THE EFFECT OF THE DICKSON DAM ON WATER QUALITY AND ZOOBENTHOS OF THE RED DEER RIVER

Prepared by:

R.D. Shaw, Ph.D. A.M. Anderson, Ph.D.

Surface Water Assessment Branch Technical Services and Monitoring Division Water Resources Services Alberta Environmental Protection

April 1994

	•			
			•	
				4
				•
				•

OVERVIEW

The objective of this report is to summarize results of a five-year study conducted on the Red Deer River to assess the effects of impounding the river behind Dickson Dam. It also presents results of a study on Gleniffer Lake, the reservoir created when the dam was constructed in 1983. Results from three long-term monitoring sites on the river are also included.

The Red Deer River is a major tributary of the South Saskatchewan River. It originates in the Rocky Mountains within Banff National Park and flows eastward to its confluence with the South Saskatchewan River near the Alberta-Saskatchewan border.

In the mid-1970's, Alberta Environment began studies to assess the feasibility of damming the river to augment low winter flows, thereby providing a reliable, year-round water supply for future industrial and municipal growth. It was expected that creation of a reservoir upstream of Red Deer would have additional benefits, including flood control, improved water quality of the river and the creation of a recreational resource.

Historically, the principal concern with respect to water quality of the Red Deer River was the low levels of dissolved oxygen during the winter. It was anticipated that increased flows from the reservoir during the winter would be sufficient to maintain dissolved oxygen concentrations in the river above 5 mg/L, the Alberta Surface Water Quality Objective concentration.

In 1983 the Planning Division of Alberta Environment coordinated studies to assess the environmental effects of the dam on the river. The Environmental Assessment Division initiated a five-year study to monitor the effects of flow regulation on water quality in the Red Deer River and to document the water quality of Gleniffer Lake.

During the five-year study water and biological samples were collected biweekly or monthly from the Red Deer River at one site upstream and four sites downstream of Gleniffer Lake. These data were used to evaluate water quality changes along the Red Deer River. Samples were also taken from Gleniffer Lake to describe its limnology, document changes in fertility and assess the retention and release of constituents by processes within the lake. Monthly chemical and biological data from three long-term river monitoring sites (upstream of Red Deer, at Drumheller and at the Alberta-Saskatchewan border) were used to determine whether the river's water quality changed after Glennifer Lake was filled.

At full storage level (948 m above sea level), Gleniffer Lake has a surface area of 17.6 km², is 11 km long and 2 km wide, and contains 205 million cubic meters of water. The reservoir is 33 m deep at its deepest point. In the spring of most years the reservoir is drawn down approximately 7 to 9 m, then is allowed to refill during mountain runoff. The residence time of water in the reservoir is short and averages 70 days. In years of high flow in the Red Deer River it can be as short as 30 days.

Gleniffer Lake is a well-buffered, oligotrophic, freshwater reservoir. The west end of the lake is frequently mixed by winds and inflowing river currents; it tends to be weakly thermally stratified during July and August and remains well oxygenated throughout the

summer. The deeper central and eastern basins of the reservoir tend to be thermally stratified during the summer and the hypolimnetic water undergoes some oxygen depletion. Nutrient and chlorophyll a levels in the reservoir are low, and there is no evidence for leaching of nutrients or other inorganic substances from the flooded soils. Since 1984 however, concentrations of dissolved organic carbon have increased in the reservoir and in the river below the dam. This increase may be a result of leaching from flooded soils and breakdown of plant material.

Flow regulation has affected a number of physical, chemical, and biological variables in the Red Deer River. The main influence of the dam has been on the redistribution of discharge throughout the year; post-impoundment flow rates are lower during the summer and higher during the winter compared to pre-impoundment flow rates.

Hypolimnetic discharge from the deeper waters of Gleniffer Lake has reduced seasonal and daily temperature fluctuations in the section of the river from the dam to at least Innisfail, 20 km below the dam. Water temperatures immediately downstream of the dam are 1-3°C higher in winter and up to 6°C lower in summer compared to the site immediately upstream. But there have been no statistically significant changes between pre- (1978-83) and post-impoundment (1984-89) median levels of either flow or temperature at the Red Deer long-term monitoring site.

Flow regulation has increased the dissolved oxygen content of the Red Deer River. Median post-impoundment dissolved oxygen concentrations are significantly higher than pre-impoundment levels as far downstream as Drumheller. As expected, minimum winter dissolved oxygen concentrations have increased along the entire length of the river, although post-impoundment concentrations below 5 mg/L are still recorded occasionally downstream of the city of Red Deer, including at the Alberta-Saskatchewan border.

As in many reservoirs, particulate matter settles out in Gleniffer Lake. Consequently, turbidity and levels of non-filterable residue and constituents that adsorb to particulate matter (e.g. some nutrients, metals, and trace elements) are lower immediately below the dam than above the reservoir. However, that reduction appears to be confined to a short distance below the dam. Further downstream, concentrations of many particle-bound substances increase rapidly to levels comparable to those recorded upstream of Gleniffer Lake.

Flow regulation has resulted in lower levels of calcium, magnesium, bicarbonate, sulphate, total dissolved solids, conductance, alkalinity and hardness as far downstream as the Alberta-Saskatchewan border. Calcium carbonate and magnesium carbonate coprecipitation within Gleniffer Lake is the probable cause for decreased levels of most of these variables, although the cause for the decline in sulphate concentrations is not well understood. In addition, seasonal fluctuations of these variables have been reduced by the regulation of flow.

Populations of phytoplankton and attached algae are considerably higher immediately downstream of the dam than at a site upstream of Gleniffer Lake. Increased algal growth below the dam is probably a result of the more stable post-impoundment temperatures and flow regime, and reduced turbidity in the Red Deer River.

Flow regulation has noticeably altered the zoobenthic communities of the Red Deer River, particularly at the site 4 km downstream of the dam. At that site, total invertebrate numbers have increased dramatically, whereas the diversity of zoobenthic organisms has decreased. Oligochaetes (aquatic earthworms) and chironomids (midges) have become numerically important, and numbers of Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) have declined. Changes in the Red Deer River zoobenthos are attributed to habitat and food base alteration, and temperature and water quality changes that are a result of flow regulation.

Post-impoundment changes in water chemistry, as indicated by trend analyses, were often small, and as a consequence, statistical differences in data from the long-term monitoring sites may not be detectable for some time. Indeed, as the reservoir matures, downstream water quality may continue to change gradually well beyond the 5-year time frame of this study.

Data concerning mercury accumulation in fish tissue are not reported herein, but are presented in reports produced by the Alberta Environmental Centre (Alberta Environmental Center 1984; 1989).

ACKNOWLEDGMENTS

The 1983-88 synoptic survey sampling program was designed by Patsy Cross and Pat Mitchell, and water quality sampling was carried out by various technologists and biologists from the Environmental Quality Monitoring Branch (EQMB) of Alberta Environment.

Water samples were analyzed at Chemex Labs Alberta Ltd., the Alberta Provincial Laboratory of Public Health, the Millwoods facility of EQMB (M. McCutcheon), and the Alberta Environmental Centre (F. Dieken and D. Smillie).

Zoobenthos sampling, sorting, and identification was carried out by W. Anderson, J. Willis, M. Mychajluk, R. Saunders, and A. Nimmo.

D. Asquin, M. Soetaert, and R. Tchir of EQMB downloaded NAQUADAT data. Some figures were prepared by staff from the Technical Services Division of Alberta Environment, under the supervision of T. Zenith.

A draft of this report was reviewed by D.O. Trew, P. Mitchell, A. Sosiak, J. Shaw, P. Robson, J. Struthers, and H. Zwickel.

TABLE OF CONTENTS

		<u>r</u>	age
OVERVI	EW	• • • • • • • • • • • • • • • • • • • •	
ACKNO	VLEDGM	ENTS	, ;
		S	
LIST OF	APPENT	DICES	A111
LIDI OF	711 1 12111	/ICES	. X
1.0	INTROL	OUCTION	1
2.0	METHO	DS	1
2.1	STUDY I	DESIGN	1
2.2	FIELD M	IETHODS	3
	2.2.1	Water Quality	3
	2.2.2	Biological Samples	5
2.3		TORY METHODS	7
	2.3.1	Water Quality	7
	2.3.2	Zoobenthos	7
2.4		REATMENT	7
	2.4.1	Long-term Data	7
	2.4.2	Synoptic Survey Data	10
	2.4.3	Zoobenthos	10
3.0	BASIN C	CHARACTERISTICS	10
4.0	RESULT	S AND DISCUSSION	14
4.1	GENERA		$\overline{14}$
	4.1.1		14
	4.1.2		14
	4.1.3		17
4.2	GLENIFI		17
4.3	RED DEF		22
	4.3.1		22
	4.3.2		27
	4.3.3		35
	4.3.4	The second secon	40
	4.3.5	Inorganic Constituents	45
	4.3.6		49
	4.3.7		54
	4.3.8	Algae	54
4.4	RED DEE		58
	4.4.1	Total Numbers of Invertebrates and Taxa Per Site	58
	4.4.2	Taxonomic Composition	58
	4.4.3	Longitudinal Distribution	62

5.0	SUMMARY	68
6.0	LITERATURE CITED	72
7.0	APPENDICES	75

LIST OF TABLES

	<u>.</u>	rage
Table 1.	Names and locations of benthic invertebrate sampling sites on the Red Deer River.	6
Table 2.	Regressions of concentrations (X) versus discharge (Q, m³/s) for flow-dependent variables at the long-term monitoring site upstream	·
	of the city of Red Deer	15
Table 3.	Results of Mann-Whitney tests for changes between pre- and post-impoundment median levels of water quality variables and of	
	Kendall tests for trends from 1984-89 at the long-term monitoring	
7D 11 4	site upstream of the city of Red Deer	16
Table 4.	Results of Mann-Whitney tests for changes between pre- and	
	post-impoundment median levels of water quality variables and of	
	Kendall tests for trends from 1984-89 at the long-term monitoring site near Drumheller	18
Table 5.	Results of Mann-Whitney tests for changes between pre- and	10
	post-impoundment median levels of water quality variables and of	
	Kendall tests for trends from 1984-89 at the long-term monitoring	
	site near Bindloss.	19
Table 6.	Median levels of selected water quality variables determined from	
	euphotic composite samples collected from the western, central, and	00
Table 7.	eastern basins of Gleniffer Lake, May to October, 1983-87	20
Table 7.	concentrations at several locations on the Red Deer River,	
	1983-88 synoptic surveys	50
Table 8.	Mean number of invertebrate taxa (± standard error) recorded per	
	site in the Red Deer River	61
Table 9.	Summary of water quality changes up to 1988 in the Red Deer River	
	downstream of the Dickson Dam	70

viii

LIST OF FIGURES

			Page
Figure	1.	Sampling sites on the Red Deer River	. 2
Figure		Gleniffer Lake bathymetry and sampling sites	. 4
Figure	პ.	Flows at Red Deer on the dates when the long-term monitoring station was sampled, 1978-89	. 12
Figure	4.	Mean monthly natural and regulated flows in the Red Deer River at	. 12
		the city of Red Deer	. 13
Figure		Temperature and dissolved oxygen isopleths, Gleniffer Lake, 1985-86	
Figure		Secchi depth and chlorophyll levels in Gleniffer Lake, central basin	. 23
Figure	1.	Phosphorus, nitrogen and silica concentrations in Gleniffer Lake (central basin), 1983-88	. 24
Figure	8.	TDS and DOC concentrations in Gleniffer Lake (central basin),	. 24
_		1983-88	
Figure		Water temperatures above and below Gleniffer Lake, 1983-88	
Figure		Water temperatures in the Red Deer River, 1983-88 synoptic surveys	
Figure Figure		Temperatures at the Red Deer long-term monitoring site, 1978-89	. 29
rigure	12.	Dissolved oxygen levels in the Red Deer River, 1983-88 synoptic surveys	. 31
Figure	13.	Dissolved oxygen at the Red Deer long-term monitoring site, 1978-89	
Figure		Dissolved oxygen at the Drumheller long-term monitoring site,	
-		1978-89	. 33
Figure		Dissolved oxygen at the Bindloss long-term monitoring site, 1978-89	
Figure Figure		Suspended solids above and below Gleniffer Lake, 1983-88 Suspended solids concentrations in the Red Deer River, 1983-88	. 36
rigure	11.	synoptic surveys	. 37
Figure	18.	Suspended solids at the Red Deer long-term monitoring site, 1978-89	
Figure		Suspended solids at the Drumheller long-term monitoring site,	
		1978-89	. 39
Figure	20.	Nutrient concentrations in the Red Deer River, 1983-88 synoptic	
Figure	91	Total phosphorus at the Red Deer long-term monitoring site, 1978-89	41
Figure		Silica levels at the Red Deer long-term monitoring site, 1978-89	
Figure		TDS concentrations in the Red Deer River, 1983-88 synoptic surveys	
Figure	24.	TDS levels at the Red Deer long-term monitoring site, 1978-89	
Figure		TDS levels at the Bindloss long-term monitoring site, 1978-89	
Figure		DOC levels above and below Gleniffer Lake, 1983-88	
Figure Figure		DOC concentrations in the Red Deer River, 1983-88 synoptic surveys DOC levels at the Red Deer long-term monitoring site, 1978-89	
Figure		Coliform levels in the Red Deer River, 1983-88 synoptic surveys	
Figure		Total coliforms at the Red Deer long-term monitoring site, 1978-89	
Figure	31.	Algal biomass in the Red Deer River, 1983-88 synoptic surveys	
Figure	32.	A comparison of spring and fall data for benthic invertebrates	
		collected from the Red Deer River between 1974 and 1977 - total	.
		numbers	59

Figure 33.	A comparison of spring and fall data for benthic invertebrates	
	collected from the Red Deer River between 1983 and 1987 - total	
	numbers	60
Figure 34.	Mean numbers of benthic invertebrates collected from the Red Deer	
	River in spring, 1983	63
Figure 35.	Mean numbers of benthic invertebrates collected from the Red Deer	
	River in spring, 1984	64
Figure 36.	A comparison of spring and fall data for benthic invertebrates	
	collected from the Red Deer River between 1974 and 1977 - Rhithrogena .	66
Figure 37.	A comparison of spring and fall data for benthic invertebrates	
	collected from the Red Deer River between 1983 and 1987 - Rhithrogena .	67
rigure 37.		6′

LIST OF APPENDICES

	<u>Pa</u>	ge
Appendix I.	NAQUADAT codes, locations and distances for synoptic water	
	quality sampling sites on the Red Deer River	76
Appendix II.	Analytical methods for water chemistry, 1983-88 synoptic surveys	77
Appendix III.	NAQUADAT summary reports from the long-term monitoring sites	
	on the Red Deer River, January 1978 to April 1983	79
Appendix IV.	NAQUADAT summary reports from the long-term monitoring sites	
	on the Red Deer River, January 1984 to December 1989	92
Appendix V.	NAQUADAT summary reports from the Red Deer River synoptic	
	surveys, 1983-88	09
Appendix VI.	Summary of zoobenthic data, 1983-87	30

1.0 INTRODUCTION

The Red Deer River is a major tributary of the South Saskatchewan River. It originates in the Rocky Mountains within Banff National Park and flows eastward to its confluence with the South Saskatchewan River near the Alberta-Saskatchewan border (Figure 1). There are two cities along the river, Red Deer in the central part of the province, and Drumheller to the south and east.

In the mid-1970s, Alberta Environment began studies to assess the feasibility of damming the river to augment low winter flows, thereby providing a reliable, year-round water supply for future industrial and municipal growth. It was expected that creation of a reservoir upstream of Red Deer would have additional benefits, including an improvement in the water quality of the river and the creation of a recreational resource (Alberta Environment 1975). Historically, the principal concern with respect to the water quality of the Red Deer River was the low levels of dissolved oxygen during the winter (Hrabar 1974). Dissolved oxygen concentrations began to decline in the river below Sundre and continued to decline downstream to the Alberta-Saskatchewan border. The Dickson Dam was completed in the summer of 1983 and is operated by Alberta Environment; Gleniffer Lake is the reservoir behind the dam. It was anticipated that increased flows from the reservoir during the winter would be sufficient to maintain dissolved oxygen concentrations in the river above 5 mg/L, the Alberta Surface Water Quality Objective concentration (Alberta Environment 1977).

The objective of this report is to document the effects of flow regulation on water quality and benthic invertebrate communities of the Red Deer River. Data collected from 1978 to 1989 at three long-term monitoring sites on the river and from 1983 to 1988 at sites upstream and downstream of, and within Gleniffer Lake were evaluated to assess the effect of the dam on the physical, chemical, and biological characteristics of the river.

2.0 METHODS

2.1 STUDY DESIGN

The effect of the Dickson Dam on water quality of the Red Deer River was investigated using (1) data collected from 1978 to 1989 at long-term monitoring sites upstream of the city of Red Deer, near Drumheller, and near the Alberta-Saskatchewan border at Bindloss; and (2) synoptic survey data collected from 1983 to 1988 at sites upstream

Figure 1. Sampling Sites on the Red Deer River.

and downstream of, and within Gleniffer Lake. In addition, yearly benthic invertebrate surveys were conducted in the Red Deer River from 1974 to 1977. These data were used for comparisons of longitudinal trends in selected variables with the 1983-88 zoobenthic data.

Data from the long-term monitoring sites were evaluated graphically and statistically to determine whether the river's water quality changed after Gleniffer Lake was filled. The 1983-88 synoptic survey data were used to describe the limnology of Gleniffer Lake, document trophic upsurge within the lake, assess retention and release of constituents by processes within Gleniffer Lake, and identify the extent of the dam's effect with respect to the river's water quality and zoobenthos.

2.2 FIELD METHODS

2.2.1 Water Quality

In 1983, the former Water Quality Control Branch (now the Environmental Quality Monitoring Branch) of Alberta Environment initiated a field study to monitor the effect of the Dickson Dam on water quality of the Red Deer River. Samples were collected from five synoptic survey sampling sites on the river (Figure 1). Distances and NAQUADAT codes for these sites are listed in Appendix I.

They were collected from April 1983 through March 1988, biweekly to monthly from April to October, and monthly to bimonthly during the other months. Water samples were collected as subsurface grab samples by wading into the main flow channel. Each sample was subsampled, put directly into a specially prepared sample bottle, and preserved and handled according to recommended procedures (Appendix II). Samples were kept on ice in the field and transported to the laboratory within 24 hours.

Gleniffer Lake was also sampled during the 1983-88 synoptic surveys. Water samples were collected from three regions in the lake, corresponding to the shallow western basin, the central basin, and the deep eastern basin of the reservoir (Figure 2). Within each basin, euphotic samples were collected from 10 different sites by slowly lowering a weighted Tygon tube to the desired depth. The euphotic zone was defined as the interval from the surface of the water to a depth of 1% of surface penetrating irradiance. Water collected in the tube was emptied into a pre-rinsed, opaque container. At one site in each of the three regions (Figure 2), water was collected at 1-m intervals, from the surface to 1 m above the lake bottom, using a Van Dorn bottle or peristaltic pump. Temperature, dissolved oxygen,

Figure 2. Gleniffer Lake bathymetry and sampling sites.

specific conductance, and pH were measured at 1-m intervals at the same location. All lake water samples were preserved and handled according to recommended procedures (Appendix II).

2.2.2 Biological Samples

Water samples were collected for bacterial analyses during most of the synoptic surveys. Samples were stored in 250 mL sterilized glass or polypropylene bottles. The Provincial Laboratory of Public Health analyzed the samples for numbers of total and fecal coliforms and fecal streptococci.

River samples were collected for planktonic chlorophyll *a* analysis during each synoptic survey. Surface grab samples were obtained as described in Section 2.2.1. For each sample, a measured volume of water was filtered through a Whatman GF/C filter; powdered magnesium carbonate was added during filtration. Filters were then wrapped in aluminum foil and frozen until analysis.

Samples were collected for epilithic chlorophyll a analysis from near the river bank at all sampling locations during most of the open-water synoptic surveys. At each site, ten stones were randomly collected along a transect perpendicular to the shoreline. A 16 cm² template was placed on each rock. The plant material enclosed by the template was removed by scraping or brushing, and the rock then rinsed with distilled water until all visible epilithic growth was removed. The total volume of slurry obtained from all stones collected from one sampling location was recorded, and then the slurry was homogenized and filtered as for planktonic chlorophyll a samples. All chlorophyll a analyses were carried out at the Millwoods facility of the Environmental Quality Monitoring Branch (EQMB).

Benthic invertebrates were sampled at five river sites in the immediate vicinity of Gleniffer Lake and at the two long-term monitoring sites at Drumheller and Empress (Table 1, Figure 1). Additional sites downstream of Red Deer were sampled in the spring and fall of 1983. In selecting sampling sites for zoobenthos, attempts were made to standardize substrate, flow velocity, and sampling depth, all of which are known to influence benthic invertebrate distribution. Samples were usually collected at depths between 30 and 40 cm in moderately fast flowing water.

Zoobenthic samples were taken using a modified Neill cylinder sampler with a sampling area of 0.1 m², (Neill 1938) and a collecting net with a mesh aperture of 0.210 mm.

Table 1. Names and locations of benthic invertebrate sampling sites on the Red Deer River.

YEAR	SITE NO.	SITE NAME	DISTANCE FROM MOUTH OF RIVER (km)
1983	1	West of Bowden	634
	2	Dickson Dam (1 km below the dam)	580
	3	Innisfail	561
	4	Fort Normandeau (upstream of Red Deer)	533
N. C. W. C.	5	Joffre	488
	6	Nevis	440
	7	Trochu	375
	8	Drumheller	319
·	9	East Coulee	296
	10	Finnegan	255
	11	Jenner	136
	12	Empress	20
All Other Years	1	West of Bowden	634
	2	Dickson Dam (1 km below the dam)	580
	3	Innisfail	561
	4	Fort Normandeau (upstream of Red Deer)	533
	5	Joffre	488
	8	Drumheller	319
	12	Empress	20

Five replicate samples were collected at each site. Care was taken to press the cylinder securely into the substrate to prevent the loss of specimens through gaps between the cylinder and the substrate. Large stones collected in the cylinder were cleaned individually by gently rubbing and rinsing inside the cylinder. A narrow shovel was used to agitate the substrate for approximately one minute. Samples taken from 1974 to 1977 were sorted live at the sampling site; samples taken from 1983 to 1987 were preserved in 4% formaldehyde immediately after collection.

2.3 LABORATORY METHODS

2.3.1 Water Quality

For each survey, a comprehensive group of physical, chemical, and biological variables was analyzed (Appendix II). Water temperature, specific conductance, and dissolved oxygen levels were measured *in situ* at each sampling site and on all sampling occasions using a pre-calibrated Model 4041 Hydrolab meter. All water quality data collected during the 1983-88 synoptic surveys are stored in Alberta Environment's NAQUADAT database.

2.3.2 Zoobenthos

Zoobenthic samples were stained with Rose Bengal upon return to the laboratory (Mason and Yevich 1967). Samples were screened through coarse and fine sieves, with mesh apertures of 2 and 0.213 mm, respectively. The coarse fractions (residue on 2 mm screen) and fine fractions (residue on 0.213 mm screen) of each sample were sorted under a dissecting microscope (magnification range 6 to 50X). The fine fraction of samples that contained large numbers of organisms was subsampled using the Imhoff cone method (Wrona et al. 1982). Specimens were counted and identified according to Baumann et al. (1977), Edmunds et al. (1976), Merritt and Cummins (1984), Pennak (1978), and Wiggins (1977).

2.4 DATA TREATMENT

2.4.1 Long-term Data

The most complete, long-term water quality data sets for the Red Deer River are from Alberta Environment's monitoring stations at Hwy. #2 above the city of Red Deer and at Drumheller (this station was moved farther upstream to the Morrin Bridge in 1987), and

from the Prairie Provinces Water Board (PPWB) station near the Alberta-Saskatchewan border at Bindloss (upstream of Empress). From all three long-term monitoring stations, the data are most complete for the 1978-89 period; consequently, the evaluation of changes in river water quality focused on these data. The long-term monitoring station data were subdivided into two sets, corresponding to conditions before (January 1978 to April 1983) and after (January 1984 to December 1989) Gleniffer Lake was filled (summer of 1983). These data were evaluated graphically and statistically to assess changes in river water quality corresponding to flow regulation of the Red Deer River.

Most parametric and non-parametric statistical tests for long-term trends require data that are independently distributed. Water quality data, however, are often time dependent, either because of seasonality or serial correlation, or both (Montgomery and Reckhow 1984). Seasonality implies that the value of a variable exhibits fluctuations based on the time of year. Seasonality increases the variance in the data, which decreases the power of many statistical tests. Thus, if seasonality is a factor to be considered, either the data should be deseasonalized before analyzing for trends, or statistical tests that account for seasonality should be used. Seasonal trends in the flow-dependent constituents were assessed graphically by inspection of box and whisker plots of concentrations versus month. Box and whisker plots show the median, minimum, and maximum values (whiskers) and the interquartile values (box), and provide an indication of seasonal change in the constituent concentrations. In addition to the box and whisker plots, seasonality was tested statistically using the Kruskal-Wallis test (Loftis et al. 1989).

Serial correlation occurs when the value of a data point is dependent upon the value of previous data points (after seasonality and trend have been removed). Serial correlation was determined using a correlogram (Loftis et al. 1989).

For each constituent, the pre- and post-impoundment data were analyzed separately for seasonality and serial correlation. If serial correlation was present, quarterly rather than monthly data were used to test for changes.

For those variables that are flow-dependent, flow regulation might be expected to cause seasonal changes in river water quality due to increased flows in winter and decreased flows in summer. To identify flow-dependent variables, a best-fit regression of concentration as a function of discharge was calculated for each variable, using data from January 1978 to

April 1983. If the slope of the regression was significantly different from 0 (P<0.05), the variable was considered to be flow dependent.

The Mann-Whitney U-test was used to determine whether the median levels of variables monitored at the long-term sites differed significantly between the periods before and after the filling of Gleniffer Lake, i.e. to test for a step change in water quality caused by the dam. If the concentrations of a constituent varied seasonally, the data were deseasonalized before computing the U statistic (Loftis et al. 1989). A quantitative, non-parametric (seasonal Hodges-Lehman) estimate of the difference in medians was calculated for those variables with significant differences between the pre- and post-impoundment periods (Hirsch 1988).

In addition to testing for overall differences between pre- and post-impoundment periods, data from the long-term monitoring sites were analyzed for seasonal differences that may have occurred as a result of the Dickson Dam. For each month, the data were subdivided into pre- and post-impoundment periods, and differences between the two periods were determined using the Mann-Whitney test.

Changes in river water quality that may have occurred after the filling of Gleniffer Lake were evaluated using data from both the long-term monitoring sites and the 1983-88 synoptic surveys. For both data sets, time series plots were inspected to identify potential trends. In addition, differences in the data collected from January 1984 to December 1989 at the long-term monitoring sites were tested statistically using either the Seasonal Kendall test (if seasonality was a factor) or the Kendall test (if seasonality was not a factor) (Hirsch et al. 1982; Berryman et al. 1988). The null hypothesis for the Kendall tests is that the constituent concentrations are independent of time. These are non-parametric tests and are not dependent on normally distributed data. A limited number of missing values or values below the analytical detection limit (i.e. censored data) violate no assumptions of the Kendall tests.

All data were analyzed on an IBM compatible, 386 personal computer using (1) a LOTUS 1-2-3 program to test for flow-dependency; (2) WQSTAT II, a water-quality statistics program to assess seasonality, serial correlation, and long-term trends (Loftis et al. 1989); and (3) STATGRAPHICS, a statistical package that was used to test for monthly differences between pre- and post-impoundment data (STSC Inc. 1987).

2.4.2 Synoptic Survey Data

Data from the 1983-88 synoptic surveys were used to qualitatively assess the effect of the Dickson Dam on the water quality of the Red Deer River. Data collected from Gleniffer Lake were used to describe the limnology of the reservoir, to assess lake mixing patterns, and to document ongoing changes in the lake's water quality after the reservoir was filled. Water quality at the sites immediately upstream and downstream of the lake was examined to determine whether retention and release of constituents was occurring within the lake. Data collected from all sites were evaluated graphically to assess longitudinal patterns and to identify the potential extent of the effect of the Dickson Dam on the water quality of the Red Deer River.

2.4.3 Zoobenthos

Analysis of the zoobenthic data included assessment of simple community descriptors such as the mean total number of invertebrates per site, mean number of taxa per site, the contribution of major taxonomic groups to total invertebrate numbers, and the longitudinal distribution of individual taxa. Data from the spring of 1983 are the only pre-impoundment data that are methodologically consistent with post-impoundment data, although qualitative comparisons were made between data collected in 1973-1977 and those from 1983-1987.

3.0 BASIN CHARACTERISTICS

The Red Deer River is a major tributary of the South Saskatchewan River. It originates in the Rocky Mountains within Banff National Park and flows northeasterly through foothills and parkland to the city of Red Deer. Near Nevis, the Red Deer River turns sharply to the south, flows through grassland to Dinosaur Provincial Park, then continues eastward to the Alberta-Saskatchewan border and its confluence with the South Saskatchewan River (Figure 1). With the exception of the mountain and foothills regions, most of the Red Deer River Basin is cultivated.

The climate of the Red Deer River Basin is continental and is characterized by cold winters and warm summers. There are decreases in precipitation and winter temperatures and increases in evaporation and summer temperatures along a gradient from the headwaters in the mountains to the eastern portion of the basin (Environment Canada 1982).

Prior to the filling of Gleniffer Lake, flows in the Red Deer River were highly variable (Figure 3). Snowmelt from the plains region contributed most of the spring runoff (April and May), and mountain snowmelt and rainfall increased flows in late spring and early summer. Winter flows were often extremely low. Gleniffer Lake began filling in the summer of 1983. Prior to this, about 20% of the area was stripped of topsoil (A. Nilson 1990, pers. comm.). The dam is a multi-zoned earthfill structure, 40 m high and 650 m long. Two tunnels under the dam can provide a continuous water flow of 16 m³/s and can pass a maximum flow of 84 m³/s. The service spillway can handle a flood that would occur once in 10,000 years. The operating strategy of the dam is to fill the reservoir rapidly in the spring and then to maintain a fairly constant water level throughout the summer to maximize recreational use (Nguyen 1980). The reservoir is filled to capacity by fall and releases of water were designed to occur at a minimum of 16 m³/s during the winter, so that the lowest reservoir levels occur in March and April (Alberta Environment, n.d.).

The main influence of the Dickson Dam on flows in the Red Deer River has been the redistribution of discharge throughout the year. Flow regulation has resulted in lower mean monthly flows during summer and higher mean monthly flows during winter (Figure 4). Relatively high flood peaks still occur occasionally, however, and winter post-impoundment flows at the city of Red Deer have often been lower than the minimum projected flow of 16 m³/s (Figure 3). These low flows generally occur between December and March, and the lowest daily flow since the onset of flow regulation (8.98 m³/s) was recorded in December 1988.

From its headwaters to the city of Red Deer, the Red Deer River's channel bed is predominantly gravel, with rock outcrops in the channel; the bank consists of sand and gravel. Along the lower reaches of the river from Drumheller to the South Saskatchewan River, the channel bed is sand and gravel on top of easily erodible shales and the bank is gravel, sand, silt, and easily erodible rock (Kellerhals et al. 1972). The change in channel bed and bank materials is coincident with a change in bedrock geology, from the Paskapoo Formation, a calcareous, sandstone, siltstone, and mudstone unit, to the more easily erodible Horseshoe Canyon, Bearpaw, and Oldman formations, which consist of varying amounts of feldspathic sandstone, clayey siltstone, mudstone, shales, and bentonite beds (Green 1972).

Fig. 3. Flows at Red Deer on the dates when the long-term monitoring station was sampled, 1978-89.

Figure 4. Mean monthly natural (1912-82) and regulated (1984-88) flows in the Red Deer River at the city of Red Deer.

4.0 RESULTS AND DISCUSSION

4.1 GENERAL DATA EVALUATION

Water quality data from the long-term monitoring sites are summarized in Appendices III and IV, and from the synoptic survey sites in Appendix V; the zoobenthic data are summarized in Appendix VI. The complete water quality and zoobenthic data sets are stored in electronic databases and are available upon request from the Environmental Quality Monitoring Branch, Alberta Environment.

The results of the statistical tests for flow-dependency, overall and monthly changes between pre- and post-impoundment median levels of water quality variables, and trends in river water quality in the years following the filling of Gleniffer Lake are tabulated and presented in this section.

4.1.1 Flow Dependency

Flow dependency was assessed using data collected from January 1978 to April 1983 at the long-term monitoring site above Red Deer. At that site, concentrations of most solutes decreased with increasing flow and concentrations of most particulate variables increased with increasing flow (Table 2). These findings are consistent with those observed in other Alberta rivers (Shaw et al. 1990).

The Dickson Dam strongly influences the seasonal flow pattern of the Red Deer River. Thus, it would be expected to affect seasonal fluctuations in concentrations of those variables that are flow-dependent. For the flow-dependent dissolved constituents, post-impoundment concentrations would be expected to be lower during the winter months because of higher flows. In contrast, for flow-dependent particulate variables, post-impoundment concentrations might be lower during spring and summer runoff because the flood peaks are reduced.

4.1.2 Pre- and Post-impoundment Differences

At the long-term monitoring site upstream of the city of Red Deer (Table 3), postimpoundment median levels of dissolved oxygen in the Red Deer River were significantly higher than pre-impoundment levels, whereas post-impoundment levels of total dissolved solids, most major ions and associated variables, particulate phosphorus, silica, and total

Table 2. Regressions of concentrations (X) versus discharge (Q, m³/s) for flow-dependent variables at the long-term monitoring site upstream of the city of Red Deer.

VARIABLE	REGRESSION	r^2	df
α-ВНС	lnX = -8.32 + 0.551 nQ	0.45	18
Alkalinity	X = 275.4 - 30.91 nQ	0.71	58
Bicarbonate	X = 148.4 + 200.8/(1+0.0316Q)	0.72	58
Calcium	lnX = 4.40 - 0.141nQ	0.67	61
Colour	lnX = 0.75 + 0.531nQ	0.32	62
Conductivity	lnX = 6.60 - 0.181nQ	0.85	61
Fecal coliforms	lnX = -0.06 + 0.661nQ	0.19	60
Fecal streptococci	lnX = 0.29 + 0.77Q	0.15	59
Hardness	lnX = 5.84 - 0.171nQ	0.81	61
Magnesium	lnX = 3.52 - 0.211nQ	0.79	62
pH	X = 8.30 - 2.53/Q	0.23	62
Particulate nitrogen	$X = 0.036 + 0.00045Q + 1.21 \times 10-7Q^2$	0.43	59
Particulate phosphorus	$X = 0.014 + 0.00018Q + 6.99 \times 10-6Q^2$	0.44	56
Silica a graph page sa	$X = 6.80 - 0.060Q + 0.00047Q^2$	0.31	61
Sodium	$X = 8.84 - 0.067Q + 0.00035Q^2$	0.26	62
Sulphate	X = 65.5 - 9.21nQ	0.84	62
Non-filterable residue	lnX = -1.12 + 0.931nQ	0.41	60
Temperature	lnX = -1.39 + 0.951nQ	0.76	60
Total dissolved solids	lnX = 5.98 - 0.181nQ	0.85	59
Total phosphorus	$X = 0.013 + 0.00043Q + 4.06 \times 10-6Q^{2}$	0.30	60
Turbidity	lnX = -1.32 + 0.901nQ	0.49	62

Notes

Regressions were computed using data collected from January 1978 to April 1983, before Gleniffer Lakes was filled. For all regressions, P<0.01.

Units for X are in mg/L except for conductivity (µS/cm), turbidity (NTU), and bacteria (#/100 mL)

Chloride, fluoride, potassium, and total dissolved phosphorus levels and total numbers of coliforms were all independent of flow.

Table 3. Results of Mann-Whitney tests for changes between pre- and post-impoundment median levels of water quality variables and of Kendall tests for trends from 1984-89 at the long-term monitoring site upstream of the city of Red Deer.

VARIABLE	CHANGES IN MEDIAN (Mann-Whitney test)	SEASONAL CHANGES	TREND AFTER 1984 (Kendall test)		
Significant Changes in Medians					
Alkalinity	-11.3 mg/L*	↓Dec-Mar,↑May,Jun	None		
Bicarbonate	-14.7 mg/L*	↓Nov-Feb,↑May	None		
Calcium	-3.8 mg/L**	↓Mar,Oct,Nov	None		
Dissolved oxygen	+1.0 mg/L*	†Jan-Mar,May,Jun	+0.16 mg/L/yr**		
Hardness	-20.9 mg/L**	↓Sep-Mar	None		
Magnesium	-3.1 mg/L**	↓Sep-Mar	None		
Particulate phosphorus	-0.004 mg/L*	↓Feb,Jul	+0.001 mg/L/yr**		
pH	-0.17 units	↓Mar,Aug,Oct-Nov	-0.04 units/yr*		
Silica	-0.90 mg/L**	↓Dec-Mar	+0.30 mg/L/yr**		
Specific conductance	-38.8 μS/cm**	↓Aug-Mar	None		
Sulphate	-3.5 mg/L**	↓Nov-Mar	-1.4 mg/L/yr*		
Total coliforms	-8.0 #/100 mL**	↓Feb	+5.5 #/100 mL/yr**		
Total dissolved solids	-19.7 mg/L**	↓Oct-Mar	None		
No Significant Changes in Me	edians				
α-ВНС	n.s.	↓Jul-Sep	None		
Chloride	n.s.	↓Nov-Jan,↑May-Jun	None		
Colour	n.s.	None	+1.0 RCU/yr**		
Dissolved organic carbon	n.s.	None	+0.031 mg/L/yr**		
Fluoride	n.s.	None	None		
Fecal coliforms	n.s.	None	None		
Fecal streptococci	n.s.	↑Nov	-4.0 #/100 mL/yr**		
Flow	n.s.	↑Dec-Mar,↓Jul	None		
Particulate nitrogen	n.s.	↑Feb	None		
Potassium	n.s.	↑May-Jun,↓Dec	None		
Sodium	n.s.	↓Dec-Feb,↑May	None		
Non-filterable residue	n.s.	↓Jan,Oct,↑Mar	+0.33 mg/L/yr*		
Cotal dissolved phosphorus	n.s.	None	None		
Cotal phosphorus	n.s.	None	+0.001 mg/L/yr**		
urbidity	n.s.	↑Mar,↓May,Jul	+0.001 NTU/yr**		
Vater temperature		↑Apr	None		

Post-impoundment median level for that month is significantly (P<0.10) greater than pre-impounded levels.

Post-impoundment median level for that month is significantly (P<0.20) lower than pre-impounded levels. P<0.10

coliforms were significantly lower than pre-impoundment levels. At the Drumheller site (Table 4), similar changes were found, with the exceptions of increases in pH, decreases in sodium and total phosphorus levels and no changes in silica and total coliform levels. At Bindloss (Table 5), there were negative changes between pre- and post-impoundment periods for a number of variables, and the changes were often inconsistent with those observed at Red Deer. It appears that changes in water quality at Bindloss were often associated with increased flows during the winter months.

4.1.3 Trend Tests

During the 1984-89 interval only, levels of dissolved oxygen, silica, colour, dissolved organic carbon, non-filterable residue, particulate phosphorus, and total coliforms increased significantly, and levels of pH, sulphate, fecal streptococci decreased significantly at the long-term site upstream of the city of Red Deer (Table 3). Similar trends for these variables were not observed at the other two long-term monitoring sites (Tables 4, 5).

4.2 GLENIFFER LAKE

At full storage level (948 m), Gleniffer Lake has a surface area of 17.6 km², is 11 km long and 2 km wide, and contains 205 x 10⁶ m³ of water. Its steep sides drop sharply to a wide, flat bottom that is 33 m deep at its deepest point. When the water level in the reservoir is drawn down, as occurs in the spring of most years, considerable mud flats are exposed. The typical drawdown is 7-9 m. As would be expected for a reservoir, the residence time of the water in Gleniffer Lake is short, averaging 70 days. In years of high flows in the Red Deer River, the residence time can be as short as 30 days (Mitchell and Prepas 1990).

Gleniffer Lake is a well-buffered, oligotrophic, freshwater reservoir. There is an increase in water clarity from the shallow west end where the Red Deer River enters the lake to the deeper east end near the Dickson Dam (Table 6). There is, however, little difference in ionic composition among the different basins.

The west end of Gleniffer Lake is frequently mixed by winds and inflowing river currents; it tends to be weakly thermally stratified during July and August, remaining well oxygenated throughout the summer (Figure 5). The deeper central and eastern basins of the reservoir tend to be thermally stratified during summer and the hypolimnetic water

Table 4. Results of Mann-Whitney tests for changes between pre- and post-impoundment median levels of water quality variables and of Kendall tests for trends from 1984-89 at the long-term monitoring site near Drumheller.

VARIABLE	CHANGES IN MEDIAN (Mann-Whitney test)	SEASONAL CHANGES	TREND AFTER 1984 (Kendall test)				
Significant Changes in Media	Significant Changes in Medians						
Alkalinity	-10.7 mg/L*	↓Dec-Jan	None				
Bicarbonate	-19.5 mg/L**	↓Dec-Jan	+4.6 mg/L/yr*				
Calcium	-4.6 mg/L**	↓Oct-Feb,Jun	+1.4 mg/L/yr**				
Dissolved oxygen	+0.4 mg/L*	↑Jan	None				
Hardness	-22.5 mg/L**	↓Oct-Feb,Aug	+1.8 mg/L/yr**				
Magnesium	-1.9 mg/L**	↓Aug-Jan	None				
Particulate phosphorus	-0.004 mg/L*	↓Jul,Nov	None				
pH	+0.08 units**	↑Jan-Feb	None				
Sodium	-1.8 mg/L**	↓Jan-Mar,Nov,↑Jun	None				
Specific conductance	-46.0 μS/cm**	↓Oct-Mar,Aug	None				
Sulphate	-3.0 mg/L**	↓Feb,Mar,Nov,↑Jun	-1.0 mg/L/yr*				
Total dissolved solids	-19.8 mg/L**	↓Oct-Jan,Mar	None				
Total phosphorus	-0.015 mg/L**	↓Jan,Jul	None				
No Significant Changes in Med	lians						
α-ВНС	n.s.	None	None				
Chloride	n.s.	↓Dec-Feb,↑Jun-Aug	+0.067 mg/L/yr*				
Dissolved organic carbon	n.s.	↓Aug	+0.33 mg/L/yr**				
Fecal coliforms	n.s.	None	None				
Fecal streptococci	n.s.	↑Aug	-5.8 #/100 mL/yr**				
Flow	n.s.	↑Dec-Feb,↓Jun-Jul	None				
Fluoride	n.s.	↑Apr,Dec	None				
Particulate nitrogen	n.s.	↓Jul	None				
Potassium	n.s.	†Jun,↓Dec-Feb,Mar	None				
Silica	n.s.	↓Jan	None				
Non-filterable residue	n.s.	↓Jul,†Jan	None				
Total coliforms	n.s.	†Aug	None				
Total dissolved phosphorus	n.s.	↓Jan	None				
Turbidity	n.s.	↓Jul	None				
Water temperature	n.s.	None	+0.10 °C/yr*				

Notes

 $[\]uparrow$ Post-impoundment median level for that month is significantly (P<0.10) greater than pre-impounded levels. Post-impoundment median level for that month is significantly (P<0.20) lower than pre-impounded levels.

^{*} P<0.10

^{**} P<0.05

Results of Mann-Whitney tests for changes between pre- and post-impoundment median levels of water quality variables and of Kendall tests for trends from 1984-Table 5. 89 at the long-term monitoring site near Bindloss.

VARIABLE	CHANGES IN MEDIAN (Mann-Whitney test)	SEASONAL CHANGES	TREND AFTER 1984 (Kendall test)			
Significant Changes in Medians						
Calcium	-1.7 mg/L*	↓Jan-Feb,↑Apr	None			
Chloride	-0.1 mg/L*	↓Dec-Feb,↑Jun-Jul	None			
Chlorophyll a	-0.001 mg/L**	↓Apr,Oct	None			
Cyanide	-0.0001 mg/L**	↑Apr	None			
Dissolved organic carbon	-0.80 mg/L**	↓Jan-Apr	None			
Dissolved nitrogen	-0.110 mg/L**	↓Jan-Apr,Jun	None			
Fluoride	+0.0001 mg/L**	↑Jun-Jul	None			
Hardness	-11.6 mg/L**	↓Jan-Feb,↑Apr	None			
Magnesium	-1.4 mg/L**	↓Dec-Feb,↑Apr	None			
(NO ₂ -+NO ₃ -)-N	-0.020 mg/L**	↓Apr,Jun	None			
Particulate nitrogen	-0.020*	↓Apr	None			
Particulate organic carbon	-0.10 mg/L*	None	None			
Particulate phosphorus	-0.004 mg/L*	↓Apr	-0.003 mg/L/yr*			
Potassium	-0.2 mg/L**	↓Jan-Feb	None			
Silica	-1.5 mg/L**	↓Jan-Apr,Jun	None			
Sodium	-3.8 mg/L**	↓Dec-Mar,↑Jul	None			
Specific conductance	-20.0 μS/cm*	↓Dec-Mar,Oct	None			
Sulphate	-6.3 mg/L**	↓Jan-Mar,↑Jun	None			
Total dissolved solids	-16.5 mg/L**	↓Dec-Mar,Oct,↑Apr,Jun	None			
Total phosphorus	-0.007 mg/L**	↓Apr	None			
Water temperature	0.2 °C**	↑Apr	None			
No Significant Changes in Me	dians					
Alkalinity	n.s.	↓Jan,↑Apr	None			
Bicarbonate	n.s.	↓Jan,↑Apr	None			
Boron	n.s.	↑Nov	None			
Dissolved oxygen	n.s.	None	+0.19 mg/L/yr*			
Fecal coliforms	n.s.	None	None			
Flow	n.s.	↑Dec-Feb,Jun	+0.9 m³/s/yr*			
рН	n.s.	↓Nov	None			
Non-filterable residue	n.s.	↓Apr	None			
Potal coliforms	n.s.	↑Dec	None			
Fotal dissolved phosphorus	n.s.	↓Apr	None			
	n.s.	↓Apr	None			

Post-impoundment median level for that month is significantly (P<0.10) greater than pre-impounded levels. Post-impoundment median level for that month is significantly (P<0.20) lower than pre-impounded levels. P<0.10 ** P<0.05

Table 6. Median levels of selected water quality variables determined from euphotic composite samples collected from the western, central, and eastern basins of Gleniffer Lake, May to October, 1983-87.

VARIABLE	WEST	CENTRAL	EAST
Secchi depth	2.25	3.25	3.8
Turbidity	2.1	1.7	1.2
Non-Filterable residue	2.4	2.0	2.7
pH	8.27	8.26	8.30
Total alkalinity	153.0	150.0	150.0
Specific conductance	350.0	349.0	347.0
Total dissolved solids	195.0	193.0	192.0
Total hardness	180.0	175.0	175.0
Bicarbonate	180.0	183.0	179.0
Sulphate	36.0	37.0	36.0
Chloride	0.9	0.9	0.9
Calcium	48.5	47.3	47.4
Magnesium	14.4	14.4	14.6
Sodium	4.0	4.0	4.0
Potassium	0.9	1.0	1.0
Total dissolved phosphorus	0.004	0.004	0.004
Total phosphorus	0.010	0.010	0.009
(NO ₂ -+NO ₃ -)-N	0.030	0.027	0.028
NH ₄ -N	0.010	0.012	0.013
Total nitrogen	0.323	0.279	0.304
Silica	4.6	4.5	4.4
Aluminum (extractable)	0.045	0.030	0.030
Manganese (extractable)	0.009	0.005	0.004
Mercury (total)	<0.0001	<0.0001	<0.0001
Iron (extractable)	0.03	0.04	0.04
Lead (extractable)	0.003	0.002	0.003
Zinc (extractable)	0.004	0.003	0.003
Dissolved organic carbon	2.3	2.4	2.7
Total organic carbon	3.0	3.4	3.7
Phenolic material	0.001	0.001	0.001
Chlorophyll a	0.001	0.001	0.001

Note:

Units are in mg/L except for Secchi depth (m), turbidity (NTU), pH (pH units), and specific conductance (μ S/cm).

Figure 5. Temperature and dissolved oxygen isopleths, Gleniffer Lake, 1985-1986.

undergoes some oxygen depletion. There is, however, considerable year-to-year variation in the extent of thermal stratification and oxygen depletion, e.g. in 1984, hypolimnetic water within 5 m of the lake bottom was anoxic by late July, whereas in 1987, oxygen concentrations remained above 5 mg/L throughout the year.

Water clarity in Gleniffer Lake is variable. Secchi disk readings taken from May to October 1983-87 in the eastern basin ranged from 0.6 to 8.8 m (median 3.8 m) (Figure 6). The low readings were generally associated with inflows of turbid water from the Red Deer River during spring and summer, rather than from increased algal biomass.

Euphotic chlorophyll *a* concentrations were quite variable from 1983 to 1987, ranging from 0.12 to 13.3 μg/L (median 1.3 μg/L) (Figure 6). There was a peak in chlorophyll *a* concentrations during the fall of 1983. These high algal levels, however, were not associated with corresponding increases in nutrients (Figure 7), which might have been expected if nutrients were being leached from the newly flooded soils.

Concentrations of total nitrogen, total phosphorus, and silica were highly variable from year to year (Figure 7). The high levels of total nitrogen recorded in the fall of 1984 were related to high nitrogen loads from the Red Deer River. There is little evidence of leaching of nutrients or inorganic solutes from the lake bottom following the filling of Gleniffer Lake (Figures 7, 8). Dissolved organic carbon (DOC) concentrations, however, increased from 1983 to 1987 (Figure 8). Part of the increase was a result of higher DOC concentrations in the influent river water, although leaching of organic solutes from the flooded soils may have also contributed to the rise in DOC levels in the reservoir (Section 4.3.6).

4.3 RED DEER RIVER WATER QUALITY

4.3.1 Water Temperature

The release of water from the lower depths of reservoirs can have an effect on water temperatures immediately below a dam, particularly if the reservoir becomes thermally stratified as does Gleniffer Lake. The effect of the Dickson Dam on water temperatures in the Red Deer River is readily apparent by comparing river temperatures at a site immediately upstream of the reservoir to those immediately downstream of the reservoir (Figure 9). Temperatures at the downstream site are 1-3 °C higher in winter and up to 6 °C lower in summer compared to the upstream site. In addition, during the summer, mean daily

Fig. 6. Secchi depth and chlorophyll levels in Gleniffer Lake, central basin.

Figure 7. Phosphorus, nitrogen, and silica concentrations in Gleniffer Lake (central basin), 1983-88.

Figure 8. TDS and DOC concentrations in Gleniffer Lake (central basin), 1983-88.

Fig. 9. Water temperatures above and below Gleniffer Lake, 1983-88.

water temperatures immediately downstream of Gleniffer Lake are much less variable than temperatures upstream of the reservoir (Trimbee and Sosiak 1988).

The effect of the dam on river water temperatures extends at least as far downstream as Innisfail, 20 km from the dam, as is evident from lower peak temperatures at that site compared to the site at Ft. Normandeau (Figure 10). Trimbee and Sosiak (1988) noted that the Dickson Dam also affected water temperatures at a site 27 km downstream of the dam in winter, but not in summer. There appears to be little effect on water temperatures at Ft. Normandeau, 48 km from the dam (Figure 10). At that site, maximum summer temperatures are similar to those recorded at Joffre.

Analysis of data from the long-term monitoring station at Red Deer supports the synoptic survey findings regarding water temperatures at Ft. Normandeau, which is very close to the long-term site at Red Deer. At Red Deer (and at the other long-term sites), there were no significant differences in median water temperatures between pre- and post-impoundment periods (Tables 3-5, Figure 11). The only significant monthly difference between pre- and post-impoundment periods was for April, when post-impoundment temperatures were higher than pre-impoundment temperatures. This same finding was detected coincidentally at the Alberta/Saskatchewan border site (but not at Drumheller), which suggests that the change may have been a result of factors other than flow regulation.

From 1984 to 1989, water temperatures at the long-term monitoring sites at Red Deer and Bindloss did not change significantly; however, temperatures at Drumheller increased by 0.1 °C/yr (Tables 3-5). The lack of a minor temperature change at Red Deer suggests that the change detected at Drumheller was a result of factors other than flow regulation.

4.3.2 Dissolved Oxygen

Historically, the principal concern with respect to the water quality of the Red Deer River was low dissolved oxygen concentrations during the winter. Improvements in the city of Red Deer's wastewater treatment plant from 1969 to 1973 substantially improved winter dissolved oxygen concentrations downstream of Red Deer (Trimbee and Sosiak 1988), but levels occasionally fell below the Alberta Surface Water Quality Objective of 5 mg/L, especially near the Alberta/Saskatchewan border. It was anticipated that increased winter

Figure 10. Water temperatures in the Red Deer River, 1983-88 synoptic surveys.

Fig. 11. Temperatures at the Red Deer long-term monitoring site, 1978-89.

flows following completion of the dam would be sufficient to maintain dissolved oxygen concentrations above 5 mg/L.

Upstream of Gleniffer Lake, dissolved oxygen concentrations remain near saturation throughout the year; the highest levels were recorded in winter and the lowest levels in summer. Concentrations of dissolved oxygen increased slightly immediately downstream of the dam (Figure 12) as a result of reaeration within the two riparian flow tunnels or occasionally over the spillway in summer. During the synoptic surveys, median levels of dissolved oxygen remained high as far downstream as Joffre. But dissolved oxygen concentrations at Joffre were lowest in winter and highest in summer, unlike that at other sites. That pattern was a consequence of photosynthesis and respiration associated with high epilithic algal and macrophyte populations at Joffre (Section 4.3.8).

Analysis of the long-term monitoring station data supports the findings of the synoptic surveys that dissolved oxygen concentrations in the Red Deer River have increased as a result of flow augmentation. Post-impoundment, median dissolved oxygen concentrations have increased significantly at the long-term monitoring sites at Red Deer and Drumheller, by 1.0 and 0.4 mg/L, respectively (Tables 3, 4; Figures 13, 14). There has been no significant change in dissolved oxygen concentrations at Bindloss (Table 5; Figure 15).

Post-impoundment dissolved oxygen concentrations were significantly higher than pre-impoundment levels for the months of January, February, March, May, and June at the Red Deer site and during January at Drumheller (Tables 3, 4). There have been no significant monthly changes in dissolved oxygen concentrations at Bindloss (Table 5). At Red Deer, dissolved oxygen concentrations remained near the saturation point throughout the year, the highest levels being recorded during winter and the lowest during summer. The pattern is different at the other two sites where both pre- and post-impoundment dissolved oxygen concentrations were lowest in winter and highest in summer.

The Dickson Dam has maintained dissolved oxygen concentrations in the river above 5.0 mg/L at the long-term monitoring site upstream of the city of Red Deer (Figure 13). At Drumheller and Bindloss, however, post-impoundment winter lows of 3.9 and 2.6 mg/L, respectively, have been recorded (Figures 14, 15). These lows are, however, higher than the minimum pre-impoundment (1978-83) dissolved oxygen levels of 0.4 and 0.9 mg/L recorded at Drumheller and Bindloss, respectively.

Figure 12. Dissolved oxygen levels in the Red Deer River, 1983-88 synoptic surveys.

Fig. 13. Dissolved oxygen at the Red Deer long-term monitoring site, 1978-89.

Fig. 14. Dissolved oxygen at the Drumheller long-term monitoring site, 1978-89.

Fig. 15. Dissolved oxygen at the Bindloss long-term monitoring site, 1978-89.

Since the filling of Gleniffer Lake, the trends in dissolved oxygen concentrations at the Red Deer and Bindloss sites have shown significant increases of 0.16 and 0.19 mg/L/yr, respectively; there was no trend detected for Drumheller (Tables 3-5). It is not clear whether the trends detected at Red Deer and Bindloss are related to flow regulation or are a result of other factors. Note that at Bindloss the upward trend may be too small to be detected by the Mann-Whitney test.

4.3.3 Non-filterable Residue (Suspended Solids) and Turbidity

A common effect of impoundments is that particulate material settles out in the reservoir, and suspended solids concentrations are reduced in the river downstream of the dam (Baxter and Glaude 1980). Retention of suspended solids by Gleniffer Lake is apparent from inspection of a time-series plot of concentrations recorded at sites immediately upstream and downstream of the reservoir (Figure 16). Suspended solids concentrations (also called non-filterable residue or NFR) at the downstream site were generally lower than at the upstream site, which suggests that particulate material was settling out in the reservoir. The 1983-88 synoptic survey data indicates that suspended solids concentrations were reduced as far downstream as Joffre, as shown by the reduced maximum and median values at all sites downstream of the dam compared to the upstream site (Figure 17). As in most other rivers, suspended solids levels in the Red Deer River are strongly correlated to flow (long-term site at Red Deer: r=0.73, df=143, P<0.001); similar correlations were observed for turbidity.

In contrast to the findings of the synoptic surveys, median levels of suspended solids and turbidity did not differ significantly between pre- and post-impoundment periods at any of the long-term monitoring sites (Tables 3-5). Inspection of the time series plots supports the results of the statistical difference tests; there was no clear decrease in suspended solids concentrations following the filling of Gleniffer Lake (Figures 18, 19). The lack of a change between pre- and post-impoundment levels of suspended solids and turbidity at the Drumheller and Bindloss sites is not surprising, because there is a rapid increase in the levels of these variables from Trochu to Drumheller as a result of changes in basin geology (Cross 1988). The lack of a significant decrease in levels of suspended solids and turbidity at the Red Deer site is, however, unexpected based on analysis of the 1983-88 synoptic survey data. These contradictory findings may be partly a result of differences in

Flg. 16. Suspended solids above and below Gleniffer Lake, 1983-88.

Figure 17. Suspended solids concentrations in the Red Deer River, 1983-88 synoptic surveys.

Fig. 18. Suspended solids at the Red Deer long-term monitoring site, 1978-89.

Fig. 19. Suspended solids at the Drumheller long-term monitoring site, 1978-89.

sampling design between the two studies (the synoptic data are primarily from spring and summer) and of the low suspended solids concentrations in the Red Deer River. Suspended solids concentrations increase with increasing flow (Table 2), and the highest levels are associated with spring and summer runoff. Except for periods of high flow, concentrations of suspended solids in the Red Deer River are fairly low, e.g. the median concentration calculated for the site upstream of Gleniffer Lake during the 1983-88 synoptic surveys was only 6.6 mg/L. Therefore, the effect of the reservoir on concentrations of suspended solids would be restricted largely to reducing spring and summer peaks associated with runoff events.

Changes between pre- and post-impoundment monthly suspended solids levels were inconsistent between sites. At Red Deer, post-impoundment levels of suspended solids were higher than pre-impoundment levels during the months of January and October and were lower in March (Table 3). At Drumheller, post-impoundment levels were higher than pre-impoundment levels in January and lower in July (Table 4), and at Bindloss, post-impoundment levels during April were lower than pre-impoundment levels (Table 5).

At the long-term monitoring site upstream of the city of Red Deer, concentrations of suspended solids increased significantly (0.3 mg/L/yr; Table 3) during 1984-89, even though there was no significant change in the median level. No trends were detected at the other long-term monitoring sites. In summary, it would appear that the only major reduction in suspended solids concentrations has occurred at the site 4 km downstream of the dam. These patterns may change over a longer period of time.

4.3.4 Nutrients

One concern associated with the construction of impoundments is that plant nutrients and inorganic solutes may be leached from the flooded soils and released as flooded vegetation decays. Such increases in nutrients may lead to increases in populations of phytoplankton and attached algae (Baxter and Glaude 1980). Although this may have occurred to some extent in Gleniffer Lake, total nitrogen (TN) and total phosphorus (TP) concentrations at the synoptic survey site 4 km downstream of the lake are similar to levels upstream of the lake (Figure 20). There were very slight or no increases in median levels of NO_2+NO_3-N , NH_4-N , and total dissolved phosphorus at the site 4 km downstream of the dam compared to the site upstream of the reservoir (Appendix IV). Nutrient release from the

Figure 20. Nutrient concentrations in the Red Deer River, 1983-88 synoptic surveys.

flooded soils may have been reduced as a result of removal of some of the topsoil before the land was flooded.

Based on synoptic data, Gleniffer Lake reduces peak concentrations of TN and TP at sites downstream of the dam (Figure 20). The high nutrient values upstream of the reservoir corresponded to high concentrations of suspended solids associated with spring and summer runoff events. The reduction in peak nutrient levels results from adsorption of phosphorus and nitrogen to particulate material, which settles out in the reservoir.

Concentrations of total nitrogen and total phosphorus were particularly high at Joffre. This is related to nutrient loading from the City of Red Deer's wastewater treatment plant. Interestingly, the lowest levels of silica were also recorded at Joffre, probably as a result of uptake by diatoms.

At the Red Deer and Drumheller long-term monitoring stations, changes in analytical methods, detection limits, and fractions analyzed restricted the evaluation of nutrients to TP, total dissolved phosphorus (TDP), particulate phosphorus (PP), particulate nitrogen (PN), and reactive silica. At the long-term monitoring site upstream of the city of Red Deer, there were no significant changes between pre- and post-impoundment periods in median concentrations of PN, TDP, and TP (Figure 21); however, post-impoundment levels of PP and reactive silica were significantly lower than pre-impoundment levels (Table 3, Figure 22). At Drumheller, post-impoundment concentrations of TP and PP were significantly lower than pre-impoundment levels, and there were no significant changes in concentrations of TDP, PN, silica, and the other nutrient fractions that were tested (Table 4). Farther downstream at Bindloss, post-impoundment concentrations of all nutrient fractions except TDP were significantly lower than pre-impoundment concentrations (Table 5).

Following the filling of Gleniffer Lake, no significant trends were observed in the concentrations of any of the nitrogen or phosphorus fractions analyzed at the Red Deer site (Table 3). In addition, there have been no consistent changes between monthly pre- and post-impoundment median levels of nitrogen or phosphorus fractions. In contrast, silica concentrations increased significantly from 1984 to 1989 (Table 3; Figure 22). Silica levels decreased during the winter months, as would be expected for a flow-dependent solute (Table 2).

Fig. 21. Total phosphorus at the Red Deer long-term monitoring site, 1978-89.

Fig. 22. Sllica levels at the Red Deer long-term monitoring site, 1978-89.

4.3.5 Inorganic Constituents

Inorganic solutes may be leached from flooded soils and released from decaying vegetation following filling of a reservoir. This, however, does not appear to be the case at Gleniffer Lake because levels of total dissolved solids (TDS) and other inorganic solutes are lower at the sites downstream of the dam compared to the site upstream of the reservoir (Figure 23; Appendix IV). The synoptic survey data show a decrease in median levels of TDS and the other flow-dependent variables (with the exception of pH) at least as far downstream as Joffre.

Analysis of the long-term monitoring site data supports the synoptic survey findings of a decrease in the levels of many inorganic solutes coincident with impoundment of the Red Deer River (Tables 3-5). For many of the variables, post-impoundment levels were lower than pre-impoundment levels at all three long-term monitoring sites (e.g. above Red Deer, Figures 24 and 25, and Bindloss). The probable cause of the decrease in these variables is related to CaCO₃ precipitation within Gleniffer Lake. The Red Deer River is supersaturated with CaCO₃ (H. Hamilton 1990, pers. comm.), and the pH of Gleniffer Lake (range 8-8.4) tends to be higher than in the inflowing water of the Red Deer River (range 7.1-8.6). Therefore, this increase in pH may be sufficient to precipitate CaCO₃ and coprecipitate MgCO₃. This would explain decreases in levels of calcium, magnesium, bicarbonate, total dissolved solids, conductance, hardness, and alkalinity. It does not, however, provide an explanation for a change in sulphate levels.

Total dissolved solids, specific conductance, alkalinity, pH, hardness, calcium, bicarbonate, magnesium, sodium, and sulphate levels were all flow-dependent in the Red Deer River at the Red Deer site (Table 2). Except for pH, levels of these variables decreased with increasing flow. As would be expected for flow-dependent variables, there were significant seasonal changes between pre- and post-impoundment periods; concentrations were significantly lower during most winter months and higher in the summer months (Tables 3-5).

Few trends in levels of inorganic variables were evident downstream of Gleniffer Lake after it filled in 1983. At Red Deer, pH and sulphate levels decreased; at Drumheller, sulphate concentrations decreased and chloride concentrations increased. There were no significant trends observed at the Bindloss site (Tables 3-5). Decreases in sulphate concentrations may be related to flow regulation, as post-impoundment levels were

Figure 23. TDS concentrations in the Red Deer River, 1983-88 synoptic surveys.

Fig. 24. TDS levels at the Red Deer long-term monitoring site, 1978-89.

Fig. 25. TDS levels at the Bindloss long-term monitoring site, 1978-89.

lower than pre-impoundment levels; however, the cause of the reduced sulphate levels is not known.

There were too few metal and trace element data from the long-term sites to determine whether there were changes between pre- and post-impoundment periods, and the 1983-88 survey data are mostly restricted to three sites: upstream of Gleniffer Lake, 4 km below the dam, and at Ft. Normandeau. Except for iron and manganese concentrations, which increased in the river as it neared Ft. Normandeau (Table 7), median levels of metals and trace elements were not greatly affected by the dam. It is obvious, however, that the reservoir greatly reduces peak concentrations of most constituents (Table 7). The reduction in peak values is related to settling out in the reservoir of particulate matter, onto which metal ions and trace elements are adsorbed.

4.3.6 Organic Constituents

Concentrations of dissolved organic carbon (DOC) in the euphotic zone of Gleniffer Lake have increased since the reservoir was filled (Figure 8). At least part of this increase is attributable to ongoing loading from the Red Deer River. Concentrations of DOC immediately downstream of the dam, however, are higher than those upstream of the reservoir, which suggests that DOC may be leaching into the lake from flooded soils and/or decaying vegetation (Figure 26). This increase was particularly noticeable from July 1986 to February 1988. Even though median levels of DOC downstream of the dam are higher than at the upstream site, the maximum concentrations recorded at the downstream sites are lower than at the upstream site (Figure 27).

Measurements of dissolved organic carbon concentrations from the long-term monitoring sites at Red Deer and Drumheller support the hypothesis of a release of DOC from within the reservoir (Figure 28). There is a significant trend toward increasing DOC concentrations at both sites (Tables 3, 4) since the reservoir was filled in 1983. There were, however, no significant changes in the overall or monthly median DOC concentrations between pre- and post-impoundment periods, possibly because of the small trend increments.

Phenolic compounds and tannin and lignin were the only other organic constituents measured during the synoptic surveys. There were no increases in median levels of these variables at the site downstream of the dam compared to the site upstream of the reservoir (Appendix IV).

Table 7. Median and range (in parentheses) of metal and trace element concentrations at several locations on the Red Deer River, 1983-88 synoptic surveys.

VARIABLE	u/s DICKSON DAM	4 km d/s DICKSON DAM	FT. NORMANDEAU
Aluminum (extr.)	0.05 (<0.02-9.91)	0.05 (<0.02-0.25)	0.048 (<0.02-1.4)
Arsenic (total)	0.0004 (<0.0002-0.019)	0.0005 (0.0002-0.002)	<0.0005 (<0.0002-0.0029)
Chromium (total)	0.003 (<0.001-0.039)	0.003 (<0.001-0.01)	0.003 (<0.001-0.01)
Copper (total)	0.003 (<0.001-0.044)	0.002 (<0.001-0.008)	0.002 (<0.001-0.008)
Cobalt (total)	<0.001 (<0.001-0.018)	<0.001 (b.d.)	<0.001 (<0.001-0.004)
Lead (extr.)	<0.003 (<0.003-0.012)	<0.003 (0.001-0.005)	<0.003 (<0.003-0.015)
Manganese (extr.)	<0.01 (<0.004-0.280)	<0.01 (<0.001-0.036)	0.01 (<0.001-0.32)
Molybdenum (total)	<0.001 (<0.001-0.052)	<0.001 (b.d.)	<0.001 (<0.001-0.005)
Mercury (total)	<0.0001 (<0.0001-0.065)	<0.0001 (0.0001-0.0002)	<0.0001 (<0.0001-0.0002)
Iron (extr.)	<0.01 (<0.01-8.68)	0.06 (<0.01-0.86)	0.09 (<0.01-3.92)
Lead (extr.)	<0.003 (0.001-0.012)	<0.003 (0.001-0.005)	<0.003 (<0.002-0.015)
Nickel (extr.)	<0.001 (<0.001-0.10)	<0.001 (<0.001-0.004)	<0.001 (<0.001-0.012)
Selenium (total)	<0.0002 (<0.0002-0.01)	<0.0002 (b.d.)	<0.0002 (b.d.)
Zinc (total)	0.012 (<0.001-0.187)	0.003 (<0.001-0.024)	0.003 (<0.001-0.027)

Notes:

Units are in mg/L.

extr. - extractable

b.d. - all values below analytical detection limits

Fig. 26. DOC levels above and below Gleniffer Lake, 1983-88.

Figure 27. DOC concentrations in the Red Deer River, 1983-88 synoptic surveys.

Fig. 28. DOC levels at the Red Deer long-term monitoring site, 1978-89.

4.3.7 Bacteria

Reservoirs may improve river water quality because the water retention time allows the number of bacteria to decrease (Purcell 1939). Decreases in numbers of both total and fecal coliform bacteria were noticeable at the site 4 km downstream of Gleniffer Lake (Figure 29). The lower bacterial levels did not extend far downstream, however, and peak bacterial counts at Innisfail were higher than upstream of the reservoir (Figure 29). At the Red Deer long-term monitoring site, post-impoundment median levels of total coliforms were significantly lower than pre-impoundment levels (Table 3). Immediately after Gleniffer Lake was filled, total coliform counts decreased substantially, but have since increased by 5.5/100 mL per year (Table 3; Figure 30). The change in total coliform numbers was, however, restricted to the Red Deer site (Tables 4, 5). There were no significant differences in fecal coliform numbers between pre- and post-impoundment periods river at any of the long-term monitoring sites.

4.3.8 Algae

Increased populations of phytoplankton and attached algae are found downstream of some reservoirs (Baxter and Glaude 1980). Below Gleniffer Lake levels of both planktonic and epilithic chlorophyll a are higher downstream of the dam than upstream of the reservoir (Figure 31). It is not known whether the increase in algal populations at the site 4 km below the dam is related to increases in nitrogen and phosphorus because water flowing out of the reservoir was not monitored. Other factors that may have produced elevated levels of algae below the dam include increased water clarity and a more stable temperature and flow regime. Higher concentrations of phytoplanktonic chlorophyll a may be a result of washout from the reservoir or scouring of the epilithon.

Epilithic algal biomass was particularly high at the Joffre site (Figure 31). Increased algal growth at Joffre was probably a response to high nutrient loads from the city of Red Deer's wastewater treatment plant.

There are no chlorophyll a data from the long-term monitoring sites on the Red Deer River.

Figure 29. Coliform levels in the Red Deer River, 1983-88 synoptic surveys.

Fig. 30. Total coliforms at the Red Deer long-term monitoring site, 1978-89.

Figure 31. Algal biomass in the Red Deer River, 1983-88 synoptic surveys.

4.4 RED DEER RIVER ZOOBENTHOS

4.4.1 Total Numbers of Invertebrates and Taxa Per Site

Invertebrate data collected during the 1970s showed consistently that the Joffre site below Red Deer had the highest numbers of benthic invertebrates (Figure 32). Invertebrate numbers upstream of Joffre were generally very low, whereas numbers downstream of Joffre tapered off gradually. High benthic invertebrate numbers at Joffre were a response to enrichment of the river by municipal wastewater discharges from the City of Red Deer. A similar trend was observed in data collected in the spring of 1983, prior to completion of the Dickson Dam (Figure 33). Changes were apparent, however, as early as the fall of 1983, a few months after completion of the dam. Invertebrate numbers increased dramatically downstream of the dam, often overshadowing the high numbers typically encountered at Joffre.

An increase in benthic invertebrate abundance downstream of reservoirs is typical where flow constancy is enhanced (i.e. increased winter flows, decreased summer and spring flows). Other impounded rivers in Alberta where this phenomenon occurs are the Bow River below Ghost Lake and the North Saskatchewan River below the Bighorn Dam (Shaw et al. 1990). In the Red Deer River, the increase in total invertebrate numbers below the dam is greater than the increase in invertebrate numbers that occurs below the city of Red Deer as a response to the enrichment effect of the city's municipal discharge. In all three rivers, the increase in zoobenthic numbers is attributable to a few taxa (i.e. Chironomidae, Oligochaeta, Hydrozoa, and small crustaceans).

In the Red Deer River, the number of different taxonomic groups encountered in each survey was often lower at the site immediately downstream of the Dickson Dam than at any other site, particularly in spring (Table 8). The highest numbers of taxa recorded per seasonal survey, however, were often from Innisfail and Fort Normandeau, the second and third sites below the dam. Decreased diversity of organisms is probably related to habitat alteration, food base alteration, and changes in the physical and chemical characteristics of the river because of flow regulation.

4.4.2 Taxonomic Composition

Oligochaeta (aquatic earthworms), Chironomidae (midges), Ephemeroptera (mayflies), Trichoptera (caddisflies), and Plecoptera (stoneflies) are usually the numerically

Figure 32. A comparison of spring and fall data for benthic invertebrates collected from the Red Deer River between 1974 and 1977 – total numbers.

Figure 33. A comparison of spring and fall data for benthic invertebrates collected from the Red Deer River between 1983 and 1987 – total numbers.

Table 8. Mean number of invertebrate taxa (\pm standard error) recorded per site in the Red Deer River

	1983	1984	1985	1986	1987
Spring					
West of Bowden	23.4 ± 0.7	29.6 ± 1.3	36.8 ± 1.6	36.2 ± 2.0	29.2 ± 1.7
Below Dickson Dam	17.6 ± 1.0	23.6 ± 1.2	24.2 ± 1.2	18.2 ± 1.0	12.8 ± 0.4
Innisfail	21.8 ± 0.9	30.0 ± 1.0	32.0 ± 2.7	33.8 ± 1.7	31.8 ± 1.4
Fort Normandeau	23.6 ± 0.4	28.6 ± 0.9	29.0 ± 1.4	37.8 ± 0.9	32.4 ± 2.3
Joffre	22.6 ± 1.0	29.6 ± 0.7	32.0 ± 1.2	30.0 ± 1.1	35.0 ± 1.2
Nevis	16.0 ± 0.9	_	-	-	-
Trochu	15.6 ± 1.0	-	-	-	-
Drumheller	19.0 ± 1.1	30.8 ± 1.1	26.0 ± 0.9	25.0 ± 1.8	36.2 ± 0.4
East Coulee	17.6 ± 0.5	-	-	-	
Finnegan	21.6 ± 0.9	-	-	· -	-
Jenner	17.0 ± 0.6	-	-	•	-
Empress	16.0 ± 0.8	27.6 ± 1.2	18.4 ± 0.9	23.6 ± 1.3	23.6 ± 0.5
<u>Fall</u>					
West of Bowden	22.8 ± 1.2	38.0 ± 0.8	40.4 ± 1.5	29.8 ± 1.1	33.2 ± 1.4
Below Dickson Dam	25.0 ± 1.5	33.8 ± 0.6	21.0 ± 1.3	29.4 ± 1.6	32.4 ± 0.9
Innisfail	21.0 ± 1.2	34.8 ± 1.0	36.6 ± 0.7	37.4 ± 1.2	40.0 ± 0.9
Fort Normandeau	27.8 ± 1.4	36.2 ± 1.0	24.2 ± 5.1	33.4 ± 1.0	46.6 ± 1.5
Joffre	26.6 ± 1.1	32.6 ± 0.7	29.0 ± 3.5	32.6 ± 0.9	34.0 ± 0.8
Nevis	20.2 ± 0.6	-	-	var	, -
Trochu	21.2 ± 1.0	-	-	**	-
Drumheller	25.4 ± 0.7	35.4 ± 1.6	30.4 ± 1.4	34.6 ± 1.9	31.0 ± 1.0
East Coulee	21.8 ± 1.5	-	-	**	-
Finnegan	24.0 ± 0.7	-	-	-	-
Empress	25.2 ± 0.6	30.0 ± 1.4	17.2 ± 2.0	-	25.6 ± 1.5

dominant invertebrates in Alberta rivers. The latter three groups are often associated with clean water and unstressed conditions, whereas the midges and aquatic earthworms can tolerate a wider range of environmental stress.

In spring 1983, before the impoundment of the Red Deer River, oligochaetes were an important component of the zoobenthos only at Joffre and at sites further downstream (Figure 34). After the dam was built, they also became numerically important at all sites between the dam and Joffre (Figure 35); Naididae has become the dominant oligochaete family below the dam and Tubificidae, another family, has become important further downstream.

Chironomids were always very abundant in the Red Deer River, even before the river was impounded. Even so, numbers have increased considerably since completion of the Dickson Dam. Orthocladiinae has become the most important chironomid sub-family above Joffre, but Tanypodinae, Chironomini, and Tanytarsini have also become important below Red Deer.

Mayflies, stoneflies, and caddisflies have undergone the most notable changes in their distribution patterns. Prior to completion of the dam, they were important numerical contributors to the zoobenthos at all sites except Joffre, where their contribution to the total benthic invertebrate density was considerably less (Figure 34). Since the impoundment of the Red Deer River, a decline in the relative and absolute numbers of mayflies, stoneflies, and caddisflies occurred at the Dickson Dam site, where one of the three groups was often absent (Figure 35). Mayfly and caddisfly numbers increased again from Innisfail downstream, but stonefly populations, which were the most affected by the dam, did not recover.

Thirty to 60% of the invertebrates in the samples from the Dickson Dam site are hydrozoans (sac animals). Zooplankters (cyclopoids, calanoids, and daphnids) spilled from the reservoir are often very abundant at this site. These taxa are rare or absent at most other sites in the Red Deer River.

4.4.3 Longitudinal Distribution

Among the taxa for which identification was carried to the genus level, mayflies exhibited the best-defined longitudinal distribution patterns. Their distribution appears to have been most affected by impoundment of the river. For example, *Rhithrogena* was

Figure 34. Mean numbers of benthic invertebrates collected from the Red Deer River in spring, 1983.

Figure 35. Mean numbers of benthic invertebrates collected from the Red Deer River in spring, 1984.

common in the Red Deer River zoobenthos as far downstream as Joffre during the 1970s and in spring 1983 (Figure 36). Since the river was impounded, *Rhithrogena* has been found only occasionally below the dam, although it is still common upstream of the reservoir (Figure 37). Other mayflies, such as *Ephemerella (Drunella)*, *Ameletus, Cinygmula*, and *Epeorus*, are now found only upstream of the reservoir. Mayflies that tend to be distributed along most of the upper and central reaches of the Red Deer River exhibit a pronounced decrease in numbers at the Dickson Dam site, but recover further downstream (e.g. *Tricorythodes*, *Ephemerella (Ephemerella)*, and *Heptagenia*).

Some stonefly genera, such as *Skwala* and *Zapada*, are now confined to the site west of Bowden, but pre-impoundment information is insufficient to comment on the effects of the dam on the distribution of these taxa. Most stonefly taxa are absent from the Dickson Dam site, and genera encountered further downstream occur in low numbers.

The Dickson Dam also marks an interruption in the longitudinal distribution of most genera of caddisflies, although no genera were confined to the site west of Bowden, as with the stoneflies. Hydropsychidae (i.e. *Hydropsyche* and *Cheumatopsyche*) were very common at most sites in the Red Deer River, especially at Fort Normandeau and Joffre. Other common caddisflies in this area are *Hydroptila*, *Oecetis*, and *Psychomyia*.

Habitat alteration is a common result of increased flow constancy resulting from flow regulation. When scouring caused by high flows (e.g. spring peak) is reduced or eliminated, interstices between stones become clogged with fine particulate matter. Additionally, algae and macrophytes commonly increase in standing stock below reservoirs in response to: 1) greater water clarity (the reservoir acts as a sediment trap), 2) the release of hypolimnetic water rich in nutrients, and 3) the reduction in scouring. Invertebrates that require clean rocky substrates or that dwell in interstices may not find suitable habitat below dams, whereas burrowing invertebrates or those that prowl among vegetation will find their habitat considerably expanded. In the Red Deer River, the algal standing stock below the dam is considerably greater than above the reservoir (Section 4.3.8). Habitat alteration below the reservoir may, therefore, be responsible for the elimination of mayflies common in the upstream reaches (e.g. Rhithrogena, Ephemerella (Drunella), Ameletus, Cinygmula, and Epeorus) and for the increase in taxa such as Orthocladiinae, Naididae, Hydrozoa, and the mayflies Tricorythodes and Ephemerella (Ephemerella), which dwell among algae, are attached to algae, or burrow in the sediment.

						F
		÷				

Figure 36. A comparison of spring and fall data for benthic invertebrates collected from the Red Deer River between 1974 and 1977 - Rhithrogena.

Figure 37. A comparison of spring and fall data for benthic invertebrates collected from the Red Deer River between 1983 and 1987 - Rhithrogena.

Coarse particulate organic matter (CPOM) derived from leaf litter is an important food source for invertebrates in headwaters (Cummins and Klug 1979). CPOM typical of upstream reaches is effectively trapped by reservoirs and becomes unavailable to downstream communities. Reservoirs with alternate epi- and hypolimnetic water release supply an autochthonous source of particulate matter to downstream communities in the form of seston and plankton. The change in food type below the dam can certainly contribute to the truncation of the distribution pattern of certain taxa at the Dickson Dam. Seston and plankton favour the development of populations of suspended particle feeders (e.g. Hydrozoa), deposit feeders (e.g. Chironomidae and Oligochaeta), or even filter feeders (e.g. net-spinning caddisflies such as Hydropsychidae), all of which have become abundant at the site immediately downstream of the dam or further downstream.

The increased algal standing stocks below the Dickson Dam could contribute to the increase in numbers of most taxa ordinarily typical of the mid-reaches of the Red Deer River, in particular *Ephemerella* (*Ephemerella*), *Heptagenia*, *Tricorythodes*, Chloroperlidae, Perlodidae, most Chironomidae, Naididae, and Tubificidae.

Temperature changes in impounded rivers can be of particular importance to aquatic invertebrates of cold temperature regions, especially when most reservoir release is from the hypolimnion, as in the case of the Dickson Dam (Armitage 1984, Ward and Stanford 1987). Although all insects with aerial stages in their life cycles can be affected by changes in temperature regime (Armitage 1984), stoneflies are probably the most vulnerable (Saltveit et al. 1987). Most North American authors cited in Saltveit et al. (1987) conclude that temperature alteration is the main cause of stonefly scarcity below dams. Considering that the population density of stoneflies below the Dickson Dam is reduced more than that of any other group, it is likely that temperature changes in the impounded Red Deer River have disrupted stonefly distribution.

5.0 SUMMARY

Impoundments can have both positive and negative effects on water quality. They can improve water quality by facilitating the processing of certain materials, reducing the number of bacteria, and allowing suspended solids (and the nutrients, metal ions, and trace elements adsorbed to particulate matter) to settle out (Purcell 1939). Furthermore, flow augmentation results in higher minimum flows, thereby increasing the assimilative capacity

of the river downstream. On the other hand, impoundments can adversely affect water quality. Plant nutrients and other inorganic solutes (including toxic substances such as mercury) may be leached from the flooded soils and decaying vegetation; these adverse effects are usually temporary and diminish as the reservoir matures (Baxter and Glaude 1980). There are, however, also persistent changes associated with impoundments. Decreases in turbidity (as a result of suspended solids settling out) and more stable temperature and flow regimes can lead to excessive growth of algae and macrophytes downstream of dams.

In the Red Deer River, changes in water quality caused by the Dickson Dam are primarily restricted to the reach from the dam to the city of Red Deer (Table 9). As with most impoundments, the Dickson Dam has had both positive and negative effects on river water quality, and changes will probably continue to take place for some time. The most important positive change has been an increase in levels of dissolved oxygen. Minimum dissolved oxygen concentrations during winter have increased along the entire length of the river, although concentrations below 5 mg/L are still occasionally recorded. The negative effects associated with the dam are predominantly related to the proliferation of algal populations immediately downstream. With the possible exception of dissolved organic carbon, there is little evidence of leaching of material from soils or decaying vegetation within Gleniffer Lake. A reassessment of downstream water quality in the future may reveal significant differences when compared to pre-impoundment conditions, not presently discernible because of the slow changes that are occurring.

Since completion of the Dickson Dam, a substantial change has occurred in the structure of the benthic invertebrate community. In the spring of 1983, prior to completion of the dam, longitudinal patterns of benthic invertebrate distribution in the Red Deer River reflected the passage of the river through areas with a different geology or through different ecoregions. The enrichment effect of the City of Red Deer's municipal effluent was also reflected in local changes in zoobenthic patterns.

Following completion of the dam, invertebrate distribution patterns changed dramatically downstream of the Dickson Dam, particularly at the site 4 km below the dam. The increase in total numbers, the tendency towards a lower taxonomic diversity, and the shift in taxonomic composition below the Dickson Dam are all zoobenthic responses to flow regulation that have been observed in many other impounded rivers in the world (Armitage 1984, Ward and Stanford 1987).

Table 9. Summary of water quality changes up to 1988 in the Red Deer River downstream of the Dickson Dam.

VARIABLE	POST-IMPOUNDMENT EFFECT					
an .	reduced seasonal and diurnal variability immediately below dam					
Temperature	little effect downstream of Red Deer					
D: 1 1	ncreased median levels as far downstream as Drumheller					
Dissolved oxygen	increased minimum concentrations in winter along entire length of river					
Q	some reduction immediately below dam					
Suspended solids	little effect downstream of Red Deer					
	reduced peak values in summer associated with high concentrations of suspended solids					
Nutrients	little effect on median levels of phosphorus and nitrogen					
	silica concentrations reduced at Red Deer					
TDS, major ions, and associated variables	reduced median levels and seasonal variability along entire length of river					
Metals and trace elements	reduced peak values associated with high concentrations of suspended solids as far downstream as Red Deer					
	some increases in iron and manganese					
Coliform bacteria	reduced levels only at site immediately below dam					
Algae	increased planktonic and epilithic algal growth below dam					
Benthic invertebrates	increase in invertebrate numbers, decrease in taxonomic diversity and change in taxonomic composition					
A Constitution of the Argan projects and a	effects of impoundment became indistinguishable from those of municipal discharges downstream of Red Deer					

Flow regulation alone can seriously alter the distribution pattern of certain aquatic invertebrates. Impoundment, however, usually results in changes in physical and chemical characteristics of the river below the reservoir. It is often difficult to separate cause and effect when trying to pinpoint factors that trigger changes in zoobenthic community composition. In general, changes in the zoobenthos of the Red Deer River can be attributed to alterations in habitat, food base, and temperature regime.

In addition, it is probable that chemical and physical changes in the river water as a result of flow regulation have also contributed to changes in the zoobenthos of the Red Deer River.

All data concerning the mercury content of fish in Gleniffer Lake and the Red Deer River are published elsewhere (Alberta Environmental Centre 1984 and 1989).

6.0 LITERATURE CITED

- Alberta Environment. 1975. Red Deer River flow regulation planning studies. Summary report. Planning Division. 8 p.
- Alberta Environment. 1977. Alberta Surface Water Quality Objectives. Standards & Approvals Division, Edmonton.
- Alberta Environment. n.d. Development and Operations Division.
- Alberta Environmental Centre. 1984. Methyl mercury in fish from six rivers from Alberta rivers. Alberta Environmental Centre, Vegreville, Alberta. AEC V84-R.
- Alberta Environmental Centre. 1989. A five year study of mercury in fish from a newlyformed reservoir (Gleniffer Lake, Alberta). Alberta Environmental Centre, Vegreville, Alberta. AEC V89-R4. 24 p.
- Armitage P.D. 1984. Environmental changes induced by stream regulation and their effect on lotic macroinvertebrate communities. In: Regulated Rivers. (Eds. A. Lillehammer and S.J. Saltveit). Oslo Univ. Press, Oslo. p. 139-165.
- Baumann R.W., A.R. Gaufin, and R.F. Surdick. 1977. The stoneflies (Plecoptera) of the Rocky Mountains. Mem. Amer. Ent. Soc. 31. 203 p.
- Baxter R.M. and P. Glaude. 1980. Environmental effects of dams and impoundments in Canada: Experience and prospects. Can. Bull. Fish. Aquat. Sci. 205:1-34.
- Berryman D., B. Bobee, D. Cluis, and J. Haemmerli. 1988. Nonparametric tests for trend detection in water quality time series. Water Res. Bull. 24:545-556.
- Cross P. 1988. An overview of water quality in the Red Deer River Basin (1983-84).

 Environmental Quality Monitoring Branch, Environmental Assessment Division,
 Alberta Environment. 85 p.
- Cummins K.W. and M.J. Klug. 1979. Feeding ecology of stream invertebrates. A. Rev. Ecol. Syst. 10:147-172.
- Edmunds G.F., Jr., S.L. Jensen, and L. Berner. 1976. The mayflies of North and Central America. University of Minnesota Press, Minneapolis. 330 p.
- Environment Canada. 1982. Canadian climate normals, 1951-1980: Prairie Provinces. Atmospheric Environment Services. 429 p.
- Environment Canada. 1989. Historical streamflow summary, Alberta. Water Survey of Canada, Ottawa. 595 p.
- Green R. 1972. Geological map of Alberta. Research Council of Alberta. Map No. 35. Edmonton.

- Hamilton H.R. 1990. Personal communication. Environmental Management Associates. Calgary.
- Hirsch R.M. 1988. Statistical methods and sampling design for estimating step trends in surface-water quality. Water Res. Bull. 24:493-503.
- Hirsch R.M., J.R. Slack, and R.A. Smith. 1982. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 18:107-121.
- Hrabar G. 1974. Pollution survey summary Red Deer River, 1958-1973. Volume 1. Standards and Approvals Division, Alberta Environment, Edmonton. 46 p.
- Kellerhals R., C.R. Neill, and D.I. Bray. 1972. Hydraulic and geomorphic characteristics of rivers in Alberta. Alberta Cooperative Research Program in Highway and River Engineering, Edmonton. 54 p.
- Loftis J.C., R.D. Phillips, R.C. Ward, and C.H. Taylor. 1989. WQSTAT II: A water quality statistics package. Ground Water 27:866-873.
- Mason W.T. and P.P. Yevich. 1967. The use of phloxine B and Rose Bengal stains to facilitate sorting of benthic samples. Trans. Amer. Microsc. Soc. 86:221-223.
- Merritt R.W. and K.W. Cummins. 1984. An introduction to the aquatic insects in North America. 2nd ed. Kendall/Hunt Publishing Co., Dubuque, Iowa. 722 p.
- Mitchell P. and E. Prepas. 1990. Atlas of Alberta Lakes. Univ. of Alberta Press, Edmonton. 675 p.
- Montgomery R.H. and K.H. Reckhow. 1984. Techniques for detecting trends in lake water quality. Water Res. Bull. 20:43-52.
- Nilson A. 1990. Personal communication. Alberta Public Works.
- Neill R.M. 1938. The food and feeding of brown trout (Salmo trutta L.) in relation to the organic environment. Trans. R. Soc. Edinb. 59:481-520.
- Nguyen T. 1980. Design of the operational strategy for the Dickson Reservoir. Technical Services Division, Alberta Environment.
- Pennak R.W. 1978. Freshwater invertebrates of the United States. 2nd ed. John Wiley and Sons, New York. 803 p.
- Purcell L.T. 1939. The aging of reservoir waters. J. Am. Water Works Assoc. 31:1775-1806.
- Saltveit S.J., J.E. Brittain, and A. Lillehammer. 1987. Stoneflies and river regulation A review. In: Regulated Streams. Advances in Ecology. (Eds. J.F. Craig and J.B. Kemper). Plenum Press, New York. p. 117-131.

- Shaw R.D., L.R. Noton, A.M. Anderson, and G.W. Guenther. 1990. Water quality of the Peace River in Alberta. Environmental Quality Monitoring Branch, Environmental Assessment Division, Alberta Environment. 248 p.
- STSC Inc. 1987. STATGRAPHICS Statistical Graphics System. Statistical Graphics Corporation.
- Trimbee A.M. and A.J. Sosiak. 1988. Effect of the reservoir operation on downstream water temperatures and dissolved oxygen levels in the Red Deer River. Presentation to Applied Aquatic Studies Workshop, Edmonton.
- Ward J.V. and J.A. Stanford. 1987. The ecology of regulated streams: Past accomplishments and directions for future research. In: Regulated Streams. Advances in Ecology. (Eds. J.F. Craig and J.B. Kemper). Plenum Press, New York. p. 391-411.
- Wiggins G.B. 1977. Larvae of the North American caddisfly genera (Trichoptera). University of Toronto Press, Toronto. 340 p.
- Wrona F.J., M. Culp, and R.W. Davies. 1982. Macroinvertebrate subsampling: A simplified apparatus and approach. Can. J. Fish. Aquat. Sci. 39:1051-1054.

7.0 APPENDICES

Appendix I. NAQUADAT codes, locations and distances for synoptic water quality sampling sites on the Red Deer River.

NA CHARAM CORE	NAME AND LOGATION	DISTANCE (km) FROM			
NAQUADAT CODE	NAME AND LOCATION	RIVER MOUTH	DAM		
00AL05CB0600	West of Bowden, upstream of dam	634	-		
00AL05CC1000	4 km downstream of dam	577	4		
00AL05CC1700	Hwy. 54 Bridge, near Innisfail	561	20		
00AL05CC1800	Ft. Normandeau, u/s Red Deer	533	48		
00AL05CD1000	Joffre Bridge, d/s Red Deer	488	93		

Variable (Container	Preservation	Analytical Code	Analytical Method or Instrument
Field Analysis				
Temperature			02061F	Field meter
pН			10301F	Field meter
Conductance			02041F	Field meter
Dissolved Oxygen			08102F	Field meter
Lab Analysis				
Conductance	P	Cool to 4°C	02041L	Meter
Turbidity	P	Cool to 4°C	02074L	Nephelometric method with turbidimeter
Suspended Solids	P	Cool to 4°C	10401L	Gravimetric method
pH	P	Cool to 4°C	10301L	Meter
Alkalinity, total	P	Cool to 4°C	10101L	Potentiometric titration
Total dissolved solids			00205	Calculated
Hardness, total	P	Cool to 4°C	10605L	Titration with EDTA
Ca	P	Cool to 4°C	20103L	Automated atomic absorption
Mg	P	Cool to 4°C	12102L	Atomic absorption, direct aspiration
Na	P	Cool to 4°C	11103L	Flame photometry
K	P	Cool to 4°C	19103L	Flame photometry, internal standard
HCO ₃			06202L	Calculated
co ₃			06302L	Calculated
Cl	P	Cool to 4°C	17203L	Colourimetry on autoanalyzer
SO,	P	Cool to 4°C	16306L	Colourimetry, BaCl ₂ and methylthymol blue
F, dissolved	P	Cool to 4°C	09107L	Automated potentiometric method
Biochemical oxygen dema	nd G	Cool to 4°C	08201L	5 day, 20°C
Al, extractable	P	1:1 HNO ₂	13306L	Atomic absorption, solvent extraction
As, total	P	1:1 HNO ₂	33005L	Goulden and Brooksbank's method
Be, total	P	1:1 HNO ₂	04103L	ICAP
Cd, total	P	1:1 HNO ₂	48009L	ICAP
Co, total	P	1:1 HNO ₂	27009L	ICAP
Cr, total	P	1:1 HNO ₂	24004L	Atomic absorption, graphite furnace
Cu, total	P	1:1 HNO ₂	29009L	ICAP
Fe, extractable	P	Cool to 48C	26304L	Atomic absorption, direct aspiration
Pb, total	P	1:1 HNO ₂	82302L	Atomic absorption, solvent extraction
Mn, total	P	1:1 HNO ₃	25001L	ICAP
Hg, total	P	$HNO_3-K_2^3Cr_2O_7$	80015L	Flameless atomic absorption
Mo, total	P	1:1 HNO ₃	42009L	ICAP
Ni, total	P	1:1 HNO ₃	28009L	ICAP
Se, total	P	1:1 HNO ₂	34003L	ICAP
V, total	P	1:1 HNO ₂	23001L	Atomic absorption, direct aspiration
Zn, total	P	1:1 HNO ₂	30009L	ICAP
NH ₃ -N	P	2ml 5% H ₂ SO ₄	07505L	Colourimetric analysis
NH ³ -N	P	2ml 5% H ₂ SO ₄	07561L	Colourimetric on autoanalyzer
NH ₃ -N NO ₂ -N	P	Cool to 4°C	07205L	Colourimetry on autoanalyzer
$(NO_2^- + NO_3^-) - N$	P	Cool to 4°C	07203L 07111L	Colourimetry
Total Kjeldahl Nitrogen	P	2ml 5% H ₂ SO ₄	07021L	
Particulate Nitrogen	P	Cool to 4°C	07021L 07906L	Colourimetry on autoanalyzer Thermal conductivity method
Total Nitrogen	P	2001 to 4 C		Thermal conductivity method Calculated
			07002L	Calculated

Variable Con	tainer	Preservation	Analytical Code	Analytical Method or Instrument	
Total Dissolved Phosphorus Particulate Phosphorus		2ml 5% H ₂ SO ₄	15105L 15901L	Colourimetry on autoanalyzer Calculated	
Total Phosphorus	P	2ml 5% H ₂ SO ₄	15421L	Colourimetry on autoanalyzer	
Silica, reactive Dissolved Organic Carbon	P P	Cool to 4°C Cool to 4°C	14105L 06107L	Heteropoly blue colourimetry	
Total Organic Carbon	P P	Cool to 4°C	06107L 06001L	Colourimetry Colourimetry	
Phenois	Ğ	1:1 H ₂ SO,	06536L	Automated 4-aminoantipyrine colourimetry	
Tannin and Lignin	G	Cool to 4°C	06551L	Filtered if turbid: acid colourimetry	
Oil and Grease	G	Cool to 4°C	06521L	Petroleum ether extraction	
Biological					
Total coliforms	G	Cool to 4°C	36001L	Tube dilution	
Fecal coliforms	G	Cool to 4°C	36900L	Agar Plate Count	
Standard Plate Count	G	Cool to 4°C	36011L	Tube dilution	
Chlorophyll-a, planktonic	P	Cool to 4°C	06715L	Fluorometry of acetone extractant	
Chlorophyll-a, epilithic	P	Cool to 4°C	06722L	Fluorometry of acetone extractant	

P - polyethylene; G- Glass

Appendix III. NAQUADAT summary reports from the long-term monitoring sites on the Red Deer River, January 1978 to April 1983.

STATION 00AL05CC0004 LAT. 52D 16M 3S LONG. 113D 51M 48S PR 4 UTM 12 304600E 5794400N FOR JAN 16, 1978 TO APR 26, 1983 RED DEER RIVER AT HWY 2 ABOVE RED DEER, ALBERTA

		00201L	00205L	02011L	02021L	02041F	02041L	02061F	02073F
		TOTAL	TOTAL	COLOUR	COLOUR	SPECIFIC	SPECIFIC	TEMPERATURE	TURBIDITY
		DISSOLVED	DISSOLVED	APPARENT	TRUE	CONDUCT.	CONDUCT.	OF WATER	1011010111
	0111014	SOLIDS	SOLIDS						
	SUBM	(CALCD.)							
SAMPLES(FLAGS)	ID	MG/L	MG/L	REL. UNITS	REL. UNITS	US/CM	US/CM	DEG.C	JTU
LOW	04/9	60(0) 154.	12(0)	39(7)	25(1)	57(0)	63(0)	63(0)	49(1)
HIGH		330.	168.	L5.	L5.0	244.	280.	.0	.1
AVERAGE		231.	330.	120.	60.	660.	570.	21.5	G200.
STD.DEV.		43.	243.	17.*	17.4×	422.4	427.9	6.9	14.2×
PERCNT:10TH		177.	48.	21.*	14.0*	93.6	81.7	6.8	33.8×
25TH		196.	185.	L5.	5.0	319.	327.	.0	1.1
MEDIAN 50TH		224.	208.	5.	10.	363.0	356.	.5	2.0
75TH		<u>224.</u> 275.	<u>240.</u>	10.	<u>10.</u>	<u>410.</u>	<u>429.</u>	<u>5.0</u>	4.4
90TH			283.	20.	20.	477.	486.	13.0	10.0
SECONDARY CODE		286.	287.	35.	40.	570.	544.	16.5	25.
SECONDARY CODE						418		618	738
		02071L	06001L	06051L	06101L	06151L	06901L	06904L	0/0074
		TURBIDITY	CARBON	CARBON	CARBON	CARBON	CARBON		06201L
			TOTAL	TOTAL	DISSOLVED	DISSOLVED	ORGANIC	CARBON	BICARBONT.
			ORGANIC	INORGANIC	ORGANIC	INORGANIC	PARTICUL.	PARTICULATE Organic	(CALCD.)
	SUBM		С	C	C	C	C C	C	
	ID	JTU	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	HC03
SAMPLES(FLAGS)	0479	64(0)	13(2)	4(0)	63(2)	27(0)	58(1)		MG/L
LOW		.3	LO.	30.	LO.	29.	50(1) L.0	7(6)	60(2)
HIGH		180.	22.	53.	20.	58.	9.0	.00	119.5
AVERAGE		12.1	4.8×	46.5	3.77*	40.48		L2.00	313.3
STD.DEV.		28.1	5.6×	11.0	3.77× 3.24×	8.35	,9*	1.71*	216.0*
PERCNT:10TH		1.1	LO.	22.0	1.	30.	1.7*	.76×	46.3×
25TH		1.6	2.0	40.5	2.	34.0	.1		162.1
MEDIAN 50TH		3.0	3.0	51.5	<u>3.</u>	38.	.2	L2.00	174.3
75TH		10.0	5.0	52.5	3. 4.1	49.	.3	L2.00	209.7
90TH		22.	8.0	26.3	7.0	49. 53.	.8	L2.00	260.3
SECONDARY CODE		73L	05L		04L 04F	53. 52L	1.8		273.1
			V 52		045 041	DZL	02L		
		06301L	06401L	06535L	06717L	07110L	07506P	07651L	07651F
		CARBONATE	FREE CO2	PHENOLIC	CHLORO-	NITROGEN	NITROGEN	NITROGEN	NITROGEN
		(CALCD.)	(CALCD.)	MATERIAL	PHYLL A	DISSOLVED	TOTAL	DISSOLVED	DISSOLVED
				PHENOL		NO3 & NO2	AMMONIA		
:	SUBM	C03	C02			N	N	N	N
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
-SAMPLES(FLAGS)	0479	60(2)	60(0)	13(6)	37(9)	64(19)	63(61)	61(0)	37(0)
LOW		. 0	.7	L.001	L.001	L.01	L.1	. 06	.07
HIGH		24.0	13.4	.004	.020	.95	.2	1.9	.80
AVERAGE		.7×	4.1	.002×	.003*	.094*	.102×	.243	.241
STD.DEV.		3.2*	3.8	.001*	.003×	.139×	.013*	.249	.145
PERCNT:10TH		. 0	1.2	L.001	L.001	L.01	L.1	.09	.11
25TH		.0	1.5	L.001	.001	L.010	L.1	.13	.14
MEDIAN 50TH		<u>. 0</u>	<u>2.1</u>	<u>.001</u>	.001	. 035	L.10	.21	.22
75TH		. 0	6.9	.002	.003	.160	L.1	.25	.270
90TH		1.7	10.6	.003	.006	.20	L.1	.37	.39
SECONDARY CODE				35F	17P	10F		•-•	••,
* THESE STATIST	ICS I	ICLUDE VALUES	FLAGGED WITH I	L,G OR Q					

STATION 00AL05CC0004 LAT. 52D 16M 3S LONG. 113D 51M 48S PR 4 UTM 12 304600E 5794400N FOR JAN 16, 1978 TO APR 26, 1983 RED DEER RIVER AT HWY 2 ABOVE RED DEER, ALBERTA

		07901L Nitrogen Particul.	08101F Oxygen Dissolved	09105L FLUORIDE DISSOLVED	10101L ALKALINITY TOTAL	10151L ALKALINITY PHENOL	10301F PH	10301L PH	10401L RESIDUE Nonfiltr.
	SUBM	N	DO	÷		PHTHALEIN			
	ID	MG/L	O2 MG/L	F MG/L	CACO3	CACO3			
SAMPLES(FLAGS)	0479	61(13)	60(0)	60(0)	MG/L	MG/L	PH UNITS	PH UNITS	MG/L
LOW	• 11 /	L.01	7.0	.1	61(0) 109.	60(2) 0.	63(0)	63(0)	62(6)
HIGH		.590	13.4	.2	257.0	U. 20.	7.4	7.5	Ll.
AVERAGE		.085*	10.00	.1	178.3	.6*	8.6	8.5	242.
STD.DEV.		.111*	1.41	.0	36.3	2.7*			19.*
PERCNT:10TH		L.01	8.60	.1	135.0	.0	7.7	7.6	45.*
25TH		.02	9.05	.ī	145.0	.0	7.9	7.6 7.7	1.
MEDIAN 50TH		.050	9.75	.1	170.0	.0	8.2	8.1	2.
75TH		.11	10.90	.2	213.0	.0	8.4	8.3	4.
90TH		.16	12.20	.2	224.	1.4×	8.5	8.4	12. 31.
SECONDARY CODE		02L	01P		06L	***	018	0.4	21.
					***		013		
		10602L	11101L	12102L	14101L	15103L	15255L	15406L	15901L
		HARDNESS	SODIUM	MAGNESIUM	SILICA	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS
		TOTAL	DISSOLVED	DISSOLVED	REACTIVE	DISSOLVED	DISSOLVED	TOTAL	PARTICULATE
		(CALCD.)					ORTHO PO4	IOIAL	(CALCD.)
	SUBM	CACO3	NA	MG	SIO2	P	P	Р	P
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)	0479	63(0)	64(0)	64(0)	63(0)	59(22)	18(16)	62(5)	58(22)
LOW		134.2	3.6	10.7	3.2	L.003	L.003	L.003	Q.000
HIGH		302.6	13.	38.2	8.8	.10	.17	.36	.205
AVERAGE		209.4	7.3	18.3	5.8	.009*	.012×	.038*	.025×
STD.DEV.		38.1	2.0	4.5	1.4	.016×	.039×	.063*	.042×
PERCNT:10TH		163.4	4.7	13.2	4.1	L.003	L.003	.003	Q.000
25TH		182.8	5.7	15.1	4.8	L.003	L.003	.007	Q.004
MEDIAN 50TH		<u>206.7</u>	<u>7.3</u>	17.5	5.7	.004	L.003	.015	.011
75TH		242.1	8.7	21.7	7.0	.007	L.003	.028	.019
90TH		257.4	9.5	22.4	7.4	.019	.004	.091	.083
SECONDARY CODE			03L		02L 05L	03F	56L	,1	.005
		16301L	1700(1	101011					
		SULPHATE	17206L CHLORIDE	19101L	20103L	03301L	04301L	05105L	13303L
		DISSOLVED	DISSOLVED	POTASSIUM	CALCIUM	LITHIUM	BERYLLIUM	BORON	ALUMINUM
		DISSULVED	DISSOURCE	DISSOLVED	DISSOLVED	EXTRBLE.	EXTRBLE.	DISSOLVED	EXTRBLE.
	SUBM	S04	CL	К	CA	LI	BE		
	ID	MG/L	MG/L	MG/L	MG/L	MG/L		В	AL.
-SAMPLES(FLAGS)		64(0)	64(0)	63(0)	63(0)	9(4)	MG/L	MG/L	MG/L
LOW		16.	.5	.7	35.1	L.005		46(1)	9(0)
HIGH		54.	4.5	9.9	80.3	.006		L.02	.020
AVERAGE		37.2	1.44	1.50	53.7	.005×		.140	1.4
STD.DEV.		10.0	.73	1.30	9.2	.005* .001*		.052*	.2150
PERCNT:10TH		24.	.8	.9	43.3	.001*		.023*	.4459
25TH		30.0	1.00	1.0	48.0	L.005		.03	
MEDIAN 50TH		37.0	1.30	1.0	50.8			.04	.028
- 75TH		46.0	$\frac{1.30}{1.70}$	1.4	50.8 60.1	.005 .006		<u>.050</u>	.087
90TH		51.	2.0	2.3	66.8	.000		.06	.10
SECONDARY CODE		06L		03L	00.0	01P		.070	orn
* THESE STATIST	ICS I		FLAGGED WITH			OTI		05F	05P
				-,: -					

REQUEST 0007 - 0009 PAGE 3

NAQUADAT SUMMARY REPORT JAN 08, 1991 SURFACE WATER DATA

		23020L VANADIUM Total Recoverable	23301L VANADIUM EXTRBLE.	24302L CHROMIUM EXTRBLE.	25101L Manganese Dissolved	25303L MANGANESE EXTRBLE.	26104L IRON DISSOLVED	26304L IRON Extrble.	27020L Cobalt Total
	SUBM	VA	V	CR .	MN	MN			RECOVERABLE
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	FE	FE	CO
SAMPLES(FLAGS)		12(9)	9(8)	9(9)	36(24)	9(2)	MG/L 37(20)	MG/L	MG/L
LOW		L.001	Ĺ.001	L.015	L.01	L.010	57(20) L.04	9(0)	12(9)
HIGH		.020	.004	L.015	.040	.32	.150	.05	L.002
AVERAGE		.003×	.001×		.012×	.053×	.150 .053×	3.0	.013
STD.DEV.		.005×	.001*		.012×	.101×	.025*	.531	.003×
PERCNT:10TH		L.001	••••		L.01	.101*	.025* L.04	. 948	.003×
25TH		L.001	L.001	L.015	L.010	.012	L.04	.07	L.002
MEDIAN 50TH		L.001	L.001	L.015	L.010	.017	L.040		L.002
75TH		.001×	L.001	L.015	.010	.029	.050	.12	L.002
90TH		.002	2.002	L. V13	.02	.027		.53	.002×
SECONDARY CODE	20	P 20F	02P	02P	04L	04P	.090	***	.004
			V.	V2.	076	046		04P	20P
		27301L	28020L	28301L	29020L	29305L	30020L	30305L	33104L
		COBALT	NICKEL	NICKEL	COPPER	COPPER	ZINC	ZINC	ARSENIC
		EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.	
			RECOVERABLE	271711222	RECOVERABLE	LAIRDLL.	RECOVERABLE	EXIKBLE.	DISSOLVED
	SUBM	CO	NI	NI	CU	CU	ZN	ZN	AS
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)	0479	9(8)	9(1)	9(6)	11(3)	9(3)	11(1)	9(2)	
LOW		L.002	L.002	L.002	L.001	L.001	L.001	L.001	46(40)
HIGH		.006	.009	.010	.010	.004	.010	.007	L.0005
AVERAGE		.002×	.004*	.003×	.002*	.004 .002*	.010 .004*		.0008
STD.DEV.		.001×	.002×	.003×	.002×	.002× .001×		.003×	.0005*
PERCNT:10TH			1002	.005	L.001	.uotx	.003*	.002*	.0001×
25TH		L.002	.002	L.002	L.001	L.001	.001		L.0005
MEDIAN SOTH		L.002	.003	L.002	.001		.001	.003	L.0005
75TH		L.002	.005	.003	.002	.002	.004	.003	L.0005
90TH		1.002	.005	.005		.003	.007	.004	L.0005
SECONDARY CODE		02P	20P	02P	.004 20P	0.00	.008		.0005
SECONDARY CODE		021	201	025	207	05P	20P	05P	04F
		34102L	38301L	42301L	47301L	48020L	48301L	56020L	56301L
		SELENIUM	STRONTIUM	MOLYBDENUM	SILVER	CADMIUM	CADMIUM	BARIUM	BARIUM
		DISSOLVED	EXTRBLE.	EXTRBLE.	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.
						RECOVERABLE	LATROLL.	RECOVERABLE	EXIRDLE.
	SUBM	SE	SR	МО	AG	CD	CD	BA	ВА
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
-SAMPLES(FLAGS)	0479	27(21)	8(0)	9(9)	19(18)	12(12)	9(9)	12(0)	9(1)
LOW		L.0005	.29	L.10	L.004	L.001	L.001	.060	
HIGH		.0006	.79	L.10	.01	L.001	L.001		L.05
AVERAGE		.0005×	.415		.004×	£.001	r.uur	.150	.18
STD.DEV.		.0000×	.162		.004×			.108	.104×
PERCNT:10TH		L.0005			L.004	1 007		.032	.044*
25TH		L.0005	.315	L.10		L.001		.070	
MEDIAN SOTH		L.0005	.315	L.10 L.10	L.004	L.001	L.001	.080	.07
- 75TH		L.0005	<u>.370</u> .435	<u>L.10</u> L.10	L.004	L.001	<u>L.001</u>	<u>.110</u>	<u>.09</u>
90TH		.0005	.435	L.10	L.004	L.001	L.001	.135	.13
SECONDARY CODE		.0005	01P	AT D	L.004	L.001		.15	
	TCC T11	CLUDE DALUES		01P	01P	20P	02P	20P	01P
* THESE STATIST	TC2 IN	CLODE VALUES	LEWORED MITH I	יפ טא ע					

REQUEST 0010 - 0012 PAGE 4

NAQUADAT SUMMARY REPORT JAN 08, 1991

SURFACE WATER DATA

STATION 00AL05CC0004 LAT. 52D 16M 3S LONG. 113D 51M 48S PR 4 UTM 12 304600E 5794400N FOR JAN 16, 1978 TO APR 26, 1983 RED DEER RIVER AT HWY 2 ABOVE RED DEER, ALBERTA

	80011L Mercury Total	80311L MERCURY EXTRBLE.	82020L LEAD Total Recoverable	82301L LEAD Extrble.	36001L COLIFORMS TOTAL	36011L COLIFORMS FECAL	36101L Strep. Fecal	36103L FECAL Strep.
SUBM ID SAMPLES(FLAGS) 0479 LOW HIGH AVERAGE STD.DEV. PERCNT:10TH 25TH MEDIAN 50TH 75TH 90TH SECONDARY CODE * THESE STATISTICS	HG UG/L 49(47) L.02 .05 .021* .004* L.02 L.02 L.02 L.020 11P UNCLUDE VALUES	HG UG/L 12(10) L.02 .13 .029* .032* L.02 L.020 L.020 .02 13P FLAGGED WITH L	PB MG/L 12(11)	PB MG/L 9(9) L.004 L.004 L.004 L.004	MPN NO/100ML 53(1) 1. 4400. 171.* 604.* 5. 10. 47. 130. 230. 02L 02F	MPN NO/100ML 62(12) L1. 306. 22.* 43.* L2. 2. 8. 21. 55.	40(8) 1. 540. 44.* 104.* L2. 2.* 8. 47. 73.	MF NO/DL 38(7) 1. 900. 91.* 190.* L2. 2. 15. 70. 420.

NAQUADAT SUMMARY REPORT JAN 08, 1991 SURFACE WATER DATA

		00201L	00205L	02011L	02021L	02041F	02041L	02061F	02073F
		TOTAL	TOTAL	COLOUR	COLOUR	SPECIFIC	SPECIFIC	TEMPERATURE	TURBIDITY
		DISSOLVED SOLIDS	DISSOLVED	APPARENT	TRUE	CONDUCT.	CONDUCT.	OF WATER	
	SUBM	(CALCD.)	SOLIDS						
	ID	MG/L	MG/L	REL. UNITS	DEL LUITTO	**** ****			
SAMPLES(FLAGS)		60(0)	12(0)	39(3)	REL. UNITS	US/CM	US/CM	DEG.C	JTU
LOW		155.	173.	59(5) L5.	25(0) 5.0	60(0)	64(0)	65(0)	55(0)
HIGH		440.	440.	500.	100.	265.	292.	.0	.3
AVERAGE		249.	259.	65.×	29.0	7125.	5523.	21.0	600.0
STD.DEV.		70.	81.	109.*	24.2	558.1	530.0	7.0	60.0
PERCNT:10TH		176.	180.	5.	10.	870.1	646.1	7.1	135.3
25TH		194.	201.	5.	10.	320.0	319.	. 0	.7
MEDIAN 50TH		235.	229.	30.	<u>20.</u>	366.5	349.5	.5	1.1
75TH		310.	$\frac{227.}{313.}$	<u>55.</u>	<u>20.</u> 30.	<u>424.5</u>	438.0	<u>3.5</u>	<u>5.7</u>
90TH		353.	351.	200.	70.0	535.0	547.5	13.0	42.
SECONDARY CODE		0.501	331.	200.	70.0	615.0	602.	18.5	230.0
020000000000000000000000000000000000000						418		61S	73 S
		02071L	06001L	06051L	06101L	06151L	0/0071	******	
		TURBIDITY	CARBON	CARBON	CARBON		06901L	06904L	06201L
			TOTAL	TOTAL	DISSOLVED	CARBON	CARBON	CARBON	BICARBONT.
			ORGANIC	INORGANIC	ORGANIC	DISSOLVED	ORGANIC	PARTICULATE	(CALCD.)
	SUBM		C	C	C	INORGANIC	PARTICUL.	ORGANIC	
	ID	UTL	MG/L	MG/L	MG/L	C	C	C	HC03
SAMPLES (FLAGS)		63(0)	12(0)	3(0)	63(0)	MG/L	MG/L	MG/L	MG/L
LOW		.4	2.	23.	1.0	27(0)	59(0)	6(6)	57(1)
HIGH		550.0	49.	60.		19.	.1	L2.00	121.9
AVERAGE		43.0	10.1	45.7	49.	65.	13.6	L2.00	420.6
STD.DEV.		82.9	12.9	19.9	6.07	40.15	1.9		223.9*
PERCNT:10TH		1.0	3.0	17.7	6.54	13.00	2.7		67.7*
25TH		1.6	3.5		2.	22.	.1		154.3
MEDIAN 50TH		8.2	6.0	r.	3.0	31.	.2	L2.00	168.7
75TH		<u> </u>	9.5	<u>54.</u>	4.8	42.	<u>.9</u>	<u>L2.00</u>	<u>201.1</u>
90TH		130.0	16.0		7.0	50.	2.8	L2.00	280.4
SECONDARY CODE		73L	05L		12.0	58.	6.3		323.0
		752	USL		04L 04F	52L	02L		
		06301L	06401L	06535L	06717L	07110L	0750/0	AT (T.)	
		CARBONATE	FREE CO2	PHENOLIC	CHLORO-	NITROGEN	07506P	07651L	07651F
		(CALCD.)	(CALCD.)	MATERIAL	PHYLL A	DISSOLVED	NITROGEN	NITROGEN	NITROGEN
		(0),2021)	(CALOD.)	PHENOL	THILL A	NO3 & NO2	TOTAL	DISSOLVED	DISSOLVED
	SUBM	C03	C02	1 1121102		NOS & NOZ N	AMMONIA N	4.1	
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	N	N
-SAMPLES(FLAGS)		57(1)	61(0)	14(4)	34(3)	63(18)	65(51)	MG/L	MG/L
LOW		.0	.4	L.001	L.001	L.01	L.1	60(0)	36(0)
HIGH		25.2	26.6	.007	.040	4.100	.8	.09	.14
AVERAGE		1.7×	5.2	.002×	.040 .007*	.340×		5.00	5.00
STD.DEV.		4.1×	6.8	.002×	.007×		.173*	.631	.665
PERCNT:10TH		.0	.8	L.001	.005*	.734* L.010	.169×	.793	.913
25TH		.0	1.1	L.001	.001		L.1	.145	.16
MEDIAN 50TH		.ŏ	1.7	.002	.004	L.010	L.1	.195	.195
- 75TH		1.8	4.6	.002 .002		.04	<u> </u>	<u>.330</u>	<u>.335</u>
90TH		5.5	16.2	.002	.010 .018	.360	L.1	.785	.785
SECONDARY CODE		٠. ت	10.5	.005		.850	.5	1.400	1.20
* THESE STATIS		ACTUDE VALUES	FLACCED WITH	L G OP O	17P	10F			
. IIITOL OINITO	. 200 11	ICCORE AVEGES	I TYGGED MILL	בים טוג פּן					

NAQUADAT SUMMARY REPORT JAN 08, 1991 SURFACE WATER DATA

	070011							
	07901L Nitrogen	08101F Oxygen	09105L Fluoride	10101L	10151L	10301F	10301L	10401L
	PARTICUL.	DISSOLVED	DISSOLVED	ALKALINITY TOTAL	ALKALINITY PHENOL	PH	PH	RESIDUE
		DO	DIOSOLVED	TOTAL	PHTHALEIN			NONFILTR.
SUI	BM N	02	F	CACO3	CACO3			
11		MG/L	MG/L	MG/L	MG/L	PH UNITS	PH UNITS	MG/L
SAMPLES(FLAGS) 047	79 61(8)	60(0)	61(3)	61(0)	57(1)	64(0)	64(0)	63(7)
LOW	L.01	.4	L.0	103.	0.	7.3	7.3	L1.
HIGH	4.400	13.3	.3	345.0	21.	8.9	8.7	3750.
AVERAGE	.326×	8.88	.1×	182.8	1.4×	•••		140.*
STD.DEV.	.626×	3.36	.0×	54.4	3.5×			482.*
PERCNT:10TH	L.01	2.60	.1	125.	0.	7.5	7.5	L1.
25TH	.03	7.85	.1	143.	.0	8.00	7.75	2.
MEDIAN 50TH	<u>.13</u>	<u>9.55</u>	.1	<u> 168.</u>	<u>. 0</u>	8.30	8.20	15.
75TH	.28	11.30	.2	226.0	1.5	8.45	8.40	116.
90TH	.88	12.60	.2	265.	4.6	8.6	8.6	308.
SECONDARY CODE	02L	01P		06L		01S		
	10602L	11101L	12102L	14101L	151071	350551	****	
	HARDNESS	SODIUM	MAGNESIUM	SILICA	15103L	15255L	15406L	15901L
	TOTAL	DISSOLVED	DISSOLVED	REACTIVE	PHOSPHORUS DISSOLVED	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS
	(CALCD.)	DISSOLVED	DISSULVED	REACTIVE	DISSULVED	DISSOLVED	TOTAL	PARTICULATE
SUE		NA	MG	SI02	P	ORTHO PO4	_	(CALCD.)
II		MG/L	MG/L	MG/L	MG/L	P	P	Р
SAMPLES(FLAGS) 047		64(0)	64(0)	61(0)	61(9)	MG/L	MG/L	MG/L
LOW	60.3	5.0	4.7	.2	L.003	18(6)	63(1)	60(9)
HIGH	357.8	1020.	30.2	11.0	.360	L.003	L.003	Q.000
AVERAGE	204.0	32.5	18.0	4.6	.049×	.25	2.200	2.144
STD.DEV.	60.8	125.7	5.2	3.1		.032*	.167*	.118×
PERCNT:10TH	138.3	8.8	12.2	.8	.079* L.003	.059*	.324*	.304×
25TH	162.2	11.0	14.0	1.5	.004	L.003	.010	.004
MEDIAN 50TH	184.4	15.5	16.8	5.0	.016	L.003	.027	.007
75TH	261.8	19.5	22.6	<u>5.0</u> 6.8	.059	<u>.006</u> .055	<u>.065</u>	<u>.028</u>
90TH	287.8	27.	25.3	8.4	.150	.055	.20	.126
SECONDARY CODE		03L	23.0	02L 05L	03F	.062 56L	.35	.253
	16301L	17206L	19101L	20103L	03301L	04301L	05105L	13303L
	SULPHATE	CHLORIDE	POTASSIUM	CALCIUM	LITHIUM	BERYLLIUM	BORON	ALUMINUM
	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	EXTRBLE.	EXTRBLE.	DISSOLVED	EXTRBLE.
SUB	M S04	CL .	К	CA	LI	BE	В	
ID		MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	AL
-SAMPLES(FLAGS) 047	9 64(0)	64(0)	63(0)	64(0)	9(0)	1107 L	46(2)	MG/L
LOW	3.2	.9	.9	16.4	.005		L.02	8(0) .019
HIGH	110.0	1690.	12.	93.5	.009		.270	2.3
AVERAGE	43.0	30.57	2.73	52.1	.007		.069×	.3688
STD.DEV.	16.6	210.89	2.53	16.5	.001		.047*	
PERCNT:10TH	26.	1.3	1.1	35.6			.04/*	.7872
25TH	32.5	1.75	1.4	40.3	.006		.04	.0260
MEDIAN 50TH	40.0	3.00	1.8	47.2	.007		.060	.0260
75TH	53.0	4.40	2.3	65.5	.008		.09	.0595 .2300
9 0TH	60.	6.5	6.0	74.8			.14	. 2300
SECONDARY CODE	06L		03L		01P		05F	05P
* THESE STATISTICS	INCLUDE VALUES	FLAGGED WITH	L,G OR Q		-		· · ·	<i>0.5</i> 1

NAQUADAT SUMMARY REPORT JAN 08, 1991

SURFACE WATER DATA

		23020L	23301L	24302L	25101L	25303L	26104L	26304L	27020L
		VANADIUM	VANADIUM	CHROMIUM	MANGANESE	MANGANESE	IRON	IRON	COBALT
		TOTAL	EXTRBLE.	EXTRBLE.	DISSOLVED	EXTRBLE.	DISSOLVED	EXTRBLE.	TOTAL
		RECOVERABLE		\$				EXTREE.	RECOVERABLE
	SUBM	VA	V	CR :	MN	MN	FE	FE	CO
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)	0479	12(8)	9(6)	8(8)	35(21)	9(1)	37(21)	9(1)	12(11)
LOW		L.001	L.001	L.015	L.01	L.010	L.04	L.04	L.002
HIGH		.004	.004	L.015	.46	.17	.320	2.7	.008
AVERAGE		.002×	.002*		.029×	.046*	.071×	.712×	.002×
STD.DEV.		.001×	.001*		.076×	.053×	.066×	1.084×	.002×
PERCNT:10TH		L.001			L.01		L.04	2.701	L.002
25TH		L.001	L.001	L.0150	L.01	.015	L.04	.06	L.002
MEDIAN 50TH		<u>L.001</u>	<u>L.001</u>	<u>L.0150</u>	L.010	<u>.030</u>	L.040	.09	L.002
75TH		.002	.001	L.0150	.02	.04	.06	.49	L.002
90TH		.004			.030		.16	• • • •	L.002
SECONDARY CODE		20P	02P	02P	04L	04P	04F	04P	20P
								V-1.	201
		27301L	28020L	28301L	29020L	29305L	30020L	30305L	33104L
		COBALT	NICKEL	NICKEL	COPPER	COPPER	ZINC	ZINC	
		EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.	ARSENIC
			RECOVERABLE		RECOVERABLE	LATRICE.	RECOVERABLE	EXIRDLE.	DISSOLVED
	SUBM	CO	NI	NI	CU	cu	ZN	711	• •
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	ZN	AS
SAMPLES(FLAGS)	0479	9(8)	10(5)	9(6)	11(4)	9(2)	10(2)	MG/L	MG/L
LOW		L.002	L.002	L.002	L.001	L.001	L.001	9(3)	46(26)
HIGH		.004	.012	.006	.004	.004		L.001	L.0005
AVERAGE		.002*	.003×	.003×	.002*	.004 .002*	.012	.010	.0014
STD.DEV.		.001×	.003×	.002×	.002×		.005*	.003×	.0006×
PERCNT:10TH			L.002	,002	L.001×	.001×	.004×	.004×	.0002×
25TH		L.002	L.002	L.002	L.001	0.03	L.001		L.0005
MEDIAN 50TH		L.002	.002×	L.002		.001	.002	L.001	L.0005
75TH		L.002	.002	<u>c.002</u> .006	<u>.001</u>	.002	.004	.001	L.0005
90TH		L.002		.006	.002	.003	.007	.004	.0007
SECONDARY CODE		02P	.009 20P	000	.003		.011		.0009
SECONDARY CODE		UZF	201	02P	20P	05P	20P	05P	04F
		34102L	38301L	42301L	47301L	48020L	48301L	56020L	E(7011
		SELENIUM	STRONTIUM	MOLYBDENUM	SILVER	CADMIUM	CADMIUM	BARIUM	56301L
		DISSOLVED	EXTRBLE.	EXTRBLE.	EXTRBLE.	TOTAL .	EXTRBLE.	TOTAL	BARIUM
						RECOVERABLE	EXINDEE.	RECOVERABLE	EXTRBLE.
	SUBM	SE	SR	МО	AG	CD	СВ	BA	D.4
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	BA
-SAMPLES(FLAGS)	0479	25(24)	8(0)	8(8)	19(19)	12(11)	9(8)		MG/L
LOW		L.0005	.30	L.10	L.004	L.001	L.001	12(1)	9(0)
HIGH		.0005	.80	L.10	L.004	.001	.002	L.050	.05
AVERAGE		.0005×	.433	2.10	L.007	.001 .001*		.210	.17
STD.DEV.		.0000*	.168				.001*	.108*	.106
PERCNT:10TH		L.0005	.100		1 006	.000*	.000×	.042*	.040
25TH		L.0005	.325	L.100	L.004	L.001		.070	
MEDIAN 50TH		L.0005	.365		L.004	L.001	L.001	.070	.09
- 75TH		L.0005	.365 .490	L.100	L.004	L.001	<u>L.001</u>	<u>.110</u>	<u>.10</u>
90TH		L.0005	.470	L.100	L.004	L.001	L.001	.120	.14
SECONDARY CODE		L.0005	010	03.0	L.004	L.001		.140	
* THESE STATIST	TCC T	NOT TIBE WALLIED	01P	01P	01P	20P	02P	20P	01P
~ IIIE3E 314(12)	TCO T	MCLODE VALUES	LEWRREN MITH F	.,ש טא ע					

	80011L MERCURY TOTAL	80311L MERCURY EXTRBLE.	82020L LEAD Total Recoverable	82301L LEAD EXTRBLE.	36001L COLIFORMS TOTAL	36011L COLIFORMS FECAL	36101L Strep. Fecal	36103L FECAL Strep.
SUBM ID SAMPLES(FLAGS) 0479 LOW HIGH AVERAGE STD.DEV. PERCNT:10TH 25TH MEDIAN 50TH 75TH 90TH SECONDARY CODE * THESE STATISTICS I	HG UG/L 49(38) L.02 .14 .028* .023* L.02 L.02 L.020 L.020 .050 11P	HG UG/L 12(11) L.02 .04 .022* .006* L.02 L.020 L.020 L.020 L.021 13P FLAGGED WITH L	PB MG/L 12(11) L.004 .005 .004* .000* L.004 L.004 L.004 L.004	PB MG/L 9(9) L.004 L.004 L.004 L.004 C.004	MPN NO/100ML 58(3) 1. 2400. 227.* 419.* 2. 14. 46. 200. 810.	MPN NO/100ML 61(13) 1. 660. 71.* 146.* L2. 2. 13. 52. 250.	42(3) L2. 5500. 470.* 1305.* 2. 4. 20. 107. 1000.	MF NO/DL 38(6) L1. 27000. 1360.* 4535.* L2. 6. 28. 300. 4700.

REQUEST 0001 - 0003 PAGE 9

STATION 00AL05CK0001 LAT. 50D 54M 9S LONG. 110D 17M 51S PR 4 UTM 12 549400E 5639000N FOR JAN 10, 1978 TO APR 19, 1983 RED DEER RIVER AT BINDLOSS, ALBERTA

		00201L	00205L	02011L	02021L	02041F	02041L	02061F	02073F
		TOTAL	TOTAL	COLOUR	COLOUR	SPECIFIC	SPECIFIC	TEMPERATURE	TURBIDITY
		DISSOLVED	DISSOLVED	APPARENT	TRUE	CONDUCT.	CONDUCT.	OF WATER	IOKPIDIII
		SOLIDS	SOLIDS					OI WAILK	
	SUBM	(CALCD.)							
	ID	MG/L	MG/L	REL. UNITS	REL. UNITS	US/CM	US/CM	DEG.C	JTU
SAMPLES(FLAGS)	0462	64(1)	29(0)	39(0)	25(0)	62(0)	64(0)	64(0)	42(3)
LOM		168.	182.	5.	5.	320.	323.	.0	.1
HIGH		589.	589.	500.	100.0	959.	916.	25.0	G1000.
AVERAGE		302.*	299.	63.	28.6	502.6	522.1	7.7	197.4×
STD.DEV.		95.×	102.	101.	23.0	152.9	154.1	8.4	337.8×
PERCNT:10TH		203.	200.	5.	10.	345.0	371.	.0	1.4
25TH		227.	227.	10.	10.	393.	392.5	.0	4.6
MEDIAN 50TH		<u>272.</u>	<u>271.</u>	30.	20.	445.0	482.0	3.5	27.5
75TH		379.	356.	80.	40.	592.0	634.0	15.5	94.0
90TH		434.	465.	200.	60.	730.	757.	20.5	900.0
SECONDARY CODE					***	418	127.	618	700.0
						413		912	
		02071L	06001L	06051L	06101L	06151L	06901L	0/00/1	
		TURBIDITY	CARBON	CARBON	CARBON	CARBON	CARBON	06904L	06201L
			TOTAL	TOTAL	DISSOLVED			CARBON	BICARBONT.
			ORGANIC	INORGANIC	ORGANIC	DISSOLVED	ORGANIC	PARTICULATE	(CALCD.)
	SUBM		C	C	C	INORGANIC	PARTICUL.	ORGANIC	
	ID	JTU	MG/L	MG/L	MG/L	C	C	С	HC03
SAMPLES(FLAGS)		61(0)	12(1)	3(0)		MG/L	MG/L	MG/L	MG/L
LOW	0402	.5	LO.		61(0)	24(0)	62(0)	7(5)	62(0)
HIGH		1200.	12.0	32.	2.0	16.	.1	.00	143.8
AVERAGE		94.2		76.	16.	81.	33.6	5.00	508.3
STD.DEV.			6.7×	57.7	5.42	45.96	4.1	2.14*	243.2
		203.0	3.5*	22.9	2.59	19.57	6.4	1.46*	89.0
PERCNT:10TH		1.8	4.		3.	28.	.2		154.8
25TH		3.1	4.0		4.	29.50	.3	L2.00	174.3
MEDIAN 50TH		<u>21.</u>	<u>6.0</u>	<u>65.</u>	<u>4.9</u>	<u>37.00</u>	1.4	L2.00	206.6
75TH		95.0	10.0		6.0	63.00	5.4	L2.00	303.5
90TH		250.0	12.		9.	75.	8.4		384.0
SECONDARY CODE		73L	05L		04L 04F	52L	02L		001.10
		06301L	06401L	06535L	06717L	07110L	07506P	07651L	07651F
		CARBONATE	FREE CO2	PHENOLIC	CHLORO-	NITROGEN	NITROGEN	NITROGEN	NITROGEN
		(CALCD.)	(CALCD.)	MATERIAL	PHYLL A	DISSOLVED	TOTAL	DISSOLVED	DISSOLVED
				PHENOL		NO3 & NO2	AMMONIA		220002122
	SUBM	C03	C02			N	N	N	N
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
-SAMPLES(FLAGS)	0462	62(0)	63(0)	18(4)	36(2)	64(18)	25(22)	64(0)	35(0)
LOW		. 0	1.2	L.001	L.001	L.01	L.10	.13	.15
HIGH		5.2	23.2	.008	.160	2.200	.2	3.00	
AVERAGE		.1	4.1	.002×	.019×	.271×	.104×	.576	2.90
STD.DEV.		.7	4.2	.002×	.029*	.393×	.020×		.530
PERCNT:10TH		. 0	1.3	L.001	.001	L.010	.020* L.1	.497	.509
25TH		.0	1.6	.001	.006	L.010	L.1	.17	.17
MEDIAN 50TH		<u>. 0</u>	2.2	.001	.009			.230	.22
- 75TH		.0	4.5	.002	.021	.105 630	L.100	<u>.435</u>	.32
90TH		.0	10.3	.002	.050	.420	L.100	.720	.68
SECONDARY CODE		. •	10.5	.000	. 050	.62	.1	1.1	1.000
* THESE STATIST	TCC TI	CLIDE VALUE	ELACCED LITTU			10F			
" HILDE SINITS!	TOO TI	ANFOES	LEWGGER MILH	L)G UK W					

NAQUADAT SUMMARY REPORT JAN 08, 1991 SURFACE WATER DATA

STATION 00AL05CK0001 LAT. 50D 54M 9S LONG. 110D 17M 51S PR 4 UTM 12 549400E 5639000N FOR JAN 10, 1978 TO APR 19, 1983 RED DEER RIVER AT BINDLOSS, ALBERTA

		07901L NITROGEN PARTICUL.	08101F OXYGEN DISSOLVED DO	09105L FLUORIDE DISSOLVED	10101L ALKALINITY TOTAL	10151L ALKALINITY PHENOL PHTHALEIN	10301F PH	10301L PH	10401L RESIDUE Nonfiltr.
	SUBM	N	02	F	CAC03	CACO3			
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	PH UNITS	PH UNITS	HO //
SAMPLES(FLAGS)	0462	63(1)	61(0)	64(1)	64(0)	62(0)	63(0)	63(0)	MG/L 63(1)
LOW		L.01	.9	L.0	118.	.0	2.8	7.5	63(1) L1.
HIGH		3.3	14.2	.3	417.0	4.3	8.6	8.4	3860.
AVERAGE		.452×	8.84	.1*	199.0	.1	0.0	0.4	242.*
STD.DEV.		.610×	3.38	.0×	72.5	.6			567.*
PERCNT:10TH		.040	3.3	.1	127.0	0.	7.50	7.70	3.
25TH		.07	7.50	.1	142.5	.0	7.8	7.9	9.
MEDIAN 50TH		<u>.19</u>	9.2	<u>.2</u>	169.5	.0	8.0	8.2	46.
75TH		.57	11.5	.2	248.0	.0	8.3	8.3	232.
90TH		1.200	12.9	.2	315.	.0	8.4	8.4	528.
SECONDARY CODE		02L	01P		06L		01S	0.4	520.
		10602L HARDNESS	11101L SODIUM	12102L Magnesium	14101L Silica	15103L PHOSPHORUS	15255L PHOSPHORUS	15406L Phosphorus	15901L PHOSPHORUS
		TOTAL (CALCD.)	DISSOLVED	DISSOLVED	REACTIVE	DISSOLVED	DISSOLVED ORTHO PO4	TOTAL	PARTICULATE (CALCD.)
	SUBM	CACO3	NA	MG	SI02	Р	P	P	P CONCOD.
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)	0462	64(1)	64(0)	64(1)	64(0)	64(4)	24(14)	64(0)	64(4)
LOW		112.7	1.5	10.2	1.2	L.003	L.003	.007	.000
HIGH		425.2	55.0	40.8	9.5	.18	.043	11.	10.995
AVERAGE		217.3×	28.1	20.5×	5.0	.017*	.007×	.350	.333×
STD.DEV.		78.3×	10.9	8.2*	2.3	.025*	.011*	1.382	1.383×
PERCNT:10TH		139.1	14.	12.5	1.9	.003	L.003	.010	.005
25TH		152.5	21.0	14.0	2.9	.005	L.003	.023	.010
MEDIAN 50TH		<u> 187.6</u>	27.5	17.0	5.1	.008	L.003	.069	.055
75TH		291.3	34.5	27.3	6.7	.018	.005	.250	.210
90TH		333.0	42.0	34.9	8.2	.037	.012	.580	.571
SECONDARY CODE			03L		02L 05L	03F	56L	.500	.5/1
		16301L	17206L	19101L	20103L	03301L	04301L	05105L	13303L
		SULPHATE	CHLORIDE	POTASSIUM	CALCIUM	LITHIUM	BERYLLIUM	BORON	ALUMINUM
		DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	EXTRBLE.	EXTRBLE.	DISSOLVED	EXTRBLE.
	SUBM	S04	CL	K	CA	LI	BE	В	AL
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
-SAMPLES(FLAGS)	0462	64(0)	64(0)	64(0)	64(1)			62(0)	15(0)
LOW		24.	1.6	1.6	28.3			.02	.012
HIGH		125.	15.0	8.6	103.0			.22	.33
AVERAGE		67.1	5.30	3.04	53.2*			.074	.0643
STD.DEV.		23.2	2.99	1.47	18.3*			.043	.0813
PERCNT:10TH		43.	2.1	1.8	35.1			.03	.012
25TH		48.0	2.95	2.05	38.1			.040	.018
MEDIAN 50TH		<u>65.0</u>	<u>4.85</u>	2.65	47.0			.060	.040
75TH		85.0	6.60	3.40	66.3			.090	.065
90TH		97.	9.4	5.4	82.0			.130	.14
SECONDARY CODE		06L		03L					05P
* THESE STATIST	TICS I	NCLUDE VALUES	FLAGGED WITH	L,G OR Q					

STATION 00AL05CK0001 LAT. 50D 54M 9S LONG. 110D 17M 51S PR 4 UTM 12 549400E 5639000N FOR JAN 10, 1978 TO APR 19, 1983 RED DEER RIVER AT BINDLOSS, ALBERTA

		23020L	23301L	24302L	25101L	25303L	26104L	26304L	27020L
		VANADIUM	VANADIUM	CHROMIUM	MANGANESE	MANGANESE	IRON	IRON	COBALT
		TOTAL	EXTRBLE.	EXTRBLE.	DISSOLVED	EXTRBLE.	DISSOLVED	EXTRBLE.	TOTAL
		RECOVERABLE		·				EXIMPLE.	RECOVERABLE
	SUBM	VA	V	CR.	MN	MN	FE	FE	CO
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)	0462	37(12)	25(10)	38(38)	36(27)	27(2)	36(28)	27(1)	36(18)
FOM		L.001	L.001	L.015	L.01	L.010	L.04	L.04	L.002
HIGH		.056	.036	L.0150	.090	1.1	.150	11.0	.040
AVERAGE		.007×	.004×		.014×	.125×	.050×	1.483×	.004×
STD.DEV.		.012×	.007×		.014×	.225×	.023*	2.353*	.007×
PERCNT:10TH		L.001	L.001	L.015	L.01	.01	L.04	.05	L.002
25TH		L.001	L.001	L.015	L.010	.017	L.040	.08	L.002
MEDIAN 50TH		<u>.003</u>	<u>.001</u>	L.0150	L.010	. 044	L.040	.39	.002×
75TH		.006	.005	L.0150	.010×	.16	L.040	2.3	.002
90TH		.027	.008	L.0150	.03	.254	.080	3.5	.009
SECONDARY CODE		20P	01P 02P	02P	04L	04P	.,	04P	20P
						V		041	201
		27301L	28020L	28301L	29020L	29305L	30020L	30305L	33104L
		COBALT	NICKEL	NICKEL	COPPER	COPPER	ZINC	ZINC	
		EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL		ARSENIC
			RECOVERABLE		RECOVERABLE	EXTRUCE.	RECOVERABLE	EXTRBLE.	DISSOLVED
	SUBM	co	NI	NI	CU	CU	ZN	741	
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	ZN	AS
SAMPLES(FLAGS)		24(10)	35(6)	8(4)	36(3)	26(4)		MG/L	MG/L
LOW		L.002	L.002	L.002	L.001	L.001	32(2)	26(3)	64(40)
HIGH		.024	.100	.035	.070		L.001	L.001	L.0005
AVERAGE		.004×	.013×	.007×		.046	.710	.040	L.005
STD.DEV.		.005×	.020×	.011×	.010*	.007*	.046×	.010×	.0006*
PERCNT:10TH		L.002	L.002	.011×	.015*	.010*	.128×	.012×	.0006×
25TH		L.002	.002	L.002	.001	L.001	.003	L.001	L.0005
MEDIAN 50TH		.002	.002		.002	.001	.006	.002	L.0005
75TH		.002	.005	.002*	<u>.004</u>	.003	<u>.009</u>	.004	L.0005
90TH		.007		.006	.008	.009	.025	.012	.0005
SECONDARY CODE		02P	.032		.029	.019	.070	.029	.0008
SECONDARY CODE		UZP	20P	02P	20P	05P	20P	05P	04F
		34102L	38301L	42301L	47301L	48020L	48301L	56020L	56301L
		SELENIUM	STRONTIUM	MOLYBDENUM	SILVER	CADMIUM	CADMIUM	BARIUM	BARIUM
		DISSOLVED	EXTRBLE.	EXTRBLE.	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.
						RECOVERABLE		RECOVERABLE	
1	SUBM	SE	SR	МО	AG	CD	CD	BA	BA
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
-SAMPLES(FLAGS)	0462	56(51)			6(6)	37(34)	25(22)	37(2)	25(3)
LOW		L.0005			L.004	L.001	L.001	L.05	L.05
HIGH AVERAGE		.0008			L.004	.002	.001	1.100	.39
III AVERAGE		.0005*				.001×	.001×	.189×	.123×
STD.DEV.		.0000×				.000×	.000×	.187×	
PERCNT:10TH		L.0005				L.001	L.001	.10/× .070	.071*
25TH		L.0005			L.004	L.001	L.001		L.05
MEDIAN 50TH		L.0005			L.004	L.001		.100	.06
75TH		L.0005			L.004 L.004	L.001 L.001	<u>L.001</u> L.001	<u>.14</u>	<u>.12</u>
90TH		L.0005			E.007	L.001		.170	.15
SECONDARY CODE					01P	20P	.001	.380	.18
* THESE STATIST	ICS T	NCLUDE VALUES	FIAGGED WITH	.c np n	OTI	201	02P	20P	01P
JIRILDI	1	ANEGES	TVOOLD MIIU (בים מור עו					

NAQUADAT SUMMARY REPORT JAN 08, 1991

SURFACE WATER DATA

STATION 00AL05CK0001 LAT. 50D 54M 9S LONG. 110D 17M 51S PR 4 UTM 12 549400E 5639000N FOR JAN 10, 1978 TO APR 19, 1983 RED DEER RIVER AT BINDLOSS, ALBERTA

	80011L Mercury Total	80311L MERCURY EXTRBLE.	82020L LEAD Total Recoverable	82301L LEAD EXTRBLE.	36001L COLIFORMS TOTAL	36011L COLIFORMS FECAL	36101L STREP. FECAL	36103L FECAL STREP.
SUBNID SAMPLES(FLAGS) 0462 LOW HIGH AVERAGE STD.DEV. PERCNT:10TH 25TH MEDIAN 50TH 75TH 90TH SECONDARY CODE * THESE STATISTICS	UG/L 49(37) L.02 .14 .030* .025* L.02 L.02 L.02 L.02 L.02	HG UG/L 15(13) L.02 .020* .000* L.02 L.02 L.02 L.02 1.02	PB MG/L 37(29) L.004 .050 .007* .008* L.004 L.004 L.004 C.004 L.004	PB MG/L 26(17) L.004 .026 .0058* .0046* L.004 L.004 .006 .010	MPN NO/100ML 61(15)	MPN NO/100ML 63(26) L1. 1900. 72.* 263.* L2. L2. 120. 12L 12F		MF NO/DL

Appendix IV. NAQUADAT summary reports from the long-term monitoring sites on the Red Deer River, January 1984 to December 1989.

NAQUADAT SUMMARY REPORT JAN 09, 1991

SURFACE WATER DATA

STATION 00AL05CC0004 LAT. 52D 16M 3S LONG. 113D 51M 48S PR 4 UTM 12 304600E 5794400N FOR JAN 09, 1984 TO DEC 06, 1989 RED DEER RIVER AT HWY 2 ABOVE RED DEER, ALBERTA

	SUBM	00201L TOTAL DISSOLVED SOLIDS (CALCD.)	00205L TOTAL DISSOLVED SOLIDS	02011L COLOUR APPARENT	02021L COLOUR TRUE	02041F SPECIFIC CONDUCT.	02041L SPECIFIC CONDUCT.	02061F TEMPERATURE OF WATER	02073F TURBIDITY
	ID	MG/L	MG/L	REL. UNITS	REL. UNITS	US/CM	US/CM	DEG.C	JTU
SAMPLES(FLAGS)	0479	48(0)	23(0)	9(0)	59(5)	68(0)	69(0)	67(0)	33(0)
LOW		160.	153.	5.	L5.0	244.	242.	.0	1.0
HIGH		255.	257.	20.	80.0	445.0	560.0	19.4	44.0
AVERAGE		214.	202.	13.	15.6×	365.9	380.7	7.6	7.3
STD.DEV.		25.	28.	6.	15.7×	42.4	49.3	6.6	10.9
PERCNT:10TH		185.	170.		5.0	307.0	324.0	.1	1.5
25TH		192.	185.	10.	5.0	341.5	344.0	.5	2.0
MEDIAN 50TH		<u>214.</u>	<u>203.</u>	<u>10.</u>	<u> 10.0</u>	<u> 368.0</u>	<u>377.0</u>	8.0	2.7
75TH		235.	220.	20.	20.0	392.0	416.0	14.	4.5
90TH		251.	237.		40.0	425.	443.0	16.5	24.0
SECONDARY CODE					24L				
		02071L Turbidity	06001L CARBON	06051L Carbon	06101L CARBON	06151L Carbon	06901L Carbon	06904L Carbon	06201L BICARBONT.
			TOTAL Organic	TOTAL Inorganic	DISSOLVED ORGANIC	DISSOLVED Inorganic	ORGANIC Particul.	PARTICULATE Organic	(CALCD.)
	SUBM	****	C	C	С	С	С	C	HC03
CAMPLECTEL LOCA	ID	JTU	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)		35(0)	31(0)	1(0)	72(0)	17(0)	37(0)	28(7)	63(26)
HIGH	0446	.5	1.3	45.0	1.30	30.00	.1	.10	143.8
AVERAGE		36.0	12.5	45.0	12.50	47.50	2.5	1.30	268.2
STD.DEV.		4.7	4.2		4.00	38.11	.5	.31×	204.4×
PERCNT:10TH		8.0 .8	2.1 2.5		2.47	5.14	.6	.28≭	27.4×
25TH		1.0	2.8		1.60	30.4	.2	.10	168.2
MEDIAN 50TH		1.7	3.7		2.35	34.2	.2	L.20	Q185.0
75TH		2.5	3.7 4.5		3.50 6.60	38.00	<u>.3</u>	<u>.20</u>	<u> 207.7</u>
90TH		19.0	6.5		4.40	42.00	.4	.40	224.3
SECONDARY CODE		73L	0.5L	52L	6.70 04L 07L	45.00 52L 54L	1.5 02L	.60	Q238.7
		0/7011							
		06301L	06401L	06535L	06717L	07110L	07506P	07651L	07651F
		CARBONATE (CALCD.)	FREE CO2	PHENOLIC	CHLORO-	NITROGEN	NITROGEN	NITROGEN	NITROGEN
	011011		(CALCD.)	MATERIAL PHENOL	PHYLL A	DISSOLVED NO3 & NO2	TOTAL AMMONIA	DISSOLVED	DISSOLVED
	SUBM	C03	C02	******		N	N	N	N
-SAMPLES(FLAGS)	ID	MG/L 63(26)	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
	0479	65(26)	48(0) .9	47(17)	38(17)	72(32)	69(48)	38(0)	12(0)
HIGH	U440	. 0 8.2	9.4	L.001	L.001	.001	L.010	.070	.060
AVERAGE		.7×	9.4 2.7	.023 .003*	.004	1.400	.370	1.200	.260
STD.DEV.		1.8×	1.7		.001×	.059×	.051×	.191	.131
PERCNT:10TH		.0	1.7	.004* L.001	.001×	.170×	.057×	.187	.056
25TH		.0	1.5		L.001	L.003	L.010	.080	.060
MEDIAN 50TH		Q <u>.1</u>	2.1	L.001 .001	L.001	.007*	.010	.130	.085
- 75TH		Q <u>.1</u> Q.1	2.1 3.5	.001	.001	.010*	L.050	<u>.140</u>	.140
90TH		2.9	4.9	.002	.002 .003	.075	.060	.180	.150
SECONDARY CODE		6. 7	7.7	.008 37L	.005	.100 11L	L.1	.280	.170
* THESE STATIST	rics i	NCLUDE VALUES	FLAGGED WITH			***	05L		

NAQUADAT SUMMARY REPORT JAN 09, 1991

SURFACE WATER DATA

STATION 00AL05CC0004 LAT. 52D 16M 3S LONG. 113D 51M 48S PR 4 UTM 12 304600E 5794400N FOR JAN 09, 1984 TO DEC 06, 1989 RED DEER RIVER AT HWY 2 ABOVE RED DEER, ALBERTA

		07901L NITROGEN PARTICUL.	08101F OXYGEN DISSOLVED DO	09105L FLUORIDE DISSOLVED	10101L ALKALINITY TOTAL	10151L ALKALINITY PHENOL	10301F PH	10301L PH	10401L Residue Nonfiltr.
	SUBM	N	02	F	04007	PHTHALEIN			
	ID	MG/L	MG/L	MG/L	CAC03	CACO3			
SAMPLES(FLAGS)		65(3)	69(0)	68(0)	MG/L	MG/L	PH UNITS	. PH UNITS	MG/L
	0446	L.010	8.20	.1	68(0)	64(26)	69(0)	69(0)	72(6)
HIGH	0.7.10	.560	14.2	.2	118.0	.0	7.0	7.63	LO.
AVERAGE		.071×	11.06	.1	220.0	6.8	8.50	8.60	176.
STD.DEV.		.097×	1.42	.0	167.0 22.5	.5×			8.×
PERCNT:10TH		.020	9.10	.1	138.0	1.5* .0	7.4	7 00	23.*
25TH		.020	9.8	i	151.0	.0	7.4 7.80	7.80	L1.
MEDIAN 50TH		.040	11.1	<u>.î</u>	169.5	L.1	8.00	8.00	2.
75TH		.060	12.0	.2	182.5	L.1	8.1	<u>8.20</u>	<u>3.</u>
90TH		.210	12.8	.2	197.0	2.4	8.30	8.31	5.
SECONDARY CODE	0:	2L 04L	01L 02F	08L 06L 07L	06L 11L	2.7	0.30	8.40	18.
			· ·	00L 00L 07L	OOL IIL				07L
		10602L	11101L	12102L	14101L	15103L	15255L	15406L	15901L
		HARDNESS	SODIUM	MAGNESIUM	SILICA	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS
		TOTAL	DISSOLVED	DISSOLVED	REACTIVE	DISSOLVED	DISSOLVED	TOTAL	PARTICULATE
		(CALCD.)				DICCOLVED	ORTHO PO4	TOTAL	(CALCD.)
	SUBM	CACO3	NA	MG	SI02	P	P	P	P
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)	0479	69(0)	69(0)	69(0)	66(0)	71(17)	//O/ L	72(2)	71(17)
LOW	0446	132.7	3.2	10.5	2.0	L.003		L.003	.000
HIGH		236.1	13.7	18.5	9.5	.160		.280	.148
AVERAGE		183.5	6.8	15.1	4.7	.010×		.025×	.015×
STD.DEV.		24.1	2.0	2.0	1.3	.024*		.049*	.019×
PERCNT:10TH		153.0	4.6	12.5	2.8	L.003		.004	.020*
25TH		167.0	5.6	13.8	4.0	.003		.006	.002
MEDIAN 50TH		181.7	6.5	15.0	4.6	.004		.010	.002
75TH		203.6	7.9	17.1	5.5	.008		.024	.013
90TH		220.6	9.7	17.7	6.3	.015		.052	Q.049
SECONDARY CODE			03L	05L	02L 05L	05L		21L	Q. 047
		16301L	17206L	19101L	20103L	03301L	04301L	05105L	13303L
		SULPHATE	CHLORIDE	POTASSIUM	CALCIUM	LITHIUM	BERYLLIUM	BORON	ALUMINUM
		DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	EXTRBLE.	EXTRBLE.	DISSOLVED	EXTRBLE.
	SUBM	S04	CL	K	CA			_	
	ID	MG/L	MG/L	MG/L	MG/L	LI MG/L	BE	В	AL
-SAMPLES(FLAGS)		68(0)	38(0)	69(0)	66(0)	MG/L	MG/L	MG/L	MG/L
	0446	20.7	.70	.57	30.4			65(13)	22(2)
HIGH	• • • • •	45.8	5.30	7.92	64.2			L.01	L.0100
AVERAGE		33.7	1.57	1.52	48.9			.130	.0800
STD.DEV.		6.4	1.05	1.22	7.1			.040*	.0300×
PERCNT:10TH		25.2	.70	.90	40.8			.028*	.0193*
25TH		28.9	.90	1.00	44.1			L.01	.0100
MEDIAN 50TH		34.0	1.10	1.11	47.9			.01	L.02
- 75TH		38.1	2.00	1.57	55.0			<u>.040</u>	.0250
90TH		43.0	3.20	2.27	55.0 59.5			.060	.0400
SECONDARY CODE		06L	J. EU	03L	57.5			.070	.0600
* THESE STATIST	TICS TH		S FLAGGED WITH					07L	
	41		LAUGED HIII	ביוס טוו מ					

REQUEST 0007 - 0009 PAGE 3

NAQUADAT SUMMARY REPORT JAN 09, 1991 SURFACE WATER DATA

		23020L VANADIUM TOTAL RECOVERABLE	23301L VANADIUM Extrble.	24302L CHROMIUM EXTRBLE.	25101L Manganese Dissolved	25303L MANGANESE EXTRBLE.	26104L IRON DISSOLVED	26304L IRON Extrble.	27020L COBALT TOTAL RECOVERABLE
	SUBM	VA	ν	CR	MN	MN	FE	FE	CO
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	HG/L	MG/L
SAMPLES(FLAGS)			11(5)	4(4)	68(43)	5(0)	68(29)	10(1)	1107 L
	0446		L.001	L.0010	L.004	.014	L.010	L.01	
HIGH			.010	L.0010	.070	.047	.190	.16	
AVERAGE			.002×		.014×	.032	.042*	.071×	
STD.DEV.			.003×		.010×	.014	.040×	.053×	
PERCNT:10TH			L.001		L.004		L.010	.010×	
25TH			L.001	L.0010	.004	.026	.013	.020	
MEDIAN 50TH			<u>.001</u>	L.0010	<u>.012</u>	.030	L.040	.075	
75TH			.002	L.0010	L.020	.045	.040	.080	
90TH			.002		L.020		.071	.155	
SECONDARY CODE			02L		04L 04P	04L	04P		
		27301L	28020L	28301L	29020L	29305L	30020L	30305L	33104L
		COBALT	NICKEL	NICKEL	COPPER	COPPER	ZINC	ZINC	ARSENIC
		EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.	DISSOLVED
			RECOVERABLE		RECOVERABLE		RECOVERABLE		DIGOGLIED
	SUBM	CO	NI	NI	CU	CU	ZN	ZN	AS
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)		10(7)		11(6)		11(7)		11(8)	29(2)
LOW		L.001		L.001		L.001		L.001	L.0002
HIGH		.003		.004		.002		.019	.0056
AVERAGE		.001×		.001×		.001*		.003×	.0006×
STD.DEV.		.001×		.001×		.000×		.005*	.0010*
PERCNT:10TH		L.001		L.001		L.001		L.001	.0002
25TH		L.001		L.001		L.001		L.001	.0003
MEDIAN 50TH		<u>L.001</u>		L.001		L.001		L.001	.0004
75TH		.002		.002		.001		.002	.0005
90TH		.003		.003		.001		.005	.0009
SECONDARY CODE		02L		02L				.005	.0007
		34102L	38301L	42301L	47301L	48020L	48301L	56020L	56301L
		SELENIUM	STRONTIUM	MOLYBDENUM	SILVER	CADMIUM	CADMIUM	BARIUM	BARIUM
		DISSOLVED	EXTRBLE.	EXTRBLE.	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.
						RECOVERABLE		RECOVERABLE	CATABLE.
	SUBM	SE	SR	MO	AG	CD	CD	BA	BA
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
-SAMPLES(FLAGS)		72(20)			22(22)		11(11)	7.07 2	8(0)
	0446	L.0001			L.001		L.001		.08
HIGH		.0007			L.005		L.001		.160
AVERAGE		.0003×							.114
STD.DEV.		.0001×							.024
PERCNT:10TH		L.0002			L.001		L.001		. 024
25TH		L.0002			L.001		L.001		.100
MEDIAN 50TH		.0003			L.004		L.001		
75TH		.0004			L.004		L.001		.110
90TH		.0004			L.004		L.001		.125
SECONDARY CODE		08L			01P 02L		02L		
* THESE STATIST	rics i	NCLUDE VALUES	FLAGGED WITH	.,G DR Q			V 4-14		

SURFACE WATER DATA

STATION 00AL05CC0004 LAT. 52D 16M 3S LONG. 113D 51M 48S PR 4 UTM 12 304600E 5794400N FOR JAN 09, 1984 TO DEC 06, 1989 RED DEER, ALBERTA

		80011L Mercury Total	80311L MERCURY EXTRBLE.	82020L LEAD TOTAL RECOVERABLE	82301L LEAD EXTRBLE.		36001L OLIFORMS TOTAL	36011L COLIFORMS FECAL	36101L STREP. FECAL	36103L FECAL Strep.
	SUBM	HG	HG	PB	PB		MPN	MPN		MF
	ID	UG/L	UG/L	MG/L	MG/L	N	0/100ML	NO/100ML		NO/DL
	0479	64(63)			12(10)		64(8)	71(25)	44(15)	35(2)
LOW	0446	L.020			L.0020		0.	1.	0.	L2.
HIGH		L.050			.003		3400.	353.	88.	12000.
AVERAGE		.032*			.0022*		128.*	23.*	16.*	450.×
STD.DEV.		.015×			.0004×		444.*	50.×	22.×	2018.*
PERCNT:10TH		L.020			L.0020		L2.	L2.	L2.	2010.*
25TH		L.020			L.0020		4.	2.	L4.	10.
MEDIAN 50TH		L.020			L.0020		11.	8.		
75TH		L.050			L.0020		72.	14.	<u>8.</u> 12.	<u>56.</u>
90TH		L.050			.0030		224.	56.		130.
SECONDARY CODE		11P			02L	02L	02F	12L 12F	56.	300.
* THESE STATTST	TCC TA	ICLUDE VALUE	EL 400ED UTTU		- t- t-	V 6. L.	V C 1	TEL TEL	02F	03F

^{*} THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q

NAQUADAT SUMMARY REPORT JAN 09, 1991 SURFACE WATER DATA

STATION 00AL05CE0001 LAT. 51D 28M 9S LONG. 112D 42M 30S PR 4 UTM 12 381300E 5703100N FOR JAN 18, 1984 TO JAN 07, 1987 RED DEER RIVER AT DRUMHELLER, ALBERTA

		00201L	00205L	02011L	02021L	02041F	02041L	02061F	02073F
		TOTAL	TOTAL	COLOUR	COLOUR	SPECIFIC	SPECIFIC	TEMPERATURE	TURBIDITY
		DISSOLVED	DISSOLVED	APPARENT	TRUE	CONDUCT.	CONDUCT.	OF WATER	TORDIDITI
		SOLIDS	SOLIDS						
	SUBM	(CALCD.)							
	ID	MG/L	MG/L	REL. UNITS	REL. UNITS	US/CM	US/CM	DEG.C	JTU
SAMPLES(FLAGS)	0479	15(0)	21(0)		37(2)	37(0)	37(0)	37(0)	35(2)
LOW		159.	114.		L5.0	244.0	236.0	.0	1.1
HIGH		262.	294.		120.0	489.0	514.0	23.0	310.0
AVERAGE		213.	212.		25.4*	381.3	386.2	7.2	49.7*
STD.DEV.		34.	46.		29.1*	60.3	66.6	7.6	76.8×
PERCNT:10TH		169.	166.		5.0	311.0	312.0	. 0	2.0
25TH		187.	183.		10.0	344.0	344.0	.5	3.0
MEDIAN 50TH		<u> 207.</u>	<u> 208.</u>		<u>10.0</u>	<u> 368.0</u>	381.0	4.0	15.0
75TH		245.	242.		30.0	424.0	427.0	13.5	51.0
90TH		259.	274.		80.0	458.0	477.0	18.5	L200.0
SECONDARY CODE									
		02071L	06001L	06051L	06101L	06151L	06901L	06904L	0(0011
		TURBIDITY	CARBON	CARBON	CARBON	CARBON	CARBON		06201L
			TOTAL	TOTAL	DISSOLVED	DISSOLVED		CARBON	BICARBONT.
			ORGANIC	INORGANIC	ORGANIC	INORGANIC	ORGANIC	PARTICULATE	(CALCD.)
	SUBM		C	C	COURWITE	C	PARTICUL. C	ORGANIC	
	ID	JTU	MG/L	MG/L	MG/L	MG/L	MG/L	C	HC03
SAMPLES(FLAGS)		37(0)	1,0, 6	1107 L	40(0)	rio/ L		MG/L	MG/L
	0446	.7			.40		40(0)		31(1)
HIGH		275.0			16.00		.1		100.1
AVERAGE		43.6			4.52		8.3		293.8
STD.DEV.		72.6			3.05		1.7		195.9×
PERCNT:10TH		1.0			1.65		2.3		44.5*
25TH		2.4					.2		140.2
MEDIAN 50TH		13.0			2.50		.2		165.8
75TH		36.0			3.55 5.40		7		<u>194.6</u>
90TH		185.0			5.40 9.25		1.8		230.9
SECONDARY CODE		73L					5.2		238.9
OLOGIDARI CODE		752			04L		02L		
		06301L	06401L	06535L	06717L	07110L	07506P	07651L	07651F
		CARBONATE	FREE CO2	PHENOLIC	CHLORO-	NITROGEN	NITROGEN	NITROGEN	NITROGEN
		(CALCD.)	(CALCD.)	MATERIAL	PHYLL A	DISSOLVED	TOTAL	DISSOLVED	DISSOLVED
				PHENOL		NO3 & NO2	AHMONIA		
	SUBM	C03	C02			N	N	N	N
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
-SAMPLES(FLAGS)		31(1)	15(0)	14(8)	40(13)	40(12)	40(31)	40(0)	11(0)
	0446	. 0	.5	L.001	L.001	L.010	L.050	.080	.100
HIGH		6.6	12.0	.006	.020	.900	.540	1.800	.730
AVERAGE		1.0*	3.7	.002×	.003×	.166×	.100*	.373	.315
STD.DEV.		2.0*	3.5	.002×	.004×	.203*	.097*	.343	.179
PERCNT:10TH		. 0	.7	L.001	L.001	L.010	L.050	.150	.140
25TH		.0	1.5	L.001	L.001	L.010	L.050	.200	.160
MEDIAN 50TH		<u>. 0</u>	2.4	L.001	.002	.105	.050×	.280	.280
75TH		Q.6	4.2	.002	.005	.230	L.100	.385	.390
90TH		5.2	9.4	.004	.009	.385	.215	.715	.470
SECONDARY CODE									•

^{*} THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q

NAQUADAT SUMMARY REPORT JAN 09, 1991 SURFACE WATER DATA

STATION 00AL05CE0001 LAT. 51D 28M 9S LONG. 112D 42M 30S PR 4 UTM 12 381300E 5703100N FOR JAN 18, 1984 TO JAN 07, 1987 RED DEER RIVER AT DRUMHELLER, ALBERTA

		07901L	08101F	09105L	10101L	10151L	10301F	10301L	10401L
		NITROGEN	OXYGEN	FLUORIDE	ALKALINITY	ALKALINITY	PH	PH	RESIDUE
		PARTICUL.	DISSOLVED DO	DISSOLVED	TOTAL	PHENOL			NONFILTR.
	SUBM	N	02	F	CAC03	PHTHALEIN			
	ID	MG/L	MG/L	MG/L	MG/L	CACO3 MG/L	DU UNITTO	DII 1111770	
SAMPLES(FLAGS)		40(0)	37(0)	35(0)	36(0)	31(1)	PH UNITS	PH UNITS	MG/L
	0446	.010	5.10	.1	86.1	.0	37(0) 7.70	37(0) 7.50	40(1)
HIGH		1.300	14.20	.2	241.0	5.5	8.90	9.00	L1. 620.
AVERAGE		.217	9.81	.2	160.1	.9*	0.70	7.00	96.×
STD.DEV.		.299	2.38	.0	35.5	1.7×			163.*
PERCNT:10TH		.020	6.10	.1	114.0	. 0	7.80	7.70	2.
25TH		.030	8.40	.1	134.5	.0	8.00	8.00	4.
MEDIAN 50TH		.110	<u>9.60</u>	<u>.2</u>	<u>159.0</u>	<u>. 0</u>	8.30	8.20	15.
75TH		.215	11.70	.2	187.5	L.5	8.50	8.40	107.
90TH		.620	13.00	.2	198.0	4.3	8.70	8.60	351.
SECONDARY CODE		02L	01L	08L 06L	06L 11L				
		10602L	11101L	12102L	14101L	15103L	15255L	15406L	15901L
		HARDNESS	SODIUM	MAGNESIUM	SILICA	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS
		TOTAL	DISSOLVED	DISSOLVED	REACTIVE	DISSOLVED	DISSOLVED	TOTAL	PARTICULATE
		(CALCD.)					ORTHO PO4		(CALCD.)
	SUBM	CACO3	NA	MG	SIO2	P	P	P	P
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)		36(0)	36(0)	36(0)	36(0)	40(2)		40(0)	40(2)
	0446	96.9	6.0	7.4	.2	L.003		.006	.001
HIGH		241.4	27.7	19.3	8.5	.270		.750	.480
AVERAGE		169.0	13.4	14.8	3.3	.033*		.100	.067*
STD.DEV.		36.3	4.4	2.6	2.1	.059*		.149	.105*
PERCNT:10TH		129.1	9.1	12.1	. 6	.003		.010	.003
25TH		149.6	10.3	13.1	1.5	.005		.016	.006
MEDIAN <u>50TH</u> 75TH		165.5	<u>12.6</u>	<u>14.3</u>	<u>2.9</u>	<u>.012</u>		<u>.049</u>	<u>.018</u>
751H 90TH		193.2	15.2	17.1	5.0	.030		.090	.073
SECONDARY CODE		221.9	19.6 03L	17.9	5.9	.069		.285	.225
SECONDARY CODE			03L		02L				
		16301L	17206L	19101L	20103L	03301L	04301L	05105L	13303L
		SULPHATE	CHLORIDE	POTASSIUM	CALCIUM	LITHIUM	BERYLLIUM	BORON	ALUMINUM
		DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	EXTRBLE.	EXTRBLE.	DISSOLVED	EXTRBLE.
	SUBM	S04	CL	K	CA	LI	BE	В	AL
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
-SAMPLES(FLAGS)		36(0)	36(0)	36(0)	36(0)			40(1)	
	0446	20.8	.90	.95	19.1			L.020	
HIGH		51.8	8.30	9.60	65.2			.150	
AVERAGE		38.9	2.54	2.11	43.3			.060×	
STD.DEV.		7.3	1.26	1.68	11.3			.030*	
PERCNT:10TH		29.7	1.50	1.18	29.2			.030	
25TH		34.0	1.80	1.32	36.3			.040	
MEDIAN 50TH		<u>39.6</u>	2.40	<u>1.64</u>	<u>41.9</u>			.050	
75TH		44.3	2.80	2.05	50.6			.070	
90TH		48.0	3.80	2.70	59.5			.110	
SECONDARY CODE		06L		03L					
* THESE STATIST	ILCS II	NULUDE VALUES	PLAGGED WITH	L,G OR Q					

SURFACE WATER DATA
STATION 00AL05CE0001 LAT. 51D 28M 9S LONG. 112D 42M 30S PR 4 UTM 12 381300E 5703100N FOR JAN 18, 1984 TO JAN 07, 1987 RED DEER RIVER AT DRUMHELLER, ALBERTA

		23020L Vanadium Total Recoverable	23301L VANADIUM EXTRBLE.	24302L CHROMIUM Extrble.	25101L MANGANESE DISSOLVED	25303L Manganese Extrble.	26104L IRON DISSOLVED	26304L IRON Extrble.	27020L COBALT TOTAL
	SUBM	VA	V	CR	MN	MN	FE	FE	RECOVERABLE CO
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)					39(28)		39(27)	1107 L	NO/L
	0446				.002		L.007		
HIGH					.040		.180		
AVERAGE STD.DEV.					.018×		.046×		
PERCNT:10TH					.007×		.032×		
25TH					.005		L.020		
MEDIAN 50TH					.017		L.040		
75TH					L.020		L.040		
90TH					L.020		L.040		
SECONDARY CODE					L.020 04L 04P		.071		
					04L 04F		04P		
		34102L	38301L	42301L	47301L	48020L	48301L	56020L	E/7011
		SELENIUM	STRONTIUM	MOLYBDENUM	SILVER	CADMIUM	CADMIUM	BARIUM	56301L Barium
		DISSOLVED	EXTRBLE.	EXTRBLE.	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.
						RECOVERABLE	entable.	RECOVERABLE	EXIRDLE.
	SUBM	SE	SR	MO	AG	CD	CD	BA	BA
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)		39(0)			13(13)				1107 2
	0446	.0001			L.004				
HIGH		.0005			L.005				
AVERAGE		.0003							
STD.DEV.		.0001							
PERCNT:10TH		.0002			L.004				
25TH		.0002			L.004				
MEDIAN 50TH		.0003			<u>L.004</u>				
75TH		.0004			L.004				
90TH		.0004			L.004				
SECONDARY CODE	TTCC =	08L	F1 400FB 11T		01P				
* THESE STATIST	1702 1	NCLUDE VALUES	PLAGGED WITH	L,G OR Q					

NAQUADAT SUMMARY REPORT JAN 09, 1991 SURFACE WATER DATA

STATION 00AL05CE0001 LAT. 51D 28M 9S LONG. 112D 42M 30S PR 4 UTM 12 381300E 5703100N FOR JAN 18, 1984 TO JAN 07, 1987 RED DEER RIVER AT DRUMHELLER, ALBERTA

		80011L Mercury Total	80311L MERCURY EXTRBLE.	82020L LEAD Total Recoverable	82301L LEAD EXTRBLE.	36001L COLIFORMS TOTAL	36011L COLIFORMS FECAL	36101L STREP. FECAL	36103L Fecal Strep.
	SUBM	HG	HG	PB	PB	MPN	MPN		MF
CAMPLECTEL AGON	ID	UG/L	UG/L	MG/L	MG/L	NO/100ML	NO/100ML		NO/DL
SAMPLES(FLAGS)	0479	39(38)				33(0)	39(2)	11(1)	37(2)
	0446	L.020				5.	L2.	L2.	L2.
HIGH		.040				500.	300.	460.	14100.
AVERAGE		.021×				131.	51.×	106.×	522.*
STD.DEV.		.003×				153.	79.×	145.*	2311.*
PERCNT:10TH		L.020				10.	2.	2.	3.
25TH		L.020				34.	5.	5.	18.
MEDIAN 50TH		L.020				<u>50.</u>	<u>12.</u>	<u> 24.</u>	<u>62.</u>
75TH		L.020				245.	70.	195.	160.
90TH		L.020				390.	180.	230.	460.
SECONDARY CODE		11P				02L 02F	12L 12F	02F	03F
* THESE STATIST	TICS IN	ICLUDE VALUES	FLAGGED WITH	L,G OR Q				V mi	001

NAQUADAT SUMMARY REPORT JAN 09, 1991 SURFACE WATER DATA

STATION 00AL05CE0002 LAT. 51D 39M 10S LONG. 112D 54M 15S PR 3 UTM 12 368300E 5723900N FOR MAR 25, 1987 TO DEC 06, 1989

RED DEER RIVER CENTER	LAT. 51D		112D 54M 15S HORRIN BRIDGE HST 1987	S PR 3 UTM	12 368300E 5723	900N FOR MAR	25, 1987 TO DE	C 06, 1989
	00201L TOTAL DISSOLVED SOLIDS	00205L TOTAL Dissolved Solids	02011L COLOUR APPARENT	02021L COLOUR TRUE	02041F SPECIFIC CONDUCT.	02041L SPECIFIC CONDUCT.	02061F TEMPERATURE OF WATER	02073F Turbidity
SUBM	(CALCD.)							
ID	MG/L	MG/L	REL. UNITS	REL. UNITS	US/CM	US/CM	DEG.C	JTU
SAMPLES(FLAGS)	34(3)	3(0)	10(0)	24(2)	32(0)	34(0)	34(0)	
LOW	Q155.	167.	10.	L5.0	223.	286.0	.0	
HIGH Average	315.	177.	100.	50.0	518.	524.0	20.7	
STD.DEV.	225.*	172.	28.	17.1×	373.8	393.2	9.1	
PERCNT:10TH	44.* 171	5.	29.	12.4×	81.5	71.3	8.4	
25TH	171. Q189.		10.	5.0	270.	305.	.0	
MEDIAN 50TH	211.	177	10.	10.0	323.5	336.0	.2	
75TH	264.	<u>173.</u>	<u> 15.</u>	10.5	<u>357.0</u>	<u>380.0</u>	9.5	
90TH	275.		30.	20.0	444.5	460.0	18.5	
SECONDARY CODE	2/5.		75.	40. 24L	464.	485.0	20.0	
	02071L Turbidity	06001L Carbon Total	06051L Carbon Total	06101L CARBON DISSOLVED	06151L Carbon Dissolved	06901L Carbon Organic	06904L Carbon Particulate	06201L BICARBONT.
SUBM		ORGANIC C	INORGANIC C	ORGANIC C	INORGANIC C	PARTICUL.	ORGANIC	(CALCD.)
ID	JTU	MG/L	MG/L	MG/L	MG/L	C MG/L	C	HC03
SAMPLES(FLAGS)		31(0)	2(0)	34(0)	11(0)	MG/L	MG/L	MG/L
LOW		2.1	40.5	.01	29.7		28(5)	31 (23)
HIGH		10.0	46.0	10.3	47.00		.02 4.70	Q136.3
AVERAGE		5.0	43.3	4.85	36.37		.52×	Q270.4
STD.DEV.		2.0	3.9	2.37	6.68		.90×	205.2×
PERCNT:10TH		3.0		2.80	30.00		.10	38.7×
25TH		3.4		3.20	31.00		L.20	169.2 177.0
MEDIAN 50TH		4.4	43.3	4.30	32.6		.20	193.8
75TH		5.5	***************************************	5.80	44.00		.45	Q243.6
90TH		8.5		8.40	46.0		L1.00	Q252.1
SECONDARY CODE		05L	52L	04L 07L	52L 54L		22.00	4222.1
	06301L	06401L	06535L	06717L	07110L	07506P	07651L	07651F
	CARBONATE	FREE CO2	PHENOLIC	CHLORO-	NITROGEN	NITROGEN	NITROGEN	NITROGEN
	(CALCD.)	(CALCD.)	MATERIAL Phenol	PHYLL A	DISSOLVED NO3 & NO2	TOTAL Ammonia	DISSOLVED	DISSOLVED
SUBM	C03	C02			N	N	N	N
ID ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
-SAMPLES(FLAGS)	31(23)	34(0)	34(16)		34(15)	31(7)		
LOW	Q.1	.5	L.001		L.001	L.010		
HIGH	11.4	14.1	.007		1.400	.260		
AVERAGE	1.7*	2.7	.002*		.132*	.044×		
STD.DEV.	3.0×	2.7	.002×		.268∗	.068×		
PERCNT:10TH	Q.1	.8	L.001		L.003	L.010		
25TH	Q.1	1.0	L.001		L.003	.010		
MEDIAN SOTH	Q <u>.1</u>	1.7	.001		<u>.005</u>	.010		
75TH	3.8	3.7	.002		.140	.050		
90TH	6.5	4.0	.003		.390	.140		
SECONDARY CODE	NOLUDE VALUES	El 100E2 117711	37L		11L	05L		
* THESE STATISTICS I	MCLUDE VALUES	LEAGGED MILH	L,G UK Q					

* THESE STATISTICS INCLUDE VALUES FLAGGED WITH L.G OR O

NAQUADAT SUMMARY REPORT JAN 09, 1991

SURFACE WATER DATA

RED DEER RIVER CENTER

STATION 00AL05CE0002 LAT. 51D 39M 10S LONG. 112D 54M 15S PR 3 UTM 12 368300E 5723900N FOR MAR 25, 1987 TO DEC 06, 1989 AT MORRIN BRIDGE AUGUST 1987

07901L 08101F 09105L 10101L 10151L 10301F 10301L 10401L NITROGEN OXYGEN FLUORIDE **ALKALINITY** ALKALINITY PH PH RESIDUE PARTICUL. DISSOLVED DISSOLVED TOTAL PHENOL NONFILTR. DO PHTHALEIN SUBM N 02 F CAC03 CAC03 MG/L ID MG/L MG/L MG/L MG/L PH UNITS PH UNITS MG/L SAMPLES(FLAGS) 28(0) 34(0) 34(0) 34(0) 31(23) 31(0) 34(0) 34(0) LOW .020 3.9 112.0 . 1 L.1 6.8 7.45 1. HIGH .500 17.6 .2 222.0 9.5 8.6 8.70 791. AVERAGE .136 10.04 .2 168.1 1.4× 54. STD.DEV. .142 2.68 . 0 31.2 2.5× 142. PERCNT:10TH .020 7.0 .1 133. L.1 7.1 7.81 2. 25TH .020 8.8 .1 147.0 L.1 7.6 8.04 3. MEDIAN 50TH .070 10.05 <u>.2</u> <u>159.0</u> <u>L.1</u> 8.0 8.23 <u>6.</u> **75TH** .190 11.0 .2 200.0 3.2 8.2 8.43 54. 90TH .400 13.5 207.0 5.4 8.4 8.52 115. SECONDARY CODE 04L 02F 07L 07L 10602L 11101L 12102L 14101L 15103L 15255L 15406L 15901L **HARDNESS** SODIUM MAGNESIUM SILICA **PHOSPHORUS PHOSPHORUS PHOSPHORUS PHOSPHORUS** TOTAL DISSOLVED DISSOLVED REACTIVE DISSOLVED DISSOLVED TOTAL PARTICULATE (CALCD.) ORTHO PO4 (CALCD.) SUBM CACO3 NA MG SI02 P P P P ID MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L SAMPLES(FLAGS) 34(0) 34(0) 34(0) 31(3) 33(0) 34(0) 33(0) LOW 115.1 7.0 10.8 L.0 .003 .006 .003 HIGH 265.8 25.2 22.1 8.6 .138 .420 .292 **AVERAGE** 184.2 13.2 16.2 3.3× .023 .065 .043 STD.DEV. 38.4 2.6 4.5 2.7× .029 .091 .077 PERCNT:10TH 144.3 8.5 12.5 .2 .004 .009 .004 25TH 155.0 10.0 14.8 .8 .005 .014 .006 MEDIAN 50TH <u>169.9</u> 12.0 <u>15.6</u> 2.7 .010 .031 .010 75TH 215.9 15.5 18.2 5.2 .032 .070 .040 90TH 235.5 19.0 19.3 7.3 .066 .144 .114 SECONDARY CODE 03L 05L 05L 02L 05L 21L 16301L 17206L 19101L 20103L 03301L 04301L 05105L 13303L SULPHATE CHLORIDE POTASSIUM CALCIUM LITHIUM BERYLLIUM BORON **ALUMINUM** DISSOLVED **DISSOLVED** DISSOLVED DISSOLVED EXTRBLE. EXTRBLE. DISSOLVED EXTRBLE. SUBM **S04** CL K CA LI BE В AL ID MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L -SAMPLES(FLAGS) 34(0) 3(0) 34(0) 31(0) 28(8) 19(0) LOW 21. 1.8 1.11 28.2 L.01 .0100 HIGH 63.5 3.1 6.60 71.9 .049 .8600 **AVERAGE** 38.7 2.30 1.83 48.1 .017× .1653 STD.DEV. 9.5 .70 1.01 11.6 .009× .2210 PERCNT:10TH 29. 1.20 34.2 L.01 .0200 **25TH** 32.5 1.25 40.2 L.010 .0300 MEDIAN 50TH <u>36.1</u> 2.0 1.58 <u>45,4</u> .010 .0800 **75TH** 45.0 2.00 57.0 .020 .1600 90TH 52.4 2.22 62.5 .03 .5500 SECONDARY CODE 06L 03L 07L

SURFACE WATER DATA

STATION 00AL05CE0002 RED DEER RIVER CENTER

SECONDARY CODE

* THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q

LAT. 51D 39M 10S LONG. 112D 54M 15S PR 3 UTM 12 368300E 5723900N FOR MAR 25, 1987 TO DEC 06, 1989
AT MORRIN BRIDGE
AUGUST 1987

23020L 23301L 24302L 25101L 25303L 26104L 26304L 27020L VANADIUM VANADIUM CHROMIUM MANGANESE MANGANESE IRON IRON COBALT TOTAL EXTRBLE. EXTRBLE. DISSOLVED EXTRBLE. DISSOLVED EXTRBLE. TOTAL RECOVERABLE RECOVERABLE **SUBM** VA v CR MN MN FE FE CO ID MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L SAMPLES(FLAGS) 10(6) 1(1) 31(7) 3(0) 31(9) 3(0) LOW L.001 L.0010 L.004 .026 L.01 .07 HIGH .010 L.0010 .220 .050 4.950 1.61 **AVERAGE** .002× .017× .040 .207× .847 STD.DEV. .003× .039× .013 .897× .770 PERCNT:10TH L.001 L.004 L.010 **25TH** L.001 .004 L.010 MEDIAN 50TH L.001 .006 .045 .010 .86 **75TH** .002 .011 .030 **90TH** .008 .025 .040 SECONDARY CODE 02L 04L 04L 27301L 28020L 28301L 29020L 29305L 30020L 30305L 33104L COBALT NICKEL NICKEL COPPER COPPER ZINC ZINC **ARSENIC** EXTRBLE. TOTAL EXTRBLE. TOTAL EXTRBLE. TOTAL EXTRBLE. DISSOLVED RECOVERABLE RECOVERABLE RECOVERABLE SUBM CO NI NI CU CU ZN ZN AS ID MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L SAMPLES(FLAGS) 10(4) 10(2) 10(5) 10(5) 31(2) LOW L.001 L.001 L.001 L.001 L.0002 HIGH .006 .018 .015 .038 .0017 **AVERAGE** .002× .005× .004× .011× .0006* STD.DEV. .001× .006× .006× .015× .0003* PERCNT:10TH L.001 L.001 L.001 L.001 .0003 **25TH** L.001 .001 L.001 L.001 .0004 MEDIAN 50TH .002 .003 .001× .001× .0005 **75TH** .002 .005 .002 .020 .0006 90TH .004 .017 .015 .037 .0008 SECONDARY CODE 02L 02L 34102L 38301L 42301L 47301L 48020L 48301L 56020L 56301L SELENIUM STRONTIUM **MOLYBDENUM** SILVER CADMIUM CADMIUM BARIUM BARIUM DISSOLVED EXTRBLE. EXTRBLE. EXTRBLE. TOTAL EXTRBLE. TOTAL EXTRBLE. RECOVERABLE RECOVERABLE SUBM SE SR MO AG CD CD BA BA MG/L ID MG/L MG/L MG/L MG/L MG/L MG/L MG/L -SAMPLES(FLAGS) 31(18) 9(9) 10(10) 7(0) LOW L.0001 L.001 L.001 .100 HIGH .0005 L.001 L.001 .23 **AVERAGE** .0002* .129 STD.DEV. .0001× .047 PERCNT:10TH L.0002 L.001 25TH L.0002 L.001 L.001 .100 MEDIAN 50TH L.0002 L.001 L.001 .110 **75TH** .0003 L.001 L.001 .140 90TH .0003 L.001

02L

02L

REQUEST 0010 - 0012 PAGE 12

NAQUADAT SUMMARY REPORT JAN 09, 1991

SURFACE WATER DATA

RED DEER RIVER CENTER

AT MORRIN BRIDGE

STATION 00AL05CE0002 LAT. 51D 39M 10S LONG. 112D 54M 15S PR 3 UTM 12 368300E 5723900N FOR MAR 25, 1987 TO DEC 06, 1989

AUGUST 1987

		80011L Mercury Total	80311L MERCURY EXTRBLE.	82020L LEAD Total Recoverable	82301L LEAD EXTRBLE.	36001L COLIFORMS TOTAL	36011L COLIFORMS FECAL	36101L STREP. FECAL	36103L FECAL STREP.
	SUBM	HG	HG	PB	PB	MPN	MPN		MF
CAMBI FC/F1 400)	ID	UG/L	UG/L	MG/L	MG/L	NO/100ML	NO/100ML		NO/DL
SAMPLES(FLAGS)		26(26)			11(7)	34(6)	34(13)	34(14)	
LOW		L.05			L.0020	L1.	0.	0.	
HIGH		L.050			.010	5400.	1500.	1000.	
AVERAGE					.0034×	423.*	88.×	71.*	
STD.DEV.					.0026*	1138.*	267.*	202.*	
PERCNT:10TH		L.05			L.0020	L10.	4.	L4.	
25TH		L.050			L.0020	10.	L10.	L10.	
MEDIAN 50TH		<u>L.050</u>			L.002	30.	10.×	L10.	
75TH		L.050			.005	200.	40.	20.	
90TH		L.050			.0060	700.	180.	80.	
SECONDARY CODE					02L		100.	ου.	

^{*} THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q

* THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q

SURFACE WATER DATA

STATION 00AL05CK0001 LAT. 50D 54M 9S LONG. 110D 17M 51S PR 4 UTM 12 549400E 5639000N FOR JAN 24, 1984 TO DEC 05, 1988 RED DEER RIVER AT BINDLOSS, ALBERTA

To	02073F TURBIDITY	02061F FEMPERATURE DF WATER		02041F SPECIFIC CONDUCT.	02021L COLOUR TRUE	02011L COLOUR APPARENT	00205L TOTAL DISSOLVED SOLIDS	00201L TOTAL DISSOLVED SOLIDS	04104	
SAMPLES(FLAGS) 0462 14(1) 38(0)				110 /014	DEL INITE	DEI INITTO	MC /I	(CALCD.)	SUBM	
LOW 0003 211.	JTU					KEL. UNIIS		***		SAMPLES (FLAGS)
HIGH 0446 326. 427. 1100.0 692.0 705.3 24.5	53(12)									
AVERAGE 0315 270.* 283. 213.* 470.5 486.3 8.5	2.6 G200.0									
STD.DEV. 36.* 66.	52.7×							270.*	0315	AVERAGE
PERCNT:10TH 229. 211. 5.0 358.0 367.0 .0 25TH 233. 232. 10.0 404.0 400.0 .4 MEDIAN 50TH 271. 267. 200.0 481.0 461.5 71.3 75TH 293. 333. 222. 10.0 404.0 400.0 .4 90TH 314. 410. 200.0 565.0 669.0 20.0 SECONDARY CODE	52.7×						66.	36.¥		STD.DEV.
MEDIAN SOTH 271. 267. 267. 20.0 491.0 400.0 400.0 661.5 7.3 751 293. 333. 20.0 551.0 555.0 565.0 17.0 20.0	4.6				5.0					
MEDIAN 501H 271	9.0			404.0	10.0		232.			
90TH 514. 410. 40.0 565.0 669.0 20.0	34.0		461.5	<u>481.0</u>	20.0		<u> 267.</u>	***************************************		
CARBON C	94.0	17.0	545.0	531.0	20.0					
	L100.0	20.0	669.0	565.0	40.0		410.	314.		
TURBIDITY										SECONDARY CODE
TURBIDITY	06201L	069061	069011	061511	06101L	06051L	06001L	02071L		
TOTAL ORGANIC DISSOLVED DISSOLVED ORGANIC ORGANIC PARTICULATE ORGANIC C C C C C C C C C C C C C C C C C C	BICARBONT.					CARBON	CARBON	TURBIDITY		
SUBH CARBONATE FREE CO2 PHENOLIC CHLORO- NITROGEN NITR	(CALCD.)						TOTAL			
SUBH	(CALOD.)					INORGANIC	ORGANIC			
SAMPLES(FLAGS) 0462 34(0) 58(0) 58(0) 58(0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	HC03			C	C .	C				
SAMPLES(FLAGS) 0462 34(0) LOW 0003 1.3 HIGH 0446 430.0 AVERAGE 0315 51.6 STD.DEV. 81.5 PERCNT:10TH 1.8 2.14 2.5TH 3.1 MEDIAN 50TH 23.5 75TH 62.0 CARBONATE FREE CO2 PHENOLIC CHLORO- NITROGEN NITROGEN NITROGEN (CALCD.) MATERIAL PHYLL A DISSOLVED TOTAL DISSOLVED NO3 & NO	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	JTU		
HIGH 0446 430.0	54(1)				58(0)			34(0)		
AVERAGE 0315 51.6 4.74 2.2 STD.DEV. 81.5 1.98 3.0 PERCNT:10TH 1.8 2.40 .2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	149.9		.2							
STD.DEV. 81.5 PERCNT:10TH 1.8 25TH 3.1 25TH 3.1 3.40 3.40 3.50TH 23.5 75TH 62.0 90TH 100.0 SECONDARY CODE 73L 06301L CARBONATE FREE CO2 PHENOLIC CHLORO- NITROGEN NI	382.8		17.0							
PERCNT:10TH 1.8 2.40 2 25TH 3.1 3.40 3 MEDIAN 50TH 23.5	236.9*								0315	
MEDIAN 50TH 3.1 3.40	64.8×									
MEDIAN 50TH 23.5 62.0 66.10 2.6 6.10 2.6 6.10 2.6 6.10 2.6 6.10 2.6 6.6	168.2									
75TH 62.0 6.10 2.6 90TH 100.0 7.60 6.6 SECONDARY CODE 73L 06401L 06535L 06717L 07110L 07506P 07651L CARBONATE FREE CO2 PHENOLIC CHLORO- NITROGEN NO3 & NO2 AMMONIA SUBM CO3 CO2 PHENOL NO3 & NO2 AMMONIA SUBM CO3 CO2 N N N N N N N N N N N N N N N N N N N	185.3									
90TH SECONDARY CODE 73L 06401L 06535L 06717L 07110L 07506P 07651L 06401L 06535L 06717L 07110L 07506P 07651L 0766P 076	224.3									
SECONDARY CODE 73L 04L 05L 02L 06301L 06401L 06535L 06717L 07110L 07506P 07651L 0766P	280.4									
06301L	347.4									
CARBONATE FREE CO2 PHENOLIC CHLORO- NITROGEN NO3 & NO2 AMMONIA SUBM CO3 CO2 N N N N N N N N N N N N N N N N N N N			UZL		4 , 2					
CALCD. CALCD. MATERIAL PHYLL A DISSOLVED TOTAL DISSOLVED	07651F	07651L	07506P	07110L						
PHENOL NO3 & NO2 AMMONIA NO3 & NO2 NO3 & NO3 & NO3 NO3 & NO3 & NO3 & NO3 & NO3 NO3 & NO3	NITROGEN	NITROGEN	IITROGEN							
SUBM CO3 CO2 N N N ID MG/L	DISSOLVED	DISSOLVED			PHYLL A		(CALCD.)	(CALCD.)		
ID MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	N	N					C02	C03		
LOW 0003 .0 1.3 L.001 L.001 L.010 L.050 .100 HIGH 0446 1.4 13.3 .007 .130 .800 .800 1.400 AVERAGE 0315 .0* 4.8 .003* .010* .113* .092* .317 STD.DEV2* 4.0 .002* .020* .173* .122* .211	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L				
HIGH 0446 1.4 13.3 .007 .130 .800 .800 1.400 AVERAGE 0315 .0* 4.8 .003* .010* .113* .092* .317 STD.DEV2* 4.0 .002* .020* .173* .122* .211	12(0)	58(0)	45(39)	58(25)	55(7)					
AVERAGE 0315 .0* 4.8 .003* .010* .113* .092* .317 STD.DEV2* 4.0 .002* .020* .173* .122* .211	.140	.100	L.050	L.010	L.001					
STD.DEV2* 4.0 .002* .020* .173* .122* .211	.550	1.400	.800							
DEPOSIT SATI	.298	.317							0315	
PPKINITION II IA 1 001 000 000 000 000	.130									
OPTH A	.170	.160	L.050	L.010	L.001	L.001	1.4			
25TH .0 1.7 L.001 .001 L.010 L.050 .190	.190									
MEDIAN 50TH .0 2.5 .001 .004 .015 L.050 .240	<u>.265</u>		G-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	***************************************	***************************************					
M COTH A TIO	.380									
90TH .0 11.2 .006 .020 .380 .100 .570 SECONDARY CODE 17P	.480	.570	.100	. 380		.000	11.6	. u		

NAQUADAT SUMMARY REPORT JAN 09, 1991

SURFACE WATER DATA

STATION 00AL05CK0001 LAT. 50D 54M 9S LONG. 110D 17M 51S PR 4 UTM 12 549400E 5639000N FOR JAN 24, 1984 TO DEC 05, 1988 RED DEER RIVER AT BINDLOSS, ALBERTA

		07901L NITROGEN PARTICUL.	08101F OXYGEN DISSOLVED DO	09105L FLUORIDE DISSOLVED	10101L ALKALINITY TOTAL	10151L ALKALINITY PHENOL PHTHALEIN	10301F PH	10301L PH	10401L Residue Nonfiltr.
	SUBM	N	02	F	CACO3	CACO3			
SAMPLES(FLAGS)	ID	MG/L	MG/L	MG/L	MG/L	MG/L	PH UNITS	PH UNITS	MG/L
	0003	58(1)	52(0)	54(0)	56(0)	54(1)	55(0)	58(0)	58(0)
	0446	L.010 1.700	2.60	.1	123.0	.0	7.20	7.50	2.
AVERAGE		.274×	14.30 9.47	.2	314.0	1.2	9.10	8.50	1618.
STD.DEV.	0019	.274×	2.55	.2 .0	192.8	.0×			142.
PERCNT:10TH		.030	7.10	.1	53.0	.2*			290.
25TH		.040	8.05	.2	136.0 151.5	.0	7.50	7.78	2.
MEDIAN 50TH		.155	9.00	. <u>.2</u>	179.5	.0	7.80	8.00	8.
75TH		.340	$1\overline{1.20}$.2	224.0	<u>.0</u>	8.10	<u>8.15</u>	<u>38.</u>
90TH		.860	13.00	.2	285.0	.0	8.30	8.27	129.
SECONDARY CODE		02L	01L	08L 06L	06L 11L	. 0	8.40	8.30	460.
				00L 00L	VOL IIL				
		10602L	11101L	12102L	14101L	15103L	15255L	3560(1	150031
		HARDNESS	SODIUM	MAGNESIUM	SILICA	PHOSPHORUS	PHOSPHORUS	15406L	15901L
		TOTAL	DISSOLVED	DISSOLVED	REACTIVE	DISSOLVED	DISSOLVED	PHOSPHORUS TOTAL	PHOSPHORUS
		(CALCD.)				DISSOLVED	ORTHO PO4	IUIAL	PARTICULATE
	SUBM	CACO3	NA	MG	SI02	P	P	P	(CALCD.) P
•	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)	0462	56(0)	56(0)	56(0)	56(0)	58(3)	58(43)	58(0)	58(3)
LOW	0003	116.9	12.0	10.1	1.0	L.003	L.003	.008	.002
	0446	322.1	45.3	27.4	7.4	.084	.050	.700	.616
AVERAGE	0315	201.4	24.5	17.9	3.4	.013*	.005*	.096	.083*
STD.DEV.		54.6	7.2	4.5	1.6	.016×	.007×	.129	.005* .119*
PERCNT:10TH		146.0	14.9	13.0	1.4	.003	L.003	.011	Q.006
25TH		158.3	18.7	14.1	2.2	.004	L.003	.020	.010
MEDIAN 50TH		<u> 193.8</u>	<u> 24.5</u>	17.2	3.4	.006	L.003	.054	.048
75TH		239.2	29.8	20.6	4.5	.015	.003	.110	.094
90TH		281.9	32.8	25.1	5.7	.028	.005	.260	.255
SECONDARY CODE			03L		02L		56L	.200	.255
		16301L	17206L	19101L	20103L	03301L	04301L	05105L	13303L
		SULPHATE	CHLORIDE	POTASSIUM	CALCIUM	LITHIUM	BERYLLIUM	BORON	ALUMINUM
		DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	EXTRBLE.	EXTRBLE.	DISSOLVED	EXTRBLE.
	SUBM	00/							
	ID	S04	CL	, K	CA	LI	BE	В	AL
SAMPLES(FLAGS)		MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
	0003	56(0) 24.4	56(1)	56(0)	56(0)			58(0)	
HIGH			L.10	1.29	28.5			.020	
AVERAGE		102.0	8.90	5.60	83.8			.140	
STD.DEV.	0315	60.7	4.54*	2.57	51.1			.066	
PERCNT:10TH		14.2	1.79*	. 94	14.7			.024	
		44.3	2.50	1.70	35.7			.040	
25TH		50.7	3.30	1.92	39.5			.050	
MEDIAN 50TH 75TH		<u>58.9</u>	4.30	2.20	48.8			<u>.060</u>	
90TH		69.3	5.60	2.90	61.5			.079	
SECONDARY CODE		73.9	7.10	3.80	73.3			.100	
* THESE STATIST	TTCC T	O6L	ELACOED UTT.	03L					
. HILDE SINITS!	TOO T	MOTODE ANTOE2	LEWGGED ATIH	LJG UK Q					

NAQUADAT SUMMARY REPORT JAN 09, 1991 SURFACE WATER DATA

STATION 00AL05CK0001 LAT. 50D 54M 9S LONG. 110D 17M 51S PR 4 UTM 12 549400E 5639000N FOR JAN 24, 1984 TO DEC 05, 1988 RED DEER RIVER AT BINDLOSS, ALBERTA

SUBI	23020L VANADIUM TOTAL RECOVERABLE 1 VA	23301L VANADIUM EXTRBLE.	24302L CHROMIUM EXTRBLE.	25101L MANGANESE DISSOLVED	25303L Manganese Extrble.	26104L IRON DISSOLVED	26304L IRON Extrble.	27020L COBALT TOTAL RECOVERABLE
ID	MG/L	V MG/L	CR MG/L	MN MG/L	MN	FE	FE	CO
SAMPLES(FLAGS) 046		1107 L	2(2)	57(38)	MG/L	MG/L 57(34)	MG/L	MG/L
LOW 000			L.0010	L.002		L.007		
HIGH 044			L.0010	.030		.120		
AVERAGE 031! STD.DEV.	5			.012*		.032*		
PERCNT: 10TH				.008×		.023×		
25TH				L.002 .004		L.007		
MEDIAN 50TH			L.0010	.012		.011 L.040		
75TH				L.020		L.040		
90TH				L.020		.040		
SECONDARY CODE				04L				
	34102L SELENIUM DISSOLVED	38301L Strontium Extrble.	42301L MOLYBDENUM EXTRBLE.	47301L SILVER EXTRBLE.	48020L Cadmium Total Recoverable	48301L Cadmium Extrble.	56020L BARIUM TOTAL RECOVERABLE	56301L Barium Extrble.
SUBI		SR	мо	AG	CD	CD	BA	ВА
ID SAMPLES(FLAGS) 0462	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
LOW 000								4(0)
HIGH 0446								.110
AVERAGE 031								.230
STD.DEV.	.0004*							.170
PERCNT:10TH	.0002							.049
25TH	.0002							.140
MEDIAN SOTH	.0003							.170 .170
75TH	.0004							.200
90TH	.0004							
SECONDARY CODE	08L							

^{*} THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q

NAQUADAT SUMMARY REPORT JAN 09, 1991 SURFACE WATER DATA

STATION 00AL05CK0001 LAT. 50D 54M 9S LONG. 110D 17M 51S PR 4 UTM 12 549400E 5639000N FOR JAN 24, 1984 TO DEC 05, 1988 RED DEER RIVER AT BINDLOSS, ALBERTA

	80011L MERCURY TOTAL	80311L MERCURY EXTRBLE.	82020L LEAD Total Recoverable	82301L LEAD Extrble.	36001L COLIFORMS TOTAL	36011L COLIFORMS FECAL	36101L STREP. FECAL	36103L FECAL Strep.
0003 0446 0315	HG UG/L 56(42) L.010 .090 .023* .015* .010 L.020 L.020 L.020 .030 11P NCLUDE VALUES	HG UG/L	PB MG∕L	PB MG/L	MPN NO/100ML 44(16) 0. 130. 23.* 36.* L2. L2. 9.* 20. 100.	MPN NO/100ML 52(26)		MF NO/DL

Appendix V. NAQUADAT summary reports from the Red Deer River synoptic surveys, 1983-88.

			•	
•				

RED DEER RIVER DATA

STATION 00AL05CB0600 LAT. 51D 56M 35S LONG. 114D 29M 55S PR 5 UTM 11 672000E 5757400N FOR APR 11, 1983 TO MAR 14, 1988 RED DEER RIVER WEST OF BOWDEN UPSTREAM DICKSON DAM IMPACT STUDY - SITE 1

		00203L TOTAL DISSOLVED SOLIDS	00205L TOTAL Dissolved Solids	02041L SPECIFIC CONDUCT.	02041F SPECIFIC CONDUCT.	02061F TEMPERATURE OF WATER	02071L Turbidity	02074L Turbidity	06001L Carbon Total
	SUBM	(CALCULATED)	306103						ORGANIC
	ID	HG/L	MG/L	US/CM	110 (01)				C
SAMPLES(FLAGS)		64(18)	19(0)	65(0)	US/CH	DEG.C	JTU	NTU	MG/L
LOW		119.	119.	240.	47(0) 244.	63(0)	12(1)	51(0)	24(0)
HIGH		300.	264.	511.0		-1.0	L.1	.5	1.3
AVERAGE		210.*	200.	376.9	507.	17.9	200.0	420.0	14.8
STD.DEV.		36.*	36.	64.8	373.5 58.2	7.0	36.6×	18.3	3.2
PERCNT:10TH		172.	161.	306.0	308.	6.0	76.3×	61.9	2.9
25TH		182.	176.	330.0	328.0	.0	1.0	1.0	1.4
MEDIAN 50TH		211.	195.	370.0		.1	2.5	1.8	1.8
75TH		240.	226.	442.0	<u>369.0</u> 428.	6.5	4.5	<u>3.8</u>	<u>2.2</u>
90TH		258.	255.	460.0		12.1	8.0	9.0	3.4
SECONDARY CODE			£35,	400.0	449.	16.0	200.0	18.0	6.4
							73L		05L
		06101L	06201L	06202L	06301L	0/27/1	A / P. P. I		
		CARBON	BICARBONT.	BICARBONT.	CARBONATE	06536L	06551L	06715L	06720L
		DISSOLVED	(CALCD.)	(CALCD.)	(CALCD.)	PHENOLIC	TANNIN	CHLORO -	CHLOROPHYLL
		ORGANIC	(ONLOD),	(CALCEL)	(CALCD.)	MATERIAL	AND	PHYLL A	-A-
	SUBM	С	HC03	HC03	C03	PHENOL	LIGNIN		PHYTOPLANKTO
	ID	MG/L	MG/L	MG/L	MG/L	No. 4	LIG.SULPH.		N
SAMPLES(FLAGS)		65(2)	65(44)	65(0)	65(44)	MG/L	MG/L	MG/M3	MG/M3
LOW		,2	Q122.9	123.1		64(32)		21(0)	51(3)
HIGH		14.5	Q255.7	256.0	.0	L.001		.1	.0
AVERAGE		2.5×	191.3×	191.6	10.8	1.400		1.4	5.950
STD.DEV.		2.4*	30.1*	30.0	1.0*	.027*		.51	.894×
PERCNT:10TH		.9	Q153.4	156.0	2.4*	.176*		.29	1.211*
25TH		1.2	169.4	169.	.0	L.001		.2	. 0
MEDIAN 50TH		1.6	Q186.3	187.0	Q.1	.001×		.3	.3
75TH		2.8	Q213.1	-	Q <u>.1</u>	<u>L.002</u>		<u>.48</u>	<u>.5</u>
90TH		5.2	Q230.1	213.3	Q.1	.002		.7	1.013
SECONDARY CODE	0	7L 04L	4520.I	230.4	Q5.0	.004		.8	1.680
	•					37L			
		06721L	06722L	07015L	07105L	07111L	07205L	07501L	A7E/31
		CHLOROPHYLL	CHLOROPHYLL	NITROGEN	NITROGEN	NITROGEN	NITROGEN	NITROGEN	07561L
		-A-	A EPILITHIC	TOTAL	DISSOLVED	DISSOLVED	DISSOLVED	TOTAL	NITROGEN
		EPILITHON	SUBSAMPLE	KJELDAHL	NO3 & NO2	NO3 & NO2	NITRITE	AMMONIA	DISSOLVED
	SUBM		(TEMPLATE)	N	N	N N	N	N	AMMONIA
	ID	MG/M2	MG/M2	MG/L	MG/L	MG/L	MG/L	MG/L	N
-SAMPLES(FLAGS)		11(0)	32(0)	65(0)	47(0)	19(0)	19(17)	45(24)	MG/L
LOW		1.6	. 0	.060	.006	.025	L.001	L.01	19(6)
HIGH		50.4	103.0	5.000	.44	.190	.007		L.002
AVERAGE		18.355	25.007	.411	.087	.076	.007 .001*	.070 .014*	. 055
STD.DEV.		13.555	23.543	.691	.080	.054	.001× .001×		.015*
PERCNT:10TH		3.7	2.420	.100	.023	.032		.012*	.018*
25TH		9.4	7.297	.120	.030	.040	L.001	L.01	L.002
MEDIAN 50TH		17.0	19.585	.220	.056		L.001	L.010	L.002
75TH		23.7	33.618	.320	.132	<u>.052</u>	L.001	L.010	<u>.009</u>
90TH		30.0	43.9	.950	.183	.104	L.001	.010	.020
SECONDARY CODE		- · • •	,	21L	07L 10L	.180	.003	.020	.054
* THESE STATIST	ICS I	NCLUDE VALUES	FLAGGED WITH	I .G OR D	VIC TOL		06L	05L	62L
,	_			-,- on 4					

* THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q

RED DEER RIVER DATA

STATION 00AL05CB0600 LAT. 51D 56M 35S LONG. 114D 29M 55S PR 5 UTM 11 672000E 5757400N FOR APR 11, 1983 TO MAR 14, 1988 RED DEER RIVER WEST OF BOWDEN UPSTREAM DICKSON DAM IMPACT STUDY - SITE 1

		07602L Nitrogen Total	07906L Nitrogen Particulate	08101F Oxygen Dissolved	08201L Oxygen Biochem.	08301L Oxygen Total cod	09101L Fluoride Dissolved	10101L Alkalinity Total	10301F PH
		(CALCD.)	TOTAL	DO	DEMAND-BOD		DISSOLATA	TOTAL	
	SUBM	N	N	02	02	02	F	CAC03	
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L		DII INITTO
SAMPLES(FLAGS)		65(0)	19(6)	64(0)	50(8)	65(19)	20(0)	MG/L	PH UNITS
LOW		.103	L.01	7.5	L.1	LO.	.11	65(0)	40(0)
HIGH		2.057	7.20	14.2	5.4	122.2	.17	101.0	6.6
AVERAGE		.406	.524×	10.88	.9×	13.4×	.15	210.0 158.6	8.6
STD.DEV.		.342	1.632*	1.61	.9×	17.4×	.02		
PERCNT:10TH		.125	L.01	8.9	.1	L5.0	.13	24.1 132.0	7
25TH		.223	L.010	9.45	.4	L5.0	.13		7.00
MEDIAN 50TH		.322	.06	10.75	.8	9.1	.14 <u>.14</u>	139.	7.40
75TH		.417	.25	12.05	1.1	15.3		<u>158.</u>	<u>7.70</u>
90TH		.880	. 94	13.0	1.6	21.0	.16	176.	8.00
SECONDARY CODE			• • • • • • • • • • • • • • • • • • • •	02F	02L		.17	189.	8.30
				VEI	UZL	04L	07L 05L		
		10301L	10401L	10602L	10603L	111011			
		PH	RESIDUE	HARDNESS	HARDNESS	11101L	12101L	12102L	14101L
		• • • •	NONFILTR.	TOTAL		SODIUM	MAGNESIUM	MAGNESIUM	SILICA
			HOIN TEIN.	(CALCD.)	TOTAL	DISSOLVED	DISSOLVED	DISSOLVED	REACTIVE
	SUBM						(CALCD.)		
	ID	PH UNITS	MG/L	CACO3	CACO3	NA	MG	MG	SI02
SAMPLES(FLAGS)	20	65(0)		MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
LOW			65(2)	64(0)	52(0)	65(0)	45(0)	65(0)	65(0)
HIGH		7.16	L.4	93.7	113.2	2.20	10.02	7.	3.65
AVERAGE		8.57	1517.	278.2	278.4	6.20	22.74	22.70	6.86
			61.3×	189.7	194.9	4.46	15.74	15.16	4.84
STD.DEV.			236.4×	33.6	31.8	.98	2.86	2.96	.70
PERCNT:10TH		7.60	1.0	154.3	159.4	3.00	12.43	12.	4.00
25TH		8.03	2.6	165.2	167.5	4.	13.43	13.	4.40
MEDIAN 50TH		8.2	<u>6.6</u>	<u> 194.9</u>	<u>198.2</u>	4.70	15.73	15.00	4.70
75TH		8.31	14.4	214.9	219.3	5.10	18.14	17.50	5.26
90TH		8.40	38.5	232.2	232.8	5.60	19.14	19.	5.84
SECONDARY CODE			07L		05L	03L			02L 05L
									VEL VOL
		15101L	15114L	15255L	15406L	15421L	15422L	15901L	15902L
		PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS
		TOTAL	TOTAL	DISSOLVED	TOTAL	TOTAL	TOTAL	PARTICULATE	PARTICULATE
		DISSOLVED	DISSOLVED	ORTHO PO4			10176	(CALCD.)	PARTICULATE
	SUBM	P	P	P	P	P	Р	P	Р
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	•
-SAMPLES(FLAGS)		52(11)	10(0)	14(2)	46(0)	18(4)	10(0)	52(13)	MG/L
LOW		L.003	.0011	L.002	.003	L.006	.0030		12(4)
HIGH		.042	.0043	.270	.460	1.400		.000	L.002
AVERAGE		.008×	.0022	.029×	.026	.1062×	.0113	1.360	1.360
STD.DEV.		.010*	.0009	.070×	.068		.0058	.049×	.140×
PERCNT:10TH		L.003	.0013	L.003	.005	.3299*	.0027	.197×	.391×
25TH		.003	.0017	.004		L.006	.0030	.001	L.002
MEDIAN SOTH		.004	.0020	.004	.007	.0070	.0042	.003	L.002
75TH		.004	.0020	***************************************	<u>.011</u>	.0130	<u>.0052</u>	.007	<u>.005</u>
90TH		.014	.0027	.020	.018	.022	.0071	.014	.017
SECONDARY CODE	n	5L 03L	.0037	.028	. 036	.300	.0102	.032	.258
	U	V-L		56L					

RED DEER RIVER DATA

STATION 00AL05CB0600 LAT. 51D 56M 35S LONG. 114D 29M 55S PR 5 UTM 11 672000E 5757400N FOR APR 11, 1983 TO MAR 14, 1988 RED DEER RIVER WEST OF BOWDEN UPSTREAM DICKSON DAM IMPACT STUDY - SITE 1

		16301L	17201L	19101L	20101L	20105L	36001L	36011L	04301L
		SULPHATE	CHLORIDE	POTASSIUM	CALCIUM	CALCIUM	COLIFORMS	COLIFORMS	BERYLLIUM
		DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	TOTAL	FECAL	EXTRBLE.
						(CALCD.)		LOAL	CAIRDLE.
	SUBM	S04	CL	,K	CA	CA	MPN	MPN	BE
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	NO/100ML	NO/100ML	MG/L
SAMPLES(FLAGS)		65(0)	65(18)	65(0)	64(0)	52(0)	50(5)	50(7)	19(19)
LOW		10.	.30	.6	26.	28.77	.0	.0	L.001
HIGH		70.0	2.60	2.2	74.00	73.94	920.	370.0	
AVERAGE		42.3	.96×	.88	50.93	52.08	66.8×	26.8×	L.001
STD.DEV.		12.0	.45×	.29	8.78	8.45	170.5×		
PERCNT:10TH		28.3	.40	.7	42.	42.77	2.0×	64.6×	
25TH		36.0	.60	.72	44.10	44.94	4.	.0	L.001
MEDIAN 50TH		<u>41.8</u>	LO.	.80	52.00	52.84		2.0	L.001
75TH		48.6	1.00	.9	56.40		<u>20.0</u>	<u>5.0</u>	<u>L.001</u>
90TH		59.5	1.50	1.18	62.60	57.94	32.	20.	L.001
SECONDARY CODE		06L	03L	03L		63.45	98.0	39.0	L.001
			UJL	USL	10L 03L 02L				04L
		13301L	13305L	23001L		*****			
		ALUMINUM	ALUMINUM		23301L	24004L	24302L	25001L	25301L
		EXTRBLE.	EXTRBLE.	VANADIUM	VANADIUM	CHROMIUM	CHROMIUM	MANGANESE	MANGANESE
		EXIRDLE.	EXIKBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE
	SUBM	AL	AL						
	ID	MG/L		V	٧	CR	CR	MN	MN
SAMPLES(FLAGS)	10		MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
LOW		18(3)	19(4)	22(9)	13(10)	19(7)	18(12)	19(11)	18(6)
		L.01	L.020	L.001	L.001	L.001	L.001	L.008	L.004
HIGH		.740	9.910	.059	.010	.039	.008	.667	.280
AVERAGE		.111*	.643×	.006×	.002*	.006×	.002×	.066×	.026×
STD.DEV.		.187×	2.260×	.013×	.003×	.009×	.002×	.172×	.064×
PERCNT:10TH		L.010	L.020	.001	L.001	L.001	L.001	L.008	
25TH		.02	.021	L.002	L.001	L.001	L.001	L.008	L.004
MEDIAN 50TH		.045	.050	.003	L.001	.004	L.001		.005
75TH		.080	.128	.004	L.001	.006	.001	L.008	<u>L.010</u>
90TH		.440	1.210	.006	.004	.017		.013	.017
SECONDARY CODE	02L	. 03L	06L	09L 02L	02L	09L	.004	.413	.043
				· / • · · · · · · · · · · · · · · · · ·	VLL	V 7L		03L	04L
		26301L	27001L	28001L	28301L	29005L	700051	707011	
		IRON	COBALT	NICKEL	NICKEL	COPPER	30005L	30301L	33001L
		EXTRBLE.	TOTAL	TOTAL	EXTRBLE.		ZINC	ZINC	ARSENIC
			101712	TOTAL	EXIRDLE.	TOTAL	TOTAL	EXTRBL.	TOTAL
	SUBM	FE	co	NI	NI	CU	711		
	ID	MG/L	MG/L	MG/L	MG/L		ZN	ZN	AS
-SAMPLES(FLAGS)		65(6)	19(16)	19(1)	18(11)	MG/L	MG/L	MG/L	MG/L
LOW		L.010	L.001	L.001		19(9)	19(6)	18(4)	32(4)
HIGH		8.68	.018		L.001	L.001	L.001	L.001	L.0002
AVERAGE		.425*		.049	.010	.044	.135	.043	.0190
STD.DEV.			.002*	.009*	.002×	.007×	.018*	.006×	.0012×
		1.459*	.004×	.011×	.002*	.013×	.036×	.010×	.0034×
PERCNT:10TH		.010	L.001	.003	L.001	L.001	L.001	L.001	L.0002
25TH		.030	L.001	.004	L.001	L.001	L.001	.001	.0003
MEDIAN 50TH		.070	<u>L.001</u>	<u>.006</u>	L.001	.002	.006	.002	.0004
75TH		.18	L.001	.008	.002	.003	.016	.008	.0004
90TH		.39	.009	.028	.003	.043	.103	.010	.0016
SECONDARY CODE		. 02L	09L	09L	02L	09L	09L	05L	.0016 05L
* THESE STATIST	ICS INC	LUDE VALUES	FLAGGED WITH	L,G OR Q		-	·/-	43L	VSL
				• •					

3 . 1

RED DEER RIVER DATA

STATION 00AL05CB0600 LAT. 51D 56M 35S LONG. 114D 29M 55S PR 5 UTM 11 672000E 5757400N FOR APR 11, 1983 TO MAR 14, 1988 RED DEER RIVER WEST OF BOWDEN UPSTREAM DICKSON

DAM IMPACT STUDY - SITE 1

7 . .

	33101L ARSENIC DISSOLVED	34003L Selenium Total Se	34102L SELENIUM DISSOLVED	42001L Molybdenum Total	48301L Cadmium Extrble.	80002L Mercury Total	80011L Mercury Total	82301L Lead Extrble.
SUBM ID SAMPLES(FLAGS) LOW HIGH AVERAGE STD.DEV.	AS MG/L 5(0) .0002 .008 .0019 .0034	MG/L 20(20) L.0002 L.0002	SE MG/L 6(4) L.0002 .0003 .0002* .0000*	MO MG/L 19(17) L.001 .024 .003* .006*	CD MG/L 18(17) L.001 .001 .001*	HG MG/L 53(50) L.0001 .0002 .0001* .0000*	HG UG/L 10(10) L.05 L.05	PB MG/L 35(24) .001 .012 .003* .002*
PERCNT:10TH 25TH MEDIAN 50TH 75TH 90TH SECONDARY CODE	.0003 .0003 .0005	L.0002 L.0002 L.0002 L.0002 L.0002	L.0002 <u>L.0002</u> .0002	L.001 L.001 <u>L.001</u> L.001 .010	L.001 L.001 <u>L.001</u> L.001 L.001	L.0001 L.0001 <u>L.0001</u> L.0001 L.0001	L.05 L.05 <u>L.05</u> L.05 L.05	L.002 L.002 L.002 L.003 .003

RED DEER RIVER DATA

STATION 00AL05CC1000 LAT. 52D 4M 0S LONG. 114D 13M 0S PR 3 UTM 11 690800E 5771900N FOR JAN 25, 1983 TO MAR 14, 1988 RED DEER RIVER 4KM. BELOW DICKSON DAM

DAM IMPACT ST	UDY - SITE 3	4811	BELOW DICKSON	DAM				
	00203L TOTAL DISSOLVED	00205L TOTAL DISSOLVED	02041L SPECIFIC CONDUCT.	02041F SPECIFIC CONDUCT.	02061F TEMPERATURE OF WATER	02071L Turbidity	02074L Turbidity	06001L Carbon Total
	SOLIDS SUBM (CALCULATED)	SOLIDS						ORGANIC
	ID MG/L	MG/L	US/CH	110 (014				C
SAMPLES(FLAGS)	66(19)	19(0)	67(0)	US/CM 46(0)	DEG.C	JTU	NTU	MG/L
LOW	161.	168.	292.0	228.	64(0) 1.0	12(2)	53(2)	26(0)
HIGH	265.	242.	484.0	447.	16.0	Ł.1 40.0	L.1	1.3
AVERAGE	207.×	200.	373.4	364.7	8.3	9.1×	42.0 4.2*	6.8 3.3
STD.DEV.	24.*	22.	43.6	49.3	5.1	11.5×	7.4*	1.4
PERCNT:10TH	181.	173.	321.	300.	1.7	L.1	.6	1.7
25TH <u>Median</u> 50Th	190.	182.	342.0	342.0	2.5	1.3	1.3	2.2
75TH	<u>202.</u> 9 226.	<u> 196.</u>	<u>361.</u>	<u>365.0</u>	8.3	<u>5.3</u>	1.8	3.2
90TH	241.	222. 236.	420.0	396.	13.3	11.8	4.0	3.8
SECONDARY CODE	671.	230.	438.0	424.	15.0	20.0	7.0	5.9
						73L		05L
	06101L	06201L	06202L	06301L	06536L	06551L	06715L	06720L
	CARBON	BICARBONT.	BICARBONT.	CARBONATE	PHENOLIC	TANNIN	CHLORO -	CHLOROPHYLL
	DISSOLVED	(CALCD.)	(CALCD.)	(CALCD.)	MATERIAL	AND	PHYLL A	-A-
	ORGANIC				PHENOL	LIGNIN		PHYTOPLANKTO
	SUBM C ID MG/L	HC03	HCO3	C03		LIG.SULPH.		N
SAMPLES(FLAGS)	ID MG/L 66(1)	MG/L	MG/L	MG/L	MG/L	MG/L	MG/M3	MG/H3
LOW	L.4	66(46) Q150.9	65(0)	66(46)	67(33)	2(1)	20(0)	48(2)
HIGH	8.7	Q150.9 Q247.2	151.2	.0	L.001	L.1	.4	.0
AVERAGE	2.8×	196.8×	247.5 195.5	10.1	.051	.3	2.2	8.9
STD.DEV.	1.4×	24.7*	23.5	1.0* 2.1*	.003*	.20*	1.10	1.462*
PERCNT:10TH	1.4	169.7	170.	.	.007*	.14*	.48	1.734×
25TH	1.7	178.7	179.	Q.1	L.001 L.001		.55	. 0
MEDIAN 50TH	2.6	193.1	<u> 193.</u>	. <u>.1</u>	L.002	20×	.80	.525
75TH	3.4	213.6	209.7	0.1	.002	<u>.20*</u>	1.00	1.000
90TH	4.8	234.0	230.	Q5.0	.004		1.40 1.82	1.705 3.169
SECONDARY CODE	04L 07L			•	37L		1.02	3.169
	06721L	06722L	070151					
	CHLOROPHYLL		07015L Nitrogen	07105L Nitrogen	07111L	07205L	07501L	07561L
	-A-	A EPILITHIC	TOTAL	DISSOLVED	NITROGEN DISSOLVED	NITROGEN	NITROGEN	NITROGEN
	EPILITHON	SUBSAMPLE	KJELDAHL	NO3 & NO2	NO3 & NO2	DISSOLVED NITRITE	TOTAL	DISSOLVED
	SUBM	(TEMPLATE)	N	NOS & NOZ	NOS & NOZ	N	AINOMMA N	AMMONIA
	ID MG/M2	MG/M2	MG/L	MG/L	MG/L	MG/L	MG/L	N MG/L
SAMPLES(FLAGS)	13(0)	37(0)	66(0)	49(1)	19(0)	21(12)	47(7)	19(0)
LOW	9.8	1.00	.120	L.003	.010	L.001	L.002	.003
HIGH	127.9	760.44	1.12	.187	.100	L.05	.060	.047
AVERAGE	43.085	171.693	.317	.065×	.049	.005×	.017*	.020
STD.DEV. PERCNT:10TH	34.783	177.208	.216	.038×	.024	.011×	.011×	.014
25TH	15.2	7.089	.16	.023	.010	L.001	L.010	.004
MEDIAN 50TH	23.6	31.553	.180	.034	.030	L.001	.010	.009
- 75TH	<u>27.8</u> 45.4	120.53 251.33	<u>.260</u>	<u>.07</u>	.052	<u>L.001</u>	<u>.010</u>	<u>.017</u>
90TH	99.0	251.33 433.1	.360	.080	.069	.003	.020	.028
SECONDARY CODE	//··•	400.1	.500	.109	.075	.006	.03	.042

* THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q

21L

10L

06L

05L

62L

7 6 7

SECONDARY CODE

NAQUADAT SUMMARY REPORT JAN 07, 1991 RED DEER RIVER DATA

STATION 00AL05CC1000 LAT. 52D 4M 0S LONG. 114D 13M 0S PR 3 UTM 11 690800E 5771900N FOR JAN 25, 1983 TO MAR 14, 1988

RED DEER RIVER

4KM. BELOW DICKSON DAM

DAM IMPACT STUDY - SITE 3

	IN	7602L TROGEN TOTAL CALCD.)	07906L NITROGEN Particulate Total	08101F OXYGEN DISSOLVED DO	08201L OXYGEN BIOCHEM.	08301L Oxygen Total cod	09101L FLUORIDE DISSOLVED	10101L Alkalinity Total	10301F PH
s	UBM	N	N	02 02	DEMAND-BOD 02	00			
		IG/L	MG/L	MG/L	MG/L	02	F	CACO3	
SAMPLES(FLAGS)		66(1)	19(10)	66(1)	59(11)	MG/L 67(16)	MG/L	MG/L	PH UNITS
LOW		.130	.003	8.6	L.1	LO.	23(0)	67(0)	43(0)
HIGH		1.149	.230	13.7	3.9	40.0	.11	124.0	6.9
AVERAGE		.367×	.049*	11.45×	1.0*	11.3×	.19	203.0	8.4
STD.DEV.		.221×	.069×	1.31*	.6×	8.2×	.14	162.9	
PERCNT:10TH		.178	L.01	9.6	.3	L5.0	.02	19.6	
25TH		.239	L.01	10.4	.5	5.0	.12	142.0	7.1
MEDIAN 50TH		<u>.323</u>	L.01	11.55	L1.0	8.0	.13	147.0	7.4
75TH		.409	.07	12.6	1.2	15.1	.14	<u>161.0</u>	<u>7.6</u>
90TH		.581	.200	13.1	1.6	24.0	.15	178.1	7.9
SECONDARY CODE				02F	02L	24.0 04L	.16	192.	8.1
				V .	VEL	V4L	05L 07L		
	1	0301L	10401L	10602L	10603L	11101L	12101L	101001	242424
		PH	RESIDUE	HARDNESS	HARDNESS	SODIUM	MAGNESIUM	12102L	14101L
			NONFILTR.	TOTAL	TOTAL	DISSOLVED	DISSOLVED	MAGNESIUM	SILICA
				(CALCD.)	10171	DISSOCACD	(CALCD.)	DISSOLVED	REACTIVE
S	UBM			CACO3	CACO3	NA			
:	ID PH	UNITS	MG/L	MG/L	MG/L	MG/L	MG	MG	S102
SAMPLES(FLAGS)		67(0)	67(4)	66(0)	51(0)	67(0)	MG/L	MG/L	MG/L
LOW		6.97	L.4	136.1	145.1	3.	44(0)	67(0)	67(0)
HIGH		8.57	140.	245.1	224.4		12.05	10.	3.0
AVERAGE			7.7×	187.5		6.	18.64	20.10	6.54
STD.DEV.			17.6×	22.0	190.6	4.48	15.20	14.85	5.03
PERCNT:10TH		7.73	.6	160.9	20.6	.69	1.72	2.03	.78
25TH		7.92	1.3	172.5	166.0	3.50	13.13	12.10	4.10
MEDIAN 50TH		8.18	4.		177.0	4.	13.68	13.30	4.30
75TH		8.32	7. 7.2	<u>184.8</u> 202.4	<u>187.4</u>	4.70	<u>15.06</u>	<u>14.80</u>	<u>5.02</u>
90TH		8.40	14.		214.9	5.00	16.69	16.50	5.56
SECONDARY CODE		0.70	07L	217.7	218.0	5.10	17.24	17.20	6.16
			07L		05L	03L			02L 05L
	1	5101L	15114L	15255L	15406L	15421L	7.54.64		
		SPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS		15422L	15901L	15902L
		TOTAL	TOTAL	DISSOLVED	TOTAL	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS
		SSOLVED	DISSOLVED	ORTHO PO4	TOTAL	TOTAL	TOTAL	PARTICULATE	PARTICULATE
St	UBM	P	P	P ·	P	_	_	(CALCD.)	
		MG/L	MG/L	MG/L	MG/L	Р	P	P	P
-SAMPLES(FLAGS)		54(7)	10(0)	15(0)	48(1)	MG/L	MG/L	MG/L	MG/L
LOW		L.003	.0020	.003		18(1)	10(0)	54(7)	
HIGH		.032	.0060	.030	L.003	L.0060	.0058	.000	
AVERAGE		.007×	.0037	.011	. 055	.134	.0135	.124	
STD.DEV.		.005×	.0014		.013*	.0251*	.0092	.010×	
PERCNT:10TH		L.003	.0023	.008	.011*	.0288×	.0026	.018×	
25TH		.004	.0023	.003	.005	.008	.0063	Q.001	
MEDIAN 50TH		.004		.005	.007	.010	.0074	.002	
- 75TH		.008	.0030	.008	.009	<u>.0180</u>	<u>.0091</u>	.004	
90TH			.0053	.013	.015	.030	.0103	.010	
SECONDARY CODE	03L 0	.012	.0057	.022	.028	.034	.0133	.020	
* THESE STATISTIC	U JEV	DE VALUEA	E! 400EP !!==:: .	56L					
" INFOF SIMITSITE	C2 TUCEO	DE VALUES	LEAGGED MITH [JG OR Q					

RED DEER RIVER DATA

STATION 00AL05CC1000 LAT. 52D 4M 0S LONG. 114D 13M 0S PR 3 UTM 11 690800E 5771900N FOR JAN 25, 1983 TO MAR 14, 1988 RED DEER RIVER 4KM. BELOW DICKSON DAM

DAH	IMPACT	STUDY -	SITE 3
-----	--------	---------	--------

SULPHATE CHIOTIDE POTASSIUN CALCIUM COLIFORNIS CO										
SUBM	04301L	360111	360071	20105L	20101L	19101L	17201L	16301L		
SUBM AL	BERYLLIUM				CALCIUM	POTASSIUM				
SUBH	EXTRBLE.				DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED		
SUBSTRICT SUBS	EXTROLE.	LOAL								
SAMPLES (FLASS) 1 M	BE	MPN	MPN		CA					
SAMPLES (FLASS)	MG/L				MG/L	MG/L			ID	04401 00/01 100
NUMBER 1.00	18(18)				66(0)	67(0)				
HIGH					38.	.5	.40			
AVERAGE STD. DEV. 7.4	L.001					2.3	2.70	56.0		
STD.BEV. 7.4	L.001					1.06	1.02*	37.1		
PERCNI							.45×	7.4		
MEDIAN 50TH 37.							.60	27.0		
HEDIAN 50TH 37.	L.001						.70	32.0		25TH
TSTH 42.0 1.00 1.20 55.00 57.95 12.0 6.0	L.001							37.		MEDIAN 50TH
90TH	<u>L.001</u>									
SECONDARY CODE	L.001	6.0								
13301L 13305L 23001L 23501L 24004L 24302L 25001L 24004L 24302L 25001L 24004L 24302L 25001L 24004L 24302L 25001L 24004L 24302L 24004L 24302L 24004L 24302L 24004L 24302L 24004L 2	L.001	18.0	46.0	58.76						
ALUMINUM EXTRBLE. EXTRBLE. TOTAL VANADIUM EXTRBLE. CHRONIUM CHROIUM CHRONIUM CHRONIUM CHRONIUM CHRONIUM CHRONIUM CHRONIUM CHRONIU	04L				03L 10L 02L	USL	USL	OOL		
ALUMINUM EXTRBLE. EXTRBLE. TOTAL VANADIUM EXTRBLE. CHRONIUM CHROIUM CHRONIUM CHRONIUM CHRONIUM CHRONIUM CHRONIUM CHRONIUM CHRONIU						270011	122051	133011		
EXTRBLE. EXTRBLE. TOTAL EXTRBLE.	25301L	25001L	24302L							
SUBH AL	MANGANESE	MANGANESE	CHROMIUM	CHROMIUM					,	
ID MG/L MG	EXTRBLE	TOTAL	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXIRBLE.	EXIRDLE.		
ID MG/L MG							41	Al	SHRM	
SAMPLES(FLAGS) 18(1) 19(4) 20(10) 12(9) 18(7) 19(14) 18(2) LOW L.010 L.020 L.001 L.001 L.001 L.001 L.001 L.008 AUERAGE .034* .081* .003* .001* .003* .001* .003* .001* .023* STD.DEV035* .072* .001* .001* .002* .001* .001* .023* PERCNT:10TH .01 L.020 L.001 L.001 L.001 L.001 L.001 L.001 MEDIAN 50TH .025 .050 .002* L.001 L.001 L.001 L.001 .011* POTH .07 .22 .005* .002* L.001 L.001 .003 L.001 .011* SECONDARY CODE 02L 031 06L 09L 02L 02L 09L 09L 09L 09L 09L SECONDARY CODE 02L 031 06L 09L 02L 02L 09L 09L 09L 09L SECONDARY CODE 02L 031 06L 09L 02L 02L 09L 09L 09L 09L 09L 09L 09L 09L 09L 09	MN	MN	CR							
LOW	MG/L	MG/L	MG/L	MG/L					ID	SAMPLES (ELACS)
LOW	19(5)	18(2)	19(14)	18(7)						
AVERAGE .034% .081% .003% .001% .003% .001% .003 .064 AVERAGE .034% .081% .003% .001% .003% .001% .023% .001% .023% .001% .002% .001% .002% .001% .002% .001% .001% .001% .001% .001% .001% .001% .001% .001% .001% .001% .001% .001% .001% .001% .001% .001 .001	L.004		L.001	L.001	L.001					
AVERAGE .034* .081* .003* .001* .003* .001* .023* STD.DEV035* .072* .001* .001* .002* .001* .017* PERCNT:10TH .01	.036			.010	.003	.007				
PERCNT:10TH	.036 .012*				.001×	.003×	.081×			
PERCNT:10TH .01					.001×	.001×	.072×	.035×		
MEDIAN 50TH .025 .050 .002 L.001 L.001 L.001 L.001 .011	.009×					L.001	L.020	.01		
MEDIAN 50TH .025 .050 .002* L.001 .003 L.001 .018 .018 .007 .018 .004 .001* .001* .001* .001 .031 .031 .007 .022 .005 .002 .005 .002 .005 .002 .059 .005 .002 .059 .005 .002 .059 .005 .002 .059 .005 .002 .059 .005 .002 .059 .005 .002 .005	L.004						.030	.01		25TH
75TH 90TH .07 .145 .004 .001 .001 .001 .0031 .0031 .007 .22 .005 .002 .005 .002 .005 .002 .059 .002 .059 .002 .059 .002 .005 .002 .005 .002 .059 .002 .005 .002 .005 .002 .059 .002 .005 .004 .002 .005 .004 .008 .024 .020 .005 .005 .004 .005 .002 .005 .005 .004 .005 .004 .008 .004 .006 .005 .004 .005 .004 .005 .005 .004 .005 .005	.005						.050	. 025		MEDIAN 50TH
SECONDARY CODE O2L 03L O6L 09L 02L O2L 09L O9L O9L O3L	<u>L.01</u>	***************************************	The state of the s				***************************************	.040		75TH
SECONDARY CODE 02L 03L 06L 09L 02L 02L 02L 09L 09L 03L 09L 03L 03L 03L 03L 03L 03L 03L 03L 03L 03	.020							.07		90TH
26301L 27001L 28001L 28301L 29005L 30005L 30301L IRON COBALT NICKEL NICKEL COPPER ZINC ZINC EXTRBLE. TOTAL TOTAL EXTRBLE. TOTAL TOTAL EXTRBLE. SUBM FE	.022		.002		—				02L	SECONDARY CODE
TRON COBALT NICKEL NICKEL COPPER ZINC	04L	03L		07L	UZL	V/L VLL	•••			
IRON EXTRBLE. TOTAL TOTAL NICKEL COPPER ZINC		707011	700051	2000E1	283011	280011	27001L	26301L		
SUBM FE CO NI NI CU ZN ZN ZN ID MG/L	33001L						COBALT	IRON		
SUBM FE	ARSENIC							EXTRBLE.		
TD MG/L MG	TOTAL	EXTRBL.	IUIAL	TOTAL	CATABLE.	TOTAL				
TD MG/L MG		****	711	CII	NT	NT	co	FE	SUBM	;
SAMPLES(FLAGS) 67(10) 18(18) 18(3) 19(11) 18(8) 18(5) 19(6) LOW L.01 L.001 L.001 L.001 L.001 L.001 HIGH .860 L.001 .010 .004 .008 .024 .020 AVERAGE .099* .005* .002* .002* .005* .005* STD.DEV143* .003* .001* .002* .006* .005* PERCNT:10TH L.010 L.001 L.001 L.001 L.001 L.001 25TH .020 L.001 .003 L.001 L.001 L.001 L.001 MEDIAN 50TH .06 L.001 .005 L.001 .002 .003 .001	AS								ID	
LOW L.01 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 AVERAGE .099* .005* .002* .002* .005* .005* .004* .005* .	MG/L									SAMPLES(FLAGS)
HIGH .860 L.001 .010 .004 .008 .024 .020 AVERAGE .099* .005* .002* .002* .005* .004* STD.DEV143* .003* .001* .002* .006* .005* PERCNT:10TH L.010 L.001 L.001 L.001 L.001 L.001 L.001 25TH .020 L.001 .003 L.001 L.001 L.001 L.001 MEDIAN 50TH .06 L.001 .005 L.001 .002 .003 .001	31(0)									
AVERAGE .099* .005* .002* .002* .005* .004* .5TD.DEV143* .003* .001* .002* .005* .006* .005*	.0002									
STD.DEV143× .003× .001× .002× .005× .005× PERCNT:10TH L.010 L.001 L.001 L.001 L.001 L.001 L.001 25TH .020 L.001 .003 L.001 L.001 L.001 L.001 MEDIAN 50TH .06 L.001 .005 L.001 .002 .003 .001	.0020						r.oot			
PERCNT:10TH L.010 L.001 L.001 L.001 L.001 L.001 L.001 25TH .020 L.001 .003 L.001 L.001 L.001 L.001 MEDIAN 50TH .06 L.001 .005 L.001 .002 .003 .001	.0006	.004×								
25TH .020 L.001 L.001 L.001 L.001 L.001 L.001 L.001 MEDIAN 50TH .06 L.001 .005 L.001 .002 .003 .001	.0003	.005*	.006×							
MEDIAN 50TH .06 L.001 .005 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001 L.001	.0003		L.001	L.001						
MEDIAN 50TH .06 L.001 .005 L.001 .002 .003 .001	.0003			L.001	L.001	.003				
	,0005				L.001	<u>.005</u>				
11 L.001 .006 .002 .002 .004 .005	.0005				.002	.006	L.001	.11		75111
90TH .25 L.001 .009 .003 .004 012 009	.0007				.003	.009	L.001			
SECONDARY CODE 02L 04L 09L 09L 09L 09L 09L 09L 09L						091	09L			
* THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q	05L	VOL	∀ 7 L.	*/ L		L,G OR D	FLAGGED WITH	LUDE VALUES I	ICS INC	* THESE STATIST:

REQUEST 0010 - 0012 PAGE 8

NAQUADAT SUMMARY REPORT JAN 07, 1991

RED DEER RIVER DATA

STATION 00AL05CC1000 LAT. 52D 4M 0S LONG. 114D 13M 0S PR 3 UTM 11 690800E 5771900N FOR JAN 25, 1983 TO MAR 14, 1988

4KM. BELOW DICKSON DAM

DAM IMPACT STUDY - SITE 3

RED DEER RIVER

* * *

	33101L ARSENIC DISSOLVED	34003L Selenium Total Se	34102L SELENIUM DISSOLVED	42001L Molybdenum Total	48301L Cadmium Extrble.	80002L Mercury Total	80011L Mercury Total	82301L LEAD EXTRBLE.
SUBM ID SAMPLES(FLAGS) LOW HIGH AVERAGE STD.DEV. PERCNT:10TH 25TH MEDIAN 50TH 75TH 90TH SECONDARY CODE	AS MG/L 6(0) .0002 .0009 .0005 .0002 .0003 .0005	MG/L 19(19) L.0002 L.0002 L.0002 L.0002 L.0002 L.0002 L.0002	SE MG/L 7(5) L.0002 .0003 .0002* .0000* L.0002 L.0002	MO MG/L 18(18) L.001 L.001 L.001 L.001 L.001 L.001	CD MG/L 19(18) L.001 .001* .000* L.001 L.001 L.001 L.001	HG MG/L 54(51) L.0001 .0002 .0001* .0000* L.0001 L.0001 L.0001	HG UG/L 11(11) L.00 L.05 L.05 L.05 L.05	PB MG/L 35(24) .001 .005 .003* .001* L.002 L.002 L.003 L.003
* THESE STATISTICS T		05L	C 00 0	09L	02L	15L		02L

RED DEER RIVER DATA

STATION 00AL05CC1700 LAT. 52D 4M 15S LONG. 113D 59H 9S PR 4 UTM 12 295300E 5772900N FOR JAN 25, 1983 TO MAR 14, 1988 RED DEER RIVER AT INNISFAIL HWY. 54 BRIDGE DAM IMPACT STUDY SITE - 4

	SIIRM	00203L TOTAL DISSOLVED SOLIDS (CALCULATED)	00205L TOTAL DISSOLVED SOLIDS	02041L SPECIFIC CONDUCT.	02041F SPECIFIC CONDUCT.	02061F TEMPERATURE OF WATER	02071L Turbidity	02074L Turbidity	06001L Carbon Total Organic
	ID	MG/L	MG/L	110 (01)	***				C
SAMPLES(FLAGS)	20	65(13)	19(0)	US/CH	US/CM	DEG.C	JTU	NTU	MG/L
LOW		156.		66(0)	46(0)	63(0)	13(4)	52(0)	25(0)
HIGH		Q348.	177. 284.	297.0	243.	-1.0	L.1	.3	1.7
AVERAGE		214.*		507.	459.	18.3	150.0	148.0	10.6
STD.DEV.		33.*	206.	381.1	365.6	8.7	14.6×	7.3	4.1
PERCNT:10TH		Q184.	29. 181.	45.3	48.3	5.9	40.8×	21.1	2.1
25TH		191.	184.	329.0	294.	.1	L.1	1.0	2.0
MEDIAN 50TH		Q206.	196.	348.0	342.	2.3	L.1	1.5	2.8
75TH		232.	225.	<u>372.0</u>	<u>363.0</u>	9.3	<u>4.0</u>	<u>2.4</u>	<u>3.6</u>
90TH		256.	249.	402.0	390.	14.1	6.5	4.5	4.3
SECONDARY CODE		250.	247.	448.0	442.	16.5	9.0	10.0	7.0
OLOUNDAN CODE							73L		05L
		06101L	06201L	06202L	06301L	06536L	06551L	06715L	06720L
		CARBON	BICARBONT.	BICARBONT.	CARBONATE	PHENOLIC	TANNIN	CHLORO -	CHLOROPHYLL
		DISSOLVED	(CALCD.)	(CALCD.)	(CALCD.)	MATERIAL	AND	PHYLL A	
		ORGANIC				PHENOL	LIGNIN	THILL A	-A- Phytoplankto
	SUBM	С	HCO3	HC03	C03		LIG.SULPH.		N
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/M3	MG/M3
SAMPLES(FLAGS)		66(0)	66(47)	64(0)	66(47)	66(26)	2(1)	21(0)	
LOW		1.3	Q148.5	148.7	.0	L.001	L.1	.7	48(0)
HIGH		11.0	Q270.4	265.7	16.0	.012	.3	5.38	0.
AVERAGE		4.0	203.4×	202.4	1.9*	.002×	.20×	2.64	12.480 3.117
STD.DEV.		2.3	28.7*	26.7	3.4*	.002*	.14*	1.18	
PERCNT:10TH		1.8	Q172.9	176.	.0	L.001		1.16	2.843 .8
25TH		2.4	Q182.6	183.1	Q.1	.001		1.8	.6 1.457
MEDIAN 50TH		<u>3.2</u>	<u> 196.1</u>	195.8	.1	L.002	.20×	2.6	2.430
75TH		5.0	Q224.1	215.8	1.0	.003	<u> </u>	3.3	<u>2.430</u> 3.628
90TH		7.2	Q252.1	241.4	7.2	.005		3.9	7.613
SECONDARY CODE	04	4L 07L				37L		3.,	7.013
e e		06721L	06722L	07015L	07105L	077771			
		CHLOROPHYLL	CHLOROPHYLL	NITROGEN	NITROGEN	07111L Nitrogen	07205L	07501L	07561L
		-A-	A EPILITHIC	TOTAL	DISSOLVED	DISSOLVED	NITROGEN	NITROGEN	NITROGEN
		EPILITHON	SUBSAMPLE	KJELDAHL	NO3 & NO2	NO3 & NO2	DISSOLVED	TOTAL	DISSOLVED
	SUBM		(TEMPLATE)	N	NOS & NOZ	NOS & NO2	NITRITE	AMMONIA	AMMONIA
	ID	MG/M2	MG/M2	MG/L	MG/L	MG/L	N Mg/L	N	N
-SAMPLES(FLAGS)		13(0)	39(0)	66(0)	48(2)	19(0)	21(11)	MG/L	MG/L
LOW		2.4	.42	.12	L.003	.003	L.001	46(9)	19(3)
HIGH		78.4	433.1	1.560	.242	.370	L.05	L.002	L.002
AVERAGE		39.092	90.469	.410	.058×	.044		.140	.120
STD.DEV.		24.463	84.612	.306	.052×		.005×	.021×	.017×
PERCNT:10TH		5.1	9.636	.160	.006	.085 .004	.011*	.023×	.027×
25TH		15.5	36.38	.200	.015	.005	L.001	L.010	L.002
MEDIAN 50TH		44.5	67.10	.320	.053	.005 <u>.018</u>	L.001	.010	.004
75TH		53.1	120.73	.480	.080		<u>.002</u>	<u>.010</u>	<u>.010</u>
90TH		69.1	202.1	.90	.144	.029 .120	.004	.020	.018
SECONDARY CODE		· -		21L	10L	.120	.008	.05	.040
* THESE STATIST	ICS I	NCLUDE VALUES	FLAGGED WITH	I G OR O	TOL		06L	05L	62L
				-, 4					

NAQUADAT SUMMARY REPORT JAN 07, 1991 RED DEER RIVER DATA

LAT. 52D 4M 15S LONG. 113D 59M 9S PR 4 UTM 12 295300E 5772900N FOR JAN 25, 1983 TO MAR 14, 1988 STATION 00AL05CC1700

RED DEER RIVER AT INNISFAIL HWY. 54 BRIDGE DAM IMPACT STUDY SITE - 4

* THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q

07602L 07906L 08101F 08201L 08301L 09101L 10101L 10301F **NITROGEN NITROGEN** OXYGEN OXYGEN OXYGEN FLUORIDE **ALKALINITY** PH TOTAL PARTICULATE DISSOLVED BIOCHEM. TOTAL COD **DISSOLVED** TOTAL (CALCD.) TOTAL DO DEMAND-BOD SUBM N N 02 02 02 F CAC03 ID MG/L MG/L MG/L MG/L MG/L MG/L MG/L PH UNITS SAMPLES(FLAGS) 66(2) 19(9) 65(0) 50(4) 66(10) 21(0) 66(0) 41(0) LOW .145 L.01 8.0 L.1 LO. .11 122.0 6.2 HIGH 1.495 5.50 14.0 5.1 57.4 . 24 222.0 8.6 AVERAGE .444× .359× 11.16 1.2× 15.6× .14 170.0 STD.DEV. .292× 1.250× 1.48 .9× 10.3× .03 22.9 PERCNT: 10TH .209 L.01 9.1 .4 L5.0 .13 145.0 7.2 25TH .264 L.01 10.2 . 6 7.0 .13 152.0 7.4 MEDIAN 50TH .345 .040 11.0 1.0 14.9 .14 167.0 7.8 **75TH** .520 .16 12.4 1.6 20.0 .15 185.2 8.1 90TH .911 .43 12.9 2.2 29.0 .16 207.0 8.3 SECONDARY CODE 02F 02L 04L 05L 07L 10301L 10401L 10602L 10603L 11101L 12101L 12102L 14101L PH RESIDUE **HARDNESS HARDNESS** SODIUM MAGNESIUM MAGNESIUM SILICA NONFILTR. TOTAL TOTAL **DISSOLVED** DISSOLVED **DISSOLVED** REACTIVE (CALCD.) (CALCD.) SUBM CAC03 CAC03 NA MG MG S102 ID PH UNITS MG/L MG/L MG/L MG/L MG/L MG/L MG/L SAMPLES (FLAGS) 66(0) 65(2) 65(0) 51(0) 66(0) 44(0) 66(0) 66(0) LOW 7.09 L.4 147.4 147.5 3.50 11.43 11.40 2.50 HIGH 8.71 674. 252.9 242.0 158. 18.94 21.40 7.70 **AVERAGE** 21.9× 186.5 189.3 9.57 15.18 15.04 4.83 STD.DEV. 89.2× 26.0 25.1 18.82 2.09 2.27 1.13 PERCNT:10TH 7.59 1.3 158.9 159.0 4.40 12.73 12.70 3.40 25TH 8.04 3.0 167.5 171.6 5.50 13.73 13.50 4.10 MEDIAN 50TH 8.26 5.6 180.0 183.5 7.00 14.88 14,10 4.67 **75TH** 8.4 9.0 206.9 214.1 8.20 17.09 16.80 5.75 90TH 8.50 18.0 228.1 228.3 10.00 18.04 18.10 6.50 SECONDARY CODE 07L 05L 03L 02L 05L 15101L 15114L 15255L 15406L 15421L 15422L 15901L 15902L **PHOSPHORUS PHOSPHORUS PHOSPHORUS PHOSPHORUS PHOSPHORUS PHOSPHORUS PHOSPHORUS PHOSPHORUS** TOTAL TOTAL DISSOLVED TOTAL TOTAL TOTAL PARTICULATE PARTICULATE DISSOLVED DISSOLVED ORTHO PO4 (CALCD.) SUBM P P P P P Р P Р ID MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L -SAMPLES(FLAGS) 53(3) 10(0) 16(2) 47(0) 18(0) 10(0) 53(3) 12(3) LOW L.003 .0026 L.002 .005 .008 .0088 .002 L.002 HIGH .081 .0121 .067 .350 .640 .0252 .620 .620 **AVERAGE** .012× .0060 .015× .029 .0588 .0147 .028× .062× STD.DEV. .014× .0030 .019* .052 .1472 .0050 .093× .176× PERCNT:10TH .004 .0027 .008 L.002 .008 .0094 .003 L.002 **25TH** .005 .0043 .004 .011 .010 .0101 .004 .003× MEDIAN 50TH .008 .0054 .007 .014 .0160 .0148 .008 .011 **75TH** .012 .0087 .018 .022 .0260 .0166 .014 .017 90TH .024 .0104 .055 .059 .112 .0221 .037 .040 SECONDARY CODE 03L 05L

56L *

RED DEER RIVER DATA

STATION 00AL05CC1700 LAT. 52D 4M 15S LONG. 113D 59M 9S PR 4 UTM 12 295300E 5772900N FOR JAN 25, 1983 TO MAR 14, 1988 RED DEER RIVER AT INNISFAIL HWY. 54 BRIDGE DAM IMPACT STUDY SITE - 4

		16301L SULPHATE DISSOLVED	17201L CHLORIDE DISSOLVED	19101L POTASSIUM DISSOLVED	20101L CALCIUM DISSOLVED	20105L CALCIUM DISSOLVED (CALCD.)	36001L Coliforms Total	36011L COLIFORMS FECAL	04301L Beryllium Extrble.
	SUBM	S04	CL	K	CA	CA	MPN	MDM	
	ID	MG/L	MG/L	MG/L	MG/L	MG/L		MPN	BE
SAMPLES(FLAGS)		66(0)	66(13)	66(0)	65(0)	51(0)	NO/100ML	NO/100ML	MG/L
LOW		18.6	.50	.85	36.10	36.06	49(1)	49(5)	
HIGH		54.4	11.00	20.70	66.40	66.36	0.	.0	
AVERAGE		34.0	1.71×	1.70	49.83	50.62	G2400.	G2400.	
STD.DEV.		8.1	1.55×	2.47	7.12	6.91	130.7×	84.9×	
PERCNT:10TH		25.	.90	.97	42.70	42.97	383.3×	360.7×	
25TH		27.6	LO.	1.00	44.00	46.06	4.0	0.	
MEDIAN 50TH		34.4	1.10	1.19	48.50		8.0	2.	
75TH		39.4	2.00	1.50	54.00	<u>48.96</u>	<u>20.0</u>	<u>4.</u>	
90TH		44.5	3.20	2.11	61.40	55.96	50.0	12.	
SECONDARY CODE		06L	03L	03L	03L 10L	61.35	300.	40.0	
			***	VJL	OJL IVE				
		13301L	13305L	23001L	23301L	24004L	24302L	050011	
		ALUMINUM	ALUMINUM	VANADIUM	VANADIUM	CHROMIUM		25001L	25301L
		EXTRBLE.	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	CHROMIUM Extrble.	MANGANESE	MANGANESE
						TOTAL	EXIRDLE.	TOTAL	EXTRBLE
	SUBM	AL	AL	V	V	CR	CR	MN	MAI
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MN
SAMPLES(FLAGS)		3(0)			2(1)	1107 &	3(1)	rio/ L	MG/L
LOW		.01			L.001		L.001		3(0)
HIGH		.030			.001				.007
AVERAGE		.020			.001×		.008		.036
STD.DEV.		.010			.000×		.003×		.024
PERCNT:10TH					.000*		.004×		.015
25TH									
MEDIAN 50TH		.020			.001×				
75TH		***************************************			-001×		<u>.001</u>		<u>.03</u>
90TH									
SECONDARY CODE	02L	03L			02L				
					UZL				04L
		26301L	27001L	28001L	28301L	29005L	30005L	707031	77001
		IRON	COBALT	NICKEL	NICKEL	COPPER	ZINC	30301L	33001L
		EXTRBLE.	TOTAL	TOTAL	EXTRBLE.	TOTAL	TOTAL	ZINC	ARSENIC
					CATIOLL	IOIAL	TOTAL	EXTRBL.	TOTAL
	SUBM	FE	CO	NI	NI	CU	ZN	ZN	AS
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	
-SAMPLES(FLAGS)		64(10)			3(2)	1107 L	1107 L		MG/L
LOW		L.01			L.001			3(1)	3(0)
HIGH		3.30			.002			L.001	.0003
AVERAGE		.167×			.001*			.006	.0007
STD.DEV.		.432×			.001×			.004*	.0005
PERCNT:10TH		L.010			, 00T×			.003×	.0002
25TH		.025							
MEDIAN 50TH		.060			1 007				
75TU		.120			<u>L.001</u>			.005	<u>.0005</u>
90TH		.33							
SECONDARY CODE	001	.33 04L							
	UZL The The	INDE VALUES	EL AGOED HERE:		02L			05L	05L
* THESE STATIST	TC2 THC	LUDE VALUES	PLAGGED WITH (L,G OR Q					

REQUEST 0010 - 0012 PAGE 12

NAQUADAT SUMMARY REPORT JAN 07, 1991

RED DEER RIVER DATA

STATION 00AL05CC1700 LAT. 52D 4M 15S LONG. 113D 59M 9S PR 4 UTM 12 295300E 5772900N FOR JAN 25, 1983 TO JAN 11, 1988 RED DEER RIVER AT INNISFAIL HWY. 54 BRIDGE DAM IMPACT STUDY SITE - 4

	33101L Arsenic Dissolved	34003L SELENIUM Total Se	34102L SELENIUM DISSOLVED	42001L Molybdenum Total	48301L Cadmium Extrble.	80002L Mercury Total	80011L Mercury Total	82301L LEAD Extrble.
	UBM AS	MG/L	SE	МО	CD	HG	HG	РВ
	ID MG/L		MG/L	MG/L	MG/L	MG/L	UG/L	MG/L
SAMPLES(FLAGS)		1(0)	1(1)		3(3)	6(6)	1(1)	3(2)
LOW		.0004	L.0002		L.001	L.0001	L.05	L.002
HIGH		.0004	L.0002		L.001	L.0001	L.05	.004
AVERAGE STD.DEV.								.003×
PERCNT:10TH								.001×
25TH								
MEDIAN 50TH						L.0001		
75TH					<u>L.001</u>	L.0001		L.002
90TH						L.0001		
SECONDARY CODE		651						
	CC THOLUDE UNLIFE	05L			02L	15L		02L
* THESE STATISTIC	CO THEFORE AMPREZ	FLAGGED WITH	L,G OR Q					

...

NAQUADAT SUMMARY REPORT JAN 07, 1991

RED DEER RIVER DATA

STATION 00AL05CC1800 LAT. 52D 15M 39S LONG. 113D 52M 41S PR 3 UTM 12 303600E 5793750N FOR JAN 25, 1983 TO FEB 24, 1987 RED DEER RIVER ABOVE RED DEER FT. NORMANDEAU DAM IMPACT STUDY - SITE 5

	SUBM	00203L TOTAL DISSOLVED SOLIDS (CALCULATED)	00205L TOTAL DISSOLVED SOLIDS	02041L SPECIFIC CONDUCT.	02041F SPECIFIC CONDUCT.	02061F TEMPERATURE OF WATER	02071L Turbidity	02074L Turbidity	06001L Carbon Total Organic
	ID	MG/L	MG/L	US/CM	US/CM	DE0 0			C
SAMPLES(FLAGS)		52(15)	18(0)	54(0)	34(0)	DEG.C	JTU	NTU	MG/L
LOW		159.	179.	304.0	234.	52(0)	12(2)	41(0)	15(0)
HIGH		285.	248.	471.0	458.	-1.0	L.1	.5	1.8
AVERAGE		210.*	204.	377.3	352.0	26.3	85.0	144.0	10.6
STD.DEV.		27.*	22.	45.3	51.3	9.9	10.5×	7.9	4.9
PERCNT:10TH		Q183.	181.	324.0	280.	7.1	23.8×	23.2	2.5
25TH		190.	185.	339.	335.0	.0 2.3	L.1	.8	1.8
MEDIAN 50TH		204.	202.	370.5	355.5		1.0	1.4	3.6
75TH		230.	217.	407.0	382.	11.3	<u>2.8</u>	<u>2.0</u>	4.4
90TH		Q248.	245.	444.0	393.	15.4	6.3	2.8	6.7
SECONDARY CODE		4		777.0	. 373.	18.0	15.0	16.0	9.0
							73L		05L
		06101L	06201L	06202L	06301L	06536L	04551	A/73 F1	
		CARBON	BICARBONT.	BICARBONT.	CARBONATE	PHENOLIC	06551L	06715L	06720L
		DISSOLVED	(CALCD.)	(CALCD.)	(CALCD.)	MATERIAL	TANNIN	CHLORO -	CHLOROPHYLL
		ORGANIC		(0,,102,7)	(ONLOD.)	PHENOL	AND	PHYLL A	-A-
	SUBM	C	HCO3	HC03	C03	FRENUL	LIGNIN		PHYTOPLANKTO
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	LIG.SULPH.	***	N
SAMPLES(FLAGS)		52(0)	54(34)	52(0)	54(34)		MG/L	MG/M3	MG/M3
LOW		1.2	135.8	135.8	.0	54(17) L.001	2(1)	2(0)	50(0)
HIGH		10.3	Q270.4	265.7	.0 15.4		L.1	4.39	.0
AVERAGE		4.2	200.2×	198.0	2.7*	.032	.3	4.4	24.067
STD.DEV.		2.3	30.4×	28.3	2.7× 3.8×	.003×	.20*	4.40	2.280
PERCNT:10TH		1.6	166.5	166.	Q.1	.005×	.14*	.01	3.398
25TH		2.5	Q177.7	177.5	•	L.001			.250
MEDIAN 50TH		3.7	195.2	195.0	Q.1	.001			1.0
75TH		5.3	Q220.4	215.0	6.0	<u>.002</u>	<u>.20*</u>	<u>4.40</u>	<u>1.621</u>
90TH		6.9	9238.7	234.	*	.003			2.625
SECONDARY CODE	1	04L 07L	450.1	234.	8.0	.005 37L			4.400
						3/L			*
4		06721L	06722L	07015L	07105L	07111L	07205L	07501L	07561L
		CHLOROPHYLL	CHLOROPHYLL	NITROGEN	NITROGEN	NITROGEN	NITROGEN	NITROGEN	NITROGEN
		-A-	A EPILITHIC	TOTAL	DISSOLVED	DISSOLVED	DISSOLVED	TOTAL	DISSOLVED
		EPILITHON	SUBSAMPLE	KJELDAHL	NO3 & NO2	NO3 & NO2	NITRITE	AMMONIA	AMMONIA
	SUBM		(TEMPLATE)	N	N	N	N	N	N
	ID	MG/M2	MG/M2	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
-SAMPLES(FLAGS)		13(0)	18(0)	54(0)	39(12)	18(2)	20(13)	35(13)	18(3)
LOW		8.5	18.35	.100	L.003	L.001	L.001	L.002	L.002
HIGH		355.9	350.9	2.00	.305	.360	L.05	.160	.110
AVERAGE		63.500	136.141	.446	.059×	.041*	.007×	.023×	.110 .017*
STD.DEV.		90.441	96.308	.349	.073×	.089×	.015*	.025×	.017* .025*
PERCNT:10TH		13.9	24.21	.18	L.003	L.001	L.001	L.01	.025* L.002
25TH		29.6	46.79	.240	L.003	.002	L.001	L.010	
MEDIAN 50TH		<u>43.1</u>	106.645	.320	.035	.005	L.001	.010	.006
75TH		51.4	213.33	.52	.088	.047	.004	.010	.009 .017
90TH		86.0	252.12	.980	.163	.160	.031×	.05	.017
SECONDARY CODE				211	10L 07L	.200	06L	. 05 05L	. U34 62L
* THESE STATIST	ICS :	INCLUDE VALUES	FLAGGED WITH	L,G OR Q	-			V id Eq	OZL

RED DEER RIVER DATA STATION 00AL05CC1800 LAT. 52D 15M 39S LONG. 113D 52M 41S PR 3 UTM 12 303600E 5793750N FOR JAN 25, 1983 TO FEB 24, 1987

RED DEER RIVER ABOVE RED DEER DAM IMPACT STUDY - STTE E

FT. NORMANDEAU

DAM IMPACT ST	UDY -	SITE 5		हैं। देख					
		07602L Nitrogen Total	07906L NITROGEN	08101F OXYGEN	08201L Oxygen	08301L Oxygen	09101L Fluoride	10101L Alkalinity	10301F PH
		(CALCD.)	PARTICULATE TOTAL	DISSOLVED DO	BIOCHEM.	TOTAL COD	DISSOLVED	TOTAL	
	SUBM	N N	N	02∞ ΩΩ	DEMAND-BOD 02		_		
	ID	MG/L	MG/L	MG/L	MG/L	02 MG/L	F	CACO3	
SAMPLES(FLAGS)		54(14)	18(8)	54(1)	45(3)	167L 54(9)	MG/L	HG/L	PH UNITS
LOW		Q.103	L.01	8.3	.3	10.	20(0) .13	54(0)	27(0)
HIGH		2.188	26.90	14.3	4.1	55.0	.19	126.0	6.6
AVERAGE		.493×	1.673×	11.05×	1.2×	15.8×	.14	222.0 168.8	8.7
STD.DEV.		.388×	6.303×	1.49×	.8×	10.8*	.01	22.9	
PERCNT:10TH		.217	L.01	9.0	.5	L5.0	.13	144.0	7.3
25TH		.275	L.01	9.8	.8	6.3	.14	150.	7.5 7.4
MEDIAN 50TH		<u>.347</u>	<u>. 050</u>	11.30	L1.0	14.1	.14	164.0	8.0
. 75TH		.583	.39	12.2	1.5	20.	.15	184.0	8.2
90TH		1.026	1.20	12.9	2.0	30.0	.16	201.9	8.5
SECONDARY CODE				02F	02L	04L	05L 07L	201.9	0.5
		10301L	10401L	10602L	10603L	11101L	12101L	12102L	14101L
		PH	RESIDUE	HARDNESS	HARDNESS	SODIUM	MAGNESIUM	MAGNESIUM	SILICA
			NONFILTR.	TOTAL	TOTAL	DISSOLVED	DISSOLVED	DISSOLVED	REACTIVE
				(CALCD.)			(CALCD.)	DISSULACD	KENCITAE
	SUBM			CACO3	CACO3	NA	MG	MG	S102
	ID	PH UNITS	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)		54(0)	53(4)	53(0)	39(0)	54(0)	33(0)	54(0)	54(0)
LOW		7.21	L.4	149.3	152.9	3.50	11.43	11.40	1.60
HIGH		8.67	338.0	260.8	236.2	14.	18.74	21.50	7.50
AVERAGE			18.8×	185.1	188.2	7.08	14.92	14.86	4.44
STD.DEV.			63.6×	26.0	23.7	2.34	2.15	2.25	1.35
PERCNT:10TH		7.55	.6	155.9	159.5	4.20	12.63	12.60	2.70
25TH		7.86	1.6	165.9	169.8	5.40	13.22	13.00	3.7
MEDIAN 50TH		8.28	<u>4.</u>	<u>179.1</u>	184.0	6.85	14.43	14.05	4.28
75TH		8.5	9.6	192.7	212.3	8.00	16.43	16.00	5.30
90TH		8.6	20.0	222.7	222.9	9.80	18.14	18.10	6.40
SECONDARY CODE			07L		05L	03L			02L 05L
		15101L	15114L	15255L	15406L	15421L	15422L	15901L	15902L
		PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS
		TOTAL	TOTAL	DISSOLVED	TOTAL	TOTAL	TOTAL	PARTICULATE	PARTICULATE
		DISSOLVED	DISSOLVED	ORTHO PO4				(CALCD.)	· ····································
	SUBM	P	P	P	P	P	P	P	P
#CAMPI FO/FI 100)	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES(FLAGS)		42(4)	3(0)	15(3)	36(0)	17(1)	3(0)	42(5)	11(2)
LOW		L.003	.0045	L.002	.005	L.006	.0169	Q038	L.002
HIGH		.090	.0086	.082	.360	.300	.0245	.309	.280
AVERAGE		.014*	.0071	.013*	.030	.0385×	.0197	.024*	.034*
STD.DEV.		.017*	.0023	.020*	.061	.0709×	.0042	.062*	.082×
PERCNT:10TH		.003		L.002	.006	.0070		Q.002	L.002
25TH		.005		.003	.008	.010		.004	.003
MEDIAN SOTH		.009	.0083	<u>.006</u>	<u>.015</u>	<u>.0180</u>	<u>.0177</u>	.008	.010
75TH 90TH		.012		.013	.020	.0270		.012	.018
SECONDARY CODE	•	.026 3L 05L		.027	.060	.098		.032	.030

56L

7.5.7

SECONDARY CODE

* THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q

NAQUADAT SUMMARY REPORT JAN 07, 1991 RED DEER RIVER DATA

STATION 00AL05CC1800 LAT. 52D 15M 39S LONG. 113D 52M 41S PR 3 UTM 12 303600E 5793750N FOR JAN 25, 1983 TO FEB 24, 1987 RED DEER RIVER ABOVE RED DEER FT. NORMANDEAU

DAM IMPACT STUDY - SITE 5

1.6301L 17201L 19101L 20101L											
SUPPLATE CHLORIDE DISSOLVED DISSOL				16301L		19101L	20101L	201051	360011	360171	067011
SUBH					CHLORIDE						
SAMPLESIFLAGS) SUBH NO7L SAMPLESIFLAGS) SAMPLESIFL				DISSOLVED	DISSOLVED	DISSOLVED					
SUBBLE SOURCE SUBBLE SOURCE SUBBLE SOURCE S									TOTAL	ILUAL	ENIRDLE.
SAMPLESIFLAGS) AMPLESIFLAGS					CL	K	CA		MPN	MDN	D.C.
SAMPLES(FLAGS) 54(0) 53(14) 56(1) 53(0) 39(0) 42(11) 42(11) 13(16) 1.0			ID		MG/L	MG/L					
COM	S				53(14)	54(1)					
AVERAGE AVERAGE SUBH AL AUTHOR AUTHOR AVERAGE SUBH AL AUTHOR AUTHOR AVERAGE AVERAGE AVERAGE SUBH AL AUTHOR AUTHOR AVERAGE AVERAG				18.9	.50	L.20					
AVERAGE 33.5. 1.50x 1.49x 49.54 50.47 111.0x 22.2x 1.00				49.5	5.10						
STD.DEV. 7.4 97% 99% 7.01 6.36 375.5% 85.9%				33.5	1.50×						
PERCKYT-10TH		STD.DEV.		7.4	.97×						
STH 27.6 L0.		PERCNT:10TH		24.7	.80						
HEDIAN SOTH 33.6 1.00 1.20 48. 49.87 13.0 2.0 1.001		25TH		27.6	LO.						
75TH 39.1 2. 1.60 55.70 26.02 20.12 20.00 60.00 60.95 180.0 80.0 1.001		MEDIAN 50TH		33.6	1.00						
SECONDARY CODE		75TH		39.1							
SECONDARY CODE		90TH									
13301L 13305L 23001L 23001L 24004L 24302L 25001L ALUHINUH ALUMINUH EXTRBLE. DTOTAL EXTRBLE. DTOTAL EXTRBLE. EXTRBLE	S	ECONDARY CODE						00.75	180.0	38.	
ALUHINUM ALUHINUM EXTRBLE. TOTAL EXTRBLE.				**-	70L	USE	025 105 055				04L
ALUHINUM ALUHINUM EXTRBLE. TOTAL EXTRBLE.				133011	133061	230011	277011	0/00/1			
SUBH AL AL W V CR CR MN MG/L MG											25301L
SUBH AL AL V V CR CR HN MN MN											MANGANESE
SAMPLES(FLAGS)				EXINDLE.	CXIRDLE.	IUIAL	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL	EXTRBLE
SAMPLES(FLAGS)			SURM	A i	4.1						
SAMPLES (FLAGS) 17(2) 18(5) 18(7) 8(5) 18(6) 16(11) 18(4) 17(2) 18(4) 17(2) 18(5) 18(6) 16(11) 18(4) 17(2) 18(4) 17(2) 18(4) 17(2) 18(4) 17(2) 18(4) 17(2) 18(4) 17(2) 18(4) 17(2) 18(4) 17(2) 18(4) 17(2) 18(4) 17(2) 18(4) 17(2) 18(4) 17(2) 18(4) 17(2) 18(4) 17(2) 18(4) 18(4) 17(2) 18(4) 18(4) 17(2) 18(4) 18(4) 17(2) 18(4) 18(4) 17(2) 18(4) 18(4) 17(2) 18(4) 18(4) 17(2) 18(4) 18(4) 17(2) 18(4) 18(4) 17(2) 18(4) 18(4) 17(2) 18(4) 18(4) 17(2) 18(4) 18(4) 17(2) 18(4) 18(4) 18(4) 18(4) 18(4) 18(4) 18(4) 18(4) 18(4) 18(4) 18(4) 18(4) 18(4) 18(4) 18(4) 18(5) 1							-			MN	MN
LOW	•	AMDI ECCEL ACCA	10						MG/L	MG/L	MG/L
HIGH	3							18(6)	16(11)	18(4)	17(2)
AVERAGE .0.85* .107* .004* .002* .003* .003* .029* .032* .032* .550 AVERAGE .0.85* .172* .003* .002* .003* .003* .003* .051* .052* .055* .							L.001	L.001	L.001	L.008	L.004
AVERAGE .085% .107% .004% .002% .003% .002% .02% .029% .032% STD.DEV185% .172% .003% .003% .003% .003% .003% .051% .055% .057% .057% .003% .003% .003% .003% .003% .051% .055% .057% .057% .003% .000% .0001 .0001 .0008 .001 .001 .001 .0008 .001 .001							.005	.010	L.01	.226	
STORT STOR						.004×	.002×	.003×	.002*		
PERCNI:10TH					.172×	.003×	.002×	.003×	.003×		
MEDIAN SOTH .01					L.020	L.002		L.001			
MEDIAN				.01	L.020	L.002	L.001				
TSTH				<u>.03</u>	.043	.003					
90TH .150 .385 .005 .009 .006 .055 .04 SECONDARY CODE 02L 03L 06L 09L 02L 09L 02L 09L 03L 04L 26301L 27001L 28001L NICKEL COPPER ZINC ZINC ARSENIC EXTRBLE. TOTAL TOTAL EXTRBLE. TOTAL MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/		75TH		.040	.070	.004					
SECONDARY CODE O2L 03L O6L		90TH		.150	.385	.005	••••				
26301L 27001L 28001L 28301L 29005L 30005L 30301L 33001L ARSENIC ZINC ZI	S	ECONDARY CODE	02L	03L			021		.000		
TRON COBALT NICKEL NICKEL COPPER ZINC ZINC ARSENIC TOTAL TOTAL EXTRBLE. TOTAL TOTAL EXTRBLE. TOTAL EXTRBLE. TOTAL TOTAL EXTRBLE. TOTAL TOTAL EXTRBLE. TOTAL TOTAL EXTRBLE.										USL	04L
IRON EXTRBLE. TOTAL TOTAL EXTRBLE. TOTAL EXTRBLE. TOTAL EXTRBLE. TOTAL EXTRBLE. TOTAL EXTRBLE. TOTAL EXTRBL. TOTAL EXTRBLE. TOTAL EXTRBLE. TOTAL EXTRB				26301L	27001L	28001L	283011	290051	3000EI	707011	770071
EXTRBLE. TOTAL TOTAL EXTRBLE. TOTAL TOTAL EXTRBLE. TOTAL EXTRBL. TOTAL EXTRBL. TOTAL				IRON							
SUBH FE C0 NI NI CU ZN ZN AS ID MG/L				EXTRBLE.							
TID MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L							CATABLE.	IOIAL	IOIAL	EXIRDL.	IUIAL
TD MG/L MG			SUBM	FE	CO	NI	NT	CH	711	71.1	40
SAMPLES(FLAGS) 54(3) 18(16) 18(4) 17(9) 18(6) 18(5) 17(3) 26(0) LOW L.010 L.001 L.001 L.001 L.001 L.001 L.001 .0002 HIGH 3.920 .004 .153 .012 .008 .027 .055 .0046 AVERAGE .247* .001* .014* .003* .002* .006* .011* .0009 STD.DEV613* .001* .035* .003* .002* .008* .017* .0010 PERCNT:10TH .010 L.001 L.001 L.001 L.001 L.001 L.001 .0004 25TH .040 L.001 .003 L.001 L.001 L.001 L.001 .0001 .0004 MEDIAN 50TH .080 L.001 .006 L.001 L.001 L.001 .0005 90TH .490 .002 .013 .009 .004 .024 .048 .0021 SECONDARY CODE 02L 04L 09L 09L 09L 001			ID								
LOW L.010 L.001 L.001 L.001 L.001 L.001 L.001 .0002 HIGH 3.920 .004 .153 .012 .008 .027 .055 .0046 AVERAGE .247* .001* .014* .003* .002* .006* .011* .0009 STD.DEV613* .001* .035* .003* .002* .008* .017* .0010 PERCNT:10TH .010 L.001 L.001 L.001 L.001 L.001 L.001 .0004 25TH .040 L.001 .003 L.001 L.001 L.001 L.001 .0001 .0004 MEDIAN 50TH .080 L.001 .003 L.001 L.001 L.001 .0005 90TH .080 L.001 .007 .003 .002 .003 .003 .0006 90TH .490 .002 .013 .009 .004 .024 .048 .0021 SECONDARY CODE 02L 04L 09L 09L 09L 002L .001	 S	AMPLES(FLAGS)									
HIGH 3.920 .004 .153 .012 .008 .027 .055 .0046 AVERAGE .247* .001* .014* .003* .002* .006* .011* .0009 STD.DEV613* .001* .035* .003* .002* .008* .017* .0010 PERCNT:10TH .010 L.001 L.001 L.001 L.001 L.001 L.001 .0004 25TH .040 L.001 .003 L.001 L.001 L.001 L.001 .0001 .0005 MEDIAN 50TH .080 L.001 .006 L.001 .002 .003 .003 .0006 90TH .490 .002 .013 .009 .004 .024 .048 .0021 SECONDARY CODE 02L 04L 09L 09L 09L 001											
AVERAGE .247* .001* .014* .003* .002* .006* .011* .0009 STD.DEV613* .001* .035* .003* .002* .008* .017* .0010 PERCNT:10TH .010											
STD.DEV613* .001* .035* .003* .002* .008* .011* .0009 PERCNT:10TH .010											
PERCNT:10TH .010 L.001 L.001 L.001 L.001 L.001 L.001 .0004 25TH .040 L.001 .003 L.001 L.001 L.001 L.001 .0005 MEDIAN 50TH .080 L.001 .006 L.001 .002 .003 .000 75TH .16 L.001 .007 .003 .002 .007 .010 .0009 90TH .490 .002 .013 .009 .004 .024 .048 .0021 SECONDARY CODE 02L 04L 09L 09L 09L 001 .001											
25TH .040 L.001 .003 L.001 L.001 L.001 .0005 MEDIAN 50TH .080 L.001 .006 L.001 .002 .003 .003 .0006 75TH .16 L.001 .007 .003 .002 .007 .010 .0009 90TH .490 .002 .013 .009 .004 .024 .048 .0021 SECONDARY CODE 02L 04L 09L 09L 09L 001											
MEDIAN 50TH .080 L.001 .006 L.001 .002 .003 .003 .0006 .0007 .0007 .0007 .0007 .0007 .0009 .											
75TH .16 L.001 .007 .003 .002 .007 .010 .0009 90TH .490 .002 .013 .009 .004 .024 .048 .0021 SECONDARY CODE 02L 04L 09L 09L 09L 09L 09L 09L 09L 09L 09L 09											.0005
90TH .490 .002 .013 .009 .004 .024 .048 .0021 SECONDARY CODE 02L 04L 09L 09L 02L 09L 09L 09L 09L 09L 09L 09L 09L 09L 09						***************************************	-		.003	.003	.0006
901h .490 .002 .013 .009 .004 .024 .048 .0021 SECONDARY CODE 02L 04L 09L 09L 02L 02L 09L 09L 09L	-								.007		
SECONDARY CODE UZL U4L 09L 09L 09L 021 001 001 001	~							.004	.024	.048	
* THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q			02L	U4L	09L	09L ~	02L	09L	09L		
	*	INESE STATEST	ITCS INC	LUDE VALUES	FLAGGED WITH L	.,G OR Q					

REQUEST 0010 - 0012 PAGE 16

NAQUADAT SUMMARY REPORT JAN 07, 1991

RED DEER RIVER DATA

STATION 00AL05CC1800 LAT. 52D 15M 39S LONG. 113D 52M 41S PR 3 UTM 12 303600E 5793750N FOR JAN 25, 1983 TO FEB 24, 1987 FT. NORMANDEAU

RED DEER RIVER ABOVE RED DEER DAM IMPACT STUDY - SITE 5

	33101L ARSENIC DISSOLVED	34003L Selenium Total Se	34102L SELENIUM DISSOLVED	42001L Molybdenum Total	48301L Cadmium Extrble.	80002L Mercury Total	80011L Mercury Total	82301L LEAD Extrble.
SUBM ID SAMPLES(FLAGS) LOW HIGH AVERAGE STD.DEV. PERCNT:10TH 25TH MEDIAN 50TH 75TH 90TH SECONDARY CODE * THESE STATISTICS I	AS MG/L 8(0) .0003 .0029 .0008 .0009 .0004 .0005 .0007	MG/L 16(16) L.0002 L.0002 L.0002 L.0002 L.0002 L.0002 L.0002 L.0002 FLAGGED WITH I	SE MG/L 9(6) L.0002 .0006 .0003* .0002* L.0002 L.0002	MO MG/L 18(16) L.001 .005 .001* .001* L.001 L.001 L.001 .004	CD MG/L 17(16) L.001 .003 .001* .000* L.001 L.001 L.001	HG MG/L 53(50) L.0001 .0002 .0001* .0000 L.0001 L.0001 L.0001 L.0001	HG UG∕L	PB MG/L 33(21) L.002 .014 .004* .003* L.002 L.002 L.003 .003 .005

RED DEER RIVER DATA

STATION 00AL05CD1000 LAT. 52D 16M 0S LONG. 113D 35M 5S PR 3 UTM 12 323600E 5793600N FOR JAN 25, 1983 TO MAR 14, 1988

RED DEER RIVER BELOW RED DEER JOFRE BRIDGE

DAM IMPACT STUDY - SITE 6

				** - W					
		00203L	00205L	02041L	02041F	02061F	02071L	02074L	06001L
		TOTAL	TOTAL	SPECIFIC	SPECIFIC	TEMPERATURE	TURBIDITY	TURBIDITY	CARBON
		DISSOLVED	DISSOLVED	CONDUCT.	CONDUCT.	OF WATER			TOTAL
		SOLIDS	SOLIDS						ORGANIC
		(CALCULATED)							C
0.11/m) mo.em	ID	MG/L	MG/L	US/CM	US/CM	DEG.C	JTU	NTU	MG/L
SAMPLES(FLAGS)		64(6)	18(0)	65(0)	47(0)	64(0)	13(2)	52(0)	26(0)
LOW		160.	169.	288.0	238.	-1.0	L.1	.2	2.2
HIGH		300.	260.	515.0	474.	26.4	30.0	320.0	13.2
AVERAGE		216.×	208.	388.6	366.1	9.7	6.0×	10.4	4.6
STD.DEV.		32.×	28.	57.9	57.2	7.5	8.4*	44.5	2.4
PERCNT:10TH		175.	171.	318.	291.	.0	L.1	.7	2.4
25TH		190.	182.	339.	328.0	.1	1.0	1.2	3.2
MEDIAN 50TH		<u>213.</u>	<u> 208.</u>	<u>383.0</u>	362.	11.4	2.5	2.0	4.1
75TH		242.	229.	428.0	408.	16.2	7.5	3.0	5.0
90TH		260.	256.	474.0	448.	19.0	15.0	8.0	7.6
SECONDARY CODE							73L	•••	05L
									USL
		06101L	06201L	06202L	06301L	06536L	06551L	06715L	06720L
		CARBON	BICARBONT.	BICARBONT.	CARBONATE	PHENOLIC	TANNIN	CHLORO -	
		DISSOLVED	(CALCD.)	(CALCD.)	(CALCD.)	MATERIAL	AND	PHYLL A	CHLOROPHYLL
		ORGANIC			(0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PHENOL	LIGNIN	THILL A	-A-
	SUBM	C	HC03	HC03	C03	1 HEHOE	LIG.SULPH.		PHYTOPLANKTO
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MO /MT	N
SAMPLES(FLAGS)		64(0)	64(42)	63(0)	64(42)	65(20)		MG/M3	MG/M3
LOW		2.0	63.9	63.9	.0	L.001	2(1)	19(0)	51(0)
HIGH		13.0	Q285.0	271.8	41.8	.014	L.1 .5	1.5	.0
AVERAGE		4.7	202.4×	199.9	3.1×	.003×		7.9	54.783
STD.DEV.		2.5	39.4*	37.6	6.4×		.30×	3.27	4.290
PERCNT:10TH		2.1	Q154.6	154.8	Q.1	.003×	.28 ×	1.92	7.621
25TH		3.0	178.6	174.3	.1	L.001		1.7	1.010
MEDIAN 50TH		4.1	199.8	198.7		.001		1.8	1.75
75TH		6.0	232.2	229.	<u>-1</u>	.002	<u>.30*</u>	<u>2.6</u>	<u>2.9</u>
90TH		8.2	253.3	244.	5.0	.003		4.3	4.463
SECONDARY CODE	0	14L 07L	255.5	244.	10.0	.005		6.73	6.1
OZOGNOMIKI OODE	•	746 V/L				37L			
		06721L	06722L	07015L	071001	071111			
		CHLOROPHYLL	CHLOROPHYLL	NITROGEN	07105L	07111L	07205L	07501L	07561L
		-A-	A EPILITHIC		NITROGEN	NITROGEN	NITROGEN	NITROGEN	NITROGEN
		EPILITHON	SUBSAMPLE	TOTAL	DISSOLVED	DISSOLVED	DISSOLVED	TOTAL	DISSOLVED
	SUBM	FLIFTIUOM	(TEMPLATE)	KJELDAHL	NO3 & NO2	NO3 & NO2	NITRITE	AINOMMA	AMMONIA
	ID	MG/M2	MG/M2	N	N	N	N	N	N
-SAMPLES(FLAGS)	10	13(0)		MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
LOW		5.5	33(0)	65(0)	49(10)	18(3)	20(9)	46(11)	18(1)
HIGH			16.41	.200	L.003	L.001	L.001	L.01	L.002
		442.8	899.0	1.800	.615	.460	L.05	1.000	.300
AVERAGE		104.485	281.458	.518	.141*	.061×	.010×	.086×	.054×
STD.DEV.		129.322	213.467	.315	.171*	.120×	.015*	.161×	.095×
PERCNT:10TH		8.5	76.9	.260	L.003	L.001	L.001	L.010	.003
25TH		12.7	164.34	.320	.006	.002	L.001	.010	.006
MEDIAN 50TH		44.8	<u>224.93</u>	<u>.44</u>	<u>L.05</u>	<u>.005</u>	.004	.035	.013
75TH		168.3	359.58	.580	.258	.054	.009	.080	.029
90TH		254.0	556.4	.840	.390	.220	.040×	.280	.280
SECONDARY CODE				21L	10L		06L	05L	62L
* THESE STATIS	TICS I	INCLUDE VALUES	FLAGGED WITH	L,G OR Q					

* * *

* THESE STATISTICS INCLUDE VALUES FLAGGED WITH L,G OR Q

NAQUADAT SUMMARY REPORT JAN 07, 1991

RED DEER RIVER DATA

STATION 00AL05CD1000 LAT. 52D 16M 0S LONG. 113D 35M 5S PR 3 UTM 12 323600E 5793600N FOR JAN 25, 1983 TO MAR 14, 1988 RED DEER RIVER BELOW RED DEER JOFRE BRIDGE DAM IMPACT STUDY - SITE 6

				ž.					
		07602L	07906L	08101F	08201L	08301L	09101L	10101L	10301F
		NITROGEN	NITROGEN	OXYGEN	OXYGEN	OXYGEN	FLUORIDE	ALKALINITY	PH
		TOTAL	PARTICULATE	DISSOLVED	BIOCHEM.	TOTAL COD	DISSOLVED	TOTAL	1.11
		(CALCD.)	TOTAL	DO S	DEMAND-BOD		DIOCCLED	IOIAL	
	SUBM	N	N	02	02	02	F	CACO3	
CAMPI FO(F) 100)	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	PH UNITS
SAMPLES(FLAGS)		65(13)	18(5)	65(1)	62(5)	65(5)	20(0)	65(0)	40(0)
LOW		Q.201	L.01	7.0	L.1	LO.	.13	122.0	6.5
HIGH		2.040	6.10	16.5	10.0	94.0	.23	234.0	9.0
AVERAGE		.623×	.452×	11.40×	1.6×	16.7×	.15	170.9	, · · ·
STD.DEV.		.384×	1.418×	2.08×	1.3*	13.4*	.02	27.1	
PERCNT:10TH		Q.243	L.01	8.6	.7	5.0	.13	137.0	7.00
25TH		Q.363	L.01	9.80	1.1	10.	.14	149.	7.40
MEDIAN 50TH		.501	.070	11.5	1.4	14.0	.15	165.0	7.90
75TH		.820	.24	12.8	$\frac{1.9}{1.9}$	$\frac{27.5}{21.3}$.16	192.0	
90TH		1.115	.62	14.0	2.5	28.			8.35
SECONDARY CODE				02F	02L		.16	207.8	8.55
				021	VZL	04L	05L 07L		
		10301L	10401L	10602L	10603L	111011			
		PH	RESIDUE			11101L	12101L	12102L	14101L
		1 11		HARDNESS	HARDNESS	SODIUM	MAGNESIUM	MAGNESIUM	SILICA
			NONFILTR.	TOTAL	TOTAL	DISSOLVED	DISSOLVED	DISSOLVED	REACTIVE
	SUBM			(CALCD.)			(CALCD.)		
		BH 181776		CAC03	CAC03	NA	MG	MG	SI02
CANDLECTEL AGO.	ID	PH UNITS	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
SAMPLES (FLAGS)		65(0)	64(3)	64(0)	50(0)	65(0)	44(0)	65(0)	65(0)
LOW		7.12	L.4	134.3	137.2	4.30	10.47	10.40	.45
HIGH		9.23	524.0	264.5	235.3	17.20	19.04	21.80	7.40
AVERAGE			18.7*	184.9	187.5	9.64	15.41	15.26	3.54
STD.DEV.			67.9*	29.6	27.8	2.93	2.27	2.35	2.02
PERCNT:10TH		7.47	1.2	150.9	154.7	6.	12.72	12.70	1.10
25TH		8.00	1.8	163.5	165.0	7.70	13.63	13.60	1.70
MEDIAN 50TH		8.25	4.0	176.8	183.0	9.70	15.05	15.00	3.40
75TH		8.5	9.5	207.9	212.0	11.20	17.59	17.00	5.40 5.2
90TH		8.7	28.	230.8	229.6	13.80	18.34	18.40	6.35
SECONDARY CODE			07L		05L	03L	10.34		
					7 22	032			02L 05L
		15101L	15114L	15255L	15406L	15421L	15422L	15901L	15902L
		PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	PHOSPHORUS	
		TOTAL	TOTAL	DISSOLVED	TOTAL	TOTAL	TOTAL		PHOSPHORUS
		DISSOLVED	DISSOLVED	ORTHO PO4	IOIAL	TOTAL	TOTAL	PARTICULATE	PARTICULATE
	SUBM	Р	P	P	P	P	n	(CALCD.)	_
	ID	MG/L	MG/L	MG/L	MG/L		P	P	P
-SAMPLES(FLAGS)		54(0)	9(0)	15(1)		MG/L	MG/L	MG/L	MG/L
LOW		.006	.0211		47(0)	17(0)	9(0)	54(0)	11(0)
HIGH		.150		L.002	.012	.012	.0382	.000	.004
AVERAGE			.0568	.150	.510	.191	.0768	.459	.143
		.041	.0412	.049×	.070	.0631	.0550	.027	.035
STD.DEV.		.032	.0131	.049×	.073	.0537	.0133	.064	.046
PERCNT:10TH		.010		.008	.024	.014		.004	.004
25TH		.016	.0332	.010	.036	.028	.0439	.007	.006
MEDIAN 50TH		.030	.0419	<u>.028</u>	<u>. 055</u>	.040	.0576	.010	.012
75TH		.062	.0516	.090	.084	.0720	.0590	,020	.058
90TH		.084		.130	.101	.1560		.057	.100
SECONDARY CODE	0	3L 05L		56L				, , , ,	

RED DEER RIVER DATA

STATION 00AL05CD1000 LAT. 52D 16M 0S LONG. 113D 35M 5S PR 3 UTM 12 323600E 5793600N FOR JAN 25, 1983 TO MAR 14, 1988
RED DEER RIVER BELOW RED DEER JOFRE BRIDGE
DAM IMPACT STUDY - SITE 6

		16301L	17201L	19101L	20101L	20105L	36001L	36011L	04301L
		SULPHATE	CHLORIDE	POTASSIUM	CALCIUM	CALCIUM	COLIFORMS	COLIFORMS	BERYLLIUM
		DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	DISSOLVED	TOTAL	FECAL	EXTRBLE.
						(CALCD.)			
	SUBM	S04	CL	K	CA	CA	MPN	MPN	BE
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	NO/100ML	NO/100ML	MG/L
SAMPLES(FLAGS)		65(0)	65(6)	65(0)	64(0)	50(0)	54(1)	54(0)	IIO/ L
LOW		21.0	LO.	.94	33.30	33.27	10.0	0.	
HIGH		50.0	9.50	6.25	70.00	62.95	3900.	1240.0	
AVERAGE		35.0	2.65×	1.72	48.83	49.57			
STD.DEV.		7.3	1.51*	1.02	8.23		1026.0×	178.3	
PERCNT:10TH		25.0	1.10	1.1		7.80	1005.2×	255.0	
25TH		29.8	1.60		39.	41.02	90.0	8.0	
MEDIAN 50TH		34.0		1.20	43.40	43.57	200.	20.	
75TH			2.20	1.42	<u>47.15</u>	<u>48.04</u>	<u>743.0</u>	<u>98.0</u>	
		40.2	3.10	1.70	54.80	55.95	1500.	230.0	
90TH		45.0	4.70	2.40	61.00	61.00	2700.0	550.	
SECONDARY CODE		06L	03L	03L	03L 10L				
		13301L	13305L	23001L	23301L	24004L	24302L	25001L	25301L
		ALUMINUM	ALUMINUM	VANADIUM	VANADIUM	CHROMIUM	CHROMIUM		
		EXTRBLE.	EXTRBLE.	TOTAL	EXTRBLE.	TOTAL		MANGANESE	MANGANESE
				TOTAL	EXTRUCE.	IUIAL	EXTRBLE.	TOTAL	EXTRBLE
	SUBM	AL	AL.	v	v	CR	c n		
	ID	MG/L	MG/L	-			CR	MN	MN
SAMPLES(FLAGS)		4(0)	FIG/ L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
LOW					2(0)		3(3)		4(0)
		.02			.001		L.001		.005
HIGH		.08			.001		L.01		.057
AVERAGE		.040			.001				.023
STD.DEV.		.028			.000				.024
PERCNT:10TH									.027
25TH		.020							000
MEDIAN 50TH		.030			.001		1 007		.008
75TH		.060			.001		<u>L.001</u>		<u>.015</u>
90TH		.000							. 039
SECONDARY CODE	021	03L			001				
	766	002			02L				04L
		26301L	27001L	28001L	28301L	29005L	30005L	30301L	33001L
		IRON	COBALT	NICKEL	NICKEL	COPPER	ZINC	ZINC	ARSENIC
		EXTRBLE.	TOTAL	TOTAL	EXTRBLE.	TOTAL	TOTAL	EXTRBL.	TOTAL
									101112
	SUBM	FE	CO	NI	NI	CU	ZN	ZN	AS
	ID	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
-SAMPLES(FLAGS)		63(11)			4(3)			4(1)	2(0)
LOW		L.001			L.001			L.001	
HIGH		1.07			.002				.0004
AVERAGE		.109×						.012	.0008
STD.DEV.		.192×			.001×			.007×	.0006
PERCNT:10TH		L.010			.001×			.005×	.0003
25TH		.010			L.001			.003×	
MEDIAN 50TH		<u>.040</u>			<u>L.001</u>			.008	.0006
75TH		.09			.001×			.012	Vitaria marinais
90ТН		.32							
SECONDARY CODE		04L			02L			05L	05L
* THESE STATIST	ICS INC	LUDE VALUES	FLAGGED WITH I	L,G OR Q					

1.7

REQUEST 0010 - 0012 PAGE 20

NAQUADAT SUMMARY REPORT JAN 07, 1991

RED DEER RIVER DATA

STATION 00AL05CD1000 LAT. 52D 16M 0S LONG. 113D 35M 5S PR 3 UTM 12 323600E 5793600N FOR JAN 25, 1983 TO JAN 11, 1988 RED DEER RIVER BELOW RED DEER JOFRE BRIDGE

DAM IMPACT STUDY - SITE 6

	33101L Arsenic Dissolved	34003L Selenium Total Se	34102L SELENIUM DISSOLVED	42001L Molybdenum Total	48301L Cadmium Extrble.	80002L Mercury Total	80011L Mercury Total	82301L LEAD Extrble.
SUBM	AS	MG/L	SE	МО	CD	HG	HG	PB
ID	MG/L		MG/L	MG/L	MG/L	MG/L	UG/L	MG/L
SAMPLES(FLAGS)	2(0)	1(0)	2(1)		4(4)	6(6)	1(1)	4(2)
LOW	.0005	.0004	L.0002		L.001	L.0001	L.05	L.002
HIGH	.0055	.0004	.0020		L.001	L.0001	L.05	.013
AVERAGE	.0030		.0011×				2.03	.015
STD.DEV.	.0035		.0013×					.005×
PERCNT:10TH								×C00.
25TH			#1. 13		L.001	L.0001		L.002
<u>MEDIAN 50TH</u>	.0030		.0011×		L.001	L.0001		
75TH					L.001	L.0001		.002×
90TH					E.001	F.000T		.008
SECONDARY CODE	04L	05L			02L	15L		001
* THESE STATISTICS 1			L,G OR Q		VEL	13L		02L

_

Appendix VI. Summary of zoobenthic data, 1983-87.

TABLE 1 Summary of benthic invertebrate data, Red Deer River, 1983 (Means of five replicate samples at each site, indicating standard error).

SITE NO.*	NEMAT Ž	ODA ± SE	OLIG Ž	CHAETA E SE	CRUS1	ACEA ± SE	EPHEMI X	ROPTERA SE	TRICE Ž	IOPTERA 1 SE	PLECO			NOMIDAE ± SE	MISC. X	DIPTERA ± SE	MISC.I		MOLLUS X		OTHERS × ±	SE	TOTAL Ž	: SE	NUMBER X ±	OF TAX
SPRING	1983																	***************************************			*****					
1 2 3 4 5 6 7 8 9 10 11	0.6 2.8 39.6 6.4 68.4 140.8 35.8 11.4 8.8 15.2 1.6	0.6 1.8 9.0 1.5 18.3 39.2 20.7 2.7 2.4 0.9 1.2	0.8 8.0 75.6 35.6 1146.6 145.8 100.8 240.8 76.0 142.0 9.2 8.0	0.4 4.6 9.9 6.0 160.4 110.9 29.7 53.3 14.5 24.3 3.3 2.0	4.2 13.2 22.8 25.6 4.2 4.6 14.8 3.4 1.0 2.4 26.6 45.0	0.9 1.5 3.8 4.2 1.2 0.9 3.9 2.0 0.8 6.4 8.4	245.6 83.6 270.0 46.0 182.0 465.0 137.0 293.6 227.8 198.4 34.8 14.0	40.2 15.4 15.2 5.3 48.5 64.3 31.7 78.4 46.8 27.2 4.1 3.4	5.4 2.2 14.4 13.4 100.2 3.2 0.4 9.4 13.4 17.2 6.8 21.0	2.0 1.0 2.2 2.2 20.8 1.1 0.2 1.7 5.9 5.0 2.6	52.8 15.8 34.2 25.8 24.4 36.8 54.8 72.0 41.0 36.0 30.6	9.9 3.7 6.4 3.2 4.4 14.7 15.3 12.6 7.1 10.0	146.8 24.8 139.8 82.0 629.4 388.8 230.8 336.4 190.6 451.8 387.4 229.0	42.9 7.1 12.3 10.0 95.1 28.1 41.9 64.8 15.5 75.5 26.9	39.0 22.8 110.8 9.6 26.0 0.4 23.6 16.4 6.4 5.0 9.2	6.2 5.9 4.7 4.7 0.2 8.6 4.3 2.9 1.2	9.2 2.4 0.6 2.2 1.6 6.0 1.8 1.2 3.6	2.1 0.6 0.2 0.4 1.1 0.9 1.7 0.6 0.6 1.2	0.0 0.2 0.8 0.0 0.2 0.0 2.2 0.0 0.2	0.2 0.6 0.2 1.1	7.0 0.0 4.4 4.2 0.8 1.4 1.6 6.0 6.4 36.0 2.8	1.3 1.1 1.4 0.5 0.7 0.7 2.7 2.4 16.2 1.1	511.4 175.6 712.4 251.6 2184.2 1288.8 582.4 1020.6 582.6 909.2 505.8	72.8 33.8 30.5 17.0 277.0 133.6 76.1 100.4 74.6 98.6 29.9	23.4 17.6 21.8 23.6 22.6 16.0 15.6 19.0 17.6 21.6	0.7 1.0 0.9 0.4 1.0 0.9 1.1 0.5 0.9
FALL 1	983																		7.0		•.4		391.4	47.9	16.0	8.0
1 2 3 4 5 6 7 8 9 10 11°	30.0 12.8 157.8 58.0 119.2 147.2 16.0 13.6 12.8 19.2	10.9 12.8 37.3 10.4 41.8 34.6 3.3 10.7 3.0 5.1	160.8 177.6 621.8 60.2 2173.0 421.6 71.0 162.8 74.0 56.0	78.0 56.1 148.8 13.6 1158.2 90.3 33.9 15.8 11.5 23.1	9.0 126.4 145.6 1.6 31.2 244.8 199.4 3.2 95.2 98.4	6.1 17.6 16.2 1.0 13.0 66.1 65.1 3.2 51.4 51.8	75.0 779.4 12.0 623.0 397.0 95.6 23.2 630.6 46.2 80.4	10.0 173.3 2.3 201.0 78.1 26.0 5.8 46.5 17.8 15.6	9.8 704.6 11.4 1097.6 704.2 6.4 4.4 186.0 10.8 44.2	2.0 116.5 2.8 312.6 188.5 2.8 1.3 77.9 6.3 18.8	29.0 282.2 4.2 214.8 22.6 0.8 0.4 38.2 8.6 6.2	4.8 45.4 2.7 53.6 12.9 0.8 0.4 10.8 4.1 1.7	995.0 3588.8 2383.6 2092.0 4721.4 7464.4 1577.2 1129.6 739.8 1264.6	153.2 545.3 454.8 380.6 1450.1 1670.1 138.6 161.4 293.5 167.7	19.0 93.8 7.2 6.6 133.6 10.6 2.8 10.4 5.6 9.4	4.7 53.6 3.6 2.7 39.2 5.5 0.9 4.0 2.6 4.8	16.4 0.0 6.4 25.4 27.8 8.2 46.4 43.0 5.2 5.2	5.2 1.8 10.1 10.4 4.5 12.6 10.9 2.6 0.9	0.4 0.0 1.8 0.0 4.2 7.0 1.0 36.8 1.0	0.2 1.0 1.4 4.5 0.3 6.1 0.8	9.4 977.6 67.0 394.8 85.2 31.8 30.0 432.8 40.8 68.8	1.4 230.1 5.5 39.9 17.8 15.1 10.5 86.6 16.7 10.9	1353.8 6743.2 3418.8 4574.0 8420.2 8438.4 1971.8 2687.0 1040.0 1652.4	198.0 900.2 555.6 936.9 2920.9 1766.4 144.6 215.3 320.4 211.0	22.8 25.0 21.0 27.8 26.6 20.2 21.2 25.4 21.8 24.0	1.2 1.5 1.2 1.4 1.1 0.6 1.0 0.7 1.5 0.7

^{*} refer to Figure 1 for site names

02172

o not sampled

TABLE 2 Summary of benthic invertebrate data, Red Deer River, 1984 (Means of five replicate samples at each site, indicating standard error).

																				OTHERS × ±	SE	TOTAL × 3	: SE	NUMBER X ±	R OF TAXA
1984												****				_		····							
7.6 8.8 91.8 88.0 350.4 102.6 11.0	2.7 5.1 44.5 13.1 157.2 9.6 2.9	16.0 529.2 6686.6 797.8 561.8 219.2 102.0	6.7 73.3 2163.7 155.6 121.0 51.6 40.8	6.2 2086.2 33.2 22.8 25.0 20.2 81.2	1.7 274.4 27.7 7.9 9.0 8.9 22.9	154.4 102.4 141.8 31.4 1262.6 164.4 137.6	31.9 13.2 39.3 1.4 415.0 42.2 16.9	17.0 70.6 221.4 101.0 301.6 74.8 149.8	6.6 8.9 85.8 11.7 86.4 20.0 21.3	46.8 17.6 16.4 9.0 7.2 26.8 6.8	12.2 4.5 5.3 2.3 1.8 6.2 1.8	1076.2 7522.2 6426.0 2070.6 5710.8 1102.6 397.2	328.3 1611.7 2323.9 333.4 794.0 215.2 33.2	38.2 7.8 165.8 4.2 33.0 23.4 27.6	14.0 2.6 74.0 0.6 11.8 2.3 6.9	0.4 1.2 16.6 1.2 3.2 41.6 3.4	0.2 0.8 5.0 0.4 1.4 9.0 0.9	0.2 0.0 0.8 2.2 1.6 4.8 0.2	0.2 0.6 1.0 0.5 1.9 0.2	10.6 33.6 56.2 12.4 26.8 751.8 35.4	1.0 12.8 0.2 0.2 0.4	1373.6 10379.6 13856.6 3140.6 8284.0 2532.2 952.2	327.1 1825.1 4689.0 462.8 659.6 578.6 76.1	29.6 23.6 30.0 28.6 29.6 300.8 27.6	1.3 1.2 1.0 0.9 0.7 1.1
17.4 100.0 65.0 62.8 77.2 35.2 10.0	2.1 29.9 17.6 8.1 13.9 11.1 0.9	419.2 590.2 1731.4 902.6 1236.4 161.4 97.8	85.6 126.7 296.7 410.2 227.2 32.4 19.8	2.2 280.4 44.4 36.2 2.0 7.8 11.6	1.0 51.9 7.9 20.8 1.0 0.5	147.8 63.4 79.4 372.4 1325.0 430.8 227.2	18.8 17.2 17.5 101.3 259.1 86.3 39.2	91.2 113.8 188.0 317.6 265.8 120.4 108.4	12.6 32.9 53.8 97.4 124.0 55.1 31.5	126.4 7.4 16.6 27.6 0.4 10.0 16.8	8.0 2.3 6.0 15.2 0.2 2.7 4.7	429.2 5045.6 3937.8 3876.4 2332.2 460.8 433.6	61.1 502.5 375.5 462.0 272.4 96.2 44.8	41.2 11.2 56.4 22.6 124.8 43.2 7.4	5.1 3.4 10.5 10.1 35.5 11.7 2.2	2.2 0.2 8.6 3.2 4.0 10.8 2.8	0.2 0.2 3.3 1.4 1.4 2.6 1.6	0.0 5.2 5.8 63.0 33.0 37.0	4.0 2.6 51.9 8.0 9.3	72.0 1848.0 43.2 73.0 37.4 96.6 6.8	11.0 348.4 3.1 14.6 11.4 35.6	1348.8 8065.4 6176.6 5757.4 5438.2 1414.0 922.4	97.2 520.2 361.9 663.1 595.4 167.5 42.7	38.0 33.8 34.8 36.2 32.6 35.4 30.0	0.8 0.6 1.0 1.0 0.7 1.6
	7.6 8.8 91.8 88.0 350.4 102.6 11.0 84 17.4 100.0 65.0 62.8 77.2	7.6 2.7 8.8 5.1 91.8 44.5 88.0 13.1 350.4 157.2 102.6 9.6 11.0 2.9 84 17.4 2.1 100.0 29.9 65.0 17.6 62.8 8.1 77.2 13.9	X ± SE X 1984 7.6 2.7 16.0 8.8 5.1 529.2 91.8 44.5 6686.6 88.0 13.1 797.8 350.4 157.2 561.8 102.6 9.6 219.2 11.0 2.9 102.0 84 17.4 2.1 419.2 100.0 29.9 590.2 65.0 17.6 1731.4 62.8 8.1 902.6 77.2 13.9 1236.4 35.2 11.1 161.4	X ± SE X ± SE 1984 7.6 2.7 16.0 6.7 6.7 8.8 5.1 529.2 73.3 91.8 45.5 6686.6 2163.7 88.0 13.1 797.8 155.6 350.4 157.2 561.8 121.0 102.6 9.6 219.2 51.6 111.0 2.9 102.0 40.8 84 17.4 2.1 419.2 85.6 100.0 29.9 590.2 126.7 65.0 17.6 1731.4 296.7 62.8 8.1 902.6 410.2 77.2 13.9 1236.4 227.2 35.2 11.1 161.4 32.4	X ± SE X ± SE X 1984 7.6 2.7 16.0 6.7 6.2 8.8 5.1 529.2 73.3 2086.2 91.8 44.5 6686.6 2163.7 33.2 286.0 350.4 157.2 561.8 121.0 25.0 102.6 9.6 219.2 51.6 20.2 211.0 25.0 102.0 46.8 81.2 84 17.4 2.1 419.2 85.6 2.2 100.0 29.9 590.2 126.7 280.4 46.8 81.7 280.4 46.8 8.1 902.6 410.2 36.2 27.2 2.0 36.2 27.2 2.0 36.2 27.2 2.0 36.2 27.2 2.0 36.2 27.2 2.0 36.2 27.2 2.0 36.2 27.2 2.0 36.2 27.2 2.0 36.2 27.2 2.0 36.2 27.2 2.0 36.2 27.2 2.0 36.2 2	X ± SE X ± SE X ± SE 1984 7.6 2.7 16.0 6.7 6.2 1.7 8.8 5.1 529.2 73.3 2086.2 274.4 91.8 44.5 6686.6 2163.7 33.2 22.4 7.9 380.0 13.1 797.8 155.6 22.8 7.9 102.6 9.6 219.2 51.6 20.2 8.9 9.0 11.0 2.9 102.0 40.8 81.2 22.9 88.1 84 17.4 2.1 419.2 85.6 2.2 1.0 100.0 29.9 550.2 126.7 280.4 51.9 65.0 17.6 1731.4 296.7 44.4 7.9 62.8 8.1 902.6 410.2 36.2 20.8 77.2 13.9 1236.4 227.2 2.0 1.0 35.2 11.1	X ± SE X ± ± x ± ± x ± ± x ± ± x ±	X 2 SE X 2 SE X 2 SE X 2 SE 1984 7.6 2.7 16.0 6.7 6.2 1.7 154.4 31.9 8.8 5.1 529.2 73.3 2086.2 274.4 102.4 13.2 91.8 44.5 6686.6 2163.7 33.2 27.7 141.8 39.3 88.0 13.1 797.8 155.6 22.8 7.9 31.4 1.4 350.4 157.2 561.8 121.0 25.0 9.0 1262.6 415.0 102.6 9.6 219.2 51.6 20.2 8.9 164.4 42.2 11.0 2.9 102.0 40.8 81.2 22.9 137.6 16.9 84 17.4 2.1 419.2 85.6 2.2 1.0 1.0 147.8 17.8 17.5 62.8 8.1 92.4 17.4 17.5 62.8 8.1 92.6 17.4 17.5 62.8 8.1 92.6 17.4 17.5 62.8 8.1 92.6 17.4 17.5 62.8 8.1 92.6 17.6 17.8 17.5 18.9 17.6 18.8 18.8 18.3 17.2 17.1 18.8 18.8 18.3 18.8 18.8 18.3 18.8 18.8 18.8 18.8 18.8 18.8 18.	X 2 SE X 2 2 7 1 154.4 31.9 17.0 6 2.0 2 2 74.4 102.4 13.2 70.6 8 79.2 1 14.8 39.3 221.4 8 10.0 10.0 157.2 561.8 121.0 25.0 9.0 1262.6 415.0 301.4 101.0 10.0 102.0 40.8 81.2 22.9 137.6 16.9<	X SE X 2 2 2 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1	X SE X 2 2 SE X 2 2 SE X 2 SE X 2 2 2 1	\$\frac{7}{8}\$\frac{1}{1}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{1}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{1}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{1}\$\frac{1}{1}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{1}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{1}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{1}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{1}\$\frac{1}{8}\$\frac{1}{8}\$\frac{1}{1}\$\frac{1}{1}\$\frac{1}{8}\$\frac{1}{1}\$\frac{1}{8}\$\frac{1}{1}\$\frac{1}{1}\$\frac{1}{8}\$\frac{1}{1}\$\frac{1}{1}\$\frac{1}{8}\$\frac{1}{1}\$\frac{1}\$\frac{1}{1}\$\frac{1}{1}\$\frac{1}{1}\$\frac{1}	\$\frac{1}{2}\$ \frac{1}{2}\$ \fra	\$\frac{\frac{1}{2}}{\frac{1}{2}}\$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\$\frac{\frac{1}{2}}{\frac{1}{2}}\$\$\frac{1}{2	\$\frac{\frac{1}{2}}{\frac{1}{2}}\$\$ \$\frac{\frac{1}{2}}{\frac{1}{2}}\$\$\$ \$\frac{\frac{1}{2}}{\frac{1}{2}}\$\$\$ \$\frac{\frac{1}{2}}{\frac{1}{2}}\$\$\$ \$\frac{\frac{1}{2}}{\frac{1}{2}}\$\$\$\$ \$\frac{\frac{1}{2}}{\frac{1}{2}}\$	\$\frac{\frac{1}{2}}{\frac{1}{2}}\$\$\frac{1}{2	\$\frac{1}{2}\$ SE \$\frac{1}{\times}\$ \frac{1}{2}\$ SE \$\frac{1}{\times}\$ SE \$\frac{1}{\times}\$ \frac{1}{2}\$ SE \$\frac{1}{\times}\$ SE \$1	\$\frac{\frac{1}{2}}{\frac{1}{2}}\$\$\frac{\frac{1}{2}}{\frac{1}{2}}\$\$\frac{\frac{1}{2}}{\frac{1}{2}}\$\$\frac{1}{2}}\$\$\frac{1}{2}\$\$\frac{1}	THE SE X = SE X	\$\frac{1}{2}\$ \frac{1}{8}\$ \fra	\$\frac{\frac{1}{2}}{\frac{1}{2}}\$\$\frac{1}{2	\$\frac{1}{2}\$ \$\	Total Number Figure Fi

^{*} refer to Figure 1 for site names

0217z

TABLE 3 Summary of benthic invertebrate data, Red Deer River, 1985 (Means of five replicate samples at each site, indicating standard error).

SITE NO.*	NEMATO X ±			CHAETA : SE	CRUST X	ACEA ± SE	EPHEMER X ±			OPTERA SE	PLECO!	TERA SE	CHIRO ×	NOMIDAE ± SE	MISC.D × ±		MISC.I		MOLLUS X =		OTHERS X ±		TOTAL × ±	SE.	NUMBEI ×	R OF TAXA
SPRING 1	985																									
1 2 3 4 5 8 12 FALL 198	21.0 157.2 394.6 65.4 273.0 10.4 21.6	3.5 73.3 133.6 14.9 49.3 3.4 11.4	169.8 3650.6 3521.2 64.2 1780.6 64.8	33.2 392.6 357.5 9.5 676.5 18.0	10.4 765.2 16.4 4.4 30.8 0.8 58.0	2.9 102.5 3.3 2.1 15.5 0.4 28.6	143.8 17.4 23.2 87.8 507.8 174.8 24.8	12.6 2.6 7.0 21.1 60.6 22.8 5.1	45.6 78.0 30.0 178.6 114.8 57.6 4.0	6.4 16.7 8.4 36.3 6.9 12.2 0.9	78.8 3.8 3.6 106.6 2.4 6.8 38.0	3.6 2.6 1.5 34.4 1.1 2.1	1875.2 12865.6 4222.0 2806.4 1863.2 1849.2 167.0	317.3 852.8 499.7 183.9 167.4 546.7 27.9	33.4 31.4 6.0 28.8 56.0 82.2	2.5 1.2 8.4 1.1 4.6 16.6 42.2	1.4 0.0 7.4 10.2 31.8 2.4 0.2	1.0 0.6 2.9 20.1 0.8 0.2	0.2 0.0 3.6 2.2 14.0 7.4 0.0	0.2 1.1 0.9 7.9 1.9	49.4 41.0 23.8 43.6 246.6 700.4 5.8	9.0 8.6 7.1 8.7 40.9 181.9 2.9	2429.0 17582.6 8277.2 3375.4 4893.8 2930.6 402.6	351.4 1157.1 947.2 256.3 652.7 697.9 85.5	36.8 24.2 32.0 29.0 32.0 26.0 18.4	1.6 1.2 2.7 1.4 1.2 0.9
1 2 3 4 5 8 12	7.0 7.8 60.6 7.8 35.0 6.6 2.4	1.5 1.4 16.4 2.1 9.1 3.2 1.6	122.4 271.2 1142.2 429.2 2519.8 402.6 158.6	15.6 73.2 253.7 71.3 713.6 73.0 96.3	5.0 360.0 5.8 7.6 39.0 12.2 0.0	1.3 70.3 1.6 2.7 20.9 3.8	123.2 1.2 48.0 50.4 62.8 257.8 35.8	15.0 0.5 4.3 7.3 21.3 41.7 4.7	108.0 3.0 50.6 24.2 42.6 42.6 17.4	26.0 1.4 7.2 5.1 14.9 8.9 4.6	101.0 0.0 38.6 12.4 0.2 3.2 27.6	15.5 4.5 2.4 0.2 1.4 8.3	92.2 1473.6 611.6 1087.4 746.0 442.0 13.8	14.0 24.2 77.6 237.1 225.6 26.8 5.2	39.8 0.6 33.4 9.0 12.8 23.4 5.2	6.0 0.4 7.2 2.4 7.7 3.2 3.8	0.8 2.8 13.4 13.0 6.4 6.8	0.2 0.7 3.8 5.0 3.9 1.2 0.7	1.8 10.6 7.8 6.8 2.6 5.4	0.8 1.6 1.9 2.3 0.9	47.0 4678.4 65.0 14.4 17.0 38.8 1.2	8.5 390.8 13.9 2.7 7.1 16.9 0.5	648.2 6809.2 2077.0 50.4 3484.2 1241.4 263.8	55.5 35.85 284.6 7.3 684.2 124.3	40.4 21.0 36.6 24.2 29.0 30.4 17.2	1.5 1.3 0.7 5.1 3.5 1.4 2.0

refer to Figure 1 for site names

02172

TABLE 4 Summary of benthic invertebrate data, Red Deer River, 1986 (Means of five replicate samples at each site, indicating standard error).

SITE NO.*		NEMATODA X ± SE		CHAETA ± SE	CRUST ×		EPHÉME X 3	ROPTERA SE	A TRICHOPTER					CHIRONOMIDAE X ± SE		MISC.DIPTERA × 2 SE		NSECTA SE	MOLLUSCA ≅ ± SE		OTHERS \$ ±	SE	NUMBER OF TAXA \$\frac{1}{2} SE		TOTAL NO	
SPRING	1986																-							74 77 TWO L		
1 2 3 4 5 8 12	19.0 16.8 590.6 1252.4 975.4 140.0 19.2	3.7 3.3 190.1 184.6 106.4 66.5 7.7	7.2 170.6 910.0 32.6 946.4 97.2 49.4	1.9 84.8 351.0 10.2 295.6 20.7 10.5	24.8 468.2 39.8 21.2 4.0 14.8 5.2	4.7 177.0 10.7 4.8 1.2 8.6 2.2	42.0 .6 61.0 833.2 481.8 74.8 89.2	13.6 .2 14.5 68.1 152.8 29.8 38.6	11.8 2.2 37.2 946.8 160.6 24.2 166.6	5.6 0.9 5.4 139.4 108.7 9.5 69.7	37.2 0.0 18.2 36.4 2.0 3.2 2.6	14.4 0.0 4.9 4.9 .6 2.0	510.4 2380.8 1939.2 5736.0 2628.4 928.0 561.2	109.7 90.4 386.3 372.3 429.8 272.5 168.3	38.6 25.4 55.4 22.8 4.6 36.4 51.2	16.5 13.3 8.9 0.7 7.9 11.4	2.4 0.2 28.0 40.6 5.0 4.0	0.4 0.2 3.0 10.9 1.0 1.4 1.8	0.2 0.0 2.0 6.0 0.8 6.2 0.0	0.2 0.0 1.1 2.5 0.4 2.9	2.8 1217.2 109.2 1160.6 36.4 68.6 22.8	0.7 183.7 45.7 110.7 7.5 33.7 9.1	36.2 18.2 33.8 37.8 30.0 25.0 23.6	2.0 1.0 1.7 0.9 1.1 1.8	671.6 4282.0 3750.8 10067.4 5241.4 1382.6 966.4	139.2 341.2 721.2 451.3 757.7 305.5 238.8
1 2 3 4 5 8	2.6 491.4 136.0 301.6 149.8 70.8	.8 56.8 39.2 49.9 31.5 21.5	12.8 5410.8 652.0 2000.2 2498.0 1391.8	6.0 1482.7 119.8 330.4 216.6 218.7	15.8 3216.2 58.0 22.4 11.2 4.2	1.7 592.0 7.0 4.4 2.8 1.5	127.4 10.4 156.6 319.4 1549.6 960.6	19.3 1.4 32.8 132.7 114.5 164.7	3.4 15.8 91.4 310.2 70.8 382.8	.5 4.1 31.9 139.7 14.3 47.9	145.8 1.0 30.6 86.0 13.4 31.2	30.8 0.4 6.6 30.5 3.7 5.9	112.0 3140.2 930.2 1152.6 4621.6 1241.0	12.7 185.8 112.9 129.5 258.7 189.9	6.0 2.6 31.6 9.2 3.2 9.4	1.6 0.4 4.1 1.8 1.4 2.2	0.4 0.2 2.2 14.0 0.0 6.4	0.2 0.8 8.3 0.0 2.1	0.0 10.6 0.2 4.8 1.2 12.0	0.0 3.6 0.2 2.5 1.0 8.4	3.0 1401.2 21.2 34.6 6.6 177.4	0.9 224.8 3.4 16.5 1.2 64.5	29.8 29.4 37.4 39.4 32.6 34.6	1.1 1.6 1.2 1.0 0.9	429.2 13700.4 2110.0 4255.0 8925.4 4287.6	59.4 1419.6 325.4 680.4 503.9 454.9

^{*} refer to Figure 1 for site names

0217z

TABLE 5 Summary of benthic invertebrate data, Red Deer River, 1987 (Means of five replicate samples at each site, indicating standard error).

SITE NO.*	NEMATO X 2			CHAETA ± SE	CRUSTACEA Ā 2 SE		EPHEMEROPTERA Z ± SE		TRICHOPTERA ž ± SE		PLECOPTERA X ± SE		CHIRONOMIDAE x ± SE		MISC.DIPTERA X ± SE		MISC.INSECTA × ± SE		MOLLUSCA ≅ ± SE		OTHERS \$ ± SE		NUMBER OF TAXA \$\frac{1}{2} SE		TOTAL NUMBERS X ± SE	
SPRING	1987											***************************************		***************************************					***************************************							
1 2 3 4 5 8 12	11.4 19.2 173.6 884.0 228.0 217.0 10.4	2.7 3.1 30.4 166.9 48.0 58.7 2.1	6.0 68.6 2116.8 9048.8 984.6 346.0 2.2	1.6 22.1 212.0 1763.8 148.4 122.7 0.7	34.8 5950.8 1911.0 916.0 35.2 36.4 4.0	3.6 328.5 159.3 124.4 15.0 13.7	183.4 0.0 51.0 340.0 486.0 160.4 291.6	17.6 0.0 9.4 30.8 130.1 28.3 11.6	0.6 0.0 2.2 58.2 235.0 34.2 58.2	0.6 0.0 1.2 13.5 34.0 4.6 13.6	68.6 0.0 26.6 26.8 17.8 72.6 56.4	5.9 0.0 8.1 0.8 1.6 12.4	501.0 36.6 1187.2 2436.0 2427.6 689.0 354.2	62.3 6.8 148.5 202.4 218.6 127.7 33.0	5.0 0.4 21.2 9.8 8.0 14.0 2.6	1.7 0.2 2.0 0.8 3.2 7.9 1.7	1.8 0.0 8.4 7.0 6.4 4.4	0.2 0.0 2.4 0.9 1.4 2.6 0.2	0.0 0.6 0.0 4.4 3.6 0.6	0.0 0.2 0.0 2.4 1.6 0.4 0.0	2.6 6.0 1883.0 1447.4 105.4 636.4 53.4	0.9 1.0 231.8 205.8 31.6 131.4 15.3	29.2 12.8 31.2 32.4 35.0 36.2 23.6	1.7 0.4 1.4 2.3 1.2 0.4 0.5	821.0 6084.6 7381.8 15182.4 4551.8 2265.6 872.2	65.6 318.1 386.6 2192.6 337.1 448.7 49.1
1 2 3 4 5 8 12	10.2 254.0 213.6 584.0 436.0 690.0 13.2	2.5 47.5 41.6 176.0 134.4 128.0 3.2	21.0 2133.2 6125.8 2221.2 1310.8 1253.0 12.2	7.7 92.8 732.6 125.5 294.9 254.2 2.2	14.0 981.6 27.6 127.0 31.2 4.4 1.0	0.7 54.1 4.1 27.3 19.1 2.4 0.8	332.0 19.8 519.6 88.0 284.8 525.2 57.2	24.4 4.7 46.5 17.5 27.9 55.7 6.9	35.0 33.4 563.8 959.6 1099.8 436.0 254.4	6.9 4.7 90.0 88.1 103.4 79.1 22.9	157.8 0.0 172.6 80.0 4.0 6.0 145.4	17.2 0.8 14.5 9.9 1.0 1.3 6.2	565.2 3613.6 4810.4 4285.6 17191.2 7104.0 163.8	272.2 669.8 1057.4	31.6 100.2 416.6 20.2 46.4 102.0 4.8	4.5 19.5 33.7 4.9 18.1 8.9 1.5	0.6 0.4 43.4 89.8 12.0 9.2 2.4	0.4 0.2 7.0 9.9 2.9 1.1	0.0 33.6 0.0 116.2 9.8 5.0	0.0 2.1 0.0 17.9 3.6 1.5 0.0	76.2 1919.8 511.4 1339.4 292.8 989.6 52.6	16.6 285.1 46.8 113.3 102.5 240.5 9.0	38.2 32.4 40.0 46.6 34.0 31.0 25.6	1.4 0.9 0.9 1.5 0.8 1.0	1243.0 9089.6 13404.8 9911.0 20718.8 11124.4 707.0	116.2 440.7 842.9 1064.9 1467.5 1001.3 32.8

^{*} refer to Figure 1 for site names

02172