	YES
R_08	35.0	16.9	35.1	40.0	YES
R_09	35.0	17.1	35.1	40.0	YES
R_10	35.0	20.3	35.1	40.0	YES
R_11	35.0	26.4	35.6	40.0	YES
R_12	35.0	29.3	36.0	40.0	YES
R_13	35.0	28.8	35.9	40.0	YES
R_14	35.0	29.7	36.1	40.0	YES
R_15	35.0	31.1	36.5	40.0	YES
R_16	35.0	28.2	35.8	40.0	YES
R_17	35.0	29.3	36.0	40.0	YES
R_18	35.0	30.3	36.3	40.0	YES
R_19	35.0	28.3	35.8	40.0	YES
R_20	35.0	30.5	36.3	40.0	YES
R_21	35.0	32.4	36.9	40.0	YES
R_22	35.0	37.7	39.6	40.0	YES
R_23	35.0	30.8	36.4	40.0	YES
R_24	35.0	25.9	35.5	40.0	YES
R_25	35.0	21.8	35.2	40.0	YES
R_26	35.0	19.8	35.1	40.0	YES

Table 2. Baseline Case Modeled Sound Levels

In addition to the broadband A-weighted (dBA) sound levels, the modeling results at the theoretical 1,500 m receptor locations indicated C-weighted (dBC) sound levels will be less than 20 dB above the dBA sound levels at most locations, as shown in Table 3. As specified in ERCB Directive 038 and AUC Rule 012, if the dBC – dBA sound levels are less than 20 dB, the noise is not considered to have a low frequency tonal component. For those locations with dBC – dBA values above 20, the modeling indicates that the possibility exists for a low frequency tonal component. However, both ERCB Directive 038 and AUC Rule 012 have additional requirements related to the 1/3 octave band sound pressure levels to have an identified low frequency tonal component. Sound level data for the various

noise sources is only available in 1/1 octave band resolution. As such, a specific low frequency tonal component cannot be determined. The modeling does indicate that the dominant source of the low frequency noise is the gas turbine exhaust from the CoGen units. Noise from this equipment tends to have a more broadband low frequency content with no specific tones. Note also that the study area is remote and there are no residential receptors nearby. Both ERCB Directive 038 and AUC Rule 012 require a complaint to be filed with a specific low frequency concern before and investigation would be required to even determine the presence of a low frequency tonal component. At this location, this is very unlikely.

Receptor (1,500m From Project)	Baseline Case L _{eq} Night (dBA)	Baseline Case L _{eq} Night (dBC)	dBC - dBA	Tonal
R_01	16.1	36.1	20.0	POSSIBLE
R_02	15.7	35.7	20.0	POSSIBLE
R_03	16.9	36.5	19.6	NO
R_04	18.0	38.5	20.5	POSSIBLE
R_05	18.3	39.2	20.9	POSSIBLE
R_06	17.8	37.2	19.4	NO
R_07	16.9	36.5	19.6	NO
R_08	16.9	36.5	19.6	NO
R_09	17.1	36.7	19.6	NO
R_10	20.3	38.8	18.5	NO
R_11	26.4	44.3	17.9	NO
R_12	29.3	44.2	14.9	NO
R_13	28.8	46.7	17.9	NO
R_14	29.7	47.2	17.5	NO
R_15	31.1	47.2	16.1	NO
R_16	28.2	44.6	16.4	NO
R_17	29.3	44.7	15.4	NO
R_18	30.3	45.8	15.5	NO
R_19	28.3	44.4	16.1	NO
R_20	30.5	45.1	14.6	NO
R_21	32.4	47.3	14.9	NO
R_22	37.7	54.4	16.7	NO
R_23	30.8	48.0	17.2	NO
R_24	25.9	42.8	16.9	NO
R_25	21.8	40.4	18.6	NO
R_26	19.8	39.8	20.0	POSSIBLE

Table 3. Baseline Case Modeled dBA and dBC Sound Levels

5.2. Application Case Results

The results of the Application Case noise modeling are presented in Table 4 and illustrated in Figure 3. The modeled noise levels at the theoretical 1,500 m receptor locations are under the PSLs with the Phase 1 and Project noise combined with the 35 dBA ASL. In addition, the noise levels resulting from the Phase 1 and Project equipment alone (i.e. no ASL) are more than 5 dBA below the PSL at most of the theoretical receptor locations. The order-ranked noise source contribution from the Phase 1 and Project noise sources at the receptors with the highest noise levels (R07 & R22) are presented in Appendix V.

Receptor (1,500m From Project)	ASL-Night (dBA)	Application Case L _{eq} Night (dBA)	ASL + Application Case L _{eq} Night (dBA)	PSL-Night (dBA)	Compliant
R_01	35.0	25.6	35.5	40.0	YES
R_02	35.0	24.3	35.4	40.0	YES
R_03	35.0	28.4	35.9	40.0	YES
R_04	35.0	29.3	36.0	40.0	YES
R_05	35.0	31.0	36.5	40.0	YES
R_06	35.0	35.5	38.3	40.0	YES
R_07	35.0	36.4	38.8	40.0	YES
R_08	35.0	32.0	36.8	40.0	YES
R_09	35.0	29.1	36.0	40.0	YES
R_10	35.0	29.0	36.0	40.0	YES
R_11	35.0	31.1	36.5	40.0	YES
R_12	35.0	34.5	37.8	40.0	YES
R_13	35.0	32.1	36.8	40.0	YES
R_14	35.0	32.0	36.8	40.0	YES
R_15	35.0	32.5	36.9	40.0	YES
R_16	35.0	29.6	36.1	40.0	YES
R_17	35.0	31.4	36.6	40.0	YES
R_18	35.0	31.3	36.5	40.0	YES
R_19	35.0	29.2	36.0	40.0	YES
R_20	35.0	31.8	36.7	40.0	YES
R_21	35.0	33.6	37.4	40.0	YES
R_22	35.0	37.9	39.7	40.0	YES
R_23	35.0	31.6	36.6	40.0	YES
R_24	35.0	30.6	36.3	40.0	YES
R_25	35.0	26.6	35.6	40.0	YES
R_26	35.0	26.9	35.6	40.0	YES

Table 4. Application Case Modeled Sound Levels

In addition to the broadband A-weighted (dBA) sound levels, the modeling results at the theoretical 1,500 m receptor locations indicated C-weighted (dBC) sound levels will be less than 20 dB above the dBA sound levels at most locations, as shown in Table 5. Similar to the Baseline Case, some locations have dBC – dBA sound levels greater than 20 dB. Again, the dominant low frequency noise sources are the gas turbine exhaust stacks. These tend not to be specifically tonal in nature. They tend to have a more broadband low frequency quality. In addition, there are no residential receptors nearby to express concerns for the low frequency noise.

Receptor (1,500m From Project)	Application Case L _{eq} Night (dBA)	Application Case L _{eq} Night (dBC)	dBC - dBA	Tonal
R_01	25.6	48.1	22.5	POSSIBLE
R_02	24.3	44.0	19.7	NO
R_03	28.4	47.7	19.3	NO
R_04	29.3	51.4	22.1	POSSIBLE
R_05	31.0	52.7	21.7	POSSIBLE
R_06	35.5	55.7	20.2	POSSIBLE
R_07	36.4	58.5	22.1	POSSIBLE
R_08	32.0	50.7	18.7	NO
R_09	29.1	48.0	18.9	NO
R_10	29.0	47.8	18.8	NO
R_11	31.1	50.1	19.0	NO
R_12	34.5	52.9	18.4	NO
R_13	32.1	51.4	19.3	NO
R_14	32.0	51.4	19.4	NO
R_15	32.5	51.3	18.8	NO
R_16	29.6	46.7	17.1	NO
R_17	31.4	50.7	19.3	NO
R_18	31.3	47.5	16.2	NO
R_19	29.2	46.0	16.8	NO
R_20	31.8	49.2	17.4	NO
R_21	33.6	51.3	17.7	NO
R_22	37.9	54.9	17.0	NO
R_23	31.6	49.3	17.7	NO
R_24	30.6	50.3	19.7	NO
R_25	26.6	47.7	21.1	POSSIBLE
R_26	26.9	49.3	22.4	POSSIBLE

Table 5. Application Case Modeled dBA and dBC Sound Levels

5.3. Noise Mitigation Measures

The results of the noise modeling indicated that no specific additional noise mitigation measures are required.

5.3.1. <u>Construction Noise</u>

Although there are no specific construction noise level limits detailed by ERCB Directive 038, there are general recommendations for construction noise mitigation. This includes all activities associated with construction of the facility, well-pads (including drilling), borrow-pits, etc. The document states:

"While Directive 038 is not applicable to construction noise, licensees should attempt to take the following reasonable mitigating measures to reduce the impact on nearby dwellings of construction noise from new facilities or modifications to existing facilities. Licensees should:

- Conduct construction activity between the hours of 07:00 and 22:00 to reduce the potential impact of construction noise;

- Advise nearby residents of significant noise-causing activities and schedule these events to reduce disruption to them;
- Ensure all internal combustion engines are fitted with appropriate muffler systems; and
- Take advantage of acoustical screening from existing on-site buildings to shield dwellings from construction equipment noise.

Should a valid complaint be made during construction, the licensee is expected to respond expeditiously and take appropriate action to ensure that the issue has been managed responsibly."

6.0 <u>Conclusion</u>

The results of the noise modeling indicated Baseline Case noise levels associated with Phase 1 (with the average ambient sound level of 35 dBA included) will be below the ERCB Directive 038 PSL of 40 dBA L_{eq} Night for all surrounding theoretical 1,500 m receptors. The noise levels without the ASL were more than 5 dBA below the PSL at all but one location.

The Application Case noise levels associated with Phase 1 and the Project (with the average ambient sound level of 35 dBA included) will be below the ERCB Directive 038 PSL of 40 dBA L_{eq} Night for all surrounding theoretical 1,500 m receptors. The noise levels without the ASL are modeled to be more than 5 dBA below the PSL at most locations.

For both the Baseline Case and Application Case, the dBC – dBA sound levels are projected to be less than 20 dB at most locations. There are some locations, however with values greater than 20 dB, resulting in the possibility of low frequency tonal noise. The dominant low frequency noise sources are the gas turbine exhaust stacks. These tend not to be specifically tonal in nature. They tend to have a more broadband low frequency quality. As such, the possibility of a low frequency tonal component (as specified by ERCB Directive 038 and AUC Rule 012) is low. In addition, there are no residential receptors nearby to express concerns for the low frequency noise. As a result, no additional noise mitigation is required.

A short form (ERCB form) noise impact assessment is presented in Appendix VI.

7.0 <u>References</u>

- Environmental Noise Impact Assessment for STP McKay SAGD Project at LSD NW-07-91-14-W4M. Prepared for Southern Pacific Resource Corp., by aci Acoustical Consultants Inc., April, 2009.
- Alberta Energy Resources Conservation Board (ERCB), *Directive 038 on Noise Control, 2007*, Calgary, Alberta.
- Alberta Utilities Commission (AUC), Rule 012 on Noise Control, 2010, Calgary, Alberta.
- International Organization for Standardization (ISO), Standard 1996-1, Acoustics Description, measurement and assessment of environmental noise – Part 1: Basic quantities and assessment procedures, 2003, Geneva Switzerland.
- International Organization for Standardization (ISO), *Standard 9613-1, Acoustics Attenuation* of sound during propagation outdoors Part 1: Calculation of absorption of sound by the atmosphere, 1993, Geneva Switzerland.
- International Organization for Standardization (ISO), Standard 9613-2, Acoustics Attenuation of sound during propagation outdoors – Part 2: General method of calculation, 1996, Geneva Switzerland.

Figure 1. Study Area

Figure 2. Baseline Case Modeled Night-time Noise Levels (Without ASL)

Figure 3. Application Case Modeled Night-time Noise Levels (Without ASL)

	Phase 1 Noise	e Source Broadba	nd Sound Power	Levels (Re 10 ⁻¹²	Watts, un-mitigated)
--	---------------	------------------	----------------	------------------------------	----------------------

Tag	Description	Location	Height (m)	Model/Type	Rating (kW)	# Units	Equipment Sound Power Level (dBA)	Building Attenuation (dBA)	Overall Sound Power Level (dBA)
K-606/616	Vapour Compressor	Evaporator Building	3	Reciprocating	1700	2	124.3	25	99.3
P-582/592	Evaporator Recirc Pump	Evaporator Building	2	Centrifugal	375	2	108.7	24	84.7
P-520	Primary Feed Pump	Evaporator Building	2	Centrifugal	30	1	102.4	24	78.4
P-521	Evaporator Feed Pump	Evaporator Building	2	Centrifugal	30	1	102.4	24	78.4
P-581/591	Distillate Pump	Evaporator Building	2	Centrifugal	30	2	105.4	24	81.4
EF-101-109	Evaporator Building Exhaust Fan	Evaporator Building	18	Axial Fan	2	9	99.6	0	99.6
EF-501 - 509	Treater Building Exhaust Fant	Treater Building	8	Axial Fan	1	9	96.5	0	96.5
K-604	Combustion Air Blower	Steam Generator Building	7	Axial Fan	450	1	109.5	0	109.5
H-604	Steam Boiler Casing	Steam Generator Building	3	Heater	71153	1	98.8	20	78.8
H-604	Steam Boiler Stack	Steam Generator Building	30.5	Heater	71153	1	98.8	0	98.8
K-605	Combustion Air Blower	Steam Generator Building	7	Axial Fan	450	1	109.5	0	109.5
H-605	Steam Boiler Casing	Steam Generator Building	3	Heater	71153	1	98.8	20	78.8
H-605	Steam Boiler Stack	Steam Generator Building	30.5	Heater	71153	1	98.8	0	98.8
P-541 A/B/C	HP Boiler Feedwater Pump	BFW Pump Building	2	Centrifugal	275	3	110.1	24	86.1
P-537 A/B/C	LP Boiler Feedwater Pump	Water Pump Building	2	Centrifugal	100	3	108.8	24	84.8
K-608/609	Instrument Air Compressor	Water Pump Building	2	Reciprocating	40	2	108.0	25	83.0
E-421 A-H	Glycol Aerial Cooler	Cooler Skid	5	Axial Fan	45	8	110.6	0	110.6
P-553 A/B/C	Glycol Circulation Pump	Glycol Building	2	Centrifugal	60	3	108.1	24	84.1
K-610	Glycol Heater Blower	Glycol Building	3	Axial Fan	25	1	101.0	0	101.0
H-610	Glycol Heater Casing	Glycol Building	3	Heater	3000	1	83.2	20	63.2
H-610	Glycol Heater Stack	Glycol Building	9	Heater	3000	1	83.2	0	83.2
	Utility Heater Blower	Glycol Building	3	Axial Fan	25	1	101.0	0	101.0
	Utility Heater Casing	Glycol Building	3	Heater	3000	1	83.2	20	63.2
	Utility Heater Stack	Glycol Building	9	Heater	3000	1	83.2	0	83.2
K-600/601	VRU Compressor	Tank Building	2	Reciprocating	100	2	112.0	25	87.0
P-503	Off Spec Oil Recycle Pump	Tank Building	2	Centrifugal	20	1	101.9	24	77.9
P-505/507	Slop Pump	Tank Building	2	Centrifugal	30	2	105.4	24	81.4
P-521	Wash Water Pump	Tank Building	2	Centrifugal	40	1	102.8	24	78.8

Phase 1 Noise Source Broadband Sound Power Levels (Re 10⁻¹² Watts, un-mitigated) Cont.

Tag	Description	Location	Height (m)	Model/Type	Rating (kW)	# Units	Equipment Sound Power Level (dBA)	Building Attenuation (dBA)	Overall Sound Power Level (dBA)
P-557	Recycle Pump	Tank Building	2	Centrifugal	40	1	102.8	24	78.8
P-509 A/B	Diluent Pump	Tank Building	2	Centrifugal	50	2	106.1	24	82.1
P-524 A/B	ORF Feed Pump	Tank Building	2	Centrifugal	50	2	106.1	24	82.1
P-525 A/B	De-Oiled Water Pump	Tank Building	2	Centrifugal	40	2	105.8	24	81.8
P-559 A/B	Skim Tank Feed Pump	Tank Building	2	Centrifugal	30	2	105.4	24	81.4
EF-601 - 610	Tank Building Exhaust Fant	Tank Building	11	Axial Fan	1	10	97.0	0	97.0
P-523 A/B	IGF Recycle Pump	IGF Building	2	Centrifugal	30	2	105.4	24	81.4
	Gas Turbine Inlet	CoGen Building	5	Gas Turbine		1	103.2	0	103.2
	Gas Turbine Exhaust	CoGen Building	13	Gas Turbine		1	111.8	0	111.8
	Gas Turbine Casing	CoGen Building	3	Gas Turbine		1	82.8	22	60.8
	HRSG Casing	CoGen Building	3	HRSG		1	82.8	22	60.8
	Lube Oil Cooler	CoGen Building	3	Axial Fan		1	103.1	0	103.1
	Gas Turbine Inlet	CoGen Building	5	Gas Turbine		1	103.2	0	103.2
	Gas Turbine Exhaust	CoGen Building	13	Gas Turbine		1	111.8	0	111.8
	Gas Turbine Casing	CoGen Building	3	Gas Turbine		1	82.8	22	60.8
	HRSG Casing	CoGen Building	3	HRSG		1	82.8	22	60.8
	Lube Oil Cooler	CoGen Building	3	Axial Fan		1	103.1	0	103.1
KM-611/612	Instrument Air Compressor	Well-Pad 1 Utility Building	2	Reciprocating	30	2	106.8	13	93.8
KM-611/612	Instrument Air Compressor	Well-Pad 2 Utility Building	2	Reciprocating	30	2	106.8	13	93.8
KM-611/612	Instrument Air	Well-Pad 3 Utility	2	Reciprocating	30	2	106.8	13	93.8
P-850	Emulsion Pump	Well-Pad 1 Vessel Building	2	Centrifugal	75	1	103.6	13	90.6
P-850	Emulsion Pump	Well-Pad 2 Vessel Building	2	Centrifugal	75	1	103.6	13	90.6
P-850	Emulsion Pump	Well-Pad 3 Vessel Building	2	Centrifugal	75	1	103.6	13	90.6
	Wellpad Piping	Well-Pad 1	2	piping	N/A	6	103.2	0	103.2
	Wellpad Piping	Well-Pad 2	2	piping	N/A	6	103.2	0	103.2
	Wellpad Piping	Well-Pad 3	2	piping	N/A	6	103.2	0	103.2

Phase 1 Noise Source Octave Band Sound Power Levels (Re 10⁻¹² Watts, un-mitigated)

Description	31.5Hz	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz
Vapour Compressor	114.3	110.3	115.3	114.3	112.3	115.3	120.3	117.3	110.3
Evaporator Recirc Pump	97.7	98.7	99.7	101.7	101.7	104.7	101.7	97.7	91.7
Primary Feed Pump	91.4	92.4	93.4	95.4	95.4	98.4	95.4	91.4	85.4
Evaporator Feed Pump	91.4	92.4	93.4	95.4	95.4	98.4	95.4	91.4	85.4
Distillate Pump	94.4	95.4	96.4	98.4	98.4	101.4	98.4	94.4	88.4
Evaporator Building Exhaust Fan	100.6	103.6	103.6	100.6	97.6	93.6	90.6	87.6	79.6
Treater Building Exhaust Fant	97.5	100.5	100.5	97.5	94.5	90.5	87.5	84.5	76.5
Combustion Air Blower	110.5	113.5	113.5	110.5	107.5	103.5	100.5	97.5	89.5
Steam Boiler Casing	107.8	106.8	101.8	95.8	94.8	92.8	90.8	90.8	90.8
Steam Boiler Stack	107.8	106.8	101.8	95.8	94.8	92.8	90.8	90.8	90.8
Combustion Air Blower	110.5	113.5	113.5	110.5	107.5	103.5	100.5	97.5	89.5
Steam Boiler Casing	107.8	106.8	101.8	95.8	94.8	92.8	90.8	90.8	90.8
Steam Boiler Stack	107.8	106.8	101.8	95.8	94.8	92.8	90.8	90.8	90.8
HP Boiler Feedwater Pump	99.1	100.1	101.1	103.1	103.1	106.1	103.1	99.1	93.1
LP Boiler Feedwater Pump	97.8	98.8	99.8	101.8	101.8	104.8	101.8	97.8	91.8
Instrument Air Compressor	98.0	94.0	99.0	98.0	96.0	99.0	104.0	101.0	94.0
Glycol Aerial Cooler	111.6	114.6	114.6	111.6	108.6	104.6	101.6	98.6	90.6
Glycol Circulation Pump	97.1	98.1	99.1	101.1	101.1	104.1	101.1	97.1	91.1
Glycol Heater Blower	102.0	105.0	105.0	102.0	99.0	95.0	92.0	89.0	81.0
Glycol Heater Casing	92.2	91.2	86.2	80.2	79.2	77.2	75.2	75.2	75.2
Glycol Heater Stack	92.2	91.2	86.2	80.2	79.2	77.2	75.2	75.2	75.2
Utility Heater Blower	102.0	105.0	105.0	102.0	99.0	95.0	92.0	89.0	81.0
Utility Heater Casing	92.2	91.2	86.2	80.2	79.2	77.2	75.2	75.2	75.2
Utility Heater Stack	92.2	91.2	86.2	80.2	79.2	77.2	75.2	75.2	75.2
VRU Compressor	102.0	98.0	103.0	102.0	100.0	103.0	108.0	105.0	98.0
Off Spec Oil Recycle Pump	90.9	91.9	92.9	94.9	94.9	97.9	94.9	90.9	84.9
Slop Pump	94.4	95.4	96.4	98.4	98.4	101.4	98.4	94.4	88.4
Wash Water Pump	91.8	92.8	93.8	95.8	95.8	98.8	95.8	91.8	85.8

Phase 1 Noise Source Octave Band Sound Power Levels (Re 10⁻¹² Watts, un-mitigated) Cont.

Description	31.5Hz	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz
Recycle Pump	91.8	92.8	93.8	95.8	95.8	98.8	95.8	91.8	85.8
Diluent Pump	95.1	96.1	97.1	99.1	99.1	102.1	99.1	95.1	89.1
ORF Feed Pump	95.1	96.1	97.1	99.1	99.1	102.1	99.1	95.1	89.1
De-Oiled Water Pump	94.8	95.8	96.8	98.8	98.8	101.8	98.8	94.8	88.8
Skim Tank Feed Pump	94.4	95.4	96.4	98.4	98.4	101.4	98.4	94.4	88.4
Tank Building Exhaust Fant	98.0	101.0	101.0	98.0	95.0	91.0	88.0	85.0	77.0
IGF Recycle Pump	94.4	95.4	96.4	98.4	98.4	101.4	98.4	94.4	88.4
Gas Turbine Inlet	107.5	110.5	111.5	110.5	94.5	68.5	56.5	80.5	82.5
Gas Turbine Exhaust	121.5	123.5	116.5	113.5	112.5	100.5	95.5	92.5	88.5
Gas Turbine Casing	106.5	99.5	100.5	101.5	102.5	98.5	98.5	94.5	87.5
HRSG Casing	106.5	99.5	100.5	101.5	102.5	98.5	98.5	94.5	87.5
Lube Oil Cooler	107.5	114.5	111.5	104.5	99.5	96.5	92.5	88.5	83.5
Gas Turbine Inlet	107.5	110.5	111.5	110.5	94.5	68.5	56.5	80.5	82.5
Gas Turbine Exhaust	121.5	123.5	116.5	113.5	112.5	100.5	95.5	92.5	88.5
Gas Turbine Casing	106.5	99.5	100.5	101.5	102.5	98.5	98.5	94.5	87.5
HRSG Casing	106.5	99.5	100.5	101.5	102.5	98.5	98.5	94.5	87.5
Lube Oil Cooler	107.5	114.5	111.5	104.5	99.5	96.5	92.5	88.5	83.5
Instrument Air Compressor	96.8	92.8	97.8	96.8	94.8	97.8	102.8	99.8	92.8
Instrument Air Compressor	96.8	92.8	97.8	96.8	94.8	97.8	102.8	99.8	92.8
Instrument Air Compressor	96.8	92.8	97.8	96.8	94.8	97.8	102.8	99.8	92.8
Emulsion Pump	92.6	93.6	94.6	96.6	96.6	99.6	96.6	92.6	86.6
Emulsion Pump	92.6	93.6	94.6	96.6	96.6	99.6	96.6	92.6	86.6
Emulsion Pump	92.6	93.6	94.6	96.6	96.6	99.6	96.6	92.6	86.6
Wellpad Piping	108.8	111.8	101.8	99.8	98.8	97.8	95.8	94.8	89.8
Wellpad Piping	108.8	111.8	101.8	99.8	98.8	97.8	95.8	94.8	89.8
Wellpad Piping	108.8	111.8	101.8	99.8	98.8	97.8	95.8	94.8	89.8

Phase 2 Noise Source Broadband Sound Power Levels (Re 10⁻¹² Watts, un-mitigated)

Description	Location	Height (m)	Model/Type	Rating (kW)	# Units	Equipment Sound Power Level (dBA)	Building Attenuation (dBA)	Overall Sound Power Level (dBA)
INSTRUMENT AIR SCREW COMPRESSOR PACKAGE #1	Air Bldg	2	Reciprocating	168	2	114.3	25	89.3
OIL PRODUCTION RECYCLE PUMP	Tank Bldg	2	Centrifugal	30	1	102.4	24	78.4
SALES OIL RECYCLE PUMP	Tank Bldg	2	Centrifugal	30	1	102.4	24	78.4
OFF SPEC. OIL RECYCLE PUMP	Tank Bldg	2	Centrifugal	30	1	102.4	24	78.4
SLOP TRANSFER PUMP	Tank Bldg	2	Centrifugal	22	1	102.0	24	78.0
SLOP TRANSFER PUMP	Tank Bldg	2	Centrifugal	22	1	102.0	24	78.0
WASH WATER PUMP	Tank Bldg	2	Centrifugal	30	1	102.4	24	78.4
SURGE PUMP	Tank Bldg	2	Centrifugal	60	2	106.3	24	82.3
EDUCTOR SUPPLY PUMP	Tank Bldg	2	Centrifugal	75	2	106.6	24	82.6
OIL REMOVAL FILTER BACKWASH PUMP	Tank Bldg	2	Centrifugal	75	2	106.6	24	82.6
OIL REMOVAL FILTER FEED PUMP	Tank Bldg	2	Centrifugal	75	2	106.6	24	82.6
DE-OILED WATER PUMP	Tank Bldg	2	Centrifugal	75	2	106.6	24	82.6
DILUENT PUMP	Tank Bldg	2	Centrifugal	112	2	107.2	24	83.2
VRU COMPRESSOR #1	Tank Bldg	2	Reciprocating	224	1	112.5	25	87.5
VRU COMPRESSOR #2	Tank Bldg	2	Reciprocating	224	1	112.5	25	87.5
DILBIT LOAD PUMP	Tank Bldg	2	Centrifugal	112	2	107.2	24	83.2
ORF AGITATOR	Tank Bldg	2	Motor	30	1	101.6	24	77.6
ORF AGITATOR	Tank Bldg	2	Motor	30	1	101.6	24	77.6
ORF AGITATOR	Tank Bldg	2	Motor	30	1	101.6	24	77.6
ORF AGITATOR	Tank Bldg	2	Motor	30	1	101.6	24	77.6
CLEAN OIL STORAGE TRANSFER PUMP	Tank Bldg	2	Centrifugal	112	1	104.1	24	80.1
CLEAN OIL STORAGE RECYCLE PUMP	Tank Bldg	2	Centrifugal	37	1	102.7	24	78.7
EVAPORATOR FEED PUMP	Evap Bldg #1	2	Centrifugal	30	2	105.4	24	81.4
EVAPORATOR 1 DISTILLATE PUMP	Evap Bldg #1	2	Centrifugal	30	2	105.4	24	81.4
EVAPORATOR 1 RECIRCULATION PUMP	Evap Bldg #1	2	Centrifugal	261	2	108.3	24	84.3
EVAPORATOR 1 VAPOR COMPRESSOR	Evap Bldg #1	5	Reciprocating	2300	2	125.6	25	100.6
CRYSTALLIZER RECIRC. PUMP	Evap Bldg #1	2	Centrifugal	187	2	107.8	24	83.8

Phase 2 Noise Source Broadband Sound Power Levels (Re 10⁻¹² Watts, un-mitigated) Cont.

Description	Location	Height (m)	Model/Type	Rating (kW)	# Units	Equipment Sound Power Level (dBA)	Building Attenuation (dBA)	Overall Sound Power Level (dBA)
EVAPORATOR FEED PUMP	Evap Bldg #2	2	Centrifugal	30	2	105.4	24	81.4
EVAPORATOR 2 DISTILLATE PUMP	Evap Bldg #2	2	Centrifugal	30	2	105.4	24	81.4
EVAPORATOR 2 RECIRCULATION PUMP	Evap Bldg #2	2	Centrifugal	261	2	108.3	24	84.3
EVAPORATOR 2 VAPOR COMPRESSOR	Evap Bldg #2	5	Reciprocating	2300	2	125.6	25	100.6
CRYSTALLIZER RECIRC. PUMP	Evap Bldg #2	2	Centrifugal	187	2	107.8	24	83.8
L.P. BOILER FEEDWATER PUMP	Evap Bldg #1	2	Centrifugal	224	3	109.8	24	85.8
SOFT WATER PUMP	Evap Bldg #1	2	Centrifugal	30	2	105.4	24	81.4
H.P. BOILER FEEDWATER PUMP	HP BFW Bldg	2	Centrifugal	597	3	111.1	24	87.1
TURBINE #1 ENCLOSURE VENTILATION FAN	Cogen Bldg	3	Axial Fan	30	1	101.7	0	101.7
TURBINE #1 START MOTOR	Cogen Bldg	2	Motor	93	2	109.5	24	85.5
SEAL AIR FAN	Cogen Bldg	3	Axial Fan	8	1	96.0	0	96.0
COOLING AIR BLOWER	Cogen Bldg	3	Axial Fan	3	1	91.8	0	91.8
TURBINE #2 ENCLOSURE VENTILATION FAN	Cogen Bldg	3	Axial Fan	15	1	98.8	0	98.8
TURBINE #2 START MOTOR	Cogen Bldg	2	Motor	93	2	109.5	24	85.5
SEAL AIR FAN	Cogen Bldg	3	Axial Fan	8	1	96.0	0	96.0
COOLING AIR BLOWER	Cogen Bldg	3	Axial Fan	3	1	91.8	0	91.8
TURBINE #3 ENCLOSURE VENTILATION FAN	Cogen Bldg	3	Axial Fan	15	1	98.8	0	98.8
TURBINE #3 START MOTOR	Cogen Bldg	2	Motor	93	2	109.5	24	85.5
SEAL AIR FAN	Cogen Bldg	3	Axial Fan	8	1	96.0	0	96.0
COOLING AIR BLOWER	Cogen Bldg	3	Axial Fan	3	1	91.8	0	91.8
STEAM BOILER STACK	Steam Gen Bldg	30	Heater	100844	1	101.1	0	101.1
BOILER COMBUSTION AIR FAN	Steam Gen Bldg	5	Axial Fan	373	1	102.7	0	102.7
STEAM BOILER STACK	Steam Gen Bldg	30	Heater	100844	1	101.1	0	101.1
BOILER COMBUSTION AIR FAN	Steam Gen Bldg	5	Axial Fan	373	1	102.7	0	102.7
STEAM BOILER STACK	Steam Gen Bldg	30	Heater	100844	1	101.1	0	101.1
BOILER COMBUSTION AIR FAN	Steam Gen Bldg	5	Axial Fan	373	1	102.7	0	102.7
STEAM BOILER STACK	Steam Gen Bldg	30	Heater	100844	1	101.1	0	101.1
BOILER COMBUSTION AIR FAN	Steam Gen Bldg	5	Axial Fan	373	1	102.7	0	102.7
STEAM BOILER STACK	Steam Gen Bldg	30	Heater	100844	1	101.1	0	101.1
BOILER COMBUSTION AIR FAN	Steam Gen Bldg	5	Axial Fan	373	1	102.7	0	102.7

Phase 2 Noise Source Broadband Sound Power Levels (Re 10⁻¹² Watts, un-mitigated) Cont.

Description	Location	Height (m)	Model/Type	Rating (kW)	# Units	Equipment Sound Power Level (dBA)	Building Attenuation (dBA)	Overall Sound Power Level (dBA)
GLYCOL HEATER BLOWER	Glycol Building	3	Axial Fan	25	1	101.0	0	101.0
GLYCOL HEATER STACK	Glycol Building	9	Heater	5200	1	86.7	0	86.7
UTILITY HEATER BLOWER	Glycol Building	3	Axial Fan	25	1	101.0	0	101.0
UTILITY HEATER STACK	Glycol Building	10	Heater	5900	1	87.6	0	87.6
HEATING GLYCOL CIRCULATION PUMP	Glycol Bldg	2	Centrifugal	112	2	107.2	24	83.2
COOLING GLYCOL CIRCULATION PUMP	Glycol Bldg	2	Centrifugal	298	3	110.2	24	86.2
COOLING GLYCOL COOLER FANS	Glycol Coolers	5	Axial Fan	37	16	110.8	0	110.8
GAS TURBINE INLET	CoGen Building	5	Gas Turbine		1	94.3	0	94.3
GAS TURBINE EXHAUST	CoGen Building	20	Gas Turbine		1	102.1	0	102.1
GAS TURBINE CASING	CoGen Building	3	Gas Turbine		1	88.0	22	66.0
HRSG CASING	CoGen Building	3	HRSG		1	88.0	22	66.0
LUBE OIL COOLER	CoGen Building	3	Axial Fan		1	103.1	0	103.1
GAS TURBINE INLET	CoGen Building	5	Gas Turbine		1	94.3	0	94.3
GAS TURBINE EXHAUST	CoGen Building	20	Gas Turbine		1	102.1	0	102.1
GAS TURBINE CASING	CoGen Building	3	Gas Turbine		1	88.0	22	66.0
HRSG CASING	CoGen Building	3	HRSG		1	88.0	22	66.0
LUBE OIL COOLER	CoGen Building	3	Axial Fan		1	103.1	0	103.1
GAS TURBINE INLET	CoGen Building	5	Gas Turbine		1	94.3	0	94.3
GAS TURBINE EXHAUST	CoGen Building	20	Gas Turbine		1	102.1	0	102.1
GAS TURBINE CASING	CoGen Building	3	Gas Turbine		1	88.0	22	66.0
HRSG CASING	CoGen Building	3	HRSG		1	88.0	22	66.0
LUBE OIL COOLER	CoGen Building	3	Axial Fan		1	103.1	0	103.1
FIELD STEP UP TRANSFORMER 13.8KV/25KV	Switch Yard	3	Transformer	15 MVA	1	97.0	0	97.0
FIELD STEP UP TRANSFORMER 13.8KV/25KV COOLING FANS	Switch Yard	3	Axial Fan	1	4	93.0	0	93.0
13.8/4160 VAC STEP DOWN TRANSFORMERS	Switch Yard	3	Transformer	5MVA	3	101.8	0	101.8
13.8/480 VAC STEP DOWN TRANSFORMERS	Switch Yard	3	Transformer	3 MVA	4	103.1	0	103.1
INSTRUMENT AIR	Well-Pad (Typical)	2	Reciprocating	30	2	106.8	13	93.8
Emulsion Pump	Well-Pad (Typical)	2	Centrifugal	75	1	103.6	13	90.6
Wellpad Piping	Well-Pad (Typical)	2	piping	N/A	6	103.2	0	103.2

Phase 2 Noise Source Octave Band Sound Power Levels (Re 10⁻¹² Watts, un-mitigated)

Description	31.5Hz	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz
INSTRUMENT AIR SCREW COMPRESSOR PACKAGE #1	104.3	100.3	105.3	104.3	102.3	105.3	110.3	107.3	100.3
OIL PRODUCTION RECYCLE PUMP	91.4	92.4	93.4	95.4	95.4	98.4	95.4	91.4	85.4
SALES OIL RECYCLE PUMP	91.4	92.4	93.4	95.4	95.4	98.4	95.4	91.4	85.4
OFF SPEC. OIL RECYCLE PUMP	91.4	92.4	93.4	95.4	95.4	98.4	95.4	91.4	85.4
SLOP TRANSFER PUMP	91.0	92.0	93.0	95.0	95.0	98.0	95.0	91.0	85.0
SLOP TRANSFER PUMP	91.0	92.0	93.0	95.0	95.0	98.0	95.0	91.0	85.0
WASH WATER PUMP	91.4	92.4	93.4	95.4	95.4	98.4	95.4	91.4	85.4
SURGE PUMP	95.3	96.3	97.3	99.3	99.3	102.3	99.3	95.3	89.3
EDUCTOR SUPPLY PUMP	95.6	96.6	97.6	99.6	99.6	102.6	99.6	95.6	89.6
OIL REMOVAL FILTER BACKWASH PUMP	95.6	96.6	97.6	99.6	99.6	102.6	99.6	95.6	89.6
OIL REMOVAL FILTER FEED PUMP	95.6	96.6	97.6	99.6	99.6	102.6	99.6	95.6	89.6
DE-OILED WATER PUMP	95.6	96.6	97.6	99.6	99.6	102.6	99.6	95.6	89.6
DILUENT PUMP	96.2	97.2	98.2	100.2	100.2	103.2	100.2	96.2	90.2
VRU COMPRESSOR #1	102.5	98.5	103.5	102.5	100.5	103.5	108.5	105.5	98.5
VRU COMPRESSOR #2	102.5	98.5	103.5	102.5	100.5	103.5	108.5	105.5	98.5
DILBIT LOAD PUMP	96.2	97.2	98.2	100.2	100.2	103.2	100.2	96.2	90.2
ORF AGITATOR	88.6	88.6	91.6	93.6	96.6	96.6	95.6	90.6	82.6
ORF AGITATOR	88.6	88.6	91.6	93.6	96.6	96.6	95.6	90.6	82.6
ORF AGITATOR	88.6	88.6	91.6	93.6	96.6	96.6	95.6	90.6	82.6
ORF AGITATOR	88.6	88.6	91.6	93.6	96.6	96.6	95.6	90.6	82.6
CLEAN OIL STORAGE TRANSFER PUMP	93.1	94.1	95.1	97.1	97.1	100.1	97.1	93.1	87.1
CLEAN OIL STORAGE RECYCLE PUMP	91.7	92.7	93.7	95.7	95.7	98.7	95.7	91.7	85.7
EVAPORATOR FEED PUMP	94.4	95.4	96.4	98.4	98.4	101.4	98.4	94.4	88.4
EVAPORATOR 1 DISTILLATE PUMP	94.4	95.4	96.4	98.4	98.4	101.4	98.4	94.4	88.4
EVAPORATOR 1 RECIRCULATION PUMP	97.3	98.3	99.3	101.3	101.3	104.3	101.3	97.3	91.3
EVAPORATOR 1 VAPOR COMPRESSOR	115.6	111.6	116.6	115.6	113.6	116.6	121.6	118.6	111.6
CRYSTALLIZER RECIRC. PUMP	96.8	97.8	98.8	100.8	100.8	103.8	100.8	96.8	90.8

Phase 2 Noise Source Octave Band Sound Power Levels (Re 10⁻¹² Watts, un-mitigated) Cont.

Description	31.5Hz	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz
EVAPORATOR FFED PUMP	94.4	95.4	96.4	98.4	98.4	101.4	98.4	94.4	88.4
EVAPORATOR 2 DISTILLATE PUMP	94.4	95.4	96.4	98.4	98.4	101.4	98.4	94.4	88.4
EVAPORATOR 2 RECIRCULATION PUMP	97.3	98.3	99.3	101.3	101.3	104.3	101.3	97.3	91.3
EVAPORATOR 2 VAPOR COMPRESSOR	115.6	111.6	116.6	115.6	113.6	116.6	121.6	118.6	111.6
CRYSTALLIZER RECIRC. PUMP	96.8	97.8	98.8	100.8	100.8	103.8	100.8	96.8	90.8
L.P. BOILER FEEDWATER PUMP	98.8	99.8	100.8	102.8	102.8	105.8	102.8	98.8	92.8
SOFT WATER PUMP	94.4	95.4	96.4	98.4	98.4	101.4	98.4	94.4	88.4
H.P. BOILER FEEDWATER PUMP	100.1	101.1	102.1	104.1	104.1	107.1	104.1	100.1	94.1
TURBINE #1 ENCLOSURE VENTILATION FAN	102.7	105.7	105.7	102.7	99.7	95.7	92.7	89.7	81.7
TURBINE #1 START MOTOR	96.5	96.5	99.5	101.5	104.5	104.5	103.5	98.5	90.5
SEAL AIR FAN	97.0	100.0	100.0	97.0	94.0	90.0	87.0	84.0	76.0
COOLING AIR BLOWER	92.8	95.8	95.8	92.8	89.8	85.8	82.8	79.8	71.8
TURBINE #2 ENCLOSURE VENTILATION FAN	99.8	102.8	102.8	99.8	96.8	92.8	89.8	86.8	78.8
TURBINE #2 START MOTOR	96.5	96.5	99.5	101.5	104.5	104.5	103.5	98.5	90.5
SEAL AIR FAN	97.0	100.0	100.0	97.0	94.0	90.0	87.0	84.0	76.0
COOLING AIR BLOWER	92.8	95.8	95.8	92.8	89.8	85.8	82.8	79.8	71.8
TURBINE #3 ENCLOSURE VENTILATION FAN	99.8	102.8	102.8	99.8	96.8	92.8	89.8	86.8	78.8
TURBINE #3 START MOTOR	96.5	96.5	99.5	101.5	104.5	104.5	103.5	98.5	90.5
SEAL AIR FAN	97.0	100.0	100.0	97.0	94.0	90.0	87.0	84.0	76.0
COOLING AIR BLOWER	92.8	95.8	95.8	92.8	89.8	85.8	82.8	79.8	71.8
STEAM BOILER STACK	110.1	109.1	104.1	98.1	97.1	95.1	93.1	93.1	93.1
BOILER COMBUSTION AIR FAN	103.7	106.7	106.7	103.7	100.7	96.7	93.7	90.7	82.7
STEAM BOILER STACK	110.1	109.1	104.1	98.1	97.1	95.1	93.1	93.1	93.1
BOILER COMBUSTION AIR FAN	103.7	106.7	106.7	103.7	100.7	96.7	93.7	90.7	82.7
STEAM BOILER STACK	110.1	109.1	104.1	98.1	97.1	95.1	93.1	93.1	93.1
BOILER COMBUSTION AIR FAN	103.7	106.7	106.7	103.7	100.7	96.7	93.7	90.7	82.7
STEAM BOILER STACK	110.1	109.1	104.1	98.1	97.1	95.1	93.1	93.1	93.1
BOILER COMBUSTION AIR FAN	103.7	106.7	106.7	103.7	100.7	96.7	93.7	90.7	82.7
STEAM BOILER STACK	110.1	109.1	104.1	98.1	97.1	95.1	93.1	93.1	93.1
BOILER COMBUSTION AIR FAN	103.7	106.7	106.7	103.7	100.7	96.7	93.7	90.7	82.7

Phase 2 Noise Source Octave Band Sound Power Levels (Re 10⁻¹² Watts, un-mitigated) Cont.

Description	31.5Hz	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz
GLYCOL HEATER BLOWER	102.0	105.0	105.0	102.0	99.0	95.0	92.0	89.0	81.0
GLYCOL HEATER STACK	95.7	94.7	89.7	83.7	82.7	80.7	78.7	78.7	78.7
UTILITY HEATER BLOWER	102.0	105.0	105.0	102.0	99.0	95.0	92.0	89.0	81.0
UTILITY HEATER STACK	96.6	95.6	90.6	84.6	83.6	81.6	79.6	79.6	79.6
HEATING GLYCOL CIRCULATION PUMP	96.2	97.2	98.2	100.2	100.2	103.2	100.2	96.2	90.2
COOLING GLYCOL CIRCULATION PUMP	99.2	100.2	101.2	103.2	103.2	106.2	103.2	99.2	93.2
COOLING GLYCOL COOLER FANS	111.8	114.8	114.8	111.8	108.8	104.8	101.8	98.8	90.8
GAS TURBINE INLET	111.5	111.5	107.5	97.5	77.5	52.5	51.5	79.5	76.5
GAS TURBINE EXHAUST	124.5	121.5	112.5	104.5	97.5	88.5	83.5	82.5	81.5
GAS TURBINE CASING	119.5	112.5	109.5	106.5	104.5	103.5	101.5	98.5	93.5
HRSG CASING	119.5	112.5	109.5	106.5	104.5	103.5	101.5	98.5	93.5
COOLER	107.5	114.5	111.5	104.5	99.5	96.5	92.5	88.5	83.5
GAS TURBINE INLET	111.5	111.5	107.5	97.5	77.5	52.5	51.5	79.5	76.5
GAS TURBINE EXHAUST	124.5	121.5	112.5	104.5	97.5	88.5	83.5	82.5	81.5
GAS TURBINE CASING	119.5	112.5	109.5	106.5	104.5	103.5	101.5	98.5	93.5
HRSG CASING	119.5	112.5	109.5	106.5	104.5	103.5	101.5	98.5	93.5
LUBE OIL COOLER	107.5	114.5	111.5	104.5	99.5	96.5	92.5	88.5	83.5
GAS TURBINE INLET	111.5	111.5	107.5	97.5	77.5	52.5	51.5	79.5	76.5
GAS TURBINE EXHAUST	124.5	121.5	112.5	104.5	97.5	88.5	83.5	82.5	81.5
GAS TURBINE CASING	119.5	112.5	109.5	106.5	104.5	103.5	101.5	98.5	93.5
HRSG CASING	119.5	112.5	109.5	106.5	104.5	103.5	101.5	98.5	93.5
LUBE OIL COOLER	107.5	114.5	111.5	104.5	99.5	96.5	92.5	88.5	83.5
FIELD STEP UP TRANSFORMER 13.8KV/25KV	97.0	100.0	102.0	97.0	97.0	91.0	86.0	81.0	74.0
FIELD STEP UP TRANSFORMER 13.8KV/25KV COOLING FANS	94.0	97.0	97.0	94.0	91.0	87.0	84.0	81.0	73.0
13.8/4160 VAC STEP DOWN TRANSFORMERS	101.8	104.8	106.8	101.8	101.8	95.8	90.8	85.8	78.8
13.8/480 VAC STEP DOWN TRANSFORMERS	103.1	106.1	108.1	103.1	103.1	97.1	92.1	87.1	80.1
INSTRUMENT AIR	96.8	92.8	97.8	96.8	94.8	97.8	102.8	99.8	92.8
Emulsion Pump	92.6	93.6	94.6	96.6	96.6	99.6	96.6	92.6	86.6
Wellpad Piping	108.8	111.8	101.8	99.8	98.8	97.8	95.8	94.8	89.8

Tag	Building Name	Length (m)	Width (m)	Height (m)
BU-000	Office	30.0	27.0	6.1
BU-001	Electrical Building	15.0	7.0	4.5
BU-002	Electrical Building	15.0	7.0	4.5
BU-003	Electrical Building	30.0	7.0	4.5
BU-004	Electrical Building	30.0	7.0	4.5
BU-020	Inlet Building	36.0	19.0	6.9
BU-021	Treater Building	39.0	18.0	6.5
BU-022	Tank Building	83.0	26.0	8.9
BU-023	Glycol Building	20.0	16.0	4.3
BU-028	Source Water Building	30.0	20.0	6.5
BU-030	Evaporator Building	33.0	27.0	16.0
BU-031	Steam Generator Building	33.0	31.0	11.0
BU-034	Fuel Gas Building	12.0	6.0	4.5
BU-036	Flare Knockout Building	12.0	6.0	4.5
	Cogen Building	50.0	25.0	11.0

Phase 1 Building Dimensions

Phase 2 Building Dimensions

Building Name	Length (m)	Width (m)	Height (m)
CoGen Switchgear Building	25.0	7.0	3.7
Black Start Generator Building	15.0	7.0	3.7
480VAC MCC Building	30.0	7.0	4.2
CoGen Building	25.5	35.5	10.0
Steam Generator Building	134.0	46.8	13.5
Fuel Gas Building	12.3	6.0	5.5
HP BFW Pump Building	18.0	7.0	6.0
Steam Generator MCC Building	30.0	7.0	4.2
MCC	30.0	7.0	4.2
East Evaporator / Water Area Building	82.0	21.0	15.0
West Evaporator / Water Area Building	82.0	21.0	15.0
East Clean Lab	7.3	3.7	2.5
West Clean Lab	7.3	3.7	2.5
East Evaporator MCC Building	30.0	7.0	4.2
West Evaporator MCC Building	30.0	7.0	4.2
East MCC - 1	30.0	7.0	4.2
West MCC - 1	30.0	7.0	4.2
Tank Building	100.0	26.0	7.0
Northeast Inlet Building	34.0	6.2	6.1
Southeast Inlet Building	34.0	6.2	6.1
Northwest Inlet Building	34.0	6.2	6.6
Southwest Inlet Building	34.0	6.2	6.6
Northeast FWKO Building	25.3	6.5	6.0
Southeast FWKO Building	25.3	6.5	6.0
Northwest FWKO Building	25.3	6.5	6.0
Southwest FWKO Building	25.3	6.5	6.0
Pop Drum Building	8.0	4.1	5.0
North Treater Building	25.5	5.4	6.0
North Treater Building	25.5	5.4	6.0
Oil Lab	7.3	3.7	2.8
North Produced Water Building	22.0	13.0	6.9
South Produced Water Building	22.0	13.0	6.9
North Clean Oil Building	12.0	6.5	6.5
South Clean Oil Building	12.0	6.5	6.5
Instrument Air Building	10.0	6.0	3.7
Glycol Building	20.0	16.0	4.5
Flare Knockout Building	12.0	3.4	5.0
Office / Main Control Room	30.5	27.4	4.9
Warehouse	30.5	27.4	4.9

Tank Name	Radius (m)	Height (m)
Tanks 050	7.3	9.7
Tanks 051	7.3	9.7
Tanks 052	7.3	9.7
Tanks 053	3.6	9.7
Tanks 054	7.3	9.7
Tanks 055	7.2	9.7
Tanks 056	6.5	9.7
Tanks 057	3.6	9.7
Tanks 058	7.3	9.7
Tanks 060	7.3	9.7
Tanks 061	3.6	9.7
Tanks 062	3.1	8.2
Tanks 063	2.4	4.8
Tanks 064	7.3	9.7

Phase 1 Tank Dimensions

Phase 2 Tank Dimensions

Tank Name	Radius (m)	Height (m)
Raw Water Tank	7.2	9.7
Boiler Feedwater Tank	10.6	9.7
Soft Water Tank	10.6	9.7
Desand Tanks (x2)	3.6	9.7
Skim Tanks (x2)	7.2	9.7
IGF Feed Tanks (x2)	7.2	9.7
Slop Tanks (x2)	7.2	9.7
De-Oiled Water Tank	10.6	9.7
Diluent Tank	10.6	9.7
Sales Oil Tanks (x2)	10.6	9.7
Off Spec. Oil Tank	10.6	9.7

Building Sound Level Attenuation

	31.5	63	125	250	500	1000	2000	4000	8000
	Hz	HZ	Hz	Hz	Hz	Hz	Hz	Hz	Hz
Building Attenuation (dB)	3	6	9	12	15	20	25	30	30

General Modeling Parameters

Parameter	Value
Modeling Software	CADNA/A (Version 4.1.137)
Standard Followed	ISO 9613-2
Ground Sound Absorption Coefficient	0.5
Wind Speed	1 - 5 m/s (3.6 - 18 km/hr)
Wind Direction	Downwind from all sources to all receptors
Temperature	10 °C
Humidity	70%
Topography	Used Digital Terrain Model Contours Provided by Client

Appendix II THE ASSESSMENT OF ENVIRONMENTAL NOISE (GENERAL)

Sound Pressure Level

Sound pressure is initially measured in Pascal's (Pa). Humans can hear several orders of magnitude in sound pressure levels, so a more convenient scale is used. This scale is known as the decibel (dB) scale, named after Alexander Graham Bell (telephone guy). It is a base 10 logarithmic scale. When we measure pressure we typically measure the RMS sound pressure.

$$SPL = 10\log_{10}\left[\frac{P_{RMS}^{2}}{P_{ref}^{2}}\right] = 20\log_{10}\left[\frac{P_{RMS}}{P_{ref}}\right]$$

Where:

SPL = Sound Pressure Level in dB $P_{RMS} =$ Root Mean Square measured pressure (Pa) $P_{ref} =$ Reference sound pressure level ($P_{ref} = 2x10^{-5}$ Pa = 20 µPa)

This reference sound pressure level is an internationally agreed upon value. It represents the threshold of human hearing for "typical" people based on numerous testing. It is possible to have a threshold which is lower than 20 μ Pa which will result in negative dB levels. As such, zero dB does not mean there is no sound!

In general, a difference of $1 - 2 \, dB$ is the threshold for humans to notice that there has been a change in sound level. A difference of 3 dB (factor of 2 in acoustical energy) is perceptible and a change of 5 dB is strongly perceptible. A change of 10 dB is typically considered a factor of 2. This is quite remarkable when considering that 10 dB is 10-times the acoustical energy!

Frequency

The range of frequencies audible to the human ear ranges from approximately 20 Hz to 20 kHz. Within this range, the human ear does not hear equally at all frequencies. It is not very sensitive to low frequency sounds, is very sensitive to mid frequency sounds and is slightly less sensitive to high frequency sounds. Due to the large frequency range of human hearing, the entire spectrum is often divided into 31 bands, each known as a 1/3 octave band.

The internationally agreed upon center frequencies and upper and lower band limits for the 1/1 (whole octave) and 1/3 octave bands are as follows:

	Whole Octave			1/3 Octave	
Lower Band	Center	Upper Band	Lower Band	Center	Upper Band
Limit	Frequency	Limit	 Limit	Frequency	Limit
11	16	22	14.1	16	17.8
			17.8	20	22.4
			22.4	25	28.2
22	31.5	44	28.2	31.5	35.5
			35.5	40	44.7
			44.7	50	56.2
44	63	88	56.2	63	70.8
			70.8	80	89.1
			89.1	100	112
88	125	177	112	125	141
			141	160	178
			178	200	224
177	250	355	224	250	282
			282	315	355
355			355	400	447
	500	710	447	500	562
			562	630	708
			708	800	891
710	1000	1420	891	1000	1122
			1122	1250	1413
			1413	1600	1778
1420	2000	2840	1778	2000	2239
			2239	2500	2818
			2818	3150	3548
2840	4000	5680	3548	4000	4467
			4467	5000	5623
			5623	6300	7079
5680	8000	11360	7079	8000	8913
			8913	10000	11220
			11220	12500	14130
11360	16000	22720	14130	16000	17780
			17780	20000	22390

Human hearing is most sensitive at approximately 3500 Hz which corresponds to the ¹/₄ wavelength of the ear canal (approximately 2.5 cm). Because of this range of sensitivity to various frequencies, we typically apply various weighting networks to the broadband measured sound to more appropriately account for the way humans hear. By default, the most common weighting network used is the so-called "A-weighting". It can be seen in the figure that the low frequency sounds are reduced significantly with the A-weighting.

Combination of Sounds

When combining multiple sound sources the general equation is:

$$\Sigma SPL_n = 10\log_{10}\left[\sum_{i=1}^n 10^{\frac{SPL_i}{10}}\right]$$

Examples:

- Two sources of 50 dB each add together to result in 53 dB.
- Three sources of 50 dB each add together to result in 55 dB.
- Ten sources of 50 dB each add together to result in 60 dB.
- One source of 50 dB added to another source of 40 dB results in 50.4 dB

It can be seen that, if multiple similar sources exist, removing or reducing only one source will have little effect.

Sound Level Measurements

Over the years a number of methods for measuring and describing environmental noise have been developed. The most widely used and accepted is the concept of the Energy Equivalent Sound Level (L_{eq}) which was developed in the US (1970's) to characterize noise levels near US Air-force bases. This is the level of a steady state sound which, for a given period of time, would contain the same energy as the time varying sound. The concept is that the same amount of annoyance occurs from a sound having a high level for a short period of time as from a sound at a lower level for a longer period of time. The L_{eq} is defined as:

$$L_{eq} = 10\log_{10}\left[\frac{1}{T}\int_{0}^{T}10^{\frac{dB}{10}}dT\right] = 10\log_{10}\left[\frac{1}{T}\int_{0}^{T}\frac{P^{2}}{P_{ref}^{2}}dT\right]$$

We must specify the time period over which to measure the sound. i.e. 1-second, 10-seconds, 15-seconds, 1-minute, 1-day, etc. An L_{eq} is meaningless if there is no time period associated.

In general there a few very common L_{eq} sample durations which are used in describing environmental noise measurements. These include:

- L_{eq}24 Measured over a 24-hour period
- L_{eq} Night Measured over the night-time (typically 22:00 07:00)
- $L_{eq}Day$ Measured over the day-time (typically 07:00 22:00)
- L_{DN} Same as $L_{eq}24$ with a 10 dB penalty added to the night-time

Statistical Descriptor

Another method of conveying long term noise levels utilizes statistical descriptors. These are calculated from a cumulative distribution of the sound levels over the entire measurement duration and then determining the sound level at xx % of the time.

Figure 16.6 Statistically processed community noise showing histogram and cumulative distribution of A weighted sound levels.

Industrial Noise Control, Lewis Bell, Marcel Dekker, Inc. 1994

The most common statistical descriptors are:

L _{min}	- minimum sound level measured
L ₀₁	- sound level that was exceeded only 1% of the time
L ₁₀	- sound level that was exceeded only 10% of the time.
	- Good measure of intermittent or intrusive noise
	- Good measure of Traffic Noise
L ₅₀	- sound level that was exceeded 50% of the time (arithmetic average)
	- Good to compare to L _{eq} to determine steadiness of noise
L ₉₀	- sound level that was exceeded 90% of the time
	- Good indicator of typical "ambient" noise levels
L99	- sound level that was exceeded 99% of the time
L _{max}	- maximum sound level measured

These descriptors can be used to provide a more detailed analysis of the varying noise climate:

- If there is a large difference between the L_{eq} and the L_{50} (L_{eq} can never be any lower than the L_{50}) then it can be surmised that one or more short duration, high level sound(s) occurred during the time period.
- If the gap between the L_{10} and L_{90} is relatively small (less than 15 20 dBA) then it can be surmised that the noise climate was relatively steady.

Sound Propagation

In order to understand sound propagation, the nature of the source must first be discussed. In general, there are three types of sources. These are known as 'point', 'line', and 'area'. This discussion will concentrate on point and line sources since area sources are much more complex and can usually be approximated by point sources at large distances.

Point Source

As sound radiates from a point source, it dissipates through geometric spreading. The basic relationship between the sound levels at two distances from a point source is:

$$\therefore SPL_1 - SPL_2 = 20\log_{10}\left(\frac{r_2}{r_1}\right)$$

Where:

 SPL_1 = sound pressure level at location 1, SPL_2 = sound pressure level at location 2 r₁ = distance from source to location 1, r₂ = distance from source to location 2

Thus, the reduction in sound pressure level for a point source radiating in a free field is **6 dB per doubling of distance**. This relationship is independent of reflectivity factors provided they are always present. Note that this only considers geometric spreading and does not take into account atmospheric effects. Point sources still have some physical dimension associated with them, and typically do not radiate sound equally in all directions in all frequencies. The directionality of a source is also highly dependent on frequency. As frequency increases, directionality increases.

Examples (note no atmospheric absorption):

- A point source measuring 50 dB at 100m will be 44 dB at 200m.
- A point source measuring 50 dB at 100m will be 40.5 dB at 300m.
- A point source measuring 50 dB at 100m will be 38 dB at 400m.
- A point source measuring 50 dB at 100m will be 30 dB at 1000m.

Line Source

A line source is similar to a point source in that it dissipates through geometric spreading. The difference is that a line source is equivalent to a long line of many point sources. The basic relationship between the sound levels at two distances from a line source is:

$$SPL_1 - SPL_2 = 10\log_{10}\left(\frac{r_2}{r_1}\right)$$

The difference from the point source is that the '20' term in front of the 'log' is now only 10. Thus, the reduction in sound pressure level for a line source radiating in a free field is **3 dB per doubling of distance**.

Examples (note no atmospheric absorption):

- A line source measuring 50 dB at 100m will be 47 dB at 200m.
- A line source measuring 50 dB at 100m will be 45 dB at 300m.
- A line source measuring 50 dB at 100m will be 34 dB at 400m.
- A line source measuring 50 dB at 100m will be 40 dB at 1000m.

Atmospheric Absorption

As sound transmits through a medium, there is an attenuation (or dissipation of acoustic energy) which can be attributed to three mechanisms:

- 1) **Viscous Effects** Dissipation of acoustic energy due to fluid friction which results in thermodynamically irreversible propagation of sound.
- 2) **Heat Conduction Effects** Heat transfer between high and low temperature regions in the wave which result in non-adiabatic propagation of the sound.
- 3) **Inter Molecular Energy Interchanges** Molecular energy relaxation effects which result in a time lag between changes in translational kinetic energy and the energy associated with rotation and vibration of the molecules.

The following table illustrates the attenuation coefficient of sound at standard pressure (101.325 kPa) in units of dB/100m.

Temperature	Relative Humidity		1	Frequen	cy (Hz)	1	
°C	(%)	125	250	500	1000	2000	4000
	20	0.06	0.18	0.37	0.64	1.40	4.40
30	50	0.03	0.10	0.33	0.75	1.30	2.50
	90	0.02	0.06	0.24	0.70	1.50	2.60
	20	0.07	0.15	0.27	0.62	1.90	6.70
20	50	0.04	0.12	0.28 0.50		1.00	2.80
	90	0.02	0.08	0.26	0.56	0.99	2.10
	20	0.06	0.11	0.29	0.94	3.20	9.00
10	50	0.04	0.11	0.20	0.41	1.20	4.20
	90	0.03	0.10	0.21	0.38	0.81	2.50
	20	0.05	0.15	0.50	1.60	3.70	5.70
0	50	0.04	0.08	0.19	0.60	2.10	6.70
	90	0.03	0.08	0.15	0.36	1.10	4.10

- As frequency increases, absorption increases
- As Relative Humidity increases, absorption decreases
- There is no direct relationship between absorption and temperature
- The net result of atmospheric absorption is to modify the sound propagation of a point source from 6 dB/doubling-of-distance to approximately 7 – 8 dB/doubling-of-distance (based on anecdotal experience)

Atmospheric Absorption at 10°C and 70% RH

Meteorological Effects

There are many meteorological factors which can affect how sound propagates over large distances. These various phenomena must be considered when trying to determine the relative impact of a noise source either after installation or during the design stage.

Wind

- Can greatly alter the noise climate away from a source depending on direction
- Sound levels downwind from a source can be increased due to refraction of sound back down towards the surface. This is due to the generally higher velocities as altitude increases.
- Sound levels upwind from a source can be decreased due to a "bending" of the sound away from the earth's surface.
- Sound level differences of ± 10 dB are possible depending on severity of wind and distance from source.
- Sound levels crosswind are generally not disturbed by an appreciable amount
- Wind tends to generate its own noise, however, and can provide a high degree of masking relative to a noise source of particular interest.

Temperature

- Temperature effects can be similar to wind effects
- Typically, the temperature is warmer at ground level than it is at higher elevations.
- If there is a very large difference between the ground temperature (very warm) and the air aloft (only a few hundred meters) then the transmitted sound refracts upward due to the changing speed of sound.
- If the air aloft is warmer than the ground temperature (known as an *inversion*) the resulting higher speed of sound aloft tends to refract the transmitted sound back down towards the ground. This essentially works on Snell's law of reflection and refraction.
- Temperature inversions typically happen early in the morning and are most common over large bodies of water or across river valleys.
- Sound level differences of ± 10 dB are possible depending on gradient of temperature and distance from source.

<u>Rain</u>

- Rain does not affect sound propagation by an appreciable amount unless it is very heavy
- The larger concern is the noise generated by the rain itself. A heavy rain striking the ground can cause a significant amount of highly broadband noise. The amount of noise generated is difficult to predict.
- Rain can also affect the output of various noise sources such as vehicle traffic.

<u>Summary</u>

- In general, these wind and temperature effects are difficult to predict
- Empirical models (based on measured data) have been generated to attempt to account for these effects.
- Environmental noise measurements must be conducted with these effects in mind. Sometimes it is desired to have completely calm conditions, other times a "worst case" of downwind noise levels are desired.

Topographical Effects

Similar to the various atmospheric effects outlined in the previous section, the effect of various geographical and vegetative factors must also be considered when examining the propagation of noise over large distances.

Topography

- One of the most important factors in sound propagation.
- Can provide a natural barrier between source and receiver (i.e. if berm or hill in between).
- Can provide a natural amplifier between source and receiver (i.e. large valley in between or hard reflective surface in between).
- Must look at location of topographical features relative to source and receiver to determine importance (i.e. small berm 1km away from source and 1km away from receiver will make negligible impact).

Grass

- Can be an effective absorber due to large area covered
- Only effective at low height above ground. Does not affect sound transmitted direct from source to receiver if there is line of sight.
- Typically less absorption than atmospheric absorption when there is line of sight.
 - Approximate rule of thumb based on empirical data is:

$$A_g = 18\log_{10}(f) - 31$$
 (*dB*/100*m*)

Where: A_g is the absorption amount

Trees

- Provide absorption due to foliage
- Deciduous trees are essentially ineffective in the winter
- Absorption depends heavily on density and height of trees
- No data found on absorption of various kinds of trees
- Large spans of trees are required to obtain even minor amounts of sound reduction
- In many cases, trees can provide an effective visual barrier, even if the noise attenuation is negligible.

NOTE — $d_f = d_1 + d_2$

For calculating d_1 and d_2 , the curved path radius may be assumed to be 5 km.

Figure A.1 — Attenuation due to propagation through foliage increases linearly with propagation distance $d_{\rm f}$ through the foliage

Table A.1 — Attenuation of an octave band of noise due to propagation a distance $d_{\rm f}$ through dense foliage

Propagation distance $d_{\rm f}$	Nominal midband frequency								
	Hz								
m	63	125	250	500	1 000	2 000	4 000	8 000	
	Attenuatio	on, dB:							
$10 \le d_{\rm f} \le 20$	0	0	1	1	1	1	2	3	
	Attenuatio	on, dB/m:							
$20 \le d_{\rm f} \le 200$	0,02	0,03	0,04	0,05	0,06	0,08	0,09	0,12	

Tree/Foliage attenuation from ISO 9613-2:1996

Bodies of Water

- Large bodies of water can provide the opposite effect to grass and trees.
- Reflections caused by small incidence angles (grazing) can result in larger sound levels at great distances (increased reflectivity, Q).
- Typically air temperatures are warmer high aloft since air temperatures near water surface tend to be more constant. Result is a high probability of temperature inversion.
- Sound levels can "carry" much further.

Snow

- Covers the ground for much of the year in northern climates.
- Can act as an absorber or reflector (and varying degrees in between).
- Freshly fallen snow can be quite absorptive.
- Snow which has been sitting for a while and hard packed due to wind can be quite reflective.
- Falling snow can be more absorptive than rain, but does not tend to produce its own noise.
- Snow can cover grass which might have provided some means of absorption.
- Typically sound propagates with less impedance in winter due to hard snow on ground and no foliage on trees/shrubs.

Appendix III SOUND LEVELS OF FAMILIAR NOISE SOURCES

Used with Permission Obtained from ERCB Directive 038 (January, 2007)

Source¹ Sound Level (dBA)

30
30
40
50
50
50
60
60
70
75
75
78-95
80
80
88-94
88-98
90
95
95
100
110
120
130

¹ Cottrell, Tom, 1980, *Noise in Alberta*, Table 1, p.8, ECA80 - 16/1B4 (Edmonton: Environment Council of Alberta).

SOUND LEVELS GENERATED BY COMMON APPLIANCES

Used with Permission Obtained from ERCB Directive 038 (January, 2007)

Sound level at 3 feet (dBA)

Freezer	38-45
Refrigerator	34-53
Electric heater	47
Hair clipper	50
Electric toothbrush	48-57
Humidifier	41-54
Clothes dryer	51-65
Air conditioner	50-67
Electric shaver	47-68
Water faucet	62
Hair dryer	58-64
Clothes washer	48-73
Dishwasher	59-71
Electric can opener	60-70
Food mixer	59-75
Electric knife	65-75
Electric knife sharpener	72
Sewing machine	70-74
Vacuum cleaner	65-80
Food blender	65-85
Coffee mill	75-79
Food waste disposer	69-90
Edger and trimmer	81
Home shop tools	64-95
Hedge clippers	85
Electric lawn mower	80-90

¹ Reif, Z. F., and Vermeulen, P. J., 1979, "Noise from domestic appliances, construction, and industry," Table 1, p.166, in Jones, H. W., ed., *Noise in the Human Environment*, vol. 2, ECA79-SP/1 (Edmonton: Environment Council of Alberta).

Permissible Sound Levels at Theoretical 1,500 m Receptors

	Basic So		Night-Time	Day-Time			
	(Per	Dwelling Density Quarter Section of	Land)				
Proximity to Transportation	1 - 8 Dwellings	9 - 160 Dwellings	> 160 Dwellings				
Category 1	40	43	46	40	40		
Category 2	45	48	51				
Category 3	50	53	56				
		ic Sound Level (dBA)	40	40			
	Time of Day	Adjustment					
	Time of Day	Adjustment (dBA)					
Night-time adjustr	ment for hours 22:0	0	0	n/a			
Day-time adjustm	ent for hours 07:00	+10	n/a	+10			
	Class A A						
Class	Reason for	Adjustment	Adjustment (dBA)				
A1	Seasonal Adjus	stment (Winter)	0 to +5	0	0		
A2	Ambient Monito	ring Adjustment	-10 to +10	0	0		
Sum	n of A1 and A2 cannot exe	ceed maximum of 10 dB	A Leq				
		Class	s A Adjustment (dBA)	0	0		
	Class B A	ljustments					
Class	Duration	of Activity	Adjustment (dBA)				
B1	≤ 1	Day	+ 15	0	0		
B2	≤7[Days	+ 10	0	0		
B3	≤ 60	Days	+ 5	0	0		
B4	> 60	Days	0	0	0		
	Can only apply one	of B1, B2, B3, or B4					
	Class B Adjustment (dBA)						
	Total Per	.evel (PSL) [dBA]	40	50			

Project #11-025

Appendix V APPLICATION CASE NOISE SOURCE ORDER-RANKING

		15.4	31.5	63	125	250	500	1000	2000	4000
Noise Source	Location	dBA	Hz	Hz	Hz	Hz	Hz	Hz	Hz	Hz
COOLING GLYCOL COOLER FANS	Phase 2 CPF	31	41.5	44.4	36.5	32.9	29.9	25.2	12	-31.4
GAS TURBINE EXHAUST	Phase 2 CPF	26.4	53.3	50.1	35.4	25.5	17.9	7.9	-7.6	-50.3
GAS TURBINE EXHAUST	Phase 2 CPF	26.4	53.2	50.1	35.4	25.4	17.8	7.8	-7.7	-50.7
GAS TURBINE EXHAUST	Phase 2 CPF	26.3	53.2	50	35.3	25.4	17.8	7.8	-7.9	-51
LUBE OIL COOLER	Phase 2 CPF	21.1	26.5	33.4	32.4	24.2	17.7	11.6	-3.3	-49.1
LUBE OIL COOLER	Phase 2 CPF	21.1	26.5	35.8	32.3	24.1	17.5	11.4	-3.6	-49.8
13.8/480 VAC STEP DOWN TRANSFORMERS	Phase 2 CPF	19.1	22.5	25.3	26.8	20.7	19.3	10.5	-4.9	-50.1
LUBE OIL COOLER	Phase 2 CPF	18.8	26.6	33.4	29.9	21.8	15.4	9.4	-5.4	-51
TURBINE #1 ENCLOSURE VENTILATION FAN	Phase 2 CPF	18.4	21.7	24.6	24.1	22.2	17.6	10.4	-3.8	-49.3
BOILER COMBUSTION AIR FAN	Phase 2 CPF	18.3	24.6	27.4	26.6	22.1	17	9.4	-5.4	-52.5
EVAPORATOR 1 VAPOR COMPRESSOR	Phase 2 CPF	18.2	42.4	32.2	26.4	20.8	14.9	12	1.8	-46.7
STEAM BOILER STACK	Phase 2 CPF	18.1	33.6	32.5	26.5	18.5	16.8	11.9	-1.3	-44.2
STEAM BOILER STACK	Phase 2 CPF	18	33.5	32.3	26.4	18.3	16.7	11.7	-1.6	-45
STEAM BOILER STACK	Phase 2 CPF	17.8	33.4	32.2	26.3	18.2	16.6	11.5	-2	-46
13 8/4160 VAC STEP DOWN TRANSFORMERS	Phase 2 CPF	17.8	21.2	24	25.5	19.4	17.9	9.3	-4	-49.5
STEAM BOILER STACK	Phase 2 CPF	17.6	33.3	32.1	26.1	18.1	16.4	11.3	-2.3	-47
STEAM BOILER STACK	Phase 2 CPF	17.5	30.5	32	26	18	16.2	11.1	-2.7	-47 9
BOILER COMBUSTION AIR FAN	Phase 2 CPF	17	 22.4	25.2	24.7	20.5	15.9	87	-5.5	-51.7
	Phase 2 CPF	16.7	 22.4	25	24.5	20.3	15.6	83	-6.3	-53.6
BOILER COMBUSTION AIR FAN	Phase 2 CPF	16.4	22	24.9	24.3	20.0	15.3	7.9	-6.9	-55.2
TURBINE #2 ENCLOSURE VENTILATION FAN	Phase 2 CPF	15.3	18.7	21.5	23.3	19	14.1	6.7	-7.7	-53.4
Wellpad Piping	Wellpad	15.1	34.2	36.9	17.9	12.7	12	9.1	-10.2	-79.3
TURBINE #3 ENCLOSURE VENTILATION FAN	Phase 2 CPF	14.6	18.7	23.7	22.9	18.3	13.2	5.8	-8.5	-54 1
BOILER COMBUSTION AIR FAN	Phase 2 CPF	14.2	22.4	25	24	18.8	11.9	2.1	-14.2	-62.2
GAS TURBINE INI ET	Phase 2 CPF	14	30.3	32.6	27.9	16.2	-6.3	-35.8	-49.7	-66.6
GAS TURBINE INLET	Phase 2 CPF	13.8	30.4	30.1	28	16.5	-5.8	-35	-48.2	-64.4
GLYCOL HEATER BLOWER	Phase 2 CPF	13.4	21.1	23.8	22.8	17.6	11.5	2.5	-13.4	-59.8
FIELD STEP UP TRANSFORMER 13.8KV/25KV	Phase 2 CPF	13.4	16.4	19.2	20.7	14.6	13.1	6.7	-8.8	-54.4
Wellpad Piping	Wellpad	13.4	33.1	35.8	16.7	11.3	10.2	6.6	-15.1	-100
SEAL AIR FAN	Phase 2 CPF	13.3	18.6	21.4	20.9	16.7	12.2	5.1	-8.8	-53.7
SEAL AIR FAN	Phase 2 CPF	13.1	18.5	21.3	20.8	16.6	12	4.9	-9.1	-54.3
UTILITY HEATER BLOWER	Phase 2 CPF	12.9	21	23.6	22.7	17.5	10.7	0.7	-15.9	-62.6
EVAPORATOR 2 VAPOR COMPRESSOR	Phase 2 CPF	12.7	31.6	21.4	22.9	16.7	9.2	4.2	-6.3	-56.3
GAS TURBINE INLET	Phase 2 CPF	12.6	30.5	30.3	25.8	16.4	-5.6	-34.2	-46.5	-60.8
Wellpad Piping	Wellpad	12.6	25.8	28.6	17.9	14.5	11.4	6.5	-9.2	-63
Wellpad Piping	Wellpad	12.1	25.4	28.2	17.5	14	10.9	5.7	-10.6	-66.8
Gas Turbine Exhaust	Phase 1 CPF	11.2	29.2	30.6	21.7	14.6	7.7	-15.6	-60.1	-100
Gas Turbine Exhaust	Phase 1 CPF	11.2	29.2	30.6	21.7	14.6	7.7	-15.6	-60	-100
SEAL AIR FAN	Phase 2 CPF	10.9	16.1	18.9	18.4	14.3	9.9	2.8	-11	-55.6
Wellpad Piping	Wellpad	10.3	24.2	27	16.2	12.5	9.1	3.4	-15	-78.9
Wellpad Piping	Wellpad	10	24	26.8	16	12.2	8.7	2.9	-15.8	-81.1
Combustion Air Blower	Phase 1 CPF	9.6	20.8	23.2	21.3	14.2	5.4	-9.9	-52.1	-100
COOLING AIR BLOWER	Phase 2 CPF	9	14.3	17.1	16.6	12.5	8	0.8	-13	-57.9

Theoretical 1,500 m R07

- 1/3 octave band sound levels are linear (i.e. not A-weighted)
- Data in Tables shows only those noise sources which have a broadband dBA sound level contribution greater than 0.0 dBA

Theoretical 1,500 m R07 (Continued)

Noise Source	Location	dBA	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Wellpad Piping	Wellpad	9	23.4	26.1	15.3	11.4	7.7	1.5	-18.5	-88.6
COOLING AIR BLOWER	Phase 2 CPF	8.9	14.2	17.1	16.5	12.4	7.8	0.6	-13.3	-58.6
Wellpad Piping	Wellpad	8.5	23.1	25.8	14.9	10.9	7.2	0.8	-19.8	-100
Glycol Aerial Cooler	Phase 1 CPF	8.4	19.5	21.9	20	13	4.3	-10.6	-52	-100
Wellpad Piping	Wellpad	8.4	23	25.7	14.8	10.8	7	0.6	-20.2	-100
FIELD STEP UP TRANSFORMER 13.8KV/25KV COOLING FANS	Phase 2 CPF	8.3	13.4	16.2	15.7	11.6	7.2	0.5	-13	-56.3
Wellpad Piping	Wellpad	7.7	22.5	25.2	14.3	10.2	6.3	-0.4	-22.3	-100
Wellpad Piping	Wellpad	7.3	22.3	25	14	9.9	5.8	-1	-23.4	-100
Wellpad Piping	Wellpad	6.8	22	24.7	13.6	9.4	5.3	-1.8	-24.9	-100
GAS TURBINE CASING	Phase 2 CPF	6.7	35.5	22.3	18.1	9.8	2	-7.5	-25.9	-76.5
COOLING AIR BLOWER	Phase 2 CPF	6.6	11.8	14.7	14.2	10	5.6	-1.4	-15.2	-59.7
GAS TURBINE CASING	Phase 2 CPF	6.5	35.4	24.6	17.8	9.2	1.1	-8.4	-26.7	-77.2
GAS TURBINE CASING	Phase 2 CPF	6.3	35.5	22.4	15.8	10.1	2.5	-6.6	-24.6	-75
Wellpad Piping	Wellpad	6.3	21.7	24.4	13.3	9	4.8	-2.5	-26.3	-100
UTILITY HEATER STACK	Phase 2 CPF	5.6	20.7	19.5	14	6.1	4.4	-0.7	-13.1	-53.4
Wellpad Piping	Wellpad	5.2	21	23.6	12.5	8	3.5	-4.3	-30	-100
Wellpad Piping	Wellpad	5.2	21	23.6	12.5	8	3.5	-4.3	-30	-100
HRSG CASING	Phase 2 CPF	5.1	35.6	22.4	15.9	7.7	0.3	-8.8	-26.6	-76.4
HRSG CASING	Phase 2 CPF	5	35.5	22.3	15.8	7.7	0.2	-9	-26.8	-76.8
HRSG CASING	Phase 2 CPF	5	35.5	22.3	15.8	7.6	0	-9	-27	-77.2
Wellpad Piping	Wellpad	4.9	20.8	23.4	12.3	7.7	3.2	-4.8	-30.9	-100
GLYCOL HEATER STACK	Phase 2 CPF	4.8	19.8	18.7	13	5.3	3.5	-1.4	-13.9	-54.4
Wellpad Piping	Wellpad	4.2	20.3	22.9	11.7	7	2.3	-6.1	-33.6	-100
Wellpad Piping	Wellpad	3.6	20	22.6	11.3	6.6	1.7	-6.9	-35.4	-100
Wellpad Piping	Wellpad	3.5	19.9	22.5	11.2	6.4	1.5	-7.2	-35.9	-100
H.P. BOILER FEEDWATER PUMP	Phase 2 CPF	2.6	16.4	11.2	8.7	6.5	0.9	-4.1	-22.9	-73.1
TURBINE #1 START MOTOR	Phase 2 CPF	2.3	12.6	6.4	5.9	5.1	2.5	-5.6	-22.6	-75
Wellpad Piping	Wellpad	2.2	19.1	21.7	10.3	5.2	-0.1	-9.5	-40.6	-100
TURBINE #2 START MOTOR	Phase 2 CPF	2	12.5	6.3	8.1	4.9	2.1	-6.6	-24.1	-76.6
Emulsion Pump	Wellpad	1.9	17	14.7	4.7	1.5	-0.2	-1.2	-24.7	-100
Wellpad Piping	Wellpad	1.8	18.9	21.4	10	4.8	-0.6	-10.3	-42.4	-100
VRU COMPRESSOR #1	Phase 2 CPF	1.7	19.2	9	11	5.5	-1.1	-6.1	-16.3	-63.3
Wellpad Piping	Wellpad	1.6	18.8	21.3	9.8	4.6	-0.9	-10.6	-43.1	-100
VRU COMPRESSOR #2	Phase 2 CPF	1.5	19.2	9.1	10.6	5.4	-1.3	-6.3	-16.5	-63.4
Wellpad Piping	Wellpad	1.5	18.7	21.2	9.7	4.5	-1	-10.8	-43.5	-100
CRYSTALLIZER RECIRC. PUMP	Phase 2 CPF	1	13.1	7.9	7.8	4.6	-0.7	-5.7	-24.4	-74.6
COOLING GLYCOL CIRCULATION PUMP	Phase 2 CPF	1	15.5	10.3	7.8	4.7	-0.9	-5.8	-24.3	-73.9
TURBINE #3 START MOTOR	Phase 2 CPF	0.9	12.5	8.5	7.6	3.9	0.7	-7.7	-24.8	-77.2
INSTRUMENT AIR	Wellpad	0.9	21.1	13.8	7.8	1.6	-2.1	-3.1	-18.7	-100
INSTRUMENT AIR SCREW COMPRESSOR PACKAGE #1	Phase 2 CPF	0.8	19.8	9.7	11.1	4.9	-2.8	-8.1	-19.6	-71.7
L.P. BOILER FEEDWATER PUMP	Phase 2 CPF	0.8	15.1	9.9	7.4	4.3	-0.9	-5.8	-24.3	-74.3
Wellpad Piping	Wellpad	0.6	18.1	20.7	9.1	3.7	-2.1	-12.5	-47.1	-100
Emulsion Pump	Wellpad	0.6	8.5	6.3	4.6	3.1	-0.9	-3.9	-23.9	-83.5
Wellpad Piping	Wellpad	0.4	18	20.5	8.9	3.5	-2.4	-12.9	-48	-100

- 1/3 octave band sound levels are linear (i.e. not A-weighted)
- Data in Tables shows only those noise sources which have a broadband dBA sound level contribution greater than 0.0 dBA

Theoretical 1,500 m R22

Noise Source	Location	dBA	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Combustion Air Blower	Phase 1 CPF	31.7	41.3	44.2	37.1	34.4	30.6	25.2	10.2	-40.7
Gas Turbine Exhaust	Phase 1 CPF	30.8	42.1	45.9	38.3	33.1	31.1	15.5	-2.1	-53.4
Glycol Aerial Cooler	Phase 1 CPF	28.5	39.8	42.6	34.6	30.8	27.4	22	6.7	-45
Gas Turbine Exhaust	Phase 1 CPF	27.6	39.2	41.2	33.8	29.9	28.2	15.2	-2.5	-54.6
Gas Turbine Inlet	Phase 1 CPF	25.4	35.7	41	34.1	32.2	15.8	-11.7	-36	-60.9
Lube Oil Cooler	Phase 1 CPF	24.5	35.8	45.1	33.7	24.8	20.8	16.4	0.1	-52.7
Gas Turbine Inlet	Phase 1 CPF	24.2	35.8	38.9	33.1	31.1	14.5	-13.3	-37.6	-61.7
Wellpad Piping	Wellpad	23.1	39.5	42.3	23.8	19.4	19.9	19.4	8.2	-29.7
Lube Oil Cooler	Phase 1 CPF	22.1	35.9	42.7	31.4	22.5	18.5	14.1	-2	-54
Wellpad Piping	Wellpad	21.8	38.6	41.5	22.9	18.4	18.8	17.9	5.7	-36
Utility Heater Blower	Phase 1 CPF	21.1	30.3	33.1	24.7	22.4	20.9	15.3	0	-51.6
Wellpad Piping	Wellpad	19.8	37.3	40.1	21.4	16.7	16.8	15.4	1.4	-47.4
Glycol Heater Blower	Phase 1 CPF	18.8	30.3	33.1	24.8	19.9	17.9	13.1	-2.2	-53.6
Wellpad Piping	Wellpad	17	28.7	31.6	21.1	18.1	15.6	11.8	0.1	-38.6
Evaporator Building Exhaust Fan	Phase 1 CPF	16.4	18.6	21.8	22.1	19.9	15.9	8.3	-7.4	-59.4
Wellpad Piping	Wellpad	15.2	27.5	30.3	19.8	16.6	14	9.7	-3.5	-47.8
Steam Boiler Stack	Phase 1 CPF	14.7	28.7	29.4	23.4	15.3	13.5	8.1	-6.1	-53.2
Steam Boiler Stack	Phase 1 CPF	14.7	28.7	29.3	23.4	15.2	13.4	8.1	-6.2	-53.4
Vapour Compressor	Phase 1 CPF	14.1	39.5	29.3	22.9	16.1	11.1	7.7	-4.8	-61.8
Treater Building Exhaust Fant	Phase 1 CPF	13.5	15.6	19.1	20.4	16.9	13	5.3	-10.7	-63.8
Wellpad Piping	Wellpad	12.9	25.9	28.7	18.1	14.6	11.7	6.8	-8.7	-61.6
Wellpad Piping	Wellpad	11.7	25.1	27.9	17.2	13.7	10.5	5.3	-11.4	-69.1
Wellpad Piping	Wellpad	11	24.7	27.4	16.7	13.1	9.8	4.3	-13.2	-73.9
Wellpad Piping	Wellpad	10.6	24.4	27.2	16.4	12.7	9.4	3.8	-14.3	-76.8
GAS TURBINE EXHAUST	Phase 2 CPF	10.5	34.2	31.5	23.1	11.8	0.5	-18.4	-57.6	-100
GAS TURBINE EXHAUST	Phase 2 CPF	10.5	34.2	31.5	23.1	11.8	0.5	-18.3	-57.5	-100
GAS TURBINE EXHAUST	Phase 2 CPF	10.5	34.2	31.5	23.1	11.8	0.5	-18.3	-57.4	-100
Tank Building Exhaust Fant	Phase 1 CPF	10.4	15.4	18.3	17.7	13.6	9.2	2.9	-11	-64.7
COOLING GLYCOL COOLER FANS	Phase 2 CPF	9.9	20.4	22.9	21.2	14.5	6.3	-7.5	-45.8	-100
Wellpad Piping	Wellpad	9.3	23.6	26.3	15.4	11.6	8	1.9	-17.8	-86.7
Wellpad Piping	Wellpad	8.8	23.2	26	15.1	11.1	7.4	1.2	-19.1	-100
Wellpad Piping	Wellpad	8.7	23.2	25.9	15	11.1	7.4	1.1	-19.3	-100
BOILER COMBUSTION AIR FAN	Phase 2 CPF	8.4	23.8	26.3	18.3	12.2	5.4	-6.5	-42.7	-100
BOILER COMBUSTION AIR FAN	Phase 2 CPF	8.1	23.5	26.1	17	12.2	5.5	-6.3	-42.4	-100
Wellpad Piping	Wellpad	7.9	22.7	25.4	14.4	10.4	6.5	-0.1	-21.7	-100
Wellpad Piping	Wellpad	7.7	22.5	25.2	14.3	10.2	6.3	-0.4	-22.2	-100
Wellpad Piping	Wellpad	7.7	22.5	25.2	14.3	10.2	6.3	-0.5	-22.3	-100
Wellpad Piping	Wellpad	7.6	22.5	25.2	14.2	10.1	6.2	-0.6	-22.6	-100
BOILER COMBUSTION AIR FAN	Phase 2 CPF	7.3	23.4	25.9	16.9	10.9	4.4	-7.2	-43.6	-100
BOILER COMBUSTION AIR FAN	Phase 2 CPF	7.3	23.5	26	16.9	10.9	4.4	-7.1	-43.3	-100
GAS TURBINE INLET	Phase 2 CPF	7.3	31.2	30.7	19	5.8	-18.1	-51.1	-85.9	-100
GAS TURBINE INLET	Phase 2 CPF	7.3	31.2	30.7	19	5.8	-18.1	-51	-85.8	-100
BOILER COMBUSTION AIR FAN	Phase 2 CPF	7.2	23.4	25.9	16.8	10.8	4.3	-7.3	-43.9	-100
Wellpad Piping	Wellpad	7.1	 22.2	24.9	13.9	9.7	5.6	-1.3	-24	-100
Wellpad Piping	Wellpad	6.8	 22	24.7	13.6	9.4	5.3	-1.8	-24.9	-100
Wellpad Piping	Wellpad	5.9	21.4	24.1	13	8.6	4.3	-3.2	-27.7	-100

- 1/3 octave band sound levels are linear (i.e. not A-weighted)
- Data in Tables shows only those noise sources which have a broadband dBA sound level contribution greater than 0.0 dBA

Theoretical 1	,500 m	R22 ((Continued)

Noise Source	Location	dBA	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz
Emulsion Pump	Wellpad	5.7	11.8	9.6	8.2	7.2	3.8	2	-13.5	-56.2
TURBINE #1 ENCLOSURE VENTILATION FAN	Phase 2 CPF	5.6	22.4	24.9	15.4	8.3	3.1	-8.4	-45.1	-100
Wellpad Piping	Wellpad	5.6	21.2	23.9	12.8	8.3	4	-3.7	-28.7	-100
Wellpad Piping	Wellpad	5.4	21.1	23.7	12.6	8.1	3.7	-4.1	-29.5	-100
Wellpad Piping	Wellpad	5.3	27.5	29.9	10	2.6	-1.1	-9.8	-49.4	-100
INSTRUMENT AIR	Wellpad	5.2	16.1	9	11.5	7.5	2.2	0.5	-6.9	-47.8
Wellpad Piping	Wellpad	5.1	20.9	23.5	12.4	7.9	3.4	-4.5	-30.4	-100
Wellpad Piping	Wellpad	5	20.9	23.5	12.4	7.8	3.3	-4.6	-30.5	-100
Wellpad Piping	Wellpad	4.9	20.8	23.4	12.3	7.7	3.2	-4.8	-30.9	-100
Combustion Air Blower	Phase 1 CPF	4.7	21.5	20.6	15.8	7.9	1.2	-6.4	-21.8	-72.7
Wellpad Piping	Wellpad	4.4	20.4	23.1	11.9	7.2	2.5	-5.7	-32.8	-100
STEAM BOILER STACK	Phase 2 CPF	4	24	22.5	15.8	5.6	0.4	-11.3	-46.7	-100
STEAM BOILER STACK	Phase 2 CPF	4	24	22.5	15.9	5.6	0.5	-11.1	-46.5	-100
STEAM BOILER STACK	Phase 2 CPF	3.9	23.9	22.4	15.8	5.5	0.3	-11.4	-47	-100
STEAM BOILER STACK	Phase 2 CPF	3.8	23.9	22.3	15.7	5.4	0.2	-11.6	-47.5	-100
STEAM BOILER STACK	Phase 2 CPF	3.8	23.9	22.4	15.8	5.4	0.2	-11.5	-47.2	-100
Gas Turbine Casing	Phase 1 CPF	3.5	31.9	18.7	8.3	3.4	3.9	-6.4	-23.6	-80.9
HRSG Casing	Phase 1 CPF	3.5	31.9	18.7	8.3	3.4	3.9	-6.4	-23.6	-80.9
Wellpad Piping	Wellpad	3.5	19.9	22.5	11.3	6.5	1.5	-7.1	-35.7	-100
Wellpad Piping	Wellpad	3.5	19.9	22.5	11.2	6.4	1.5	-7.3	-36	-100
EVAPORATOR 2 VAPOR COMPRESSOR	Phase 2 CPF	3.4	32.2	21.7	14.6	6.5	-3	-12.7	-46.6	-100
Emulsion Pump	Wellpad	3.4	10.2	8.1	6.5	5.3	1.6	-0.7	-18.1	-68
LUBE OIL COOLER	Phase 2 CPF	3.1	-23.3	-4.1	0.4	-4	-9	-19.8	-58.3	-100
13.8/480 VAC STEP DOWN TRANSFORMERS	Phase 2 CPF	3.1	-27.5	-11.8	-1.4	-2.5	-2.1	-14.6	-46.4	-100
Wellpad Piping	Wellpad	3.1	-19.8	-4	-5.2	-2.6	-2.2	-8	-36.3	-100
LUBE OIL COOLER	Phase 2 CPF	2.9	-23.3	-4.2	0.3	-4.3	-9.3	-20.2	-58.7	-100
UTILITY HEATER BLOWER	Phase 2 CPF	2.7	-28.7	-13	-2.1	-1.3	-4	-14.8	-51.7	-100
LUBE OIL COOLER	Phase 2 CPF	2.5	-23.4	-4.4	-0.1	-4.8	-9.4	-20.4	-52.6	-100
INSTRUMENT AIR	Wellpad	2.4	-25.2	-19.2	-6.6	-3.4	-3.7	-2.8	-11.2	-61.2
Wellpad Piping	Wellpad	2.4	-20.1	-4.4	-5.7	-3.2	-3	-9.1	-38.6	-100
Steam Boiler Casing	Phase 1 CPF	2.3	-6.1	-0.1	-6.4	-10.7	-9.3	-14.4	-32.1	-84.8
Steam Boiler Casing	Phase 1 CPF	2.2	-6.2	-0.1	-6.4	-10.8	-9.4	-14.4	-32.2	-85
Wellpad Piping	Wellpad	1.9	-20.5	-4.7	-6.1	-3.7	-3.7	-10.1	-40.8	-100
13.8/4160 VAC STEP DOWN TRANSFORMERS	Phase 2 CPF	1.8	-28.7	-13	-2.6	-3.7	-3.4	-15.8	-54.2	-100
Evaporator Recirc Pump	Phase 1 CPF	1.7	-16.4	-8.4	-9	-6.1	-3.6	-2.9	-19.5	-77.6
Wellpad Piping	Wellpad	1.7	-20.6	-4.8	-6.2	-3.8	-3.9	-10.4	-41.3	-100
Wellpad Piping	Wellpad	1.7	-20.6	-4.8	-6.2	-3.9	-3.9	-10.5	-41.5	-100
Wellpad Piping	Wellpad	1.4	-20.8	-5	-6.4	-4.1	-4.3	-10.9	-42.4	-100
VRU Compressor	Phase 1 CPF	1.3	-12.4	-9.4	-5.7	-5.5	-5.4	-4.9	-16.4	-75.2
Wellpad Piping	Wellpad	1.2	-20.9	-5.1	-6.5	-4.3	-4.5	-11.3	-43.3	-100
Emulsion Pump	Wellpad	1.1	-30.6	-19.6	-11.2	-5.1	-3.7	-3.4	-21.7	-79.8
INSTRUMENT AIR	Wellpad	0.5	-26.4	-20.4	-8	-4.9	-5.5	-5.2	-15.4	-72.2
GLYCOL HEATER BLOWER	Phase 2 CPF	0.3	-28.7	-13	-4.6	-3.8	-6.3	-17.1	-54	-100
GAS TURBINE INLET	Phase 2 CPF	0.3	-18.9	-6.2	-1.8	-8	-27.9	-60.1	-100	-100
Emulsion Pump	Phase 1 CPF	0.1	-19.1	-11	-11.5	-8.3	-5.4	-3.8	-19.7	-65.8
Emulsion Pump	Wellpad	0.1	-31.3	-20.3	-11.9	-5.9	-4.7	-4.6	-24	-86

- 1/3 octave band sound levels are linear (i.e. not A-weighted)
- Data in Tables shows only those noise sources which have a broadband dBA sound level contribution greater than 0.0 dBA

Appendix VI NOISE IMPACT ASSESSMENT

Licensee:	Southern Pacific Reso	ource Corp.				
Facility name:	STP McKay Thermal Project – Phase 2					
Туре:	Steam Assisted Gravity Drain					
Legal location:	TWP 91, RG 13, 14, 1	5, W4M				
Contact:	Vince Parsons	Telephone: (403) 984-5335				

1. Permissible Sound Level (PSL) Determination (Rule 012, Section 2)

(Note that the PSL for a pre-1988 facility undergoing modifications may be the sound pressure level (SPL) that currently exists at the residence if no complaint exists and the current SPL exceeds the calculated PSL from Section 2.1.)

Complete	the following	for the	nearest	or most im	pacted re	sidence(s):
0011101010	and rono ming	101 010	11001001	01 111001 1111	paoloaio	0100100(0).

beimpiete the following for the field out of most impacted residence(b).									
			Daytime	Class A	Class B				
Distance	Direction		adjustment	adjustment	adjustment	Nighttime	Daytime		
from facility	from facility	BSL (dBA)	(dBA)	(dBA)	(dBA)	PSL (dBA)	PSL(dBA)		
1,500 m	All	40	10	0	0	40	50		
	Directions								

2. Sound Source Identification

For the new and existing equipment, identify major sources of noise from the facility, their associated sound power level (PWL) or sound pressure level (SPL), the distance (far or free field) at which it was calculated or measured, and whether the sound data are from vendors, field measurement, theoretical estimates, etc.

	Predicted X PWL (dBA)	OR	Measured X PWL (dBA)		Distance calculated
New Equipment	X SPL (dBA)		X SPL (dBA)	Data source	or measured (m)
Listed in Appendix I				Measurements / Calculations	
	Predicted	OR	Measured		
Existing	X PWL (dBA)		X PWL (dBA)		Distance calculated
Equipment/Facility	X SPL (dBA)		X SPL (dBA)	Data source	or measured (m)
Listed in Appendix I				Measurements / Calculations	

3. Operating Conditions

When using manufacturer's data for expected performance, it may be necessary to modify the data to account for actual operating conditions (for example, indicate conditions such as operating with window/doors open or closed). Describe any considerations and assumptions used in conducting engineering estimates:

Equipment assumed to be operating at all times at maximum capacity

4. Modelling Parameters

If modelling was conducted, identify the parameters used (see Section 3.5.1): Ground absorption 0.5, Temperature 10^oC, Relative Humitidy 70%, all receptors downwind, Following ISO 9613

5. Predicted Sound Level/Compliance Determination

Identify the predicted <u>overall</u> (cumulative) sound level at the nearest of most impacted residence. Typically, only the nighttime sound level is necessary, as levels do not often change from daytime to nighttime. However, if there are differences between day and night operations, both levels must be calculated.

Predicted sound level to the nearest or most impacted residence from new facility (including any existing facilities):

 $Modeled L_{eq}-Night = 37.9 dBA, \qquad ASL = 35.0 dBA, \qquad Overall L_{eq}-Night = 39.7 dBA, \qquad PSL-Night: 40 dBA$

Is the predicted sound level less than the permissible sound level? YES If YES, go to number 7

6. Compliance Determination/Attenuation Measures

(a) If 5 is **NO**, identify the noise attenuation measures the licensee is committing to:

Predicted sound level to the nearest or most impacted residence from the facility (with noise attenuation measures):

N/A

Is the predicted sound level less than the permissible sound level? YES If YES, go to number 7

(b) If 6 (a) is **NO** or the licensee is not committing to any noise attenuation measures, the facility is not in compliance. If further attenuation measures are not practical, provide the reasons why the measures proposed to reduce the impacts are not practical.

Note: If 6 (a) is NO, the Noise Impact Assessment must be included with the application filed as non-routine.

7. Explain what measures have been taken to address construction noise.

Advising nearby residents of significant noise sources and the Project construction schedule

Mufflers on all internal combustion engines

Taking advantage of acoustical screening where available

Limiting vehicle access during night-time

Limiting vehicle speeds, at all times, in the Project area

8. Analyst's Name : Steven Bilawchuk, M.Sc., P.Eng.

Company: ACI Acoustical Consultants Inc.

Title: Director

Telephone: (780) 414-6373 Date: November 3, 2011

