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Executive Summary 

Since the mid-20th century, large-scale forest inventories in many jurisdictions have relied on the stand-level interpretation of 

aerial photographs collected using piloted fixed-wing aircraft. Advanced forest inventory techniques from different sensors and 

platforms such as light detection and ranging (lidar), unmanned aerial vehicles (UAV), satellites, radar, high resolution multi-

spectral and hyper-spectral imageries and other new technologies have been increasingly used in various settings to estimate 

forest attributes at both the area-based and individual tree scales. Two critical questions often arise in practice pertaining to 

the accuracy and suitability of any new forest inventory technique at the tree or stand level: (1) how can we judge whether a 

new inventory technique is valid or of acceptable accuracy; and (2) how can we compare if a new inventory technique agrees 

with or is better than an existing one. This study describes the methods that collectively provide the tools to address and 

answer these questions. More specifically, it focuses on the four primary inventory variables that are critically important to 

strategic and operational forest management, and that can be extracted directly from a potential new inventory technique: tree 

species, species composition, height and density. An improved error matrix is used to assess the accuracy of tree level 

species classification. The chi-square test and Fisher’s exact test are applied to judge the similarity between species 

compositions from ground measures and inventory measures. Several goodness-of-fit statistics and plots, an agreement 

measure and the Kolmogorov-Smirnov test are used to evaluate the accuracy and agreement (to ground measures) of height 

and density. The study emphasizes assessing all four primary inventory variables jointly, so that the accuracy and the level of 

agreement of an entire inventory technique can be judged holistically and consistently. The study also demonstrates step-by-

step how to implement the methods in practice based on real world data. In addition, it also clarifies some of the basic 

concepts and terminologies associated with assessing forest inventory techniques, and provides the necessary technical 

details and caveats to interested readers on some of the issues related to error matrix, accuracy measures, statistical tests, 

agreement analysis and calibration.  
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1 Introduction 

Photogrammetric and remote sensing techniques have always played an important role in operational forest inventory in 

Alberta. They have been used widely to gather large-scale data (i.e., area-based) to extract broad forest-level information on 

land stratification, wildfire, insect and disease, wildlife habitat, reforestation and climate change. With the rapid development of 

the new technologies in terrestrial and airborne light detection and ranging (lidar, LiDAR or LIDAR), unmanned aerial vehicles 

(UAV, also known as remotely piloted aircraft systems (RPAS), drones), satellites, radar, digital aerial photogrammetry (DAP), 

and high resolution multi-spectral and hyper-spectral imageries, they have also been increasingly used to collect fine-scale 

data at the tree level, to identify individual tree stems (crowns) and tree species in ways and spatial resolutions previously 

unseen. There is a real hope and optimism that, if proven to be accurate and more effective, efficient (i.e., reduced costs at 

increased speed of inventory), reliable, consistent and operational, some of the new aerial-based remote sensing techniques 

or other emerging state-of-the-art technologies can be transformative and become the new paradigm for enhanced forest 

inventory (EFI) and for accurate and timely forest population census. 

Two critical questions arise in practice with regard to the use of any new technique in forest inventory: 

 How can we judge whether a new inventory technique is valid or good enough? 

 How can we compare if a new inventory technique agrees with or is better than an existing one? 

For instance, we often ask: is the new inventory technique (e.g., from lidar, UAV or satellite) good to be implemented in 

practice at the stand level and/or tree level? Is the new lidar, UAV, satellite or any other new technique better than the high 

spatial resolution stereo imagery in a softcopy environment currently used in the Alberta Vegetation Inventory (AVI)? Do the 

new and old/existing techniques agree with each other in getting the primary forest inventory variables? Can the new 

technique be semi-automated or fully automated for forest population census? How well do all these techniques agree with 

ground/field observations? Can the new technique be used to supplant the ground measurement of permanent sample plots 

(PSPs) and temporary sample plots (TSPs)? 

This study is designed to present the statistical methodologies capable of answering the above questions and judging the 

competing new inventory techniques consistently. While the new inventory techniques may have many great features and 

promising new capabilities, practitioners should not automatically assume that they would work in operations without 

assessing their accuracy and agreement relative to ground observations. We have seen some new and improved techniques 

that appear very impressive within the research realm, and on paper and in graphics, only to fail miserably when used in 

operations in the real world. This is very relevant in photogrammetric and remote sensing studies, as some of the new 

techniques may still not meet the operational accuracies and resolutions at the tree or stand level, or require excessive and 

unrealistic amount of resources (time, cost and expertise) to implement on a large population scale. Therefore, they may stil l 

only meet the coarse, broad level forest information needs perhaps for strategic purposes, rather than the operational forest 

inventory requirements at the tree level for forest management and operational planning. 

Since “forest inventory” is a wide-ranging concept that can include, among others, land stratification, forest cover type 

specification, sampling, and forest health, forest hydrography, forest fire hazard, topography, ecosystem, biodiversity, stand 

structure, demography, insect and disease, climate change and habitat assessments, our focus is narrowed to the most 

common mensurational forest inventory that involves only tree level variables and stand level variables summarized from the 

tree level variables. More specifically, our focus is on four primary inventory variables that are critically important to operational 

forest management, and that can be extracted directly from promising new inventory techniques at the tree level:  

 Species, species composition, species-specific height and density.  

These four primary inventory variables are considered the fundamental base variables in any tree or stand level forest 

inventory. The method comparison methodologies described in this study would also apply to assessment of many other tree, 

stand and landscape level variables, such as: diameter at breast height (DBH), DBH distribution, basal area, quadratic mean 

diameter, site index, age, total and merchantable volumes, defect, piece size, log profile, natural and anthropogenic mortality, 

ingress, biomass and carbon. However, these attributes are typically derived indirectly through other additional processes, and 

as such, they can be highly impacted by the quality of the primary variables and other indirect and non-inventory factors 

incurred in the processes, including the choices of the auxiliary models, the modeling approaches taken, the viability and 

strength of the connecting relationships implicated, and the calibration techniques chosen. In some cases, like for volume, 

biomass or carbon, this may be further complicated by the ancillary data and “helper” models used to estimate volume, 

biomass or carbon from tree level variables. The goodness of the estimation may not be indicative of the accuracy and 
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agreement of an inventory technique (it may indicate the quality of other data, models or processes involved). For simplicity of 

illustration, we have focused our discussion on attributes directly extracted from detailed tree level inventory techniques. 

In order to be considered a better forest inventory technique, among many factors that need to be considered (such as time, 

cost or economic viability, relevant expertise and required resources, and other operational objectives, variables and 

constraints), the inventory technique must demonstrate, at a minimum, the accuracy and agreement to ground measures in: 

1). Identifying individual tree species (species);  

2). Representing the forest-level species frequency distribution (species composition);   

3). Characterizing the values and the distribution of height (height); 

4). Segmenting individual stems (density).  

Technically “segmenting individual stems” (stem segmentation) is “identifying individual crowns” or crown delineation. In this 

study, we use the terms interchangeably, although crown delineation is a broader concept that can also involve delineating the 

size and shape of crowns, besides just identifying the existence of the crowns. 

The main objectives of this study are to: 

1. Describe the methods that can be used consistently to determine the accuracy of forest inventory techniques and that 

can compare the agreement between ground measures and forest inventory techniques; 

2. Demonstrate step-by-step how to implement the methods in practice based on the real world data and examples; 

3. Clarify some of the basic concepts and terminologies associated with assessing forest inventory techniques, and 

provide the necessary technical details, justifications and caveats to interested readers on some of the issues related 

to error matrix, accuracy assessment for categorical and continuous variables, statistical test, agreement analysis 

and calibration.  

To achieve the stated objectives, the methods for determining the accuracy of species classification are described first in 

Section 2, followed by the methods for assessing species composition (i.e., species frequency distribution) in Section 3. 

Section 4 presents the recommended statistics and methods for assessing two other primary forest inventory variables, height 

and density. For each method an example based on real world data is given to demonstrate how to implement the method and 

interpret the results in practice. Section 5 provides additional explanations, technical details and cautionary notes on some of 

the issues related to the recommended methods and some other relevant methods. It essentially answers the “whys” on many 

topics touched on in this study. It also points out some frequent confusions and misunderstandings in some previous accuracy 

assessment studies and offers suggestions on how to use and interpret the recommended methods correctly. Finally Section 6 

summarizes the results of this study and presents concluding remarks and recommendations.  

 

Most of the previous studies focused on the accuracy assessment for up to three primary inventory variables (e.g., species, 

height and/or density). This study focuses on the complete methods that address all four primary inventory variables, so the 

validity and the level of agreement (to ground measures) of an entire new inventory technique can be judged holistically and 

consistently.  

This study does not assess the explicit remote sensing technologies, algorithms and metrics used to derive the inventory 

variables, as other researchers and specialists are better qualified for this. It is not our objective to look into, for example, how 

to extract tree height, predict tree species, delineate tree crowns or make stem segmentation from lidar point clouds or lidar 

metrics; how to delineate stands or polygons using image segmentation algorithms and generate stand structure from pixel-

based image compositing; or how to predict forest metrics/attributes using artificial intelligence, machine learning or the 

random forests method based on the K-nearest neighbor imputation algorithms. Instead, we are interested in looking at the 

variables resulting from an inventory technique, however they are extracted, through whatever technologies, algorithms, 

approaches or methods. 

To allow interested readers to verify or duplicate all computations and results involved in this study and avoid the difficulties of 

not knowing the exact data, all data sets used in this study are listed in relevant tables. Many are also displayed in graphical 

forms. Since this study is mainly intended to be methodological, i.e., to describe the fundamental concepts, approaches and 

methodologies, rather than an explicit evaluation of a specific forest inventory technique, the sample sizes of the selected data 

sets are not large. However, it should not be difficult to conceive that the concepts, approaches and methodologies discussed 

and demonstrated in this study can be applied to relevant categorical and continuous variables to assess the accuracy and 
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agreement of any forest inventory techniques. It is our hope that the concepts and methodologies presented in this study can 

become an invaluable source for those who are interested in the fundamentals, and most importantly, practical solutions for 

determining the accuracy of forest inventory techniques and comparing the agreement between ground measures and forest 

inventory techniques.  

It is worth noting ahead that some of the concepts and approaches presented in this study are different from the conventional 

ones appeared in previous research or used elsewhere, and several of which are intrinsically complex and multifaceted. As a 

result, it could be difficult to comprehend the full contents of this study without some protracted efforts and additional 

experience and background. We have organized the document to highlight the basic concepts and step-by-step examples in 

Sections 2 to 4, with some of the more detailed technical and supplementary materials provided in Section 5 for interested 

readers. 

Most of the concepts and approaches presented in this study are not new – they have appeared in other scientific disciplines, 

but they are woven together in a holistic manner in this study. Readers are invited to rethink and move towards an integrated 

holistic approach of assessing forest inventory techniques, not just merely focusing on a single variable, a single case, or a 

solitary statistic or statistical test.  

One other point worth noting ahead is that some researchers may find that some of the analyses and discussions presented in 

this study may appear critical and opinionated in some regards, as we aim to point out the misunderstandings, misuses, 

limitations and deficiencies of some of the conventional concepts and approaches in previous research. For practical reasons 

we want to be very clear and precise on the concepts and approaches we advocate and why. From the start, it was decided 

that we were not interested in research for research’s sake, but wanted to see research that can be put into practical real world 

use, not just in academic research realms. It was also decided early on to show exactly what we did. All the data and formulas 

used in the analyses are provided for interested readers to check and verify. We will leave them up to the readers to ponder, 

judge and decide for themselves. However, if anyone who thinks that we have been too critical of his/her published work, bear 

in mind that we are only criticizing a small part of the published work. We have learned and benefited from other parts of the 

published work. The criticisms are intended to clarify the possible misconceptions, avoid repeating the prevailing biases and 

mistakes, improve understanding and advance knowledge in assessing forest inventory techniques. In spite of the striving 

efforts, our presentation is not immune to its own limitations and shortcomings. We are certain that there are different 

viewpoints, objectives, focuses and preferences. We welcome and appreciate any comments or counter-criticisms about our 

work. 
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2 Accuracy of tree level species classification 

The accuracy of tree level species classification from an inventory technique is judged by the correctly classified proportions or 

percentages for the species, through an error matrix, or the species classification performance matrix, which is a special case 

of the error matrix applied to the categorical variable “species”. 

For reference in the examples, the main tree species in Alberta are listed in Table 1, alongside the matching species code, 

group, type and scientific name for each species. The scientific names for dead pine and snag/dead tree stump are direct Latin 

translations. Dead pine is used to denote dead pine trees killed by mountain pine beetles.  

TABLE 1. LIST OF MAIN TREE SPECIES IN ALBERTA. 

 

Type Common name Scientific name  Code Group 

Deciduous Aspen Populus tremuloides Michx. Aw AwPb 

 
Balsam poplar Populus balsamifera L. Pb AwPb 

 
White birch Betula papyrifera Marsh. Bw Bw 

Coniferous Lodgepole pine Pinus contorta var. latifolia Engelm. Pl Pine 

 
Whitebark pine Pinus albicaulis Engelm.  Pw Pine 

 
Limber pine Pinus flexilis E. James Pf Pine 

 
Jack pine Pinus banksiana Lamb. Pj Pine 

 
White spruce  Picea glauca (Moench) Voss Sw SwFir 

 
Engelmann spruce Picea engelmannii Parry ex Engelm. Se SwFir 

 
Balsam fir Abies balsamea (L.) Mill. Fb SwFir 

 
Alpine fir Abies lasiocarpa (Hook.) Nutt. Fa SwFir 

 
Douglas-fir Pseudotsuga menziesii (Mirb.) Franco Fd SwFir 

 
Black spruce Picea mariana (Mill.) B.S.P. Sb SbLt 

 
Tamarack larch Larix laricina (Du Roi) K. Koch Lt SbLt 

 
Western larch Larix occidentalis Nutt. Lw SbLt 

 
Alpine larch Larix lyallii Parlatore La SbLt 

 Dead pine* Mortuus abiete (Latin) Dp Dp 

Coniferous/deciduous Snag/dead tree stump Arboris truncus mortuus est (Latin) Sg Snag 

Note: *Dead pine is used to denote dead pine trees killed by mountain pine beetles. 

2.1 Error matrix for species classification 

For species classification, the error matrix with k possible species (i.e., k categories) is a k×k contingency table (also known as 

a two-way table, a bivariate table, a square table, or a crosstab) of frequency counts by category. It is shown in Table 2, where 

each cell nij in the table is the count that corresponds to the category (i=1, 2, ⋯, k; j=1, 2, ⋯, k; or simply, i, j=1, 2, ⋯, k), and N 

is the total number of counts. All other variables are defined in detail below. 

The error matrix in Table 2 is integrated with four accuracy proportions (to be discussed next) and can also be integrated with 

other quantities (to be discussed later), hence it can be termed an integrated error matrix. Although not critical and does not 

change the values, the integrated error matrix lists the “classification” from an aerial-based remote sensing technique on top 

(as columns, since it is typically described from above), and the “reference” on level (as rows, since ground is typically used as 

the reference). This arrangement is different from many other error matrices where “reference” often appears on top and 

“classification” often appears on level. The intricacy of this seemingly trivial switch between row and column of the error matrix 

should become clear later.  

TABLE 2. AN ERROR MATRIX WITH K CATEGORIES (SPECIES) AND N TOTAL NUMBER OF COUNTS. 

 

  
 Classification (inventory) Total 

(row) 

Correct proportion re 

reference  Category 1 2 ⋯ k 

Reference 

(ground) 

1 n11 n12 ⋯ n1k nr1 PR1 = n11/nr1 

2 n21 n22 ⋯ n2k nr2 PR2 = n22/nr2 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

K nk1 nk2 ⋯ nkk nrk PRk = nkk/nrk 

 

Total (column) nc1 nc2 ⋯ nck N  

Correct proportion re 

classification  

PC1 = 

n11/nc1 

PC2 =  

n22/nc2 
⋯ 

PCk = 

nkk/nck 
 Po =

∑ 𝑛𝑖𝑖
𝑘
𝑖=1

𝑁
 

Average of correct proportions 

by category 
PAve1 PAve2 ⋯ PAvek  

 

Note: detailed definitions for the variables appeared in the table are provided in the main text.  
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In the integrated error matrix (Table 2), the reference counts are represented by the rows and the classifications are 

represented by the columns. The shaded values (niis) in the diagonal represent the correctly classified counts by the 

classification for the categories. More specific definitions and explanations for the terms and variables appeared in Table 2 are 

provided here: 

Reference – typically refers to the ground measures that are considered to represent the truth or “ground truth”. It can also 

denote any reference measures that are considered the commonly accepted “gold” standards, or the consensus (e.g., 

sometimes the interpreted AVI data are used as the reference standard against the other types of data in comparison and 

calibration).  

Classification – refers to the classifications, interpretations, observations, measures, calls, estimates or predictions from aerial 

methods or remote sensing techniques. It can also denote the classification obtained from a “map”, an “image”, or an 

“inventory” derived from an inventory technique. Therefore, these terms, “classification”, “map”, “image”, “inventory”, 

“inventory classification”, “inventory measure”, “prediction” and “estimate” are sometimes used interchangeably in this 

study.  

Row, column and grand totals – row totals are denoted by nri and column totals are denoted by nci. For instance, nr1, nr2, ⋯, 

nrk denote row totals for rows 1, 2, ⋯, k, respectively; nc1, nc2, ⋯, nck denote column totals for columns 1, 2, ⋯, k, 

respectively. For the kth category, the row total nrk=nk1+nk2+ ⋯+nkk and the column total nck=n1k+n2k+⋯+nkk. The grand 

total (N) is the sum of row totals ∑ 𝑛𝑟𝑖
𝑘
𝑖=1  or column totals ∑ 𝑛𝑐𝑖

𝑘
𝑖=1  (recognizing i, j=1, 2, ⋯, k). 

Important Accuracy Measures from the Error Matrix  

Four important accuracy measures (also known as accuracy proportions or accuracy percentages) are calculated and included 

in the integrated error matrix (Table 2):  

1. Overall accuracy (Po) – refers to the overall classification accuracy proportion or percentage when all categories are 

combined. It is calculated by dividing the sum of the shaded diagonal values (correct counts for the categories) in the error 

matrix (Table 2) by the total number of observations (N): 

[2.1] Po =
𝑛11+𝑛22+⋯+𝑛𝑘𝑘

𝑁
=

∑ 𝑛𝑖𝑖
𝑘
𝑖=1

𝑁
  (Po% = 100 ×

∑ 𝑛𝑖𝑖
𝑘
𝑖=1

𝑁
). 

 The overall accuracy represents one of the most important and commonly cited measures that characterize the overall 

accuracy of a classification when all categories in the classification are combined. 

 Besides the overall accuracy, it is also very useful to know how this overall accuracy is distributed across different 

individual categories. Due to their biological and morphological characteristics and the unique inventory technique that 

may or may not favor some categories (i.e., species) in certain growing conditions, seasons (e.g., leaf-on, leaf-off) and 

structures, the categories in the inventory could have very different accuracies than that of the overall accuracy. Hence, 

the accuracies for individual categories are often needed in order to fully assess the accuracies from an inventory 

technique. For a k×k table the overall accuracy can be distributed to each category by row, by column, and by row and 

column combined. 

2. PR (correct Proportion or Percent relative to the Reference) – refers to the correct proportion (or percentage, i.e., % 

correct) of a category when compared to the total number of counts from the reference for that category. For example, 

what percent of the white spruce trees in the ground sample were correctly classified as white spruce in the inventory? It 

is calculated by dividing the number of correctly classified counts for the category, by the total number of counts from the 

reference for that category (row total). In a general form it can be written for category i as: 

[2.2] PR𝑖 =
𝑛𝑖𝑖

𝑛𝑟𝑖
 (PR𝑖% = 100 ×

𝑛𝑖𝑖

𝑛𝑟𝑖
). 

 where nii is the number of correctly classified counts for category i, and nri (row total) is the total number of counts from 

the reference for category i (i=1, 2, ⋯, k). The pooled or weighted average of PRi is 

(PR1×nr1+PR2×nr2+⋯+PRk×nrk)/(nr1+nr2+⋯+nrk) = ∑ (PR𝑖 × 𝑛𝑟𝑖)𝑘
𝑖=1 / ∑ 𝑛𝑟𝑖

𝑘
𝑖=1  = ∑ 𝑛𝑖𝑖

𝑘
𝑖=1 /𝑁 = Po, which means that the 

overall accuracy Po can be distributed by row. 

The PR has traditionally been referred to as “producer’s accuracy”. We will explain why we prefer “PR” over “producer’s 

accuracy” or any other term later. 

3. PC (correct Proportion or Percent relative to the Classification) – refers to the correct proportion (or percentage, i.e., 

% correct) of a category when compared to the total number of counts classified as that category by the inventory 
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classification. For example, what percent of the trees classified as white spruce in the inventory are actual white spruce 

trees on the ground? It is calculated by dividing the number of correctly classified counts for the category, by the total 

number of counts classified as that category by the classification (column total). In a general form it can be written for 

category i as: 

[2.3] PC𝑖 =
𝑛𝑖𝑖

𝑛𝑐𝑖
 (PC𝑖% = 100 ×

𝑛𝑖𝑖

𝑛𝑐𝑖
). 

 where nii is the number of correctly classified counts for category i, and nci (column total) is the total number of counts 

classified as category i by the classification. The pooled average of PCi is (PC1×nc1+ 

PC2×nc2+⋯+PCk×nck)/(nc1+nc2+⋯+nck) = ∑ (PC𝑖 × 𝑛𝑐𝑖)𝑘
𝑖=1 / ∑ 𝑛𝑐𝑖

𝑘
𝑖=1  = ∑ 𝑛𝑖𝑖

𝑘
𝑖=1 /𝑁 = Po, which means that the overall 

accuracy Po can also be distributed by column. 

The PC has traditionally been referred to as “user’s accuracy” or “reliability”. We will explain why we prefer “PC” over 

“user’s accuracy” or “reliability” or any other term later. 

4. PAve (Average of correct Proportions for category) – refers to the pooled or weighted average of PR and PC. It can 

be written in the following general form for category i: 

[2.4] PAve𝑖 =
PR𝑖×𝑛𝑟𝑖+PC𝑖×𝑛𝑐𝑖

𝑛𝑟𝑖+𝑛𝑐𝑖
=

(𝑛𝑖𝑖/𝑛𝑟𝑖)×𝑛𝑟𝑖+(𝑛𝑖𝑖/𝑛𝑐𝑖)×𝑛𝑐𝑖

𝑛𝑟𝑖+𝑛𝑐𝑖
=

2𝑛𝑖𝑖

𝑛𝑟𝑖+𝑛𝑐𝑖
  

 (PAve𝑖% = 100 ×
2𝑛𝑖𝑖

𝑛𝑟𝑖+𝑛𝑐𝑖
). 

 More intuitively, the average of correct proportions for a category can be written as: 

[2.5] PAve𝑖 =
𝑟𝑜𝑤 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑜𝑢𝑛𝑡 + 𝑐𝑜𝑙𝑢𝑚𝑛 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑜𝑢𝑛𝑡

𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙 + 𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙
 . 

where the row and column correct counts and the row and column totals correspond to category i. It can be shown that 

the pooled average of PAvei is also identical to the overall accuracy Po (i.e., the overall accuracy can be distributed into 

PAvei):  

[2.6] Po =
PAve1(𝑛𝑟1+𝑛𝑐1)+PAve2(𝑛𝑟2+𝑛𝑐2)+⋯+PAve𝑘(𝑛𝑟𝑘+𝑛𝑐𝑘)

(𝑛𝑟1+𝑛𝑐1)+(𝑛𝑟2+𝑛𝑐2)+⋯+(𝑛𝑟𝑘+𝑛𝑐𝑘)
=

∑ [PAve𝑖(𝑛𝑟𝑖+𝑛𝑐𝑖)]𝑘
𝑖=1

∑ (𝑛𝑟𝑖+𝑛𝑐𝑖)𝑘
𝑖=1

=
∑ 2𝑛𝑖𝑖

𝑘
𝑖=1

𝑁+𝑁
 =

∑ 𝑛𝑖𝑖
𝑘
𝑖=1

𝑁
 . 

The four accuracy proportions (Po, PR, PC and PAve) calculated from the error matrix are used as the four accuracy 

measures for species classification. They represent overall (Po) and individual species level (PR, PC and PAve) classification 

accuracies. There are numerous (40+) other accuracies and error measures that can be derived from an error matrix, but they 

are not as useful nor as meaningful in practical accuracy assessment as the four measures described above. Interested 

readers may wish to read additional details about those accuracy and error measures in “Additional Notes” (Sections 5.1 and 

5.2). 

TABLE 3. SPECIES CLASSIFICATION PERFORMANCE MATRIX. 

 

    Classification (from the lidar inventory) Total 

(row) 
PR 

  Sp Aw Bw Dp Fb Lt Pb Pl Sb Sg Sw 

Reference 

/ground 

 

Aw 48 3       3   1     55 87% 

Bw 2 15           1     18 83% 

Dp     0               0 0 

Fb       6 2           8 75% 

Lt 1       9   1 1   2 14 64% 

Pb 2 1       7         10 70% 

Pl 2       1   6       9 67% 

Sb       1 3   1 18   5 28 64%* 

Sg     2           2   4 50% 

Sw 2     7 4   1 4   45 63 71%* 

Total (column) 57 19 2 14 19 10 9 25 2 52 209 
 

PC 84% 79% 0 43%* 47%* 70% 67% 72% 100% 87%  Po=75%* 

(z=-1.94) PAve 86% 81% 0 55%* 55%* 70% 67% 68%* 67% 78%  

Sp distributions 2 = 6.35 (p-value = 0.70) 

Note: species (sp) are defined in Table 1, “*” indicates significantly lower than 80% (the example accuracy threshold) at  = 0.05 (one-tailed), PR is the 

correct proportion relative to the reference (in row), PC is the correct proportion relative to the classification by inventory (in column), PAve is the pooled 

average of PR and PC, Po is the overall accuracy for all species combined, and “Sp distributions” denotes the species frequency distributions (to be 

discussed later). The z value for Po is the one sample proportion Z-test statistic against 80%. The 2 and the p-value (to be discussed later) evaluate the 

equivalence of the species frequency distributions from the reference (ground) and classification.  
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The notations for the four measures described above may not be immediately clear to some readers, but are necessary for 

generalization. To clarify the concepts further and demonstrate their calculations, a real world example obtained from a 2018-

2020 airborne lidar inventory in the Forest Management Agreement (FMA) area of Canadian Forest Products Ltd. (Grande 

Prairie) is used (Forsite Consultants Ltd. 2020). Table 3 lists the frequency counts for the 10 species observed on the ground 

and identified by the inventory. Since such a table specifically addresses the categorical variable “species”, it is also termed 

the “species classification performance matrix” – a special case of an integrated error matrix for species.   

Based on the counts listed in Table 3, the overall species classification accuracy for all species combined is (from [2.1]):  

Po = ∑ 𝑛𝑖𝑖
𝑘
𝑖=1  /N = (48+15+0+6+9+7+6+18+2+45)/209 = 156/209 = 75%.  

At the category (individual species) level, for instance, 48 aspens are correctly classified among a total of 55 ground observed 

aspens (references, row total). Therefore, the correct proportion relative to the reference for Aw is PRaw = nii/nri = 48/55 = 87% 

(from [2.2]). Similarly, for Sw, the correct proportion relative to the reference is PRsw = 45/63 = 71% (45 white spruce trees are 

correctly classified among a total of 63 ground observed white spruce trees).  

Since the total number of counts classified as Aw by the classification is 57 (column total), the correct proportion relative to the 

classification for Aw is PCaw = nii/nci = 48/57 = 84% (from [2.3]). Similarly, for Sw, the correct proportion relative to the 

classification is PCsw = 45/52 = 87% (the total number of counts classified as Sw by the classification is 52).  

The pooled average of the correct proportions for Aw is PAveaw = 2nii/(nri+nci) = (48+48)/(55+57) = 86%, which is obtained 

from [2.4]. Similarly, for Sw, the pooled average is PAvesw = (45+45)/(63+52) = 78%. 

The PR and PC are two species-specific accuracy proportions (in percentages) calculated in two different ways, one relative to 

the reference in row (from the ground observations), and the other relative to the classification in column (from the inventory 

technique). As such, they can give very different accuracy assessments for a species. This needs to be clearly understood.  

The PR represents the correct proportion of a species in relation to the total number of reference counts (in this case, ground 

counts) for that species. It indicates the proportion or probability that a ground species is correctly classified by the inventory, 

e.g., what percent of the white spruce trees in the ground sample were correctly classified as white spruce in the inventory? 

The PC represents the correct proportion of a species in relation to the total number of counts classified as that species by the 

inventory. It indicates the proportion or probability that the species classified by the inventory actually represents the true 

species on the ground, e.g., what percent of the trees classified as white spruce in the inventory are actual white spruce trees 

on the ground? 

The difference between PR and PC is caused by the misclassifications among the species. More specifically, it is caused by 

misclassifying the species of interest into other species (omission from the species of interest) and other species into the 

species of interest (commission error). It is important to recognize that either one of PR or PC only assesses one aspect of 

species-specific classification. It can be very misleading if only one of them is considered. Both must be looked at to avoid 

misinterpreting the accuracy information when assessing the accuracy of individual species classification from an inventory. 

In practice, since either one of PR or PC may be misinterpreted or misunderstood, it can be very useful to have a single overall 

accuracy measure for each individual species present in an inventory, similar in concept to the overall accuracy measure for 

all species combined, but only for each individual species. There are varying ways to integrate the PR and PC values, or to 

derive other composite quantities and measures from the error matrix, through “different averaging methods”, “discrete 

multivariate analysis techniques” that “balance” or “normalize” the original values, analysis of variance and different kappa 

statistics. We provide more details on many of them in “Additional Notes” (Section 5.2). The simplest and most obvious and 

effective approach for obtaining a single overall accuracy for each species is to just take the pooled or weighted average of the 

PR and PC values, as in PAve, which was used by Helldén (1980) and sometimes referred to as “the mean accuracy index” or 

“Helldén’s mean accuracy index” (Rosenfield and Fitzpatrick-Lins 1986, Türk 2002, Liu et al.  2007, Stehman and Foody 

2019). The pooled average expressed in PAve provides a unique and clearly understandable overall accuracy measure for 

each individual species in an inventory. 

In many photogrammetric and remote sensing studies, an abridged table similar to Table 2 or Table 3 has often been called 

“confusion matrix” or “confusion table” (Story and Congalton 1986; Lillesand et al. 2015; Foody 2002, 2020), even though one 

of the earliest examples of such a table is called “error matrix” (Aronoff 1982). The concept of “confusion matrix” was 

introduced into remote sensing studies to quantify the confusion between categories (i.e., classes, species), and not the 

confusion it causes in the person trying to understand the matrix. It is very common to use a “confusion matrix” to represent 

the classification accuracy of remotely sensed data and maps, or use it as the basis for further analysis. There may not be 
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anything fundamentally wrong in calling such a table “confusion matrix”, except that it can be very confusing to most 

practitioners.  

The confusions can be exacerbated in several ways: (1) when the confusion matrix uses the so-called "producer’s accuracy” to 

measure the “errors of exclusion (omission errors)”, and the "user’s accuracy” to measure the “reliability” or the “errors of 

inclusion (commission errors)”; (2) when the "producer’s accuracy” is labelled as (and confused with) the "user’s accuracy”, 

and the "user’s accuracy” is labelled as the "producer’s accuracy”; (3) when the "producer’s accuracy” is mixed/confused with 

“producer's risk” (the probability of incorrectly rejecting an acceptable map), and the “user’s accuracy” is mixed/confused with 

“consumer's risk” (the probability of accepting an inaccurate map); and (4) when the original values in the confusion matrix are 

"normalized" through "iterative proportional fitting”, which forces each row and column in the matrix to sum to one through 

iterations and changes to the original values in the rows and columns of the matrix. We will discuss these later for interested 

readers (in Sections 5.1 and 5.2). 

We suggest the clear, intuitive terminology in Table 2 or Table 3 is used. We prefer to present and analyze the original data as 

they are, so that the results can be interpreted directly on the original rather than normalized, iteratively re-weighted or 

transformed data, which could distort the data and interpretation. We also purposely avoid the terms and idioms that may 

confuse many practitioners and some researchers, and think that “error matrix” or “classification performance matrix” (for any 

suite of categorical variables) is clearer, more pertinent and intuitive than the traditional “confusion matrix”. Interested readers 

who wish to find more details about why we choose to do so can read “Additional Notes” (Sections 5.1 and 5.2).   

An added advantage of the classification performance matrix presented in Table 3 is that, it can be much more telling than the 

traditional confusion matrix. The classification performance matrix can not only provide the accuracy information for all species 

combined and by individual species, but also answer several questions related to the inventory, such as: 

- Does the overall species classification accuracy meet the specified target (say, 80%, 85%, 90% or any other user 

specified percentages), when all species are combined? 

- Do the accuracies of individual species meet the specified target? 

- Do the accuracies for the same species (especially the leading species) differ significantly between the correct 

proportion relative to the reference (PR) and the correct proportion relative to the classification (PC)?  

- Are the species frequency distributions from the reference and classification the same? In other words, can the two 

data sets, one obtained on the ground and the other from the inventory classification, be considered equivalent in 

representing the same species composition (i.e., species frequency distribution) for the same population (area of 

study)? 

In practice, direct answers to the first two questions can be inferred directly from the Po, PR, PC and PAve numbers listed in 

Table 3. For instance, since the overall accuracy Po = 75%, we could say that it meets the accuracy target of 75% when all 

species are combined, but not 80%. For Aw, we could say that it meets the accuracy target of 80% because both PR and PC 

for Aw exceed 80% and PAve (Aw) = 86%.  

However, for Sw, since PRsw = 71%, PCsw = 87% and PAve (Sw) = 78%, the answers are less certain, although we could say 

that the overall accuracy for Sw, PAve (Sw) = 78%, does not meet 80% but the accuracy relative to the classification, PCsw = 

87%, exceeds 80%. Where PR and PC are quite different, it is a signal that the species is being over- or under-called.  In this 

case, Sw is being under-called so the PR is low. In the example table (Table 3), Fb is being over-called so the PC is low.   

If statistically-based answers to all of the above questions are needed, we can implement statistical tests, provided that they 

are appropriately executed and interpreted. The answers can also be integrated into Table 3. Essentially the statistical tests 

allow us to compare the obtained and targeted accuracies more objectively, since it is not always possible to tell just by 

looking at them whether they are the same or different enough to be considered statistically significant. Statistical significance 

in this case means that the differences between the accuracies are not due to chance alone, but instead, they may be 

indicative of other factors at work. 

Some readers may have noticed that Table 3 includes some additional numbers and symbols that have not been considered 

so far (e.g., the z-statistic, the chi-square (2) statistic and associated p-value from statistical tests, and the star ‘*’ to indicate 

statistical significance). We will discuss them one-by-one below for interested readers.  

Error Matrices for Species Groups and User-Defined Strata    
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Before moving on to discuss the additional numbers and symbols in Table 3 that can answer the above questions statistically, 

we want to mention that, Table 3 is explicit to individual species. Sometimes, for practical reasons, the accuracy of species 

classification from an inventory may only need to be assessed by the broad cover types (coniferous and deciduous) or by the 

species groups defined in Table 1. In those situations, for instance, Table 3 can be summarized into Table 4 if one is only 

interested in the accuracy for the broad cover types of coniferous and deciduous (for now assuming that the snags in Table 3 

are coniferous – two of which are classified as deciduous and the other two (Dp) are coniferous). 

TABLE 4. SPECIES CLASSIFICATION PERFORMANCE MATRIX FOR CONIFEROUS AND DECIDUOUS. 

 

  

 Classification Total 

(row) 

Correct proportion re 

reference (PR) Species Coniferous Deciduous 

Reference/ground 

 

Coniferous 119 7 
126 94% 

Deciduous 2 81 
83 98% 

Total (column) 121 88 209 
 

Correct proportion re classification (PC) 98% 92%  
Po=200/209=96% 

(z=5.67) 
Average of correct proportions by category (PAve) 96% 95%  

Species distributions 2 = 0.25 (p–value = 0.62) 

Note: species (sp) are defined in Table 1, Po is the overall accuracy, and “species distributions” denotes the species frequency distributions. The z value 

for Po is the one sample proportion Z-test statistic against 80% (the example accuracy threshold). The 2 and the p-value (to be described later) evaluate 

the equivalence of the species frequency distributions from the reference (ground) and classification. The original species-specific data are listed in Table 

3. 

All species-specific formulas and calculations described earlier apply to Table 4, except now that there are only “two species”, 

two categories (coniferous and deciduous) or two classes. 

Intrinsically, the species classification performance matrix can be considered a part of the broader error matrices for an 

inventory or an image/map classification. Besides species, many inventories involve other categorical variables. Some (such 

as the AVI) also conduct a mixed land cover and land use classification. Relevant classification performance matrices for 

categorical variables from any inventory techniques can be constructed following the logic embedded in Tables 2-4. 

Depending on the analysis and the variable(s) of interest, the numbers listed in the cells (rows and columns) of the matrices 

can be counts or frequency proportions. They can also be areas, pixels, clusters, point clouds, stands or polygons, etc. 

2.2 Crown delineation or stem segmentation accuracy for tree-based approach 

For tree-based approach (as opposed to area-based approach), prior to assessing the accuracy of species classification, it is 

important to look at the accuracy of crown delineation or stem segmentation. This is because the overall accuracy of species 

classification for an individual tree-based inventory is comprised of two separate accuracy components: 1) crown delineation 

or stem segmentation accuracy; and 2) species classification accuracy.  

The species classification accuracy in the form of the error matrix discussed above is derived based on the matched sample 

pairs of known ground species versus inventory predicted species (see more details in Section 2.3). Crown delineation 

accuracy is different and separate from the species classification accuracy – they are literally two very distinct processes. 

Crown delineation occurs first, and can result in several different outcomes. It can produce three types of errors: 

1. Missing error – crown is completely missed or undetected during crown delineation.  

2. Under-counting error – multiple crowns are incorrectly delineated into fewer crowns or a single crown, perhaps because 

they are blocked, invisible, cluttered, or clumped together. Inherently, under-counting errors can be considered missing 

errors, as they are caused by missing the crowns that should have been delineated and counted.  

3. Over-counting error – a crown is incorrectly delineated into multiple crowns, perhaps because it is large and/or has an 

irregular shape. Sometimes a crown that does not exist is delineated, resulting in a “phantom” or a “ghost” crown. 

Phantom or ghost crowns are extra crowns that can be considered over-counting errors, as they are caused by over-

counting the crowns that should not have been delineated and counted. 

Table 5 lists the ground data and the corresponding inventory (lidar) data from two sample plots used to illustrate the 

calculations of the crown delineation errors. For simplicity, only tree number (Tree), tree species (Sp) and tree height (HT) are 

listed in Table 5. 
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TABLE 5. TREE-BASED GROUND AND INVENTORY DATA FROM TWO SAMPLE PLOTS (FOR ILLUSTRATION). 

 

Plot 
Ground  Inventory (lidar) 

Note 
In/Out 

(correct/incorrect) Tree Sp HT  Tree Sp HT 

1 G1 Sw 25.60  L1 Sw 25.75 
 

In (correct) 

1 G2 Aw 23.95  L2 Aw 23.97 
 

In (correct) 

1 G3 Pb 18.01  L3 Aw 20.97 Pb identified as Aw  In (incorrect) 

1 G4 Aw 18.80     G4 missing  Out 

1 G5 Aw 19.25  L4 Aw 19.54  In (correct) 

1 G6 Sw 14.08     G6 missing Out 

1 G7 Fb 19.45  L5 Fb 20.78  In (correct) 

1 G8 Sw 18.96  L6 Sw 17.91 
 

In (correct) 

1 G9 Sw 19.86  L7 Sw 19.80 
 

In (correct) 

1 G10 Aw 19.65  L8 Aw 19.35 
 

In (correct) 

2 G1 Sw 11.87  L1 Fb 11.77 Sw identified as Fb In (incorrect) 

2 G2 Aw 23.42  L2 Aw 23.56  In (correct) 

2 G3 Aw 22.18  L3 Aw 23.30  In (correct) 

2 G4 Pl 16.66  L4 Sb 18.88 Pl identified as Sb In (incorrect) 

2 G5 Pl 19.38  L5 Pl 19.03  In (correct) 

2 G6 Sw 8.66     G6 missing Out 

2 G7 Aw 20.60  L6 Aw 18.23  In (correct) 

2 G8 Sw 12.38  L7 Sb 13.39 Sw identified as Sb In (incorrect) 

2 G9 Aw 21.71  L8 Aw 20.37 Two Aw delineated as one tree In (correct) 

2 G10 Aw 17.14  
   

(or, either G9 or G10 missing) Out 

2 G11 Sw 16.22  L9 Sw 19.50  In (correct) 

2 G12 Aw 24.23  L10 Aw 23.18 One Aw delineated as two trees  In (correct) 

2 
    

L11 Pb 24.05  Out 

2 
    

L12 Bw 14.16 Non-existent “ghost” tree Out 

2 G13 Aw 22.68  L13 Aw 22.30  In (correct) 

Note: Tree, Sp and HT denote tree number, tree species and tree height (m), respectively. Tree species are defined in Table 1. Shaded trees involve 

delineation errors. The last column “In/Out (correct/incorrect)” indicates two elements: if the tree is included (In) or excluded (Out) in assessing the 

species classification accuracy; and if the tree species is correctly (correct) or incorrectly (incorrect) identified by the inventory.  

The “In/Out (correct/incorrect)” column in Table 5 indicates two elements: if the tree is included (In) or excluded (Out) in 

assessing the species classification accuracy (see later in Section 2.3); and if the tree species is correctly (correct) or 

incorrectly (incorrect) identified by the inventory. For plot 1 in Table 5, among the 10 ground trees, eight are delineated and 

two are missed by the inventory. Among the eight delineated trees, tree G3 (Pb) is misidentified as Aw, and all other tree 

species are correctly identified by the inventory. For plot 2 in Table 5, there are 13 ground trees. The inventory delineated 13 

trees – but this does not mean that the delineation is perfect. The 13 delineated trees include: 

- One missing tree (G6); 

- Two trees (G9, G10) delineated as one tree (L8) – equivalent to under-counting one tree; 

- One tree (G12) delineated as two trees (L10, L11) – equivalent to over-counting one tree; 

- One non-existent tree delineated as a “ghost” tree (L12) – equivalent to over-counting one tree.  

Apparently, for plot 2, the missing, under-counting and over-counting errors cancelled or balanced out when summed up, 

resulting in the delineated stems (crowns, trees) equaling to the total number of stems on the ground. This could be mistaken 

as a perfect delineation if a person only looks at the total number of ground versus delineated stems. There are other more 

convoluted crown delineation situations in which the crown delineation errors may cancel out. If not careful, they could lead to 

some “look good” but misleading inferences. 

In general, when over-counting happens, there is an increased probability that the reference trees are classified correctly 

leading to a good PR value, but the many additional trees assigned to the class in error, result in a poor PC value. When 

under-counting happens, there is a reduced chance to get a good PR value because not enough trees of that species are 

called to match the trees in the ground sample. The PC value can still be good because the algorithm may be quite good at 

identifying clear examples of that species, so the few that do get called are mostly correct.   

For tree-based approach, it is very important to at least take a look at the proportion of the stems that are missed by crown 

delineation.  

However, in order to really understand the accuracy of crown delineation and avoid the crown delineation errors’ cancelling out 

problem, it is advisable that the three types of errors described above should be assessed separately. Table 6 lists the crown 
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delineation errors for the data in Table 5. Other more detailed statistics, such as the size class and species composition of the 

missed stems by the crown delineation, could also be assessed if needed for some specific studies (perhaps designed to 

search for causes, reasons, justifications and solutions). 

TABLE 6. CROWN DELINEATION (OR STEM SEGMENTATION) ERRORS FOR THE DATA IN TABLE 5. 

 

Plot Nground Nlidar 
Relative 
percent 

Crown delineation error 
Combined 

% error 
Combined % 

correct Missing  
Under-

counting  
Over-

counting  

1 10  8 80.0%  2/10 0/10 0/10 2/10=20.0% 80.0% 

2 13 13 100.0%   1/13 (2-1)/13 (3-1)/13 4/13=30.8% 69.2% 

Sum 23 21 91.3% 3/23 1/23 2/23 6/23=26.1% 73.9% 

Note: under-counting for plot 2 is resulted from two trees delineated as one tree, over-counting for plot 2 is resulted from one tree delineated as two 

trees and one non-existent tree delineated as a “ghost” tree. Definitions for other terms and variables are provided in the main text. 

Where in Table 6: Nground is the number of stems (crowns, trees) on the ground; Nlidar is the number of stems delineated by the 

inventory (lidar); Relative percent is Nlidar in relation to Nground (Relative percent = Nlidar/Nground); Missing, under-counting and 

over-counting are missing, under-counting and over-counting crown delineation errors, respectively (see Table 5); Combined 

% error is the summation of missing, under-counting and over-counting errors; Combined % correct is (100% – combined % 

error), which can be interpreted as the correct percentage of crown delineation for the combined samples.  

The under-counting error for plot 2 is resulted from two trees (G9, G10) delineated as one tree (L8). The over-counting error 

for plot 2 is resulted from one tree (G12) delineated as two trees (L10, L11) and one non-existent tree delineated as a 

phantom or “ghost” tree (L12).  

The relative percent in Table 6 is Nlidar in relation to Nground. It is just a ratio between Nlidar and Nground, not the correct % about 

crown delineation. For instance, there are cases where Nlidar > Nground (e.g., due to over-counting errors), which would result in 

a relative percent of greater than 100%. Had this relative percent been interpreted to be the correct % of crown delineation, it 

would mean that the correct % were greater than 100%. Obviously that does not make any sense. Only when there are no 

under-counting and over-counting errors, relative percent equals to the correct percentage of crown delineation (e.g., for plot 

1, since under-counting error = 0 and over-counting error = 0, relative percent = combined % correct = 80.0%; But for plot 2, 

relative percent = 100%, while combined % correct = 69.2%, see Table 6). 

Crown delineation accuracy is a critical consideration in determining the overall validity and usefulness of a tree-based 

approach. The errors in crown delineation should be appropriately quantified and assessed before the merits of a tree-based 

approach can be determined. Without conjointly considering crown delineation accuracy, the reported species classification 

accuracy can be inflated.  

Often, however, crown delineation from canopy height models, canopy structures and point clouds can be difficult and 

challenging, even though considerable progresses and improvements have been reported in research (Yu et al. 2011, Wu et 

al. 2016, Mohan et al. 2017, Surový and Kuželka 2019, Coops et al. 2021, Prieur et al. 2022) and in operation (Strîmbu and 

Strîmbu 2015; Zhang et al. 2016, 2022; Yang and Kondoh 2020; Forsite Consultants Ltd. 2020). Crown delineation errors are 

not readily identifiable nor easily quantifiable from an automatic delineation process. To be able to identify and parse the errors 

into missing, under-counting and over-counting errors, some separate, more intelligent crown matching algorithms, or some 

visual matching and checking through an onerous manual process may be necessary. In any case, before implementing a 

tree-based approach as an inventory technique in operations, one needs to assess and understand the crown delineation or 

stem segmentation errors (at least the missing errors). Furthermore, without assessing and understanding the crown 

delineation errors, it is inadvisable to implement a tree-based approach as a data collection tool in place of measuring PSPs 

and TSPs on the ground. Besides their numerous other functions, ground-measured PSPs and TSPs are generally considered 

“the truth” and used as the reference standards for determining the accuracy and judging the validity of any forest inventory 

techniques. 

While understanding the crown delineation accuracy is critical for tree-based approach, it is typically irrelevant for area-based 

approach. Area-based crown information (such as crown area, crown cover percent) can be obtained from an area-based 

approach. There is no crown delineation involved for individual trees in an area-based approach. Therefore, the crown 

delineation errors discussed above do not apply to area-based approach.  

2.3 Further notes on species classification accuracy 
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The error matrix for species classification described in Section 2.1 is constructed based on the matched-pairs of known versus 

predicted tree species. To construct the error matrix, a set of samples (say, size n) is taken from a population. These samples 

with known ground species are compared to their respective predicted species from the inventory (in this case, from lidar). 

This means that the delineated individual crowns (stems, trees) by the inventory must first be matched correctly to the stems 

identified in the field, then compared and fed into the error matrix.  

As an example to illustrate further, in order to calculate the species classification accuracy for the data in Table 5, the 

delineated individual stems by the lidar inventory must first be matched correctly to the stems measured on the ground. It can 

be seen from Table 5 that eight out of eight delineated trees for plot 1 can be matched with the ground trees, and 11 out of 13 

delineated trees for plot 2 can be matched with the ground trees. The matched-pairs (a total of 19 from two plots) with known 

ground species and inventory predicted species are used to calculate the species classification accuracy. Results are shown 

in Table 7, where Nground and Nlidar are the stem counts on the ground and from the inventory, respectively.  

TABLE 7. SPECIES CLASSIFICATION ACCURACY FOR THE DATA IN TABLE 5. 

 

Plot Nground Nlidar 
Matched-

pairs 

% of 

matched-pairs 

Correct species 

prediction pairs 
% Correct 

1 10 8 8 8/8=100.0% 7 7/8=87.5% 

2 13 13 11 11/13=84.6% 8 8/11=72.7% 

Sum 23 21 19 19/21=90.5% 15 15/19=78.9% 

 

Other variables appeared in Table 7 are defined as follows: 

- Matched-pairs = number of matched ground-inventory pairs; 

- % of matched-pairs = matched-pairs/Nlidar. It is the percentage of matched-pairs relative to Nlidar; 

- Correct species prediction pairs = number of correct species prediction pairs among matched-pairs; 

- % Correct = correct species prediction pairs/matched-pairs. 

As discussed before, the species classification accuracy is more commonly expressed in terms of the error matrix described in 

Section 2.1. For the example data in Table 5, the error matrix that corresponds to Table 7 is shown in Table 8.  

TABLE 8. ERROR MATRIX FOR SPECIES CLASSIFICATION FOR THE DATA IN TABLE 5. 

 

 

Species  

Inventory (lidar) Total 

(row) 

PR 

  Sw Sb Aw Pb Fb Pl 

Ground (reference) 

Sw 4 1 0 0 1 0 6 67% 

Sb 0 0 0 0 0 0 0 0 

Aw 0 0 9 0 0 0 9 100% 

Pb 0 0 1 0 0 0 1 0 

Fb 0 0 0 0 1 0 1 100% 

Pl 0 1 0 0 0 1 2 50% 

Total (column) 4 2 10 0 2 1 19  

PC 100%  0 90%  0 50% 100%    

Pave 80% 0 95% 0 67% 67%  Po=78.9% 

Note: species are defined in Table 1, PR is the correct proportion relative to the ground (reference), PC is the correct proportion relative to the 

classification (prediction) by the inventory, PAve is the pooled average of PR and PC, and Po is the overall accuracy for all species combined. 

The overall accuracy listed in Table 8 for all species combined (Po=78.9%) is identical to the % Correct in Table 7 when all 

data are combined. The error matrix (Table 8) is preferred over Table 7 because it also provides more detailed error/accuracy 

statistics for individual species. The foundation for Table 7 and Table 8, however, is the same. They both must be derived 

based on only the matched-pairs of known ground versus inventory predicted species. Unmatched pairs and any associated 

missing errors and species misidentification errors in a tree-based approach can be assessed during the crown delineation 

process (Section 2.2), but they are not accounted for by any means in the error matrix for species classification, which requires 

matched-pairs for the calculation. 

In the “purest theoretical sense”, the data assessed for the species classification accuracy should be free of the delineation 

errors to avoid the inflation or deflection of the accuracy statistics. Therefore, ideally the shaded trees in Table 5, which involve 

delineation errors, may not be used in assessing the species classification accuracy. In practice, however, so long as there is 
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a match-able pair resulted from the delineation, the matched-pair should be used in the evaluation of species classification 

accuracy. 

For example, for plot 2 in Table 5, two Aw trees (G9, G10) are incorrectly delineated as one Aw tree (L8). The delineation 

involves an under-counting error. However, since the delineated Aw can be matched with one of the two Aw trees, it should 

not be excluded or thrown away in assessing the species classification accuracy (throw away the Aw in this case would 

underestimate the accuracy). For the same logic, if the two Aw trees are delineated as one Pb tree, it should not be thrown 

away either, as it can still be paired with one of the two Aw trees, notwithstanding that the delineated species is incorrect 

(throw away the Pb in this case would overestimate the accuracy). 

In a different scenario (see Table 5), assume that one Aw tree in plot 2 (G12) is delineated as three trees: one Aw (L10), one 

Pb (L11) and one Bw (L12). The delineation involves some over-counting errors. Since at least one of the three delineated 

trees can be paired with the Aw tree (G12), they should not be thrown away in assessing the species classification accuracy. 

A more intricate practical problem arises when there are over-counting errors. In the above example, one Aw is delineated as 

three trees of different species: one Aw, one Pb and one Bw. Which one of the three delineated trees should be matched with 

the ground reference? The varied choices will not only impact the assessment of the species classification accuracy, but also 

other accuracies related to other species-specific variables (e.g., tree height, stand height and stand density).  

Readers and agencies can develop their own “best practices” or hierarchies for the matches if over-counting occurs. These 

“best practices” are beyond the scope of this study. They are dependent on the consideration of which variable is the most 

important for a specific study. As an example, one could implement the following order of precedence for consistent pair 

matching: 

1. The same species regardless of the other variables;  

2. The closest heights of the same species; 

3. The closest heights regardless of the species; 

4. The closest horizontal distance between the ground and delineated stems. 

For instance, following this order of precedence, for the ground Aw delineated as Aw, Pb and Bw by the inventory, the ground 

Aw is matched with the delineated Aw regardless of the other variables. 

If the ground Aw is delineated as Aw, Aw and Bw by the inventory, the delineated Aw whose height is closer to that of the 

ground Aw is matched with the ground Aw. 

If the ground Aw is delineated as Pb, Pb and Bw by the inventory, the delineated tree whose height is closest to that of the 

ground Aw is matched with the ground Aw. 

If the ground Aw is delineated as Pb, Pb and Bw by the inventory, and the spatial locations of all four trees are known, the 

delineated tree that is the closest (in terms of the horizontal distance) to the ground Aw is matched with the ground Aw. 

Regardless of the developed “best practices” for the matches, fundamentally, the error matrix for species classification must 

be derived based on the matched-pairs of known versus predicted species. The overall accuracy of species classification for 

any tree-based approach must be evaluated simultaneously based on the error matrix for species classification and the crown 

delineation accuracy. Without knowing the crown delineation or stem segmentation accuracy, the reported high species 

classification accuracy may not mean much in judging the quality of an inventory technique.  

2.4 One sample proportion z-test 

For practical and regulatory purposes, an accuracy target or an acceptable accuracy threshold is frequently established to 

determine, for instance, whether the overall species classification accuracy meets the threshold of 80% (or any other 

“reasonable” numbers one may select, such as 70%, 75%, 85%, 90%, 95%, etc.). While the concept of establishing such a 

threshold has its obvious merit, in broad forest inventory applications it can be more difficult to achieve agreement on what 

constitutes a reasonable, a good, an average, or a poor classification accuracy. In some cases 80% may represent a 

reasonable or a good accuracy whereas in other cases it may not. The problem can become more complex owing to, among 

many other quantitative and non-quantitative factors, different goals and objectives, types of variables and data, the variable 

costs of making class-specific errors (Gergel et al. 2007), and the sample sizes involved in an inventory.  
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Here, we will not make a judgment on what may constitute the “best” threshold (we will leave it for others to decide), but rather, 

simply use 80% as an example threshold to demonstrate the methodology, which conversely, can assist the establishment of 

a “realistic and achievable” accuracy threshold for a classification in practice. Readers could choose other suitable subjective 

thresholds where appropriate and justifiable. The methodology remains the same. 

Once the accuracy threshold of 80% is specified, the one sample proportion Z-test (or simply, one sample Z-test) can be 

applied to answer the two questions related to an inventory technique: 1) if the overall species classification accuracy meets 

the specified threshold; and 2) if the accuracies of individual species classifications meet the specified threshold.  

The one sample proportion Z-test compares an observed sample proportion to a threshold or a target proportion chosen by a 

user. It is implemented by computing the following Z-test statistic: 

[2.7] 
𝑧 =

𝑝1−𝑝t

√
𝑝t(1−𝑝t)

𝑛

 

where z is the test statistic, p1 is the accuracy proportion from the samples for the category (e.g., species), pt is the specified 

threshold proportion, and n is the total number of samples.  

The null (H0) and alternative (Ha) hypotheses for the one sample proportion Z-test are:  

H0: the sample proportion (p1) is equal to the specified threshold proportion (p1 = pt). 

Ha: p1 is not equal to the specified threshold proportion (p1 ≠ pt) (two-tailed or two-sided).  

Ha: p1 is greater than the specified threshold proportion (p1 > pt) (one-tailed, right sided).  

Ha: p1 is smaller than the specified threshold proportion (p1 < pt) (one-tailed, left sided).  

At the specified significance level of  = 0.05 (used throughout this study), for the two-tailed test of p1 ≠ pt, the critical value is 

±1.96. The decision rule is that, if the calculated z is  -1.96 or  +1.96 (i.e., if |z|1.96), reject the null hypothesis. For the one-

tailed test of p1 > pt, the critical value is +1.645. The decision rule is that, if z  1.645, reject the null hypothesis. For the one-

tailed test of p1 < pt, the critical value is -1.645. The decision rule is that, if z  -1.645, reject the null hypothesis. 

As an example, based on the number of trees data in the species classification performance matrix (Table 3), the overall 

species classification accuracy from the inventory is, p1 = 156/209 = 0.7464, where 156 are the total number of correct 

predictions and 209 are the total number of samples. Hence, 

[2.8] 
𝑧 =

0.7464 − 0.80

√
0.80(1−0.80)

209

 = -1.9368 = -1.94. 

For the two-tailed test, since the calculated z statistic is between -1.96 and 1.96, it means that we fail to reject the null 

hypothesis of p1 = pt = 0.80 (at  = 0.05). That is equal to say that, statistically, the overall accuracy percent obtained from the 

inventory (75%) is not different from the 80% threshold. In other words, even though we only achieved 75% accuracy from the 

samples, we can claim that statistically it meets the specified accuracy threshold of 80% when all species are combined.  

For the one-tailed test of p1 < pt, since the calculated z = -1.94 < -1.645, it means that the null hypothesis of p1 = pt = 0.80 is 

rejected. That is equal to say that, statistically, the overall accuracy percent obtained from the inventory (75%) is lower than 

the 80% threshold. In other words, we cannot claim that the obtained accuracy (75%) meets the specified accuracy threshold 

of 80% when all species are combined.  

The conflicting inferences obtained above from the two-tailed test and one-tailed test are not uncommon when a test statistic is 

near the critical borderlines. They mean that additional samples and/or studies are needed to achieve a more conclusive 

result. Hypothesis testing is highly dependent on the sample size (and the way the samples are collected). The smaller the 

sample size the less likely one will find a difference. Sample size and the way the samples are collected (i.e., sampling 

method) are very important considerations in developing and assessing forest inventory techniques. For our purpose, since we 

are mostly interested in if the sample proportion is equal to, greater than, or smaller than the specified threshold proportion, 

the one-tailed tests are more appropriate. 

The one sample proportion Z-test is also conducted for each species in Table 3 (recognizing that the total number of samples 

for each species is different for “reference” and “classification”). For instance, the PR (reference) for Aw with an n = 55 has a z 

= (48/55 – 0.80)/√0.80(1 − 0.80)/55 = 1.35. The PC (classification) for Aw with an n = 57 has a z = (48/57 – 
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0.80)/√0.80(1 − 0.80)/57 = 0.79. Both are within [-1.645, 1.645]. Therefore, both can be considered (statistically) equivalent to 

80%. 

The pooled average of the correct proportions for Aw from [2.4] is PAveaw = 86%. This pooled average for Aw corresponds to 

a z = ((48 + 48)/(55 + 57) – 0.80)/√0.80(1 − 0.80)/(55 + 57) = 1.51, which is within [-1.645, 1.645]. Therefore, it is also 

(statistically) equivalent to 80%. 

Table 9 lists the calculated z values for Aw and for all other species based on the results in Table 3 (except for Dp where 

PR=PC=PAve=0). The z values for Sb and Sw relative to the reference (PR), the z value for Fb and Lt relative to the 

classification (PC), and the z values for pooled averages for Fb, Lt and Sb, are outside the critical boundaries of [-1.645, 

1.645] for the one-tailed test. Therefore, for these species, the accuracy percentages listed in PR, PC and PAve in Table 9 did 

not meet the specified threshold of 80% for the one-tailed test. Interested readers can make appropriate inferences for the 

two-tailed test based on the z values listed in Table 9 (the only difference is that the PR for Sw is insignificant for the two-tailed 

test).  

TABLE 9. ONE SAMPLE PROPORTION Z-TEST FOR INDIVIDUAL SPECIES IN TABLE 3. 

 

Accuracy  Aw Bw Fb Lt Pb Pl Sb Sg Sw 

PR 87% 83% 75% 64% 70% 67% 64%* 50% 71%* 

(1.35) (0.35) (-0.35) (-1.47) (-0.79) (-1.00) (-2.08) (-1.50) (-1.70) 

PC 84% 79% 43%* 47%* 70% 67% 72% 100% 87% 

(0.79) (-0.11) (-3.47) (-3.56) (-0.79) (-1.00) (-1.00) (0.71) (1.18) 

PAve 86% 81% 55%* 55%* 70% 67% 68%* 67% 78% 

(1.51) (0.16) (-2.98) (-3.66) (-1.12) (-1.41) (-2.20) (-0.82) (-0.47) 

Note: species are defined in Table 1, PR is the correct proportion relative to the ground reference, PC is the correct proportion relative to the inventory 

classification, and PAve is the pooled average of the PR and PC for each species. Actual values of PR, PC and PAve are listed in Table 3. The values 

in parentheses are z values from the one sample proportion Z-test against a threshold of 80%. The values marked with a “*” indicate statistical 

significance (at  = 0.05) against the specified threshold of 80% for the one-tailed test.  

The one sample proportion Z-test results obtained for all species combined (z = -1.94 from [2.8]) and for individual species 

(Table 9) can be incorporated into the species classification performance matrix (Table 3). Other than the percentage values 

marked with a significance sign “*” (at  = 0.05, one-tailed) in Table 3, all other values listed in PR, PC and PAve are 

(statistically) equivalent to or larger than the specified threshold of 80% (except for Dp where PR=PC=PAve=0). Therefore, 

Table 3 in fact answered the questions of whether the overall and individual species classification accuracies met the specified 

threshold of 80% (of course, as a note of caution, we cannot rely too much on any statistics for any species with a sample size 

of 10 or less. The “best” sample size is dependent on many factors, chief among them, the cost and the time, the variations 

and the number of variables involved, the required precision and the allowable errors (or the acceptable risks), plus the 

objective, range and scope of a study).   

Several additional observations can be made from the one sample proportion Z-test results in Table 9 (which were 

incorporated into Table 3), all at  = 0.05, one-tailed: 

1). If the interpretation is based on the correct proportion relative to the ground reference (PR) without conducting the one 

sample Z-test, only two species, Aw and Bw, meet the 80% threshold. Based on the one sample Z-test, all species except Sb 

and Sw meet the 80% threshold. 

2). If the interpretation is based on the correct proportion relative to the inventory classification (PC) without conducting the 

one sample Z-test, only three species, Aw, Sg and Sw, meet the 80% threshold. Based on the one sample Z-test, Fb and Lt do 

not meet the 80% threshold, while all other species including Sb meet the 80% threshold. 

3). Note that using PR or PC changed the conclusions for some species (e.g., for Sb, Sw, Fb and Lt). This is expected 

because PR and PC can produce two very different quantities due to the misclassifications among the species by the 

inventory. Either the PR or the PC only looks at one aspect of a classification for a species, although sometimes there are 

cases where it may be desirable to weigh focus on either one of the measures depending on the purpose of the map being 

inventoried.  

4). The PAve calculated according to [2.4] or [2.5] combines both PR and PC. It provides a singular overall accuracy measure 

for each individual species. Together with the one sample proportion Z-test, it also answers the question of whether the overall 

accuracy for each individual species meets the specified accuracy threshold. Based on the PAve and the results in Table 9, it 

is very clear that Fb, Lt and Sb, with PAve values of 55%, 55% and 68%, respectively, did not meet the specified threshold of 
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80% whereas all other species met. The PAve can be more meaningful in practice if one is only interested in the overall 

accuracy for each individual species. 

The one sample proportion Z-test is a generic test that can evaluate a sample proportion against any target proportion. It can 

also be used to evaluate species composition proportions in terms of number of trees or crown cover areas for individual 

species.  

2.5 Two sample proportion z-test 

When judging the accuracies of different inventory techniques on the classification of individual species, the following 

questions often arise in one way or the other: 

- Do the accuracies for the same species (especially the leading species) differ from different inventory techniques?  

- How can we determine if different inventory techniques produce the same or different accuracy proportions for the 

same species in interest? 

For instance, assuming that the error matrix in Table 3 is from inventory technique 1 (T1). For T1 the correct proportion relative 

to the ground reference for Aw is PRaw1 = 87% (from a sample size of n1 = 55). Assuming also that from a different inventory 

technique 2 (T2), the correct proportion relative to the ground reference for Aw is PRaw2 = 78% (from a sample size of n2 = 

208). Are these two accuracies for Aw from T1 and T2 the same or different?  

In practice, judging from the absolute PR values, we may say that for Aw, T1 appears more accurate than T2 (because PRaw1 

= 87% > PRaw2 = 78%).  

If a statistically-based answer to the above question is needed, the two sample proportion Z-test (or simply, two sample Z-test) 

can be implemented. The two sample proportion Z-test evaluates whether the difference between two proportions from two 

techniques, two methods or two samples for a categorical variable is statistically significant at the specified  level. It 

calculates the following test statistic: 

[2.9] 
𝑧 =

𝑝1−𝑝2

√𝑝(1−𝑝)(
1

𝑛1
+

1

𝑛2
) 

where z is the test statistic, p1 is the accuracy proportion from technique 1 (or sample 1), p2 is the accuracy proportion from 

technique 2 (or sample 2), n1 is the number of samples from technique 1, n2 is the number of samples from technique 2, and p 

is the pooled average accuracy proportion calculated by: 

[2.10] 𝑝 =
𝑝1𝑛1+𝑝2𝑛2

𝑛1+𝑛2
=

𝑘1 (correct count from method 1) + 𝑘2 (correct count from method 2)

𝑛1+ 𝑛2
  

The null and alternative hypotheses for the two sample proportion Z-test are: 

H0: the accuracy proportions from two techniques (T1 and T2) are the same (p1 = p2). 

Ha: the accuracy proportions from two techniques are different (p1 ≠ p2) (two-tailed). 

Ha: the accuracy proportion from T1 is greater than that from T2 (p1 > p2) (one-tailed, right sided). 

Ha: the accuracy proportion from T1 is smaller than that from T2 (p1 < p2) (one-tailed, left sided). 

Since the two sample proportion Z-test statistic is a z-score, at the specified significance level of  = 0.05, the following 

decision rules apply:  

- For the two-tailed test of p1 ≠ p2, if the calculated z value from [2.9] is  -1.96 or  +1.96 (i.e., if |z|  1.96), the null 

hypothesis is rejected, which means that there is a significant difference between the two accuracy proportions for the 

same species from two techniques. Otherwise, there is no significant difference between the two accuracy 

proportions. 

- For the one-tailed test of p1 > p2, the critical value is +1.645. Hence, if the calculated z  1.645, the null hypothesis is 

rejected, which means that the accuracy proportion from technique 1 is greater than that from technique 2. 

- For the one-tailed test of p1 < p2, the critical value is -1.645. Hence, if the calculated z  -1.645, the null hypothesis is 

rejected, which means that the accuracy proportion from technique 1 is smaller than that from technique 2. 
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For the above example for Aw from two inventory techniques (T1 and T2), p1 = 87%, n1 = 55, p2 = 78% and n2 = 208. 

Therefore, p = 0.7988 (from [2.10]) and z = 1.481 (from [2.9].  

The calculated z value is between -1.645 and +1.645, which means that the null hypothesis of p1 = p2 is not rejected 

regardless of whether the one-tailed or two-tailed test is conducted. It suggests that, statistically, the accuracy proportions for 

Aw, PRaw1 = 87% and PRaw2 = 78% from two inventory techniques, can be considered equivalent to each other in a repeated 

sampling sense. The apparent difference between PRaw1 and PRaw2 is within the acceptable sample variation.  

Following the same logic, the two sample proportion Z-test can be applied to any other species from different inventory 

techniques to determine if the inventory techniques produce the same or different accuracy proportions for the species in 

interest. For instance, it can be used to assess whether the leading species call from AVI polygon is the same as the one 

created by aggregated individual tree inventory data. In fact, the two sample proportion Z-test can be used to compare any two 

proportions obtained from two different techniques, methods, areas or user-defined strata.  
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3 Assessing species composition or species frequency 
distribution 

The idea imbedded in the formulation of the species classification performance matrix (Table 3) focused on the species 

classification accuracies in proportions or percentages from an inventory technique. They apply to individual species and all 

species combined. However, they did not consider the overall accuracy in terms of the frequency distributions of the species 

as a whole (i.e., species compositions) from the ground and inventory. Therefore, they did not answer the question of whether 

the species frequency distributions (species compositions) from the ground and inventory are the same or different. 

For instance, for the data in Table 3, the species frequency distributions from “correct”, “ground” and “inventory” are shown in 

Figure 1, where “correct” denotes the counts of correctly identified species by the inventory (the shaded diagonal values in 

Table 3), “ground” denotes the total species counts from the ground reference (the row totals in Table 3), and “inventory” 

denotes the total species counts identified by the inventory (the column totals in Table 3). 

 

Figure 1. Species frequency distributions for the data in Table 3, where “correct” denotes the counts of correctly identified 

species by the inventory, “ground” denotes the total species counts from the ground reference, and “inventory” denotes 

the total species counts identified by the inventory. 

Are the species frequency distributions between the ground and inventory the same? What about the species frequency 

distributions between the correct and the ground? How can we compare the ground measured species composition or a 

reference species composition to a species composition derived from a lidar/satellite inventory? How can we compare the 

species compositions from different inventory techniques? These can be critically important considerations in determining the 

validity of an inventory and comparing different inventory techniques. 

Since the answer to the question of whether the species frequency distributions are the same involves the categorical variable 

“species”, the chi-square test and Fisher's exact test are appropriate. Both tests apply to categorical variables (also referred to 

as discrete, qualitative, discontinuous, nominal, or ordinal variables if there is a clear ordering of the categories). 

Before moving onto discussing the chi-square test and Fisher's exact test, some brief clarifications on the terminologies 

related to “frequencies”, “frequency numbers”, “frequency proportions” and “frequency distributions” are helpful, as there 

appear to be some ambiguities and confusions about these terms in the literature. Most importantly, as will be shown later, the 

chi-square test and Fisher's exact test (and the Kolmogorov-Smirnov test for continuous variables, to be discussed later), only 

apply to the specifically defined frequency distributions or frequency proportions.   

3.1 Clarification on frequency related terminologies  

Often, the word “frequency” can have two different interpretations:   

- Frequency may mean “frequency count” in actual number (or “frequency number”); 
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- Frequency may mean “frequency proportion” (frequency proportions sum up to 1 or 100%). 

Both interpretations (and the word itself) are closely related to “cumulative frequency”, which can mean “cumulative count” or 

“cumulative proportion”. Table 10 uses an example to explicitly define and illustrate the differences among the terminologies 

related to different types of frequencies, where species 1-5 represent different species.  

TABLE 10. DEFINITIONS AND EXAMPLES OF TERMINOLOGIES RELATED TO FREQUENCY AND FREQUENCY DISTRIBUTION. 
 

Species Frequency count Frequency proportion Cumulative count Cumulative proportion 

Species 1 3 0.3 (3/10) 3 0.3 (3/10) 

Species 2 1 0.1 (1/10) 4 0.4 (4/10) 

Species 3 4 0.4 (4/10) 8 0.8 (8/10) 

Species 4 0 0 (0/10) 8 0.8 (8/10) 

Species 5 2 0.2 (2/10) 10 1 (10/10) 

Note: “frequency” may refer to “frequency count” or “frequency proportion”. In this study, “frequency distribution” refers to “frequency proportion” or 

“cumulative proportion”, but not “frequency count”, nor “cumulative count”.  

The importance of the apparently simple and trivial differences among the four terms in Table 10 (frequency count, frequency 

proportion, cumulative count and cumulative proportion) will become clear later. It is beyond just the “semantics”. It is also 

beyond just simply choosing one to one’s preference and using it consistently. Moreover, in day-to-day usages, the four terms 

in Table 10 have also been loosely referred to as “frequency distributions”, or simply “distributions”. This has caused some 

confusions, as the results of the three tests to be discussed in this study (the chi-square test, Fisher's exact test and the 

Kolmogorov-Smirnov test), do not apply to all four terms, nor to the broadly and vaguely defined “distributions” although they 

have been frequently (and mistakenly) thought to apply.  

In this study, the four terms are spelled out explicitly wherever needed. In addition, species frequency distributions refer 

specifically and exclusively to the species frequency proportions across different species (as in column 3, Table 10). These 

clarifications are necessary for the interpretations of the results from the three tests. We will provide more details on them later 

in Section 5.4.  

3.2 The chi-square test for categorical variables 

To evaluate how accurate an inventory technique is in representing the actual forest characteristics and conditions on the 

ground, we often collect a set of data from the ground and compare it to the classification from the inventory on the same 

landbase (i.e., the “paired” landbase). One of the most important questions related to such comparison is: are the species 

frequency distributions from the ground and inventory the same? In other words, can the two data sets from the ground and 

inventory be considered equivalent in representing the same species frequency distribution (i.e., species composition) for the 

same landbase? 

To answer this question, either the chi-square test or Fisher's exact test can be used, depending on the “data conditions” to be 

discussed below. Methodologically both the chi-square test and Fisher's exact test can evaluate data sets of any dimensions, 

but here our focus is on the two dimensional (bivariate) data sets from the “ground” and “inventory”. 

The Chi-Square Test 

The chi-square (2) test evaluates if two sets of data with unknown distributions have the same frequency distributions as 

each other, or if they come from the same frequency distribution with the same frequency proportion for the categorical 

variable involved. To illustrate the computations involved in the chi-square test, species frequency counts from Table 3 (or 

Figure 1) for “correct” and “ground” are listed in Table 11, where “correct” refers to the counts of correctly identified species by 

the inventory, and “ground” refers to the total species counts from the ground reference. Readers can also use the counts for 

“inventory” and “ground” from Table 3 for the computations (see below). The logic is the same. 

To describe the computations in Table 11, the null and alternative hypotheses are specified first: 

H0: The species frequency distributions from the ground and correct inventory counts are the same. 

Ha: The species frequency distributions from the ground and correct inventory counts are different. 

The chi-square test is then conducted by calculating the following chi-square test statistic: 
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[3.1] 2 = ∑ ∑
(𝑂𝑖𝑗−𝐸𝑖𝑗)

2

𝐸𝑖𝑗

𝑐
𝑗

𝑟
𝑖  

where r is the number of rows and c is the number of columns in the bivariate table, Oij is the observed cell value, Eij is the 

expected cell value (“expected” if the null hypothesis is true), i = 1, 2, ⋯, r and j = 1, 2, ⋯, c. The Eij for each cell in the table is 

calculated by: 

[3.2] 𝐸𝑖𝑗 =
𝑅𝑜𝑤 𝑖 𝑡𝑜𝑡𝑎𝑙 × 𝐶𝑜𝑙𝑢𝑚𝑛 𝑗 𝑡𝑜𝑡𝑎𝑙

𝐺𝑟𝑎𝑛𝑑 𝑡𝑜𝑡𝑎𝑙 (row totals or column totals)
=

𝑛𝑖·×𝑛·𝑗

𝑁
 

where 𝑛𝑖· is the row i total, 𝑛·𝑗 is the column j total and N is the grand total. The degrees of freedom (df) for the calculated 2 

statistic is (r−1)×(c−1). If the calculated 2 statistic is greater than the critical value from the chi-square distribution, the null 

hypothesis is rejected.  

TABLE 11. AN EXAMPLE OF THE CHI-SQUARE TEST FROM THE DATA IN TABLE 3. 

 

Species Ground (O1) Correct (O2) Row total E1 E2 (𝑶𝟏 − 𝑬𝟏)𝟐/𝑬𝟏 (𝑶𝟐 − 𝑬𝟐)𝟐/𝑬𝟐 

Aw 55 48 103 58.978 44.022 0.268 0.359 

Bw 18 15 33 18.896 14.104 0.042 0.057 

Dp 0 0 0 0.000 0.000 . . 

Fb 8 6 14 8.016 5.984 0.000 0.000 

Lt 14 9 23 13.170 9.830 0.052 0.070 

Pb 10 7 17 9.734 7.266 0.007 0.010 

Pl 9 6 15 8.589 6.411 0.020 0.026 

Sb 28 18 46 26.340 19.660 0.105 0.140 

Sg 4 2 6 3.436 2.564 0.093 0.124 

Sw 63 45 108 61.841 46.159 0.022 0.029 

Total 209 156 365 209 156 0.609 0.816 

Note: “ground” (total species counts from the ground reference) and “correct” (counts of correctly identified species by the inventory) are from Table 3. 

The calculations follow [3.1] and [3.2], where the number of species (rows) is i = 1, 2, ⋯, 9 (since Dp =0) and the number of columns is j = 1, 2, O1 and 

O2 denote observed values and E1 and E2 denote the corresponding expected values. See main text for step-by-step computations. 

Step-by-step computations for the chi-square test are shown in Table 11. For instance: 

 𝐸11 =
𝑛𝑖·×𝑛·𝑗

𝑁
 = 

103×209

365
 = 58.978  𝐸12 = = 

103×156

365
 = 44.022 𝐸92 = = 

108×156

365
 = 46.159 

Notice that the sums of the observed values are equal to the sums of the expected values in each row and column of the table. 

The calculated chi-square test statistic from [3.1] is the summation of the numbers from the last two columns of Table 11, 

which is 2 = 1.425, with a df of (r−1)×(c−1) = (9-1)×(2-1) = 8 (Dp missing in both counts so there are nine species in the 9×2 

table). This 2 = 1.425 corresponds to a p-value of 0.9939, which is greater than 0.05. Therefore, the null hypothesis is not 

rejected. This means that there is no significant difference between the frequency distribution of the species correctly identified 

by the inventory and that from the ground reference. In other words, the two species frequency distributions from the ground 

and correctly identified by the inventory are statistically the same. [Note: the p-value for the chi-square test is typically 

automatically outputted by any usable statistical software. It can also be "manually" calculated if one knows how to calculate 

the cumulative density function (CDF). A manual calculation program and an automatic program written in SAS are available 

to interested readers]. 

Similarly, the chi-square test can be conducted to evaluate if the species frequency distributions in Table 3 from the “ground” 

and “inventory” are the same. The computations follow those demonstrated in Table 11 (with the “correct” column replaced by 

the “inventory” (classification) counts from Table 3). The calculated 2 = 6.35, with a df of (r−1)×(c−1) = (10-1)×(2-1) = 9 (Dp 

has two observations in “inventory” so there are ten species in the 10×2 table). This 2 = 6.35 corresponds to a p-value of 

0.7049, which is greater than 0.05. Therefore, the null hypothesis of equivalent species frequency distributions from the 

ground and inventory is not rejected. This means that the two species frequency distributions from the ground and inventory 

follow the same common frequency distribution and there is no significant difference between the two species frequency 

distributions. This is a good indication that as a whole, if we can ignore the stem segmentation errors (i.e., if we ignore the 

stems not counted/included in Table 3), the species frequency distribution from the inventory matches reasonably well with the 

species frequency distribution from the ground reference. This result can be interpreted from the 2 statistic and the 

accompanying p-value listed at the bottom of the species classification performance matrix (Table 3). 

Condition for Using the Chi-Square Test 

The chi-square test can be sensitive to small sample sizes because it is based on an approximation approach. For instance, 

for a 3×2 matrix illustrated in Table 12 with three species from the ground (G) and inventory (I), following the above example, 
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the chi-square test statistic is calculated to be 2 = 6.11, with a p-value = 0.0471 (<0.05), which indicates that the species 

frequency distributions from the ground and inventory are significantly different. However, since 83% (5 out of 6) of the cells in 

Table 12 have expected counts less than 5, the chi-square test may not be a valid test. An automatic warning message usually 

accompanies the output of the test in these situations by any usable statistical software. 

TABLE 12. AN ILLUSTRATION OF A CHI-SQUARE TEST FOR THE DATA FROM GROUND AND INVENTORY. 

 

Species Ground (G) Inventory (I)    Expected (G) Expected (I) Chi-square 

Aw 4 2 6×12/20 = 3.60 6×8/20 = 2.40 2 = 6.11  

(p-value = 0.0471) Bw 3 6 9×12/20 = 5.40 9×8/20 = 3.60 

Sb 5 0 5×12/20 = 3.00 5×8/20 = 2.00 

 

For practical purposes, the rule of thumb is that if more than 20% of the cells in a table or matrix whose expected values are 

less than five, the chi-square test may not be a valid test (Cochran 1954). In a case like this, a correction to the chi-square test 

may be needed (such as Yates correction, which calculates the chi-square statistic as 2 = ΣΣ(|Oij - Eij| - 0.5)2/Eij). But the best 

option is to implement Fisher’s Exact Test.  

3.3 Fisher’s exact test for categorical variables 

In the literature, Fisher’s exact test has also been called “Freeman-Halton test”, “Fisher-Freeman-Halton test” and “Fisher-Irwin 

exact test” (Armitage et al. 2002, Stokes et al. 2012, Agresti 2013, SAS Institute Inc. 2020). Since Fisher first came up with the 

idea and the exact method for the 2×2 matrix (also known as the 2×2 contingency table or simply 2×2 table), we still refer it 

simply as Fisher’s exact test.  

The details involved in Fisher’s exact test can look very complex and confusing. Interested readers may wish to read two 

articles by Freeman and Halton (1951), who extended Fisher’s method to general r×c matrices of any number of rows (r) and 

columns (c), and Mehta and Patel (1983), who developed the network algorithm to provide faster and more efficient 

computations for general r×c matrices. The notations alone in these and many articles on Fisher’s exact test are, however, a 

bit of a deterrent for most non-statisticians in forestry. Here we will explain Fisher’s exact test in simpler terms and use an 

example to illustrate the computations. 

For an r×c matrix with any number of rows and columns, Fisher’s exact test is implemented by first calculating 

the hypergeometric probability of the observed matrix, then the hypergeometric probabilities of all other possible matrices 

of nonnegative integers “conditional on the observed row and column totals” (i.e., with the row and column totals of all other 

possible matrices identical to those from the observed matrix), using: 

[3.3] 𝑃ℎ =
∏ 𝑅𝑖

𝑟
𝑖=1 ! ∏ 𝐶𝑗

𝑐
𝑗=1 !

𝑁! ∏ 𝑎𝑖𝑗𝑖𝑗 !
=

(𝑅1!𝑅2!···𝑅𝑟! )×(𝐶1!𝐶2!···𝐶𝑐!)

(∑ 𝑅𝑖)𝑟
𝑖=1 !×(𝑎11!𝑎12!···𝑎1𝑐!×𝑎21!𝑎22!···𝑎2𝑐!×···×𝑎𝑟1!𝑎𝑟2!···𝑎𝑟𝑐!)

 

where Ph is the so-called “hypergeometric probability” of a matrix with the given row and column totals, Ri is the row total and 

Cj is the column total (i=1, 2, ⋯, r; j=1, 2, ⋯, c), N is the grand total (N = ΣRi = ΣCj = ΣΣaij), the exclamation symbol (!) 

represents the factorial function (which is the product of all integers from the given number down to 1, e.g., 

5!=5×4×3×2×1=120), and aij is the cell value that corresponds to row i and column j in the matrix.  

The p-value for Fisher’s exact test is the sum of all possible hypergeometric probabilities (conditional on the observed row and 

column totals) that are less than or equal to the hypergeometric probability of the observed matrix:  

[3.4] p-value = ∑(𝑃ℎ ≤ 𝑃ℎ𝑜) 

where Pho is the hypergeometric probability calculated from [3.3] for the observed matrix. 

The concepts and calculations imbedded in [3.3] and [3.4] can be illustrated using the 3×2 matrix in Table 13, taken directly 

from Table 12 with three species from the ground (G) and inventory (I).  

TABLE 13. OBSERVED DATA (LEFT) AND CORRESPONDING VARIABLES (RIGHT) USED TO ILLUSTRATE FISHER’S EXACT TEST. 

 

Species G I  Ground (G) Inventory (I) Row total 

Aw 4 2  a11 = 4 a12 = 2 a11+a12 = 6 

Bw 3 6  a21 = 3 a22 = 6 a21+a22 = 9 

Sb 5 0  a31 = 5 a32 = 0 a31+a32 = 5 

Column total 12 8  a11+a21+a31 = 12 a12+a22+a32 = 8 N = a11+a12+a21+a22+a31+a32 = 20 
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The observed data and the corresponding variables are listed in Table 13 (i=1, 2, 3 and j=1, 2). The observed data have row 

totals R1=6, R2=9 and R3=5, and column totals C1=12 and C2=8. These row and column totals are also known as marginal 

totals in statistical parlance.  

Based on [3.3] and Table 13, the hypergeometric probability of the observed 3×2 matrix is (recognizing 0! = 1): 

[3.5] 𝑃ℎ𝑜 =
6!9!5!×12!8!

20!×(4!2!3!6!5!0!)
=  0.0100024 = 0.0100 

There are 36 different ways of rearranging the cell frequencies of the observed data in Table 13 into matrices of nonnegative 

integers while still keeping the marginal totals identical to those from the observed data. These matrices are listed in [3.6]. The 

matrix that corresponds to the observed cell frequencies is highlighted/shaded in [3.6]. 

[3.6] ⌊
6  0
1  8
5  0

⌋ ⌊
6  0
2  7
4  1

⌋ ⌊
6  0
3  6
3  2

⌋ ⌊
6  0
4  5
2  3

⌋ ⌊
6  0
5  4
1  4

⌋ ⌊
6  0
6  3
0  5

⌋ ⌊
5  1
2  7
5  0

⌋ ⌊
5  1
3  6
4  1

⌋ ⌊
5  1
4  5
3  2

⌋ ⌊
5  1
5  4
2  3

⌋ ⌊
5  1
6  3
1  4

⌋ ⌊
5  1
7  2
0  5

⌋ → 

 ⌊
4  2
3  6
5  0

⌋ ⌊
4  2
4  5
4  1

⌋ ⌊
4  2
5  4
3  2

⌋ ⌊
4  2
6  3
2  3

⌋ ⌊
4  2
7  2
1  4

⌋ ⌊
4  2
8  1
0  5

⌋ ⌊
3  3
4  5
5  0

⌋ ⌊
3  3
5  4
4  1

⌋ ⌊
3  3
6  3
3  2

⌋ ⌊
3  3
7  2
2  3

⌋ ⌊
3  3
8  1
1  4

⌋ ⌊
3  3
9  0
0  5

⌋ →  

⌊
2  4
5  4
5  0

⌋ ⌊
2  4
6  3
4  1

⌋ ⌊
2  4
7  2
3  2

⌋ ⌊
2  4
8  1
2  3

⌋ ⌊
2  4
9  0
1  4

⌋ ⌊
1  5
6  3
5  0

⌋ ⌊
1  5
7  2
4  1

⌋ ⌊
1  5
8  1
3  2

⌋ ⌊
1  5
9  0
2  3

⌋ ⌊
0  6
7  2
5  0

⌋ ⌊
0  6
8  1
4  1

⌋ ⌊
0  6
9  0
3  2

⌋  

For each of the 36 matrices in [3.6], the hypergeometric probability is calculated according to [3.3]. For instance, the 

hypergeometric probabilities of the first (Ph1) and second (Ph2) matrices in [3.6] are (using four decimal places for final 

numbers): 

[3.7] 𝑃ℎ1 =
6!9!5!×12!8!

20!×(6!0!1!8!5!0!)
= 0.0000714 = 0.0001 𝑃ℎ2 =

6!9!5!×12!8!

20!×(6!0!2!7!4!1!)
=  0.0014289 = 0.0014  

Table 14 lists the calculated Ph values for all matrices in [3.6]. The sum of the Ph values for all matrices must equal to one, 

which is confirmed in the last row of Table 14. 

All Ph values less than or equal to the hypergeometric probability of the observed matrix (Pho=0.0100) are listed in the last 

column in Table 14. Their sum is 0.0643, which is the p-value for Fisher’s exact test (see [3.4]). Since this p-value is greater 

than 0.05, it means that, there is no significant difference between the species proportions (species frequency distributions) 

from the ground and inventory. 

Condition for Using Fisher’s Exact Test 

Like the chi-square test, Fisher’s exact test is used to evaluate the frequency proportions of categorical variables. Unlike the 

chi-square test, Fisher’s exact test does not depend on any large-sample distribution assumptions. It is appropriate even for 

small sample sizes and for sparse matrices. It can be used irrespective of how small the expected values are.  

Fisher’s exact test assumes that the row and column totals of an observed matrix are fixed. It uses the hypergeometric 

distribution to compute the probabilities of all possible matrices of nonnegative integers conditional on the observed row and 

column totals. Formulating all possible matrices of nonnegative integers conditional on the observed row and column totals of 

a general r×c matrix can be an extremely exhaustive and arduous process, especially when r and c are three or larger. Even 

for the simple 3×2 matrix illustrated in Table 13, 35 additional matrices (contingency tables) of nonnegative 

integers conditional on the observed marginal totals can be formulated. For this reason, Fisher’s exact test is typically used 

only for 2×2 matrices. There appear to be no step-by-step example computations beyond the 2×2 matrices in the limited web 

search we conducted (this explains why we use a 3×2 matrix to demonstrate the step-by-step computations). 

Furthermore, since Fisher’s exact test involves the computation of factorials, as in [3.3], and the computed factorials can be 

astronomically or unimaginably large, the computation burdens associated with Fisher’s exact test can be extremely heavy or 

insurmountable, particularly for medium to large sample sizes of many rows and columns. Even for two innocently looking 

sample sizes of 20 and 30, the factorials required in computing Fisher’s exact test are ginormous (20! = 

2,432,902,008,176,640,000 = 2.4329×1018 and 30! = 2.6525286×1032 - these are quintillions (1018) and decillions (1032) 

typically appear in astronomy and astrophysics). For this reason, Fisher’s exact test may not work for large sample sizes, or it 

is computationally unmanageable for large sample sizes and large r and c values. The conventional wisdom has been to use 

Fisher's exact test for small sample sizes only, but there appears to be no consensus in the literature on what constitutes a 

“small” sample size or a “large” sample size, and where is the quantitative boundary between "small" and "large".  
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TABLE 14. HYPERGEOMETRIC PROBABILITIES CALCULATED BY [3.3] FOR THE MATRICES LISTED IN [3.6]. 

 

Matrix a11 a12 a21 a22 a31 a32  R1 R2 R3 C1 C2 N Ph Ph ≤ Pho 

1 6 0 1 8 5 0  6 9 5 12 8 20 0.0001 0.0001 

2 6 0 2 7 4 1  6 9 5 12 8 20 0.0014 0.0014 

3 6 0 3 6 3 2  6 9 5 12 8 20 0.0067 0.0067 

4 6 0 4 5 2 3  6 9 5 12 8 20 0.0100 0.0100 

5 6 0 5 4 1 4  6 9 5 12 8 20 0.0050 0.0050 

6 6 0 6 3 0 5  6 9 5 12 8 20 0.0007 0.0007 

7 5 1 2 7 5 0  6 9 5 12 8 20 0.0017 0.0017 

8 5 1 3 6 4 1  6 9 5 12 8 20 0.0200   

9 5 1 4 5 3 2  6 9 5 12 8 20 0.0600   

10 5 1 5 4 2 3  6 9 5 12 8 20 0.0600   

11 5 1 6 3 1 4  6 9 5 12 8 20 0.0200   

12 5 1 7 2 0 5  6 9 5 12 8 20 0.0017 0.0017 

13 4 2 3 6 5 0  6 9 5 12 8 20 0.0100 Pho=0.0100 

14 4 2 4 5 4 1  6 9 5 12 8 20 0.0750   

15 4 2 5 4 3 2  6 9 5 12 8 20 0.1500   

16 4 2 6 3 2 3  6 9 5 12 8 20 0.1000   

17 4 2 7 2 1 4  6 9 5 12 8 20 0.0214   

18 4 2 8 1 0 5  6 9 5 12 8 20 0.0011 0.0011 

19 3 3 4 5 5 0  6 9 5 12 8 20 0.0200   

20 3 3 5 4 4 1  6 9 5 12 8 20 0.1000   

21 3 3 6 3 3 2  6 9 5 12 8 20 0.1334   

22 3 3 7 2 2 3  6 9 5 12 8 20 0.0572   

23 3 3 8 1 1 4  6 9 5 12 8 20 0.0071 0.0071 

24 3 3 9 0 0 5  6 9 5 12 8 20 0.0002 0.0002 

25 2 4 5 4 5 0  6 9 5 12 8 20 0.0150   

26 2 4 6 3 4 1  6 9 5 12 8 20 0.0500   

27 2 4 7 2 3 2  6 9 5 12 8 20 0.0429   

28 2 4 8 1 2 3  6 9 5 12 8 20 0.0107   

29 2 4 9 0 1 4  6 9 5 12 8 20 0.0006 0.0006 

30 1 5 6 3 5 0  6 9 5 12 8 20 0.0040 0.0040 

31 1 5 7 2 4 1  6 9 5 12 8 20 0.0086 0.0086 

32 1 5 8 1 3 2  6 9 5 12 8 20 0.0043 0.0043 

33 1 5 9 0 2 3  6 9 5 12 8 20 0.0005 0.0005 

34 0 6 7 2 5 0  6 9 5 12 8 20 0.0003 0.0003 

35 0 6 8 1 4 1  6 9 5 12 8 20 0.0004 0.0004 

36 0 6 9 0 3 2  6 9 5 12 8 20 0.0001 0.0001 

   Total  1.0000 0.0643 

Note: the observed data (shaded) are listed in Table 13, aij is the cell value, Ri is the row total and Cj is the column total (i = 1, 2, 3; j = 1, 2), N is the 

grand total (N = ΣRi = ΣCj = ΣΣaij), Ph is the hypergeometric probability defined in [3.3], and Pho is the hypergeometric probability of the observed data. 

The last column lists the hypergeometric probabilities less than or equal to the hypergeometric probability of the observed data. 

Based on numerous tests and evaluations conducted in this study by varying the sample sizes and the row and column 

numbers of different matrices, it is observed that when the total sample size is greater than about 200 and when r×c exceeds 

16, the computation burdens will most likely become insurmountable in practice. We suggest that Fisher’s exact test should 

only be implemented when more than 20% of the cells in the r×c matrix have an expected value of less than five. 

Furthermore, failing to implement Fisher’s exact test due to large sample sizes or high dimensionality of a matrix, the chi-

square test is a valid approximation and a suitable replacement. The accuracy of the chi-square test increases with the 

increasing sample sizes. It also increases with the expanding dimensions of the matrix beyond 2×2. An added advantage of 

the chi-square test is that, computationally, it is much less demanding than Fisher’s exact test, regardless of the sample size 

and the dimensionality of the matrix.  

3.4 A note of caution on testing frequency distributions   

Since there are some frequent confusions about the chi-square test and Fisher's exact test in the literature, it may be 

worthwhile to repeat and emphasize here that the chi-square test and Fisher's exact test only evaluate if two species 

frequency distributions (i.e., species frequency proportions) from two data sets are the same. They do not evaluate if two 

species frequency counts (i.e., actual numbers) from two data sets are the same.  

To elaborate the above statements further, some example data listed in Table 15 are used. The data show the frequency 

counts in actual numbers and in proportions for the species from the ground and inventory. 
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TABLE 15. EXAMPLE FREQUENCY (FREQ) COUNTS AND PROPORTIONS FROM THE GROUND AND INVENTORY. 

 

Type 
 

Aw Bw Sw Fb Lt Sb Pb Pl Total 

Ground Freq count 1 2 0 1 0 4 3 1 12 

 
Freq proportion 0.083 0.167 0.000 0.083 0.000 0.333 0.250 0.083 1 

Inventory Freq count 2 1 2 0 1 3 1 0 10 

 
Freq proportion 0.200 0.100 0.200 0.000 0.100 0.300 0.100 0.000 1 

 

When a vaguely defined term like “species frequency” or “species distribution” is used, it usually conjures up an image of 

histograms (sometimes also known as frequency bars or frequency charts), similar to those shown in Figure 2 for the data in 

Table 15.  

 

 

Figure 2. Species frequency counts in actual numbers (top) and in proportions (bottom) from the ground and inventory. 

Actual data are listed in Table 15. 

As mentioned before (in Section 3.1), the word “frequency” could be interpreted to mean frequency counts as in Figure 2(a), or 

frequency proportions as in Figure 2(b). Many unsuspecting practitioners often thought that the graphs in Figure 2(a) and 

Figure 2(b) are just two similar ways of displaying the data in Table 15 and either one of them can be used. This is true in the 

context of showing the data, but not true in the context of the chi-square test and Fisher's exact test, which only apply to 

Figure 2(b). Both the chi-square test and Fisher's exact test are invariant to the scaling of the data expressed in proportions, 

but not in actual numbers or counts. Later in Section 5.4, we will provide more details about why this is the case and why the 

statistical tests only apply to frequency proportions, but not to frequency counts. Practitioners need to remember that the chi-

square test and Fisher's exact test for categorical variables (and the Kolmogorov-Smirnov test for continuous variables, to be 
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discussed later), only enable us to determine if there is a statistically significant difference between two sets of species 

proportions from two methods, but not two sets of species frequencies in terms of actual counts. 

When applying any of the three tests (the chi-square test, Fisher's exact test and the Kolmogorov-Smirnov test), one needs to 

be careful about the use of the word “distribution”. It is the best to define it clearly and explicitly, as it could mean different 

things to different people. In statistics and data science, a distribution is typically characterized by three variables: its location 

(or central tendency) often in terms of the mean, median, or mode; its dispersion (or spread, variability) often in terms of the 

standard deviation, variance, quartiles, coefficient of variation, range, minimum and maximum; and its shape in terms of the 

skewness or kurtosis. In day-to-day usages, “distribution” can mean the frequency count or frequency proportion across the 

size-classes of a continuous variable, or the categories (e.g., different species) of a categorical variable (e.g., species). In this 

study, frequency distribution is used to explicitly refer to the frequency proportion, not the frequency count, across the size-

classes of a continuous variable or the categories of a categorical variable.  

Interested readers who want to read more details and see examples about why the chi-square test, Fisher's exact test and the 

Kolmogorov-Smirnov test only apply to frequency proportions, but not to frequency counts or their statistical distributions are 

referred to the Additional Notes in Section 5.4. 
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4 Accuracy and agreement measures for other inventory 
variables 

The methods described so far apply to categorical variables (species and species frequency distribution). The methods 

described in this Section for the most part apply to continuous variables (focusing on continuous height and density measures 

in this study). Since remote sensing and photogrammetric studies often involve developing regression models between ground 

observations and inventory variables (i.e., inventory extracted or derived metrics or measures), the methods for assessing 

ground = f (inventory variables) models are also discussed, together with some cautionary notes on their uses in a regression 

setting. Readers may benefit from the background and additional technical details described in a preceding study (Huang et al. 

2019). 

4.1 Goodness-of-fit statistics, agreement measures and plots 

Overall Prediction Performance  

For continuous variables with continuous numerical values, the following goodness-of-fit statistics are commonly used to 

measure the overall average performance for all predictions combined. The MAE and RMSE are generally preferred if only two 

statistics are chosen:  

[4.1]  𝑒̅ =
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)𝑛

𝑖=1 =
1

𝑛
∑ 𝑒𝑖 

[4.2] MAE =
1

𝑛
∑ |𝑒𝑖 | =

1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|  

[4.3] RMSE = √
∑(𝑦𝑖−𝑥𝑖)2

𝑛
= √𝑠𝑒

2 + 𝑒̅2  (or MSE =
∑(𝑦𝑖−𝑥𝑖)2

𝑛
= 𝑠𝑒

2 + 𝑒̅2) 

where: 𝑒̅ is the mean bias (or simply bias); yi denotes the ith observed “true” value or reference value (i=1, 2, ⋯, n); xi denotes 

the ith classified, predicted, interpreted, or estimated value (i=1, 2, ⋯, n);  is the summation; ei is the individual error for the 

ith observation; n is the total number of observations; MAE is the mean absolute error; RMSE is the root mean square error 

and MSE is the mean squared error; and 𝑠𝑒
2 = ∑(𝑒𝑖 − 𝑒̅)2 /𝑛 is the error variance. Note that the error variance: 

𝑠𝑒
2  =  

∑(𝑒𝑖−𝑒̅)2

𝑛
=

∑ 𝑒𝑖
2−

1

𝑛
[∑ 𝑒𝑖]2

𝑛
 =

∑ 𝑒𝑖
2−𝑛𝑒̅2

𝑛
 . 

Hence, 𝑠𝑒
2 can also be written as (or rearranged as [4.3]): 

 𝑠𝑒
2  =

∑ 𝑒𝑖
2

𝑛
− 𝑒̅2 = RMSE2 − 𝑒̅2 = MSE − 𝑒̅2. 

The bias 𝑒̅ describes the deviation of the mean of the predictions (or classifications, interpretations) from the mean of the 

observed values (considered to be the “truth” and used as the reference). It is caused by the systematic errors in predictions. 

Since the positive and negative errors in [4.1] can cancel or balance out when summed up (i.e., they may average out to zero 

or near zero), using the bias alone (and a t-test) can sometimes produce “sound good” but misleading results. Therefore, the 

bias is also expressed in absolute term, as in MAE to alleviate the positive and negative errors’ cancelling out problem. The 

RMSE in [4.3] is the square root of MSE. It measures the total error because it is a combination of both precision (in terms of 

error variance ∑(𝑒𝑖 − 𝑒̅)2 /𝑛) and bias (in terms of 𝑒̅2). It can be considered an overall accuracy measure.  

The statistics expressed in [4.1]-[4.3] can be expressed in percentages in relation to the “truth” or the observed average value 

(𝑦̅): 

[4.4] 𝑒̅% = 
100𝑒̅

𝑦̅
 MAE% =  

100MAE

𝑦̅
  RMSE% = 

100RMSE 

𝑦̅
 

where 𝑒̅% is the bias percent, MAE% is the mean absolute error percent, RMSE% is percent RMSE or relative RMSE, 𝑦̅ is the 

average of the observed reference values (𝑦̅ = ∑ 𝑦𝑖 /𝑛) and all other variables are as defined earlier in [4.1]-[4.3]. 

The 𝑒̅%, MAE% and RMSE% can be more intuitive in practice than the 𝑒̅, MAE and RMSE. For instance, sometimes we like to 

specify that the allowable mean bias (𝑒̅) or the mean absolute error (MAE) be within ±10% or ±20% of the observed mean, 

instead of or in addition to an actual value like ±2 m or ±200 stems.  
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Individual Prediction Performance  

The statistics in [4.1]-[4.4] focus on the overall average performance from all predictions combined, not on individual 

predictions. Sometimes a more detailed assessment of individual predictions is also needed. It can be very helpful in detecting 

influential data points and potential outliers, and in knowing how many individual predictions are within certain error limits. For 

this purpose, the proportions of the observations whose absolute percent errors are smaller than or equal to 10%, 33% (1/3) 

and 50% (1/2) of the observed values are calculated: 

[4.5] e10 =
Number of |PE𝑖|≤10 

𝑛
 e33 =

Number of |PE𝑖|≤33 

𝑛
 e50 =

Number of |PE𝑖|≤50 

𝑛
 

where e10, e33 and e50 are the proportions of the observations whose absolute percent errors are smaller than or equal to 10%, 

33% and 50% of the observed values, respectively, and PEi is the percent error for the ith observation, calculated by:  

[4.6] PE𝑖 = 100 (
𝑦𝑖−𝑥𝑖

𝑦𝑖
) 

where yi is the ith observed value and xi is its prediction (i=1, 2, ⋯, n). The e10, e33 and e50 range from 0 (worst) to 1 (best). 

Larger values of e10, e33 and e50 indicate better predictions. If necessary, the proportions for other percentages such as e5, e20 

and e25 (and the maximum and mean of PEi) can also be calculated following the general expression below, where m can be 

any meaningful number typically between 1 and 100 and PEi is defined in [4.6]: 

 e𝑚 =
Number of |PE𝑖|≤𝑚 

𝑛
 Mean PE or PE̅̅̅̅ =

1

𝑛
∑ PE𝑖

𝑛
𝑖=1  

The PE-based statistics can also be used to establish acceptable thresholds in practice. But bear in mind that the allowable 

error for individual predictions should be much larger (e.g., at least twice or thrice) than that for averages. For instance, we 

could specify that for a good or an acceptable classification, at least 2/3 of the percent errors should be within 10%, at least 

half of the percent errors should be within 33%, or at least 95% of the percent errors should be within 50% of the observed 

values, etc. 

Agreement Measure  

Among many agreement measures evaluated (Huang et al. 2019), Mielke’s measure of agreement (MOA or Mielke’s ρ) has 

several desirable features: 

[4.7] MOA = 1 −
MSE

1

𝑛2 ∑ ∑ (𝑦𝑖−𝑥𝑗)
2𝑛

𝑗=1
𝑛
𝑖=1

 = 1 −
MSE

𝑆𝑦
2+𝑆𝑥

2+(𝑦̅−𝑥̅)2  

where MSE is the mean squared error (RMSE squared), 𝑆𝑦
2 and 𝑆𝑥

2 are variances for 𝑦𝑖 and 𝑥𝑖, respectively (𝑆𝑦
2 =

∑(𝑦𝑖 − 𝑦̅)2 /𝑛 and 𝑆𝑥
2 = ∑(𝑥𝑖 − 𝑥̅)2 /𝑛), 𝑦̅ is the mean of the observed values (𝑦̅ = ∑ 𝑦𝑖 /𝑛), 𝑥̅ is the mean of the predicted 

values (𝑥̅ = ∑ 𝑥𝑖 /𝑛), and all other variables are as defined before.  

Calculation of the MOA in [4.7] is fairly straightforward. For example, for three paired y-x observations, assuming that y = 4, 

12, 18 and the corresponding x = 3, 20, 21 (e.g., y = observed on the ground and x = predicted by inventory), the means of the 

observed and predicted values, the mean squared error and the variances are:  𝑦̅ = 
∑ 𝑦𝑖

𝑛
 = 11.3333, 𝑥̅ = 

∑ 𝑥𝑖

𝑛
  = 14.6667, MSE=

∑(𝑦𝑖−𝑥𝑖)2

𝑛
 = 24.6667, 𝑆𝑦

2 =
1

𝑛
∑(𝑦𝑖 − 𝑦̅)2 = 32.8889 and 𝑆𝑥

2 =
1

𝑛
∑(𝑥𝑖 − 𝑥̅)2 = 68.2222. Therefore, 

               MOA = 1 −
𝑀𝑆𝐸

𝑆𝑦
2+𝑆𝑥

2+(𝑦̅−𝑥̅)2
 = 1 - 

24.6667

32.8889 +68.2222+(11.3333−14.6667)2 = 0.7802. 

The MOA measures the agreement (not correlation!) between yi and xi (Mielke 1984, Watterson 1996, Duveiller et al. 2016, 

Huang et al. 2019). Many other agreement measures (to be discussed later in Section 5.3) are identical, nearly identical or 

similar to the MOA. The MOA can range from -1 to 1. Larger MOA values indicate better agreement between yi and xi. An 

MOA = 1 implies that all yi and xi values, when plotted on the standard y-x plot, fall on the 45° line that passes through the 

origin (i.e., a perfect agreement). An MOA = -1 implies that all yi and xi values fall on the line that is perpendicular to the 45° 

line (i.e., a perfect disagreement).  

Many additional statistics could also be calculated (e.g., Huang et al. 2013, 2016; Yang and Huang 2014), including standard 

deviation (SD), coefficient of variation (SD/𝑦̅) and relative SD (100SD/𝑦̅). But they are often closely related to or do not add 

much beyond those computed in equations [4.1]-[4.7]. The ubiquitous coefficient of determination (R2) is more commonly 

associated with regression analysis and model building, not necessarily model evaluation, accuracy assessment and 

agreement analysis, although it could be calculated based on the equation defined later in [4.22] for any application data set 

not used in modeling (yes, it is possible to have an R2 value < 0 for poor predictions). We will discuss the R2 in more details 
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later in Section 4.7. Similarly, some other goodness-of-fit statistics such as Akaike information criterion (AIC), Schwarz’s 

Bayesian information criterion (BIC), Mallows’s Cp and predicted residual error sum of squares (PRESS) are typically used 

only in model building, in the context of variable selection and model selection. They can be applied in area-based approach 

for variable selection and model selection (i.e., correlation analysis), but they cannot be used to adequately judge the 

agreement between ground measures and inventory measures (i.e., agreement analysis). Readers are reminded here that 

correlation analysis and agreement analysis are two very different concepts.  

Scatter Plot and Error Plot 

In addition to the aforementioned statistics, the agreement between ground measures and inventory predictions should also be 

assessed through graphical means. Among them, the scatter plot, error plot and Bland-Altman plot are the most informative.  

To illustrate, two tree height measurement data sets from a previous study are used (Huang et al. 2019). They are listed in 

Table 16, where y denotes the ground measure (reference) and x denotes the corresponding inventory prediction.  

TABLE 16. EXAMPLE TREE HEIGHT MEASUREMENT DATA SETS FROM GROUND (Y) AND INVENTORY (X). 

 

Tree 
Data-1  Data-2 

     y     x Diff Ave PE 
 

     y     x Diff Ave PE 

1 20.2 19.5 0.7 19.85 3.5 
 

18.0 17.1 0.9 17.55 5.0 

2 4.0 4.2 -0.2 4.10 -5.0 
 

27.8 26.0 1.8 26.90 6.5 

3 14.1 18.5 -4.4 16.30 -31.2 
 

27.4 25.0 2.4 26.20 8.8 

4 14.4 19.9 -5.5 17.15 -38.2 
 

29.8 26.4 3.4 28.10 11.4 

5 13.6 19.0 -5.4 16.30 -39.7 
 

25.3 24.0 1.3 24.65 5.1 

6 27.2 26.5 0.7 26.85 2.6 
 

20.8 20.4 0.4 20.60 1.9 

7 7.7 6.6 1.1 7.15 14.3 
 

20.2 18.3 1.9 19.25 9.4 

8 25.3 26.9 -1.6 26.10 -6.3 
 

30.0 29.0 1.0 29.50 3.3 

9 15.2 15.8 -0.6 15.50 -3.9 
 

35.4 30.9 4.5 33.15 12.7 

10 8.1 9.0 -0.9 8.55 -11.1 
 

19.5 19.0 0.5 19.25 2.6 

11 25.1 24.9 0.2 25.00 0.8 
 

31.3 27.7 3.6 29.50 11.5 

12 19.3 17.0 2.3 18.15 11.9 
 

29.0 22.9 6.1 25.95 21.0 

13 19.5 18.7 0.8 19.10 4.1 
 

25.3 24.0 1.3 24.65 5.1 

14 23.1 23.4 -0.3 23.25 -1.3 
 

29.3 25.6 3.7 27.45 12.6 

15 36.2 30.9 5.3 33.55 14.6 
 

18.1 14.6 3.5 16.35 19.3 

16 26.5 28.2 -1.7 27.35 -6.4 
 

26.7 24.7 2.0 25.70 7.5 

17 32.4 30.6 1.8 31.50 5.6 
 

27.4 23.0 4.4 25.20 16.1 

18 5.4 7.2 -1.8 6.30 -33.3 
 

29.1 23.5 5.6 26.30 19.2 

19 16.8 14.8 2.0 15.80 11.9 
 

25.2 22.0 3.2 23.60 12.7 

20 33.8 28.7 5.1 31.25 15.1 
 

31.5 24.4 7.1 27.95 22.5 

21 23.9 21.3 2.6 22.60 10.9 
 

30.2 24.9 5.3 27.55 17.5 

22 21.3 18.7 2.6 20.00 12.2 
 

26.2 20.8 5.4 23.50 20.6 

23 16.7 17.0 -0.3 16.85 -1.8 
 

30.2 25.8 4.4 28.00 14.6 

24 6.0 7.2 -1.2 6.60 -20.0 
 

23.8 23.1 0.7 23.45 2.9 

25 14.3 13.4 0.9 13.85 6.3 
 

20.4 19.7 0.7 20.05 3.4 

26 4.6 3.8 0.8 4.20 17.4 
 

27.3 24.0 3.3 25.65 12.1 

27 27.9 25.7 2.2 26.80 7.9 
 

20.8 19.8 1.0 20.30 4.8 

28 27.5 26.3 1.2 26.90 4.4 
 

32.5 29.0 3.5 30.75 10.8 

29 16.6 16.4 0.2 16.50 1.2 
 

25.5 22.8 2.7 24.15 10.6 

30 25.8 22.2 3.6 24.00 14.0 
 

21.6 20.1 1.5 20.85 6.9 

31 20.8 18.0 2.8 19.40 13.5 
 

21.7 19.5 2.2 20.60 10.1 

32 29.1 21.7 7.4 25.40 25.4 
 

22.4 20.2 2.2 21.30 9.8 

33 25.1 24.4 0.7 24.75 2.8 
 

19.7 16.3 3.4 18.00 17.3 

34 26.3 26.7 -0.4 26.50 -1.5 
 

23.5 22.2 1.3 22.85 5.5 

35 29.0 26.6 2.4 27.80 8.3 
 

20.6 17.7 2.9 19.15 14.1 

36 8.8 9.1 -0.3 8.95 -3.4 
 

36.0 28.6 7.4 32.30 20.6 

37 
      

25.6 22.7 2.9 24.15 11.3 

38 
      

30.2 27.6 2.6 28.90 8.6 

39 
      

18.7 18.7 0.0 18.70 0.0 

40 
      

20.4 19.3 1.1 19.85 5.4 

41 
      

23.4 22.2 1.2 22.80 5.1 

42 
      

25.6 25.2 0.4 25.40 1.6 

Mean 19.77 19.13 0.63  0.14  25.56 22.83 2.73  10.19 

SD 8.75 7.66 2.67  15.65  4.72 3.75 1.87  6.08 

Note: y and x represent measures from the ground and inventory, respectively; Diff = y–x; Ave = (y+x)/2; PE = 100(y-x)/y; mean refers to the (arithmetic) 

average; and SD is the standard deviation. 
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Figure 3 shows five graphs for Data-1 in Table 16 (similar graphs for Data-2 are available but are not shown here). Graph (a) 

is the standard scatter plot of y against x. The diagonal line in graph (a) is the line of perfect agreement (i.e., y=x), also 

referred to as the line of equality, the line of identity, the unity line, or the 45° line (that passes through the origin). If the y and x 

measurements are in good agreement, the data points will be tightly scattered around the 45° line.  

The scatter plot is a good starting point, though not sufficient. It only provides a first impression and helps the eye in gauging 

the degree of agreement between the measurements. However, it usually does not reveal the differences and the trend of the 

differences well (sometimes it could actually de-sensitize or even “hide” the differences – see error plots next and later). 

Apparently small differences on the scatter plot may in fact be large. Sometimes the data points may also be clustered near 

the 45° line and it can be difficult to visually assess the pattern of the differences. In addition, because the eye is better at 

gauging the departures from a horizontal line than from a slanted line, the error plots (also known as the difference plots or 

residual plots) are more informative and revealing than the scatter plot.  

  

 

 

Figure 3. Scatter plot (a) and error plots (b, c, d, e) for Data-1 in Table 16 from the ground (y) and inventory (x). More 

detailed descriptions of the plots are provided in the main text. 
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Graphs (b)-(c) in Figure 3 show the errors in actual values against the ground (y) and inventory (x) measurements, and graphs 

(d)-(e) show the errors in percentages (relative to the y values). Based on graphs (d)-(e), the observations whose absolute 

percent errors are greater than 10%, 20%, 30% or any other percentages can be easily seen. The proportions of these 

observations in relation to the total number of observations can be computed following the expressions given in, e.g., [4.5].  

From (b)-(e) it is obvious that some errors are beyond ±5 m and ±30%, which may be considered large. There is also an 

upward trend seen in graphs (b) and (c), albeit not very strong and obvious. Clearly the error plots (b)-(e) in Figure 3 are more 

informative than the scatter plot in revealing the differences and the pattern of the differences between y and x. They align well 

with the fundamental question of whether the two sets of values from the ground and inventory differ sufficiently small from 

each other.  

In practical accuracy and agreement assessment, the scatter plot of y against x (graph (a) in Figure 3) needs to be 

supplemented with at least one of the error plots shown in graphs (b)-(e) in Figure 3, or with the Bland-Altman plot to be 

discussed next. The scatter plot itself is not sufficient. 

The Bland-Altman Plot  

Figure 4(a) shows the Bland-Altman plot for Data-1 in Table 16, where the difference (y-x) is plotted against the average 

(y+x)/2. The difference in the Bland-Altman plot can also be expressed in percentage, as in Figure 4(b), where the percent 

error PE=100(y-x)/y is plotted against the average (y+x)/2.  

  

Figure 4. The Bland-Altman plot in actual values (a) and in percentages (b) for Data-1 in Table 16 from the ground (y) and 

inventory (x). More detailed descriptions are provided in the main text. 

The two solid horizontal lines (labelled “Upper LoA” and “Lower LoA”) in the Bland-Altman plot represent the lower and upper 

"limits of agreement" (LoAs). In graph (a), the LoAs are defined by (𝑒̅ − 1.96SD) and (𝑒̅ + 1.96SD), or approximately (𝑒̅ ± 2SD), 

where 𝑒̅ is the mean difference (bias) and SD is the standard deviation of the differences. In graph (b), the LoAs are defined by 

(mean PE – 1.96SD) and (mean PE + 1.96SD), or approximately (mean PE  2SD), where mean PE is the mean percent error 

and SD is the standard deviation of the percent errors.  

Bland and Altman (1986) suggested that one of the considerations for a good agreement between any two sets of measures 

for a variable is that, 95% or more of the data points in such a plot (originally in actual values only, as in graph (a)) should lie 

within the lower and upper LoAs: 

[4.8] Lower LoA = mean – 1.96SD. 

[4.9] Upper LoA = mean + 1.96SD. 

where “mean” denotes the mean of the differences and SD is the standard deviation of the differences. For Data-1 in Table 16, 

since 𝑒̅=0.633 and SD=2.666, the lower LoA=0.633-(1.962.666)=-4.59 and the upper LoA=0.633+(1.962.666)=5.86. They 

define the lower and upper LoA lines in Figure 4(a).  

Similarly, for the Bland-Altman plot in percentages, since mean PE=0.14 and SD=15.65, the lower LoA= 0.14-(1.9615.65)=-

30.53 and the upper LoA=0.14+(1.9615.65)=30.81. They define the lower and upper LoA lines in Figure 4(b). 

The Bland-Altman plot (either in actual values or in percentages) can be more intuitive, illuminating and powerful than many 

calculated statistics and other types of plots (Huang et al. 2019). They can be used to reveal the differences between ground 
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and inventory measures, detect any abnormalities, identify any systematic trend or bias, and uncover the relationship between 

the differences and the magnitude of the measurements. They can also be used to pinpoint any possible influential points and 

outliers, and help establishing reasonable and realistic cut-off thresholds that can be used for accepting or rejecting a new 

inventory technique. 

The Bland-Altman plot alone does not determine the agreement or disagreement between two sets of measurements (e.g., 

from the ground and inventory, or from inventory techniques 1 and 2). It defines the limits of agreement, but does not say 

whether these limits are acceptable or not. Acceptable limits are jointly determined by other conditions and individual 

circumstances, including relevant biological and operational considerations, the inherent variation of the variable in interest, 

and other subject matter understanding and goals. A more detailed discussion about these conditions and circumstances is 

provided elsewhere (Huang et al. 2019) and will not be repeated here.  

4.2 The Kolmogorov-Smirnov test for continuous variables 

For continuous variables like height and density (e.g., stems/ha, actual crown sizes or areas), whether the frequency 

distribution of the inventory measures is equivalent to that of the ground measures is also a critically important question in 

determining the validity of an inventory. The Kolmogorov-Smirnov test (KS test for short) is appropriate for answering the 

question.  

The KS test evaluates how well the frequency distributions (i.e., frequency proportions) for two sample data sets, one from the 

ground and the other from an inventory, conform to each other. The test focuses on the maximum vertical difference (D) 

between the two cumulative distributions (i.e., cumulative proportions) consistent with the two frequency distributions from two 

samples. Suppose that for variable y, the ground samples have a cumulative distribution of FG(y) and that the inventory 

samples have a cumulative distribution of FI(y), the KS test statistic is:  

[4.10] 𝐷 = 𝑚𝑎𝑥|𝐹G(𝑦) −  𝐹I(𝑦)|  

The null and alternative hypotheses for the KS test are:  

H0: both samples that come from the same population have the same frequency distribution. 

Ha: both samples that come from the same population have different frequency distributions. 

The critical values for the KS test do not depend on the specific distribution being tested (i.e., the KS test is “distribution-free” 

in the probability distribution sense). The p-value for the KS test is computed by: 

[4.11] p-value = 2∑ (−1)(𝑖−1)𝑒(−2𝑖2𝑧2)∞
𝑖=1  = 2[(−1)(1−1)𝑒(−2×12𝑧2) + (−1)(2−1)𝑒(−2×22𝑧2) 

         + (−1)(3−1)𝑒(−2×32𝑧2) + ··· + (−1)(∞−1)𝑒(−2×∞2𝑧2)]  

where e is the base of natural logarithm or the Euler's number (e  2.71828), and  

[4.12] 𝑧 = 𝐷√
𝑛1𝑛2

𝑛
 

where n1 and n2 are the sample sizes from two samples and n=n1+n2.  

In theory, calculation of the p-value for the KS test involves the summation from i=1 to i= (infinity). However, after numerous 

testing on actual and simulated data relevant to our applications, it was observed that any (−1)(𝑖−1)𝑒(−2𝑖2𝑧2) value after i=3 is 

0.00001 or smaller. Hence, for practical purposes, a very accurate approximation for [4.11] can be written as [4.13], which 

makes the computation much easier in practice (a SAS program that calculates i=1 to  is available to interested readers):  

[4.13] p-value = 2∑ (−1)(𝑖−1)𝑒(−2𝑖2𝑧2)3
𝑖=1   

To illustrate the KS test, some example tree height data from the ground and inventory are used. They are listed in Table 17 

and shown in the frequency (left) and cumulative (right) distribution graphs in Figure 5. 

TABLE 17. EXAMPLE TREE HEIGHT DATA USED TO ILLUSTRATE THE KOLMOGOROV-SMIRNOV TEST. 

 

Height (HT, m) 12 13 14 15 16 17 18 19 Total D p-value 

Ground count 1 2 0 1 0 4 3 1 12 0.2667 0.8327 

Inventory count 2 1 2 0 1 3 1 0 10 
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Figure 5. Frequency count (left) and cumulative (right) distribution graphs for the data in Table 17.  

Step-by-step computations of the cumulative distributions for the data in Table 17 are shown in Table 18. For instance, for the 

ground data (n1=12), each observation (obs) represents 1/12=0.08333 frequency proportion and there are 12 observations, 

accumulating to a cumulative frequency proportion of 1 (see the first three columns of Table 18). Similar calculation can be 

done for the inventory data (n2=10).  

TABLE 18. CALCULATING KOLMOGOROV-SMIRNOV TEST STATISTIC FOR THE DATA IN TABLE 17. 

 

Obs HT Ground 
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Obs HT Inventory 
 

Obs HT Ground Inventory D 

   FG(y)     FI(y) 

 

 

 

    FG(y) FI(y) |FG(y) - FI(y)| 

1 12 0.08333 1 12 0.2 1 12 0.08333 0.2 0.11667 

2 13 0.25 2 12 0.2 2 12 0.08333 0.2 0.11667 

3 13 0.25 3 13 0.3 3 13 0.25 0.3 0.05 

4 15 0.33333 4 14 0.5 4 13 0.25 0.3 0.05 

5 17 0.66667 5 14 0.5 5 14 0.25 0.5 0.25 

6 17 0.66667 6 16 0.6 6 14 0.25 0.5 0.25 

7 17 0.66667 7 17 0.9 7 15 0.33333 0.5 0.16667 

8 17 0.66667 8 17 0.9 
 

8 16 0.33333 0.6 0.26667 

9 18 0.91667 9 17 0.9 
 

9 17 0.66667 0.9 0.23333 

10 18 0.91667 10 18     1 
 

10 17 0.66667 0.9 0.23333 

11 18 0.91667       
 

11 17 0.66667 0.9 0.23333 

12 19 1       

 

12 17 0.66667 0.9 0.23333 

 n1 = 12   n2 = 10  13 18 0.91667     1 0.08333 

14 18 0.91667     1 0.08333 

15 18 0.91667     1 0.08333 

16 19 1     1 0 

Note: FG(y) and FI(y) are cumulative distributions for the ground (G) and inventory (I) data, respectively. Actual data are listed in Table 17. 

In order to compute the vertical difference between the two cumulative distributions from the ground and inventory, the cumulative distributions from the 

ground and inventory are arranged into a format shown in the right-half of Table 18 (through simple ranking). The distances between FG(y) and FI(y) are 

listed in the last column of Table 18. The KS test statistic (D), which is the maximum (absolute) distance between FG(y) and FI(y), is 0.26667, which 

occurs at a height of 16 (m), highlighted in Table 18.  

With the known D=0.26667, the z is calculated according to [4.12]:  

 𝑧 = 𝐷√
𝑛1𝑛2

𝑛
= 0.26667√

12×10

22
 = 0.62280. 

Therefore, the p-value for the KS test can be computed by [4.11] or [4.13]:  

p-value = 2[(−1)(1−1)𝑒(−2𝑧2) + (−1)(2−1)𝑒(−2×22𝑧2) + (−1)(3−1)𝑒(−2×32𝑧2)] + ···  

   = 2[0.46035 + (-0.04491) + 0.00093 + (-0.00000) + 0.00000 + ···] = 0.8327. 

This p-value is greater than =0.05, which means that the null hypothesis cannot be rejected. It suggests that the samples 

from the ground and inventory follow the same frequency distribution. 

To demonstrate the KS test further using actual values (instead of the counts by height classes as in Table 17), the tree height 

data listed in Table 16 (Data-1 and Data-2) are used. To limit the size of the upcoming table, only the first 18 observations 
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from Data-1 are used in the step-by-step computations demonstrated below. Figure 6 shows the cumulative distributions for 

the first 18 trees of Data-1 (left), and for all trees of Data-2 (right). Since every one of the 18 tree heights from Data-1 is 

unique, the frequency distribution for Data-1 is uniform (i.e., the frequency count that corresponds to each tree height is 1).  

 

Figure 6. Cumulative distributions for the first 18 tree heights of Data-1 (left), and for all tree heights of Data-2 (right). 

Data-1 and Data-2 are listed in Table 16. 

Table 19 shows the cumulative frequency calculations and the data arrangement required for computing the maximum vertical 

difference (the KS test statistic D) between the two cumulative distributions from the ground and inventory. The logic is 

identical to that illustrated in Table 18. 

TABLE 19. CALCULATING KOLMOGOROV-SMIRNOV TEST STATISTIC FOR DATA-1 (FIRST 18 OBSERVATIONS) IN TABLE 16. 

 

Obs HT Ground 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

HT Inventory Obs HT Ground Inventory D 

   FG(y)    FI(y)     FG(y)  FI(y) |FG(y) - FI(y)| 

1 4.0 0.05556 4.2 0.05556 1 4.0 0.05556 0.00000 0.05556 

2 5.4 0.11111 6.6 0.11111 2 4.2 0.05556 0.05556 0.00000 

3 7.7 0.16667 7.2 0.16667 3 5.4 0.11111 0.05556 0.05556 

4 8.1 0.22222 9.0 0.22222 4 6.6 0.11111 0.11111 0.00000 

5 13.6 0.27778 15.8 0.27778 5 7.2 0.11111 0.16667 0.05556 

6 14.1 0.33333 17.0 0.33333 6 7.7 0.16667 0.16667 0.00000 

7 14.4 0.38889 18.5 0.38889 7 8.1 0.22222 0.16667 0.05556 

8 15.2 0.44444 18.7 0.44444 8 9.0 0.22222 0.22222 0.00000 

9 19.3 0.50000 19.0 0.50000 9 13.6 0.27778 0.22222 0.05556 

10 19.5 0.55556 19.5 0.55556 10 14.1 0.33333 0.22222 0.11111 

11 20.2 0.61111 19.9 0.61111 11 14.4 0.38889 0.22222 0.16667 

12 23.1 0.66667 23.4 0.66667 12 15.2 0.44444 0.22222 0.22222 

13 25.1 0.72222 24.9 0.72222 13 15.8 0.44444 0.27778 0.16667 

14 25.3 0.77778 26.5 0.77778 14 17.0 0.44444 0.33333 0.11111 

15 26.5 0.83333 26.9 0.83333 15 18.5 0.44444 0.38889 0.05556 

16 27.2 0.88889 28.2 0.88889 16 18.7 0.44444 0.44444 0.00000 

17 32.4 0.94444 30.6 0.94444 17 19.0 0.44444 0.50000 0.05556 

18 36.2 1.00000 30.9 1.00000 18 19.3 0.50000 0.50000 0.00000 

n1 = 18  n2 = 18  19 19.5 0.55556 0.55556 0.00000 

20 19.9 0.55556 0.61111 0.05556 

21 20.2 0.61111 0.61111 0.00000 

22 23.1 0.66667 0.61111 0.05556 

23 23.4 0.66667 0.66667 0.00000 

24 24.9 0.66667 0.72222 0.05556 

25 25.1 0.72222 0.72222 0.00000 

26 25.3 0.77778 0.72222 0.05556 

27 26.5 0.83333 0.77778 0.05556 

28 26.9 0.83333 0.83333 0.00000 

29 27.2 0.88889 0.83333 0.05556 

30 28.2 0.88889 0.88889 0.00000 

31 30.6 0.88889 0.94444 0.05556 

32 30.9 0.88889 1.00000 0.11111 

33 32.4 0.94444 1.00000 0.05556 

34 36.2 1.00000 1.00000 0.00000 

Note: FG(y) and FI(y) are cumulative distributions for the ground (G) and inventory (I) data, respectively. 
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Based on the FG(y) and FI(y) values in Table 19, the maximum (absolute) distance between FG(y) and FI(y) is calculated to be 

D=0.22222, which occurs at a height of 15.2 m. With the known D, the z is calculated according to [4.12]: 

 𝑧 = 𝐷√
𝑛1𝑛2

𝑛
= 0.22222√

18×18

36
 = 0.66667. 

Having the z value, the p-value can be computed by [4.11] or [4.13]: 

 p-value = 2[(−1)(1−1)𝑒(−2𝑧2) + (−1)(2−1)𝑒(−2×22𝑧2) + (−1)(3−1)𝑒(−2×32𝑧2)] + ···  

   = 2[0.41111+ (-0.02857) + 0.00034 + (-0.00000) + 0.00000 + ··· ] = 0.7658.  

This p-value is greater than =0.05, suggesting that the first 18 tree heights of Data-1 from the ground and inventory follow the 

same frequency distribution. 

The KS test can be used to assess whether the frequency distributions from any two sets of samples are the same or different. 

Following the same steps demonstrated above, the KS test statistic and the p-value for Data-2 in Table 16 are computed (a 

step-by-step SAS program is available to interested readers, and a generalized program that contains only four keywords is 

also available to practitioners who may not want to know the step-by-step details). Results are listed here for interested 

readers who may wish to check: D=0.3333 (which occurs at HT=25.0 and HT=25.2) and p-value=0.0188. This p-value is 

smaller than 0.05, suggesting that the tree heights from the ground and inventory for Data-2 follow different frequency 

distributions. Indeed, the difference in the frequency distributions for Data-2 can be seen clearly from the cumulative 

distribution graph shown in Figure 6(b).  

4.3 Tree height 

Felled Tree Height vs Lidar (Inventory) Height  

To further demonstrate the application of the methods described in Sections 4.1 and 4.2, a total of 108 trees of various species 

and sizes were located using a global navigation satellite system (GNSS) within the Forest Management Agreement (FMA) 

area of Canadian Forest Products Ltd. (Grande Prairie). Their heights were measured/extracted from the high density (>16 

pts/m2) airborne lidar. These trees were cut down and their heights were also measured on the ground using a measuring 

tape. Table 20 lists the tree heights measured on the ground (HTfelled) and from the lidar (HTlidar). 

TABLE 20 (PART 1 OF 2). TREE HEIGHTS (M) MEASURED ON THE GROUND (HTFELLED) AND FROM LIDAR (HTLIDAR). 

 

Tree Sp HTfelled HTlidar   Tree Sp HTfelled HTlidar   Tree Sp HTfelled HTlidar 

1 Sw 25.60 25.75   37 Pl 23.54 23.07   73 Sw 20.77 20.30 

2 Aw 23.95 23.97   38 Dp 20.06 21.71   74 Sw 6.23 5.97 

3 Pb 18.01 20.97   39 Pl 13.62 12.97   75 Sw 15.60 18.40 

4 Aw 18.80 22.07   40 Pl 21.43 21.40   76 Sw 16.17 18.07 

5 Aw 19.25 19.54   41 Pl 20.22 20.14   77 Sw 12.50 15.97 

6 Sw 14.08 12.14   42 Pl 21.91 21.63   78 Sw 11.37 9.07 

7 Dp 19.45 20.78   43 Pl 21.12 20.76   79 Aw 18.97 19.56 

8 Sw 18.96 17.91   44 Pl 21.78 21.57   80 Aw 9.30 14.96 

9 Sw 19.86 19.80   45 Sw 10.18 10.23   81 Aw 18.90 18.96 

10 Aw 19.65 19.35   46 Sw 18.97 17.98   82 Aw 19.17 18.18 

11 Sw 11.87 11.77   47 Sw 20.70 19.87   83 Aw 20.02 18.41 

12 Aw 23.42 23.56   48 Sw 13.45 16.84   84 Aw 10.00 12.68 

13 Aw 22.18 23.30   49 Sw 17.95 20.71   85 Aw 15.76 16.21 

14 Pl 16.66 18.88   50 Sw 16.12 15.07   86 Aw 17.64 18.85 

15 Pl 19.38 19.03   51 Sw 15.20 14.76   87 Aw 18.91 19.10 

16 Sw 8.66 8.48   52 Sw 16.09 15.60   88 Aw 19.71 20.63 

17 Aw 20.60 18.23   53 Sw 21.11 21.28   89 Aw 17.49 18.44 

18 Sw 12.38 13.39   54 Sw 7.42 6.76   90 Aw 10.91 10.88 

19 Aw 17.14 16.39   55 Aw 21.35 21.13   91 Aw 16.72 18.81 

20 Aw 21.71 20.37   56 Aw 20.06 20.37   92 Aw 22.89 20.91 

21 Sw 16.22 19.50   57 Aw 20.00 19.36   93 Aw 12.57 12.58 

22 Aw 24.23 26.18   58 Sw 16.38 15.93   94 Aw 15.38 17.61 

23 Aw 25.15 25.06   59 Sw 14.97 15.25   95 Aw 11.04 10.63 

24 Aw 25.04 23.85   60 Sw 17.19 16.78   96 Aw 19.95 19.50 

25 Aw 26.32 25.18   61 Sw 20.40 20.19   97 Aw 18.35 18.29 

Note: tree species (sp) are defined in Table 1. HTfelled and HTlidar denote felled tree height (m) and lidar height (m), respectively. 
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TABLE 20 (PART 2 OF 2). TREE HEIGHTS (M) MEASURED ON THE GROUND (HTFELLED) AND FROM LIDAR (HTLIDAR). 

 

Tree Sp HTfelled HTlidar   Tree Sp HTfelled HTlidar   Tree Sp HTfelled HTlidar 

26 Sw 14.82 13.87   62 Sw 9.34 9.28   98 Aw 18.62 20.62 

27 Sw 15.60 16.26   63 Sw 24.18 23.36   99 Aw 10.18 9.77 

28 Aw 22.54 22.34   64 Sw 19.46 19.09   100 Sw 6.26 5.12 

29 Sw 12.87 13.94   65 Sw 11.42 13.50   101 Sw 10.92 12.99 

30 Aw 21.36 22.10   66 Sw 14.99 17.91   102 Sw 10.66 12.91 

31 Sw 10.68 11.37   67 Aw 23.60 23.51   103 Sw 9.56 8.18 

32 Sw 11.22 10.46   68 Sw 16.30 14.98   104 Sw 6.77 6.17 

33 Sw 22.91 22.12   69 Sw 17.37 19.13   105 Sw 6.35 8.26 

34 Bw 17.50 21.63   70 Sw 23.33 23.65   106 Aw 6.61 8.60 

35 Sw 11.68 10.88   71 Sw 24.08 22.66   107 Aw 8.16 6.90 

36 Sw 24.62 24.25   72 Sw 14.31 14.07   108 Aw 8.01 12.84 

Note: tree species (sp) are defined in Table 1. HTfelled and HTlidar denote felled tree height (m) and lidar height (m), respectively. 

Figure 7 shows the scatter plot of felled heights against lidar heights, along with two error plots where the percent error in (c) is 

calculated as 100(HTfelled - HTlidar)/HTfelled. It can be seen from the scatter plot that the data points are (more or less) scattered 

fairly tightly around the 45° line – an indication of good agreement between HTfelled and HTlidar. The error plots in (b) and (c) 

show that there are several data points whose errors are around -5 m or more than -30%. They also show that the errors 

appear to be unequally varied across the range of lidar heights (this is not immediately clear from the scatter plot). For some 

analysis this could invoke some specific methods capable of handling the unequal variation.  

 

 

Figure 7. Scatter plot (a) and error plots (b, c) for felled tree heights (HTfelled) and lidar heights (HTlidar). Actual data are 

listed in Table 20. The percent error in (c) is calculated as 100(HTfelled - HTlidar)/HTfelled.  

Table 21 lists the goodness-of-fit statistics and Mielke’s measure of agreement. The statistics and MOA are also calculated by 

the broad cover types (coniferous and deciduous) defined in Table 1. It can be seen from Table 21 that the lidar 

measurements for coniferous are more accurate than those for deciduous. This makes biological sense because the 

deciduous species usually have more large branches and multiple leaders (and irregular crown shapes), which can make stem 

segmentation and measurement from lidar point clouds more difficult. Overall, the errors are small (e.g., 𝑒̅%=-2.2%) and the 



 

Method comparison  36 

Classification: Public 

agreement between felled and lidar heights is quite strong (MOA=0.952). More than 2/3 of the percent errors are within 10% 

(e10=0.731) and more than 95% of the percent errors are within 33% (e33=0.981). 

TABLE 21. GOODNESS-OF-FIT STATISTICS AND AGREEMENT MEASURE BETWEEN FELLED AND LIDAR HEIGHTS. 

 

Type n 𝒆̅ MAE RMSE 𝒆̅% MAE% RMSE% e10  e33  e50 MOA 

All  108 -0.371   1.128 1.577 -2.2% 6.7% 9.3% 0.731 0.981 0.981 0.952 

Coniferous 63 -0.236 1.040   1.390   -1.5%   6.5%   8.7%   0.730 1 1 0.963 

Deciduous 45 -0.561   1.251 1.807   -3.1%   6.9%   10.0%   0.733 0.956 0.956 0.928 

Note: n denotes the sample size, 𝑒̅, MAE, RMSE, 𝑒̅%, MAE%, RMSE%, e10, e33, e50 and MOA are defined in equations [4.1]-[4.5] and [4.7]. 

To assess the agreement further between felled and lidar heights, the Bland-Altman plots in actual values and in percentages 

are shown in Figure 8.  

 

Figure 8. The Bland-Altman plots in actual values (a) and in percentages (b). More detailed descriptions of the plots are 

provided in the main text. 

In Figure 8(a), the differences (HTfelled - HTlidar) are plotted against their averages (HTfelled + HTlidar)/2. The mean bias is 𝑒̅=-

0.371 and the standard deviation of the differences is SD=1.540. Therefore, the Lower LoA=-0.371-2×1.540=-3.451 and the 

Upper LoA=-0.371+2×1.540=2.709.    

In Figure 8(b), the percent errors (100(HTfelled - HTlidar)/HTfelled) are plotted against the averages (HTfelled + HTlidar)/2. The mean 

percent error is PE̅̅̅̅ %=-3.159, and the standard deviation of the percent errors is SD=12.865. Therefore, the Lower LoA=-

3.159-2×12.865=-28.889 and the Upper LoA=-3.159+2×12.865= 22.571. The percent errors are generally larger for shorter 

trees, reflecting the fact that stem segmentation and measurement from lidar point clouds can be more difficult and varied for 

shorted trees. 

In both graphs in Figure 8, only four data points are outside the LoA lines, implying that (108-4)/108= 96% of the data points lie 

within the lower and upper LoAs. This, together with Figure 7 and Table 21, is an indication of a good agreement between 

felled and lidar heights. If necessary, the data points with large errors or abnormalities can be pinpointed easily based on the 

error plots or Bland-Altman plots. 

The Kolmogorov-Smirnov Test between Felled and Lidar Heights 

Following the KS test described earlier (Section 4.2), the two cumulative distribution functions from felled heights and lidar 

heights are shown in Figure 9.  

The maximum (absolute) distance between the two cumulative distributions from felled and lidar heights is calculated to be 

D=0.092593, which occurs at the heights of 17.50 and 17.64 (m). With the known D, the z is calculated according to [4.12]: z = 

0.092593√108 × 108/216 = 0.68041. Hence, the p-value can be computed by [4.11]: p-value = 2[0.39616+ (-0.02463) + 

0.00024 + (-0.00000) + 0.00000 + ··· ] = 0.7435. This p-value is greater than =0.05, suggesting that felled heights and lidar 

heights follow the same frequency distribution.   

Based on all of the above assessments (from Figures 7-8, Table 21 and the KS test), it can be inferred that for this data set, 

the agreement between the tree heights measured on the ground and from lidar point clouds is reasonably good. Lidar heights 

are representative of the ground heights and can be used to substitute the ground heights in general, although further 

improvement to lidar heights may still be possible through additional adjustment or calibration (see Section 5.6). 
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Figure 9. Cumulative distributions from felled and lidar heights. Actual data are listed in Table 20.  

4.4 Stand height 

For stand-level height measurements obtained on the ground and from any inventory technique, similar comparison can be 

done following the same procedures demonstrated above for individual tree height measurements. The only caveat about 

stand height comparison is that, “stand height” must be clearly defined and consistently used. Otherwise, we could be 

comparing apples and lemons.  

Historically, the concept of stand height is not precise, nor consistent. Different stand heights have been used in different 

studies. This is illustrated in Table 22, where the data from 12 felled trees (assumed to be from a 100 m2 plot) are listed and 

used to derive different stand heights. These 12 felled trees are the first 12 trees listed in Table 20, each with two additional 

variables (DBH and crown position) measured. 

TABLE 22. TREE DATA FROM A 100 M2 PLOT USED TO CALCULATE STAND HEIGHTS. 

 

Tree Sp DBH 

(cm) 

Crown 

position 

Height 

(m) 

Freq Percent Cum 

freq 

Cum 

percent 

Top 

30% 

Top 

20% 

Top 

10% 

Top 

5% 

Ranked by Height 

11 Sw 14.9 U 11.87 1 8.33 1 8.33 . . . . 

6 Sw 15.0 U 14.08 1 8.33 2 16.67 . . . . 

3 Pb 17.3 U 18.01 1 8.33 3 25.00 . . . . 

4 Aw 17.7 O 18.80 1 8.33 4 33.33 . . . . 

8 Sw 19.6 O 18.96 1 8.33 5 41.67 . . . . 

5 Aw 23.4 O 19.25 1 8.33 6 50.00 . . . . 

7 Dp 22.8 O 19.45 1 8.33 7 58.33 . . . . 

10 Aw 19.8 O 19.65 1 8.33 8 66.67 . . . . 

9 Sw 20.9 O 19.86 1 8.33 9 75.00 19.86 . . . 

12 Aw 25.0 O 23.42 1 8.33 10 83.33 23.42 23.42 . . 

2 Aw 37.7 O 23.95 1 8.33 11 91.67 23.95 23.95 23.95 . 

1 Sw 35.0 O 25.60 1 8.33 12 100.00 25.60 25.60 25.60 25.60 

Ranked by DBH 

11 Sw 14.9 U 11.87 1 8.33 1 8.33 . . . . 

6 Sw 15.0 U 14.08 1 8.33 2 16.67 . . . . 

3 Pb 17.3 U 18.01 1 8.33 3 25.00 . . . . 

4 Aw 17.7 O 18.80 1 8.33 4 33.33 . . . . 

8 Sw 19.6 O 18.96 1 8.33 5 41.67 . . . . 

10 Aw 19.8 O 19.65 1 8.33 6 50.00 . . . . 

9 Sw 20.9 O 19.86 1 8.33 7 58.33 . . . . 

7 Dp 22.8 O 19.45 1 8.33 8 66.67 . . . . 

5 Aw 23.4 O 19.25 1 8.33 9 75.00 19.25 . . . 

12 Aw 25.0 O 23.42 1 8.33 10 83.33 23.42 23.42 . . 

1 Sw 35.0 O 25.60 1 8.33 11 91.67 25.60 25.60 25.60 . 

2 Aw 37.7 O 23.95 1 8.33 12 100.00 23.95 23.95 23.95 23.95 

Note: species (sp) are defined in Table 1, crown position refers to the understory (U) or overstory (O) assigned in the field by the surveyor, freq denotes 

frequency count, cum freq and cum percent are cumulative frequency count and cumulative percent, respectively, top 30%, top 20%, top 10% and top 

5% refer to the tallest (ranked by height) or largest (ranked by DBH) 30%, 20%, 10% and 5% of the trees in the plot. 

Before demonstrating the calculation of different stand heights, understanding the concept of a ceiling function is helpful, which 

is used in selecting a set of trees from a tree list for stand height calculation.  
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When calculating the number of trees that fall within the top percentages of the trees from a tree list, we usually round up, by 

taking the “smallest integer that is greater than or equal to the real number” (i.e., we usually take the “ceiling function” of the 

real number). For instance, when selecting 5, 10, 20 and 30% of the trees from a total of 12 trees listed in Table 22: 

5% of the trees = 12×5% = 0.6 = 1 tree. 

10% of the trees = 12×10% = 1.2 = 2 trees. 

20% of the trees = 12×20% = 2.4 = 3 trees. 

30% of the trees = 12×30% = 3.6 = 4 trees. 

Where 0.6, 1.2, 2.4 and 3.6 are the real numbers and 1, 2, 3 and 4 are the smallest integers that are greater than or equal to 

the real numbers, respectively (the standard rounding of 0.6, 1.2, 2.4 and 3.6 would be 1, 1, 2 and 4, respectively). Using a 

ceiling function (or a “floor function”, i.e., rounding down) or the standard rounding can influence the result considerably when 

the sample size is not big. 

The following stand heights are defined and calculated based on the data in Table 22. Here the calculations are done for all 

species combined. When necessary and relevant (e.g., for mixed-species stands and/or for multi-cohort stand structures), they 

can also be done by species, species groups, layers or cohorts, or any other user-defined strata. 

1. Average height (Have) – generally refers to the (arithmetic) average height of all trees in a stand. For the data in 

Table 22, Have=19.41 (m). 

Often, since it is unlikely that “all trees” in a stand will be measured for heights, average height in practice usually 

means the average height of a portion of trees in a stand. For instance, the average height of all trees taller than “1.3, 

2, 5 or 10 m in height”, or the average height of all trees larger than “5.0 or 9.0 cm in DBH”. In a more generic sense, 

average height can mean the average height of any user-defined set of trees or threshold in a stand.  

 

2. Dominant and co-dominant height (Hdom) – refers to the average height of the dominant and co-dominant trees in a 

stand. Sometimes, dominant and co-dominant height is also referred to as “overstory height”. Since the definition of 

what is “dominant” or “co-dominant” can be imprecise and ambiguous in operation (e.g., calling a tree “dominant”, 

“co-dominant” or “intermediate” can sometimes be quite arbitrary depending on the stand type, stand structure and 

the specific location a surveyor is standing in the stand), and the number of “dominants” and “co-dominants” required 

per unit area to derive Hdom can be arbitrary as well (e.g., sometimes we require one dominant and two co-dominants, 

or some other combinations of dominants and co-dominants), the use of this stand height requires caution (as it often 

lacks consistency). For the data in Table 22 assigned with a crown position of “O”, Hdom=20.99 (m). 

3. Top height, tree height-ranked (Htop) – refers to the average height of the 100 tallest trees per hectare. For the data 

in Table 22, Htop=25.60 (m). 

4. Top percent height, tree height-ranked (H%) – refers to the average height of the tallest 5%, 10%, 20% or 30% of 

the trees per unit area. Other percentages (e.g., 25%, 33%, 50%, 66%) may also be used (especially when studying 

stand structures). For the data in Table 22: 

H5 (tallest 5%) = 25.60 (m).  

H10 (tallest 10%) = (23.95 +25.60)/2 = 24.78 (m). 

H20 (tallest 20%) = (23.42+23.95 +25.60)/3 = 24.32 (m). 

H30 (tallest 30%) = (19.86+23.42+23.95 +25.60)/4 = 23.21 (m). 

 

The top percent height can be considered complementary to the percentile height. In statistics, a percentile is often 

defined as a value below which a given percentage of all values in its frequency distribution falls. Hence, the average 

height of the top 5%, 10%, 20% or 30% trees corresponds to the average height of all trees at and above the 95th, 

90th, 80th or 70th percentile, respectively.  

 

Among the potential top percent heights, if only one single top percent height is needed, the average height of the 

tallest 20% or 25% of the trees per unit area is generally preferred. The tallest 20% of the trees correspond well in 

most cases with the traditional stand height (i.e., the average height of the dominant and co-dominant trees) 

commonly used in Alberta, and it is quantified thus more precise, consistent and repeatable than the vaguely defined 

average height of the dominant and co-dominant trees.  
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5. Top height, tree size-ranked (TH) – refers to the average height of the 100 largest (by DBH) trees per hectare, often 

used in ground-based inventories. For the data in Table 22, TH=23.95 (m). 

6. Top percent height, tree size-ranked (TH%) – refers to the average height of the top 5%, 10%, 20% or 30% of the 

largest DBH trees per hectare or per unit area, often used in ground-based inventories. Other percentages (e.g., 

25%, 33%) may also be used. For the data in Table 22: 

TH5 (largest 5%) = 23.95 (m)  

TH10 (largest 10%) = (25.60+23.95)/2 = 24.78 (m) 

TH20 (largest 20%) = (23.42+25.60+23.95)/3 = 24.32 (m) 

TH30 (largest 30%) = (19.25+23.42+25.60+23.95)/4 = 23.06 (m) 

 

Similar to H%, the average height of the top 5%, 10%, 20% or 30% trees corresponds to the average height of all 

trees at and above the 95th, 90th, 80th or 70th percentile, respectively, except that H% is ranked by tree height and 

TH% is ranked by tree DBH. 

 

7. Lorey’s height (HL) – refers to the average height of a set of trees weighted by their basal area (BA). For a total of n 

trees, it is calculated as:  

[4.14] HL = 
∑ (BA𝑖×HT𝑖

𝑛
𝑖=1 )

∑ BA𝑖
𝑛
𝑖=1

=
∑ (𝜋(DBH𝑖/200)2×HT𝑖

𝑛
𝑖=1 )

∑ 𝜋(DBH𝑖/200)2𝑛
𝑖=1

 . 

For the data in Table 22, n=12, ΣBAi×HTi =11.1082 and ΣBAi =0.5192. Therefore, HL=21.39 (m).  

 

Lorey’s height “is often used in remote sensing studies since it provides a measure of forest height that is less 

affected by thinning and mortality of smaller trees” (Nakai et al. 2010, Erasmi et al. 2019). As shown in [4.14], the 

calculation of HL requires the prior knowledge on tree DBH. Tree DBH is typically not a directly classified, observed or 

extracted variable from any aerial-based remote sensing inventories, i.e., tree DBH or BA must first be predicted 

indirectly from other models or processes, and HL must then be calculated from the predictions. As such, it can be 

highly impacted by other indirect and non-inventory factors. For this reason, some practitioners prefer other stand 

heights in aerial-based inventories. In any case, readers should exercise caution when using and interpreting Lorey’s 

height, especially when comparing it to other stand heights. 

 

8. Overstory height (Ho or HDC) – refers to the average height of the trees equal to or taller than 80% of the tallest tree 

per unit area. We will discuss this stand height in more detail below. 

Other stand heights under various names have also been proposed, such as “crown height”, “canopy height”, “effective 

canopy height”, “aerodynamic canopy height” (e.g., Nakai et al. 2010), “polygon height”, “hexagon height”, “mean height” of 

three tallest or largest trees per plot or per unit area, “predominant height”, “dominant height”, “site height”, and “interpreted 

height” for a specific set of trees. They can give quite different stand height values for the same stand. So long as they are 

clearly defined and can be consistently obtained (i.e., repeatable) by different analysts and surveyors on the ground or from an 

inventory to be compared, there may be values to use them.  

For instance, in the above mentioned lidar inventory in Canadian Forest Products Ltd. (Grande Prairie), an area-based 

hexagon height was obtained from the four tallest trees in each 400 m2 hexagon, and a polygon height was obtained by 

averaging the hexagon heights within each polygon (polygon height is stand height in this case). Inherently, the hexagon 

height and the stand height obtained in this manner are conceptually and methodologically equivalent to the tree height-ranked 

top height (Htop) discussed above.  

If necessary, it is always possible to develop predictive relationships between different types of stand heights. An example of 

such a relationship between tree size-ranked top height and dominant and co-dominant height is available to interested 

readers. It has been used for many years in Alberta in analyzing data from ground-based inventories.  

Calculating Stand Height without Requiring a Full Tree List  

For aerial-based remote sensing inventories, because tree DBH is not directly available and because a full tree list may also 

be very hard to obtain, tree height-ranked top height (Htop) is preferred over other heights. One advantage of the Htop (the 

average height of the 100 tallest trees per hectare) is that, it does not require a full tree list, whereas the calculation of the H% 

requires a full tree list as a priori. Another advantage of the Htop is that, an aerial-based inventory technique (e.g., lidar) is 

much more likely to detect those tall trees, while a tree list from the inventory technique will likely be missing some or many 

trees, especially small trees. 
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Recognizing that an aerial-based inventory technique (e.g., lidar) is much more likely to detect tall trees, but usually cannot 

produce a full tree list accurately, an overstory height based on the “percent to the tallest tree” (i.e., the heights of the trees in 

percentages relative to the height of the tallest tree) is defined: 

- Overstory height, based on the percent to the tallest tree (Ho or HDC) – refers to the average height of the trees 

equal to or taller than 70%, 80% or 90% of the tallest tree per unit area. Other percentages may also be used. For 

example, for the data in Table 22, the height of the tallest tree is 25.60 (m), and 70%, 80% and 90% of 25.60 are 

17.92, 20.48 and 23.04, respectively. Therefore, 

Ho_70 (trees  70% of the tallest tree) = (18.01+18.80+18.96+19.25+19.45+19.65+19.86 

+23.42+23.95+25.60)/10 = 20.70 (m). 

Ho_80 (trees  80% of the tallest tree) = (23.42+23.95 +25.60)/3 = 24.32 (m). 

Ho_90 (trees  90% of the tallest tree) = (23.42+23.95 +25.60)/3 = 24.32 (m). 

It is important to note that for instance, the average height of the trees  70% of the tallest tree (Ho_70 =20.70) is entirely 

different from the average height of the tallest 30% of the trees (H30=23.21). The calculation of the Ho_70 does not require a 

tree list, whereas the calculation of the H% requires a full tree list (in order to calculate how many trees correspond to the 

tallest 30% of the trees).  

The concept imbedded in the above definition for overstory height can be used to clearly and consistently define the following 

terms in Table 23 for future studies, where option #1 is preferred and option #2 is sometimes used as a practical simplification, 

which puts the trees into two classes only (using the distance from the trees to the tallest tree as the criterion). Other options 

may also be defined (e.g., for multi-layered stand structure) following the same idea, but they are implied in the generic “top 

A% tallest trees” in option #1. Veterans or residual trees are easy to identify in the early development stages of post-harvest 

stands. They may be treated as a separate layer or layers. Any distinctly different “super-dominant” trees can be quantitatively 

defined (e.g., as trees at least 5 m or 130% (whichever is greater) taller than the next tallest tree in a defined layer). They may 

be considered outliers and treated differently. 

TABLE 23. TREE CROWN POSITIONS AND STAND HEIGHT DEFINITIONS FOR AERIAL-BASED FOREST INVENTORIES. 

 

Opt. Crown position Tree class (or tree category)  Definition 

#1  Overstory (Ho or HDC) Dominant and co-dominant trees trees  80% of the tallest tree 

   Dominant trees trees  90% of the tallest tree 

   Co-dominant trees 80%  trees < 90% of the tallest tree 

 Intermediate story  Intermediate trees 50%  trees < 80% of the tallest tree 

 Understory Suppressed trees trees < 50% of the tallest tree 

 Top A% Top A% tallest trees trees  (100-A)% of the tallest tree 

#2 Overstory Overstory trees trees   3 m to the tallest tree 

 Understory Understory trees trees > 3 m from the tallest tree 

Note: opt. denotes option. Ho or HDC is the corresponding overstory height. In option #1, A in top A% denotes a number from 1 to 99.  

The trees defined in different classes in Table 23 can be used to calculate the corresponding heights. For instance, for the 

preferred option #1, the overstory, intermediate story and understory crown positions correspond to the dominant and co-

dominant, intermediate and suppressed trees, respectively. In some previous analyses related to this project, the cut-off 

threshold for separating overstory and intermediate story is 75%. With the refinement to 80%, it is more closely related to the 

traditional stand height used in Alberta, although other jurisdictions may still choose to use 75% or other reasonable numbers.  

The dominant and co-dominant height or overstory height (Ho = HDC) calculated according to Table 23 (i.e., from the trees 

taller than or equal to 80% of the tallest tree) is much more precise, consistent and repeatable than that calculated from the 

“dominant” and “co-dominant” trees called in the field or interpreted from photos or maps. For this reason, it is highly 

recommended as a stand height in future studies. One other distinct advantage of the Ho or HDC is that it does not require a full 

tree list.      

When calculating some of the other stand-level heights mentioned earlier (i.e., Have, H%, TH%, HL), we typically need a full 

tree list. For instance, to calculate the tree height-ranked top percent height (H%), the total number of trees must be known 

and ranked. Otherwise, the average height of the tallest 5%, 10%, 20% or 30% of the trees cannot be calculated. But often, a 

full tree list may not be available, or is very difficult to obtain accurately, as there may be considerable inaccuracies during the 

crown delineation or stem segmentation process. The calculation of the overstory or dominant and co-dominant height 
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according to Table 23 requires the height of the tallest tree. Any other trees whose heights are greater than or equal to the 

80% of the tallest tree are counted in. There is no need for a full tree list.  

Following the logic embedded in Table 23, other “fraction heights” can also be calculated. For instance, the average height of 

the trees taller than or equal to the 75, 85% or any other percentage of the tallest tree can be calculated. Fraction heights can 

be more easily implemented in aerial-based remote sensing inventories than Have, H% and HL, as they do not require a full tree 

list, nor the prediction of tree DBHs.  

All stand heights calculated from sample plots are impacted by plot size and no-tally plots. Therefore, plot size and how the 

plot heights are averaged to derive stand height must be clearly described. Consistence in plot size and stand height 

calculation is an important consideration when reporting and comparing stand heights. Otherwise, the differences in stand 

heights can reach several meters or more for the same stand or the same stratum.  

To sum up the above discussion, for aerial-based forest inventories, tree height-ranked top height (Htop) and dominant and co-

dominant height (i.e., overstory height) defined in Table 23 (HDC or Ho) are recommended. Both of these stand heights are 

precisely defined and thus consistent and repeatable no matter who is using them. Both do not require a full tree list, nor the 

prediction of tree diameters as a priori. Practitioners can use either one or both of them in practice.  

4.5 Stand density in stems per hectare, crown area or crown closure percent 

Different stand density measures have been used in different forest inventories. The most common ones are stems per 

hectare (stems/ha), crown area (m2) and crown closure/cover percent (CC%).  

Data from 28 plots of 400 m2 each are used to demonstrate the application of the methods described in Sections 4.1 and 4.2. 

Stand densities in terms of merchantable stems per hectare for these plots (one plot per stand) are obtained through field 

measurement and from the point cloud segmentation of the lidar inventory in the Canadian Forest Products Ltd. (Grande 

Prairie). They are listed in Table 24. Since the methods are identical to those demonstrated for tree height, and the only 

difference is that one continuous variable (tree height) is replaced by another continuous variable (stems/ha), the descriptions 

below will be brief. 

TABLE 24. STAND DENSITIES (STEMS/HA) FROM GROUND MEASUREMENT AND LIDAR INVENTORY. 

 

Plot Ground Lidar Plot Ground Lidar Plot Ground Lidar Plot Ground Lidar 

1 1100 575 8 175 225 15 1225 675 22 600 775 

2 375 400 9 1025 300 16 425 275 23 825 525 

3 1200 575 10 300 225 17 475 600 24 375 375 

4 350 200 11 900 550 18 550 475 25 150 275 

5 450 300 12 975 575 19 400 200 26 450 200 

6 625 325 13 600 275 20 475 450 27 1125 525 

7 975 550 14 1050 675 21 925 725 28 1475 750 

 

Figure 10 shows the scatter plot of ground density (Nground) against lidar density (Nlidar), together with two error plots where the 

percent error in graph (c) is calculated as 100(Nground - Nlidar)/Nground.  

 

Figure 10 (part 1 of 2). Scatter plot (a) and error plots (b, c) for stand densities measured on the ground (Nground) and from 

lidar (Nlidar). The percent error in graph (c) is calculated as 100(Nground - Nlidar)/Nground.  
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Figure 10 (part 2 of 2). Scatter plot (a) and error plots (b, c) for stand densities measured on the ground (Nground) and from 

lidar (Nlidar). The percent error in graph (c) is calculated as 100(Nground - Nlidar)/Nground.  

It can be seen from Figure 10 that the differences between ground densities and lidar densities are quite large. Overall lidar 

densities appear to be underestimating ground densities in most cases (i.e., lidar misses or under-counting stems), but there 

are cases where lidar densities overestimate ground densities (i.e., lidar over-counting stems). 

The large differences between ground and lidar densities are somewhat expected because stem segmentation from lidar point 

clouds is not an easy task (Ke and Quackenbush 2011). It generally can only find a subset of the merchantable stems on the 

ground. Smaller and shorter trees are sometimes missed due to their canopy size, spatial position or stand structure. It can be 

quite challenging to match the GNSS data for a tree collected at the base of a tree to the tree segmented from above through 

crown detection and delineation, especially when the canopy is quite dense and/or multi-layered.  

Table 25 lists the goodness-of-fit statistics and Mielke’s measure of agreement for the stand densities. They corroborate and 

quantify the observations made in Figure 10. Overall, the errors are fairly large (e.g., 𝑒̅=250.0 stems/ha or 𝑒̅%=35.8%) and the 

agreement between ground and lidar densities is quite low (MOA=0.421). Only 11% of the percent errors are within 10% 

(e10=0.107) and more than 2/3 of the percent errors are greater than 33% (e33=0.321). 

TABLE 25. GOODNESS-OF-FIT STATISTICS AND AGREEMENT MEASURE BETWEEN GROUND AND LIDAR DENSITIES. 

 

Type n 𝒆̅ MAE RMSE 𝒆̅% MAE% RMSE% e10  e33  e50 MOA 

All plots   28 250.0   285.7 356.4 35.8% 40.9% 51.0% 0.107 0.321 0.786 0.421 

Note: n denotes the sample size (number of plots), 𝑒̅, MAE, RMSE, 𝑒̅%, MAE%, RMSE%, e10, e33, e50 and MOA are defined in [4.1]-[4.5] and [4.7].   

The Bland-Altman plots in actual values and in percentages also show poor agreement between ground and lidar densities 

(Figure 11). Even though the data points in graph (a) are within the LoAs, there is an obvious upward trend and the absolute 

values of the errors/differences for many observations are greater than 250 stems/ha. The mean percent error in graph (b) 

exceeds 25% (PE̅̅̅̅ %= 25.9%), and six out of the 28 percent errors are outside 50%.  

 

Figure 11. The Bland-Altman plots in actual values (a) and in percentages (b) for stand densities from the ground and lidar 

measures. Actual data are listed in Table 24. 
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The cumulative distributions for the ground densities and lidar densities clearly show the divergence between the two sets of 

densities (Figure 12).  

The KS test between the ground and lidar densities shows that the maximum distance between the two cumulative 

distributions is D=0.4286, which occurs at the density of 775 stems/ha. With the known D, the z is calculated to be: 

z=0.4286√28 × 28/56=1.604 (following [4.12]). Therefore, the p-value=0.0117 (following [4.11] or [4.13]). This p-value is 

smaller than =0.05, indicating that the frequency distribution of the lidar densities is different from that of the ground 

densities. 

 

Figure 12. Cumulative distributions for stand densities from the ground and lidar measures. Actual data are listed in Table 

24. 

Based on all of the above assessments (from Figures 10-11, Table 25 and the KS test), it can be inferred that for this 

example, the agreement between ground densities and lidar densities is not good. Lidar densities appear to substantially 

underestimate ground densities in most cases. Without any adjustment or calibration, lidar densities are not representative of 

the ground densities. They should not be used to substitute the ground densities unless they are adjusted or calibrated.    

Stand Density in Terms of Crown Area or Crown Closure Percent 

Instead of using stems/ha, if stand density is expressed in terms of crown area (e.g., 160.98 m2/ha), the analysis follows the 

standard analysis demonstrated above for continuous variables.   

If stand density is expressed in terms of (exact) crown closure percent (CC%, i.e., % of ground covered if crown projected 

vertically from above, e.g., 6%, 80%, 92%), the analysis still follows the standard analysis for continuous variables, except that 

extra care must be exercised when calculating and interpreting the average crown closure percent from different crown closure 

percents, which are ratios or proportions that do not reveal their numerators nor their denominators. Without using a consistent 

basis or without knowing the abundances in terms of the actual numbers (numerators and denominators), averaging the CC% 

is not meaningful.  

If, for whatever reason, stand density is expressed in terms of crown closure classes defined by the ranges of crown closure 

percent (such as those A, B, C and D density classes in the Alberta Vegetation Inventory), stand density becomes a 

categorical variable. As such, the analysis appropriate for categorical variables should be implemented.    

4.6 Goodness-of-fit measures for categorical variables 

In theory, the goodness-of-fit statistics, the agreement measure and the plots described in Section 4.1 could be applied to 

categorical variables as well. For instance, Table 26 lists the calculated goodness-of-fit statistics and Mielke’s measure of 

agreement based on the data in Table 3, comparing the ground counts (y=[55, 18, 0, 8, 14, 10, 9, 28, 4, 63]) to the 

corresponding classification counts from the lidar inventory (x=[57, 19, 2, 14, 19, 10, 9, 25, 2, 52]). Scatter plot, error plots and 

the Bland-Altman plot could also be drawn from these counts (available to interested readers).   

TABLE 26. GOODNESS-OF-FIT STATISTICS AND AGREEMENT MEASURE FOR GROUND VS CLASSIFICATION COUNTS. 

 

Type n 𝒆̅ MAE RMSE 𝒆̅% MAE% RMSE% e10  e33  e50 MOA 

Ground vs classification 10 0 3.20 4.52 0 15.3 21.6 0.444 0.667 0.889 0.976 

Note: n is the sample size and all statistics are defined in [4.1]-[4.7]. Actual data from the ground (y) and classification (x) are listed in Table 3. 
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However, since the categories of a categorical variable often do not exceed 10 in our studies (e.g., the number of species or 

the number of crown closure classes typically does not exceed 10), the statistics calculated from small sample sizes may not 

be reliable. For this reason, we generally do not recommend the calculation of the goodness-of-fit statistics and agreement 

measure for categorical variables. The statistics and the methods described in Sections 2 and 3, and the logic embedded 

therein, specifically the error matrix and the chi-square test or Fisher’s exact test, are designed to better fit categorical 

variables. They are more appropriate and should be sufficient in determining the accuracy and comparing the agreement (to 

ground measures) for categorical variables. Interested readers may wish to read Agresti (2013, 2018) for some more complex 

treatments of analyzing categorical variables.  

4.7 Goodness-of-fit measures for ground = f (inventory variables) models 

The methods and the goodness-of-fit statistics, the agreement measure and the plots described in previous Sections apply to 

relevant continuous and categorical variables obtained from any inventory approach, be it tree-based, area-based or a hybrid 

of the two.  

Often, photogrammetric and remote sensing studies involve the development of regression relationships (or models) between 

ground measures and inventory measures (Næsset 2002; Næsset et al. 2005, 2013; Vastaranta et al. 2012; White et al. 2017; 

Puliti et al. 2017; Surový and Kuželka 2019; Coops et al. 2021), where ground measures refer to ground-measured forest 

attributes and inventory measures refer to inventory-derived or extracted measures, variables or metrics (e.g., lidar-derived 

measures or variables we typically use as predictors are based on lidar-derived height, crown cover and vertical structure 

metrics). This is particularly true for area-based approach, where the inventory technique is almost entirely dependent on the 

development of regression models linking inventory-derived variables or metrics (x variables or predictors) to ground-

measured forest attributes such as height, density, diameter, volume and biomass (y variables), based on the following 

general form: 

[4.15] Ground = f (inventory variables) 

where ground denotes the ground measurements for forest attributes, f denotes a linear or nonlinear function and inventory 

variables denote the inventory variables, measures or metrics (e.g., lidar metrics) extracted or derived from an inventory 

technique.  

For example, at the individual tree level: 

[4.16] HTground = f (HTlidar) 

[4.17] DBH = f (lidar height, crown cover and vertical structure metrics) 

where HTground is the tree height measured on the ground, HTlidar is the corresponding lidar-derived height estimate, often 

called lidar height, and DBH is the tree diameter (at breast height) measured on the ground. If warranted, other lidar metrics 

may also be included in [4.16], but HTlidar is usually enough and we will just use [4.16] to illustrate the general concept and 

logic here. Tree taper and different types of tree volumes can be obtained once HTground and DBH are known (Huang 1994). 

They can also be predicted directly from lidar metrics or lidar-derived variables via Tree taper = f (lidar metrics or variables).  

At the stand level (i.e., for area-based approach): 

[4.18] Stand height = f (lidar height variables) 

[4.19] Volume (m3/ha) = f (lidar height, crown cover and vertical structure variables) 

[4.20] Other stand level variables = f (lidar metrics or variables) 

where stand height can be HDC, Htop or other stand heights discussed in Section 4.4, and other stand level variables in [4.20] 

can be stand density (stems/ha), basal area (m2/ha), average DBH (cm), height and diameter distributions, aboveground 

biomass (Mg/ha, Mg = megagram =1,000 kilograms), CC%, age, site index, etc. Once again, if warranted, other lidar metrics 

or variables may also be included in [4.18]. 

For simplicity, only continuous y-variables are illustrated in [4.16]-[4.20]. Dichotomous (binary) variables with only two possible 

outcomes, such as "correct/incorrect" for species, "live/dead" for mortality and "yes/no" for ingrowth, are not discussed here. 

Species prediction typically involves machine learning and a large number of inventory technique-derived metrics (e.g., Forsite 

Consultants Ltd. 2020, Hologa et al. 2021). Mortality and ingrowth predictions require some specialized regression techniques 

(e.g., Yang et al. 2003; Yang and Huang 2013, 2015; Cortini et al. 2017). Interested readers can find more details in these 

references.  
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When developing regression models expressed in [4.15]-[4.20], two of the commonly seen goodness-of-fit statistics in 

photogrammetric and remote sensing studies are regression root mean square error (RMSEr) or mean squared error (MSEr), 

and coefficient of determination (R2):  

[4.21] RMSE𝑟 = √
1

𝑛−𝑝
∑(𝑦𝑖 − 𝑦̂𝑖)

2 = √
∑ 𝑒𝑖

2

𝑛−𝑝
  (or MSE𝑟 =

∑(𝑦𝑖−𝑦̂𝑖)
2

𝑛−𝑝
 = 

∑ 𝑒𝑖
2

𝑛−𝑝
) 

[4.22] R2 = 1 −
∑(𝑦𝑖−𝑦̂𝑖)

2

∑(𝑦𝑖−𝑦̅)2  

where 𝑦̂𝑖 is the predicted yi from the fitted regression model 𝑦̂𝑖 = f (x variables) (or Ground = f (inventory variables)), 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 

is the residual, n is the number of observations, p is the number of parameters related to the x-variables, and (n - p) is the 

error degrees of freedom from the model with p parameters.  

Notice the important difference between the RMSEr in [4.21] (which involves the regression model 𝑦̂𝑖 = f (x variables) and 

needs to be corrected by the error degrees of freedom from the fit) and the RMSE in [4.3] (which is directly calculated from the 

data). Since RMSEr can be highly influenced by the number of parameters (or variables) used in the developed regression 

model (and sometimes, a large number of variables may be used as x variables in lidar predictions), the RMSEr reported in 

many studies may not be as meaningful as the RMSE in [4.3] in assessing inventory techniques.  

Notice also the difference between the RMSEr and the unbiased estimate of the standard deviation of residuals (SDr) in 

regression analysis (where the mean of the residuals is 𝑒̅ = (𝑦𝑖 − 𝑦̂𝑖)/n = 0): 

[4.23] SD𝑟 = √
1
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Interested readers may want to read Huang et al. (2019) to see the exact mathematical relationships and conversions among 

RMSEr, SDr and RMSE (and SD when 𝑒̅ ≠ 0). They should be understood correctly and used in the right contexts clearly and 

consistently, especially when comparisons are made or when SDr is referred to as “RMSE” or the unbiased estimate of RMSE. 

Numerous studies also used R2 (or Pearson’s correlation coefficient, r) to show how accurate and reliable the regression 

models and the inventory technique were. This was likely caused by the misunderstanding of the R2 (or r), which only 

describes the correlation between the variables (y and x), but not the accuracy and agreement (to ground measures) of an 

inventory technique. In fact, an inaccurate or a completely wrong or mismatched inventory technique relative to ground 

measures can produce a very high R2 value when Ground = f (inventory variables) is developed. This can be illustrated using 

Figure 13, where three hypothetical data sets of ground (y) versus inventory (x) measures for a variable (e.g., height) from 

three inventory techniques (T1, T2 and T3) are shown.  

 

Figure 13. An illustration of three data sets between ground (y) and inventory (x) measures from three inventory 

techniques (T1, T2 and T3), each with an R2 value of 1, but the accuracies and the agreement (to ground measures) of the 

three inventory techniques are completely different. 
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Since the data lie on the straight lines in Figure 13, each differing data set has an R2 (or r) value of 1. However, it is without 

question that the three data sets from three inventory techniques correspond to very different values and display entirely 

different agreement patterns between ground measure (y) and  inventory measure (x), even though all of them have an R2 

value of 1.  

It is critically important to recognize (and reiterate) that for any developed regression model from any inventory approach, 

regardless of how high the R2 value is, it only measures the correlation between y and x, not the accuracy, nor the agreement 

(or “closeness”, “likeness”, “concordance”, “equivalence”, “same-ness”) between ground measures and inventory variables 

from an inventory technique. Therefore, the R2 must be interpreted with extreme caution, if it is used at all.  

To elaborate the above statement further using tree height measurements as an example, assume that the tree height 

measurements from lidar were consistently twice as high as the tree height measurements on the ground. If we were to plot 

the tree heights on the ground (y) against the tree heights from the lidar (x) in the style of Figure 13, we would get a perfect 

straight line with an R2 of 1 and a slope of 0.5. If the tree heights from the lidar were consistently half of what the tree heights 

on the ground are, we would still get a perfect straight line with an R2 of 1 but a slope of 2.0. The R2 in both cases would be 1 

even though in one case the tree heights from the lidar were twice as high as the tree heights on the ground, and in the other 

case they were only half of what the tree heights on the ground are. Clearly the tree heights from the lidar did not match or 

agree with those on the ground in both cases but the R2 values would suggest that the “agreement” between lidar heights and 

ground heights were perfect. 

Indeed, a high R2 value for the tree height example only implies that the height measurements between ground and lidar 

correlate well with each other. But it does not mean that the measurements agree with each other, or the lidar heights are 

accurate and reliable (although one could argue that for this example lidar heights were reliably inaccurate and wrong). The R2 

only measures the correlation but not the agreement between the two measurements, nor the accuracy and validity of an 

inventory technique. We will have a perfect correlation (R2=1) as long as the data points lie along any straight line, in any 

direction without anything to do with how good or bad the lidar heights actually match the ground heights. Entirely opposite or 

completely wrong or reversed lidar heights to ground heights can still produce a very height R2 value. The same argument 

applies to any other variables and models expressed in [4.15]-[4.20].  

The R2 is very useful in judging regression correlation, but is not really relevant (and is considered flawed by many 

researchers) in judging the agreement between any two sets of values linked through regression analysis. Many of the 

reported high R2 values in remote sensing and photogrammetric studies (e.g., Næsset 1997, Means et al. 1999, Lim et al. 

2003, Heurich et al. 2004, Næsset et al. 2005, Kwak et al. 2007, Sibona et al. 2017, Wang et al. 2019) are only relevant to the 

correlation, but not to the agreement between the two sets of measurements even though sometimes it is interpreted to be so 

and used to showcase the accuracy and validity of an inventory technique.  

Methodologically and fundamentally, it is inappropriate to use the R2 value to judge the agreement between any two sets of 

measurements. We cannot say, for instance, that the lidar heights match or agree with the ground heights even if the R2 value 

between ground heights and lidar heights is 1.  

We need to use the methods, the goodness-of-fit statistics, the agreement measure and the plots described in previous 

Sections, not the RMSEr (or MSEr) and R2 from regression analysis, to evaluate the accuracy and agreement (to ground 

measures) of an inventory technique. The statistics from regression analysis are more suited to method or model calibration in 

the development of inventories, or for corrections when inventory variables/measures do not agree with ground measures (see 

Section 5.6). Practitioners must recognize that judging the accuracy and agreement of an inventory technique relative to 

ground measures (i.e., agreement analysis), is very different from judging the regression models between ground measures 

and inventory measures (i.e., correlation analysis). They should not be confused even though they have been in many 

research papers. Agreement and correlation are two entirely different concepts (Robinson 1957; Altman and Bland 1983, 

1987; Bland and Altman 1986, Hollis 1996; Stehman 1997; Liao and Lewis 2000, Ludbrook 2002, Bunce 2009, Choudhary and 

Nagaraja 2017).  

Inherently the futility of R2 in judging the agreement between ground and inventory measures is due to the invariance property 

of the R2 from changes in location, direction as well as scale in the data. In plain languages the invariance property of the R2 

means that, if we shift the data up or down, left or right, or if we tilt the data by multiplying/dividing and adding/subtracting 

some arbitrary or random numbers to the original data to form some new variables and completely different agreement 

patterns and relationships between ground measures and inventory variables (e.g., y1 = 10.88y – 3.65 and x1 = x/2 + 138, or 

y2 = y/13 + 80.48 and x2 = 12x – 100.28, for any given y and x values – such as those from Data-1 in Table 16), the R2 from 

the ordinary least squares (OLS) fits of 𝑦̂1 = a1 + b1x1 and 𝑦̂2 = a2 + b2x2 will be the same, and both will be identical to that from 

𝑦̂ = a + bx (interested readers should test this out, the R2 in this case for Data-1 in Table 16 always equals to 0.9137, even 
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though the y-x data are arbitrarily changed to y1-x1 or y2-x2). The implications of this very important but often overlooked 

property are twofold:  

1. The R2 cannot adequately reflect the changes in agreement patterns between ground measures and inventory 

variables/measures from different inventory techniques; and 

2. Even though ground measures and inventory variables differ, disagree or mismatch greatly, the R2 from Ground = f 

(inventory variables) can remain the same and appear very good (e.g., close to 1), which can be mistaken as good 

agreement between ground measures and inventory variables from an inventory technique.    

Two other goodness-of-fit statistics frequently seen and called “agreement measures” in remote sensing and photogrammetric 

studies, the index of agreement (Willmott 1981, 1982) and the agreement coefficient (Ji and Gallo 2006), also possess some 

critical drawbacks. They may not be as easy to comprehend as those for the R2. We provide some additional notes for 

interested readers in Section 5.3.  

4.8 A note of caution on testing intercept and slope in scatter plot 

One of the most common graphical means for assessing the accuracy and agreement of any variables is the plotting of the 

scatter plot of y against x (e.g., Figure 3(a), Figure 7(a) and Figure 10(a)), where y denotes the “truth” or ground reference and 

x denotes the prediction or estimation from an inventory. A widely held belief in accuracy assessment and agreement studies 

is that, if the predicted values agree with the true values, a simple linear regression between the two sets of values should 

follow the 45° line that passes through the origin (i.e., y=x). Therefore, in order to ascertain that the data in the scatter plot 

follow the 45° line, it is very tempting to fit a simple linear regression to the data, then evaluate if the intercept is 0 and the 

slope is 1 for the fitted line. 

For instance, following the standard ordinary least squares (OLS) method (e.g., Draper and Smith 1998), a simple linear 

regression can be fitted for the data in Figure 3(a): 

[4.24] 𝑦̂𝑖 = 𝑎 + 𝑏𝑥𝑖 

where the estimated intercept a=-1.13343 and the slope b=1.09234. Figure 14(a) shows the original data (listed as Data-1 in 

Table 16) and the fitted regression line. 

 

Figure 14. Simple linear regressions (dashed lines) between ground (y) and inventory (x) tree height data. In graph 

(a), Data-1 in Table 16 are used. In graph (b), the same Data-1 are used, but with 3.5 m added to every y value (the x 

values remain the same). The solid lines are the 45° lines. Testing the fitted regressions (𝑦̂=a+bx) would lead to the 

acceptance of a=0 and b=1 in both cases. 
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Testing whether a=0 and b=1 for the fitted line in Figure 14(a) can be done through a simultaneous F-test, separate t-tests, or 

confidence interval inferences. Details on the tests and inferences were provided elsewhere (Huang 2002, Huang et al. 2019). 

They will not be repeated here. Results showed that we cannot reject a=0 and b=1 (at =0.05). 

Interestingly though, for instance, when 3.5 m is added to every y value in the data to form a new variable y1 (i.e., y1=y+3.5 but 

the x remains the same, as in Figure 14(b)), re-fitting the simple linear regression 𝑦̂1=a+bx will produce an intercept a=2.36657 

and a slope b=1.09234. Testing whether a=0 and b=1 for the new regression would still show that we cannot reject a=0 and 

b=1 (Huang et al. 2019), even through the differences between the data sets and the regressions in Figure 14(a) and Figure 

14(b) are clearly different.  

Intuitively, it seems logical that in accuracy assessment and agreement analysis, if the predicted (or indirectly measured) 

values agree with the true values, a simple linear regression expressed as [4.24] between the two sets of values in the scatter 

plot should be a 45° line through the origin. Therefore, it seems natural to test if a=0 and b=1 for the fitted regression. But as 

early as 1972, Aigner (1972) pointed out that such an intuition is generally wrong when comparing true values to indirectly 

predicted or measured values from a device, a technique or a model. Harrison (1990), Kleijnen et al. (1998) and Kleijnen 

(1999) provided some other explanations and technical details as to why such a test is wrong. In fact, Kleijnen et al. (1998) 

and Kleijnen (1999) called it the “naïve test” and listed it as an example of a wrong approach. 

While such labelling might be hard to accept, especially since we have used it many times in some earlier studies (e.g., Huang 

et al. 1999), a more reasoned assessment of the testing does suggest that such testing is not appropriate in assessing the 

accuracy and measuring the agreement between y and x. While this conclusion may appear counter-intuitive with regard to the 

scatter plot, it is the right one. 

The danger of testing whether a=0 and b=1 lies more on the fact that, it frequently leads to wrong conclusions by accepting 

invalid models and rejecting valid models. Accepting invalid models is relatively easy to see (e.g., Figure 14(b)). To understand 

the latter (which requires some additional statistical and mathematical formulations that some practitioners may not be familiar 

with, but we provide here for interested readers), recognizing that the parameters (a and b) in [4.24] are computed as follows 

(Neter et al. 1989, pp.102-103; Draper and Smith 1998, p.42; Huang et al. 2019): 

[4.25] 𝑏 = 𝑟√
∑(𝑦𝑖−𝑦̅)2

∑(𝑥𝑖−𝑥̅)2 = 𝑟√
∑(𝑦𝑖−𝑦̅)2/𝑛

∑(𝑥𝑖−𝑥̅)2/𝑛
= 𝑟√

𝑆𝑦
2

𝑆𝑥
2 = 𝑟

𝑠𝑦

𝑠𝑥

 

[4.26] 𝑎 = 𝑦̅ − 𝑏𝑥̅  

where  𝑆𝑦
2 = ∑(𝑦𝑖 − 𝑦̅)2/𝑛 and 𝑆𝑥

2 = ∑(𝑥𝑖 − 𝑥̅)2/𝑛 are the variances and Sy and Sx are the standard deviations for the y and x 

values, respectively; 𝑦̅ and 𝑥̅ are the averages of the y and x values, respectively; and r is Pearson’s correlation coefficient (or 

simply correlation coefficient) calculated by: 

[4.27] 𝑟 =
∑(𝑦𝑖−𝑦̅)(𝑥𝑖−𝑥̅)

√∑(𝑦𝑖−𝑦̅)2 ∑(𝑥𝑖−𝑥̅)2  
  

If the models are excellent in the sense that the ground values and the inventory values have the same positive mean y=x 

(=>0) and the same variance 𝑆𝑦
2=𝑆𝑥

2 (=2), they can still lead to a≠0 and b≠1 in [4.24], because in reality, any inventory will not 

give perfect estimates (i.e., matching the true values exactly or y=x) for all values, no matter how good the estimates are from 

the inventory. Hence, 0 < r < 1, which means: 

[4.28] 0 < 𝑏 = 𝑟
𝑠𝑦

𝑠𝑥
= 𝑟

𝜎

𝜎
< 1 

[4.29] 0 < 𝑎 = 𝑦̅ − 𝑏𝑥̅ =  − 𝑏 = (1 − b) <    

Therefore, if a test of a=0 and b=1 is conducted, it will likely reject a=0 and b=1. 

As mentioned before (in Section 4.1), the scatter plot is a good starting point in assessing the accuracy and agreement of 

attribute estimates from an inventory technique. It provides a first impression and helps the eye in gauging the degree of 

accuracy and agreement between the ground truth and inventory estimates. However, it has several limitations and is not 

sufficient in judging the accuracy and agreement of an inventory technique or any models derived from the inventory 

technique. Focusing on a test or a method that proves the data in the scatter plot have an intercept of 0 and a slope of 1 is 

certainly not the way to go. Readers who are interested in more technical details about this and several related topics may 

wish to read Kleijnen et al. (1998), Huang (2002), Yang et al. (2004), Piñeiro et al. (2008) and Huang et al. (2019).   
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5 Additional notes 

The following additional notes are provided for interested readers who may want to know the reasons and justifications for 

many of the concepts and methods described in this study. They also provide some added technical details and caveats on 

several more intricate and easily entangled concepts and methods. In addition, they describe the general methods for 

calibration, which may be necessary when the predictions from an inventory technique are poor and when adjustments and 

corrections are needed.  

5.1 Clarification on confusion matrix 

In many conventional remote sensing studies, a table similar to Table 2 or Table 3 has often been called “confusion matrix” or 

“confusion table” (Story and Congalton 1986; Lillesand et al. 2015; Foody 2002, 2020). It is very common to use such a table 

to represent the classification accuracies of remotely sensed data and as the basis for further analysis. There may not be 

anything fundamentally wrong in calling such a table “confusion matrix” and use it to derive the “omission error”, “producer’s 

accuracy”, “commission error” and “user’s accuracy” or “reliability”, except that they can be confusing even to researchers and 

specialists publishing in peer-reviewed journals (e.g., Scofield et al. 2015, Radoux and Bogaert 2017), let alone many non-

academic practitioners.  

To illustrate, a simple data set of two plots is used. It is listed in Table 27, where “ground” refers to the ground observations 

and “inventory” refers to the corresponding classifications from an inventory technique. Ground observations are considered to 

be the truth and used as the reference standards. 

 TABLE 27. GROUND AND INVENTORY DATA FROM TWO EXAMPLE PLOTS (FOR ILLUSTRATION). 

 

Plot  Tree Ground Inventory In/correct   Plot  Tree Ground Inventory In/correct  

1 1 Sw Sw Correct   2 1 Sw Sw Correct 

1 2 Sw Sw Correct   2 2 Sw Sw Correct 

1 3 Sw Sw Correct   2 3 Sw Fb Incorrect 

1 4 Sw Sw Correct   2 4 Aw Pl Incorrect 

1 5 Sw Sb Incorrect   2 5 Aw Aw Correct 

1 6 Sw Fb Incorrect   2 6 Aw Pb Incorrect 

1 7 Sb Fb Incorrect   2 7 Aw Aw Correct 

1 8 Sb Fb Incorrect   2 8 Aw Pb Incorrect 

1 9 Sb Fb Incorrect             

1 10 Sb Pl Incorrect             

Note: ground denotes ground-observed species, inventory denotes inventory-classified species, species are as defined in Table 1, and in/correct 

denotes correct or incorrect classification by the inventory. 

Based on the data in Table 27, a “confusion matrix” is formulated in Table 28. We use the conventional terminologies for now, 

and list the “producer’s accuracy” and “user’s accuracy or reliability” in Table 28.   

TABLE 28. CONFUSION MATRIX CORRESPONDS TO THE TWO EXAMPLE PLOTS IN TABLE 27. 

 

 

Species  

Inventory Total 

(row) 

Producer’s 

accuracy   Sw Sb Aw Pb Fb Pl 

Ground (reference) 

Sw 6 1 0 0 2 0 9 67% 

Sb 0 0 0 0 3 1 4 0 

Aw 0 0 2 2 0 1 5 40% 

Pb 0 0 0 0 0 0 0 N/A 

Fb 0 0 0 0 0 0 0 N/A 

Pl 0 0 0 0 0 0 0 N/A 

Total (column) 6 1 2 2 5 2 18  

User’s accuracy (reliability) 100%  0 100%  0 0 0    

Note: species are defined in Table 1, and N/A denotes not available or not applicable (i.e., due to a denominator of zero). The overall accuracy for all 

species combined is Po = 8/18 = 44%.  

The “omission error” and “commission error” are complementary to the producer’s accuracy and user’s accuracy, respectively 

(i.e., producer’s accuracy + omission error = 100%, user’s accuracy + commission error = 100%). They are not listed in Table 

28. 
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Having a “confusion matrix” like Table 28, many confusions could occur. Story and Congalton (1986) and Congalton (1991) 

provided good examples in which the producer’s accuracy might be misinterpreted. Here we explain the confusions that could 

occur from a different angle, using the user’s accuracy or the so-called reliability. First though, the concepts of omission error 

and commission error need to be clarified.  

Omission error (or error of omission) ⎯ generally refers to the ground samples that are left out or “omitted” from the 

classification. It occurs when the ground samples of a species are mistaken to be another species by the classification. 

Omission error is derived based on the values listed in the confusion matrix. Species or stems missed/omitted by crown 

deliberation/stem segmentation are not counted as omission error (see Sections 2.2 and 2.3). Omission error for each species 

is calculated by adding together the incorrect classifications for the species relative to the ground observations and dividing 

them by the total number of ground observations for that species. For instance, for Sw in Table 28, the omission error is 

(1+2)/9=33%. Omission error for each species is complementary to the corresponding producer’s accuracy. Hence, it can also 

be calculated as: omission error = 100% - producer's accuracy = 100% - PR.    

Commission error (or error of commission) ⎯ an omission error for one species becomes a commission error for another 

species. Commission error for each classified species is calculated by adding together the incorrect classifications for the 

species relative to the classifications and dividing them by the total number of classifications for the species. For instance, for 

Sw in Table 28, the commission errors are 0/6 = 0%. Commission error for each species is complementary to the 

corresponding user's accuracy. It can also be calculated as: commission error = 100% - user's accuracy = 100% - PC. 

From Table 28, the overall accuracy is calculated to be (6+0+2+0+0+0)/18=44%. This level of accuracy is generally 

considered low. However, for instance, if a user is most interested in white spruce (Sw), the user’s accuracy or reliability for 

Sw is calculated to be 100% (6/6), which is perfect! This might lead the unsuspecting user to conclude that, although this 

classification has an overall accuracy that is considered low, it is perfect and 100% reliable for Sw. Making such a conclusion 

could be a serious mistake. A quick calculation of the producer’s accuracy for Sw gives a value of 67% (6/9), which is much 

less than perfect. In other words, although 100% of the Sw on the map have been correctly identified as Sw on the ground, 

and a user of this map may claim a “100% reliability” for Sw when he/she uses this map in the field, only 67% of all Sw on the 

ground actually appeared on the map as Sw. The other 33% (omission error) are mistaken to be other species. Clearly, a 

“100% reliability” or a “perfect user’s accuracy” may not mean much. It must be weighed and interpreted with great caution 

depending on the use of the map.   

Similarly, for Aw in Table 28, the user’s accuracy is also 100% (2/2). This might lead an unsuspecting user to conclude that the 

classification is perfect and 100% reliable for Aw. Making such a conclusion could again be a serious mistake. The producer’s 

accuracy for Aw is only 40% (2/5), which is much less than perfect. Therefore, although a user of this map can claim that 

100% of the Aw appeared on the map have been correctly identified as Aw on the ground, only 40% of all Aw on the ground 

actually appeared on the map as Aw. The other 60% are misclassified as other species on the map.  

The risks of emphasizing the conventional “user’s accuracy” and calling it “reliability” in some literature can be more profound 

to many unsuspecting users or to any users, as a “100% reliability” or a “100% user’s accuracy” could be easily (and 

mistakenly) thought to be 100% accurate for the classification. This is highlighted further in a simpler example with three 

species only (Table 29).  

In Table 29, the “user’s accuracies” for both Sw and Sb are 100%. It would be a complete travesty if they are used to claim 

“100% perfect reliabilities” for these two species without recognizing that only 3 out of 18 (17%) white spruce and 8 out of 15 

(53%) black spruce are correctly classified and actually appeared on the map. Unfortunately, it is not uncommon to see that 

the classifications were poor, yet the calculated “user’s accuracies” or “reliabilities” were very high.   

TABLE 29. AN ILLUSTRATION OF A CONFUSION MATRIX AND SOME RELATED CALCULATIONS. 

 

 
Species  

Inventory 
Total (row) 

Producer’s 

accuracy   Sw Sb Fb 

Ground (reference) 

Sw 3 0 15 18 17%  

Sb 0 8 7 15 53% 

Fb 0 0 40 40 100% 

Total (column) 3 8 62 73  

User’s accuracy 100% 100% 65%    
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For Fb in Table 29, a 100% “producer’s accuracy” just means that, on paper (map), 100% of the Fb have been correctly 

identified as Fb, but a user of this map will find that only 65% (40/62) of the time that the map says is Fb will actually be Fb on 

the ground.   

Some readers may already have noticed that, while we spent considerable length in this section on “confusion matrix” and 

“confusion matrix” related terminologies like “producer’s accuracy” and “user’s accuracy” or “reliability”, we only briefly 

mentioned them in the main text (in Section 2.1). We purposely avoided using these conventional idioms in the main text for 

the following reasons: 

1. A term like “error matrix” or “classification performance matrix” is more intuitive to most practitioners, and more pertinent 

and informative to what we try to convey than the “confusion matrix”. Prior to being called “confusion matrix” in remote 

sensing studies, the earliest example we found for a tabulation of classification results is called “error matrix” (Aronoff 

1982). There is really no need to convolute it and call it “confusion matrix” to redefine what Aronoff (1982) and other 

researchers have already clearly defined.  

2. The term “confusion matrix” or “table of confusion” originates from machine learning and computer science 

(https://en.wikipedia.org/wiki/Confusion_matrix). It typically only deals with two categories or two classes in such a table 

(i.e., 2×2 contingence tables or matrices), to see whether a classification is confusing two classes (i.e. mislabeling one as 

another). However, a typical confusion matrix in machine learning involves many theoretical concepts that we try to avoid 

in this study, such as condition positive, condition negative, true positive, true negative, false positive/type-I error and false 

negative/type-II error. Numerous accuracy and error measures can be derived from such a confusion matrix, such as 

“threat score”, “markedness”, “prevalence threshold”, “F1 score”, “harmonic mean of precision and sensitivity”, “balanced 

accuracy”, and “Matthews correlation coefficient”. They may have their roles to play in machine learning, but they are 

irrelevant in indicating the classification accuracy of any inventory technique. We will briefly discuss many of them later 

(Section 5.2). 

3. "Producer’s accuracy” was used to measure the omission error. "User’s accuracy” or “reliability” was used to measure the 

commission error. As illustrated in Tables 28-29, both “producer’s accuracy” and “user’s accuracy” could be very 

misleading and easily confused or misunderstood. There is really no need to call, for example, “what percent of the white 

spruce trees in the ground sample were correctly classified as white spruce in the inventory”, as “producer’s or user’s 

accuracy. It could be either one. In spite of the fact that researchers wrote research papers to clarify the difference 

between "producer’s accuracy” and "user’s accuracy”, researchers still confused and mixed/reversed between the two 

terms (see Section 5.2). Of course, it could be argued that it was the persons who confused the terms. But it really does 

not make sense to ask non-academic practitioners to combine these two easily confused or misunderstood terms to come 

up with something that is clear and less confusing in practice. It would be very hard for practitioners to make two 

negatives a positive.  

4. The original concepts of “producer's risk” and “consumer's risk” from a branch of statistics known as acceptance sampling 

(https://www.britannica.com/science/statistics/Residual-analysis#ref367525), were introduced into remote sensing 

literature by Ginevan (1979) and Aronoff (1982). The concepts were likely taken and re-phrased by some subsequent 

researchers in remote sensing studies as “producer's accuracy” and “user's accuracy”. Both Ginevan (1979) and Aronoff 

(1982) used the “producer's risk” to measure the probability of incorrectly rejecting an acceptable map, and the 

“consumer's risk” to measure the probability of accepting an inaccurate map. More specifically, Aronoff (1982) was 

addressing the classification accuracy of the binary (binomial) distribution in Alberta with two classes. However, he did not 

use nor recommend the terms “producer's accuracy” and “consumer's or user’s accuracy”. Aronoff (1982) actually used 

"proportion correct" and “% correct” to measure the accuracies in an error matrix. Accuracy and risk are two different 

concepts that should not be confused. 

5. Often, when we use terms like “producer’s accuracy” and “user’s accuracy”, we have a tad of cynicism and sarcasm about 

the former. For instance, when we say: 

- Drug maker’s (producer’s) efficacy and patient’s (user’s) efficacy 

- Car maker’s (producer’s) fuel efficiency and car driver’s (user’s) fuel efficiency 

- Map maker’s (producer’s) accuracy and map user’s accuracy 

We often have a tad of cynicism and sarcasm about the producer’s (drug maker’s and car maker’s) claims. It is not difficult 

to infer that map maker’s (producer’s) accuracy and map user’s accuracy fall into the same “linguistic” category. Ideally 

we would prefer scientific terms with no extra linguistic connotations. We just want to be very clear on the correct 

proportions or percentages relative to the ground reference and the classification. 
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6. PR (correct Proportion or percentage relative to the Reference) and PC (correct Proportion or percentage relative to the 

Classification) in an error matrix are more intuitive and meaningful than the “producer’s accuracy” and “user’s accuracy”. 

They are less prone to misunderstanding and more pertinent in representing the proportions (or percentages) of correct 

classifications in the error matrix. By calling the “producer’s accuracy” and “user’s accuracy” as PR and PC, respectively, 

we remove too many measures called “accuracies”, which often have unique meaning in statistics and data science. We 

will not have a “100% user’s accuracy” or a “100% perfect reliability” for a poor classification.  

7. The notation “% Correct” was used by Aronoff (1982) to indicate the “correct percentage relative to the classification”. He 

also used “% Commission” and “% Omission” to indicate commission and omission errors. However, Aronoff (1982) did 

not specifically use “% Correct” to indicate the “correct percentage relative to the ground reference”, even though it is not 

difficult to infer such a term from his study in Alberta. We could have used “% Correct (reference)” or “% Correct_R” to 

indicate the correct percentage relative to the ground reference, and “% Correct (classification)” or “% Correct_C” to 

indicate the correct percentage relative to the classification (in fact, we used them in preliminary analyses). But they are 

considered not as concise as PR and PC. 

8. The PR and PC are simply two correct proportions that correspond to the row and column for a category in an error 

matrix. They can be combined to provide a single measure (PAve) for each category (i.e., each species), by taking the 

pooled average of PR and PC. The PAve provides an overall classification performance measure for each category in an 

inventory. It is complementary to the “misclassification error” for each category (misclassification error for each category is 

the pooled average of omission error and commission error for each category). The PR, PC and PAve describe different 

aspects of a classification. They all have their roles to play in the classification. However, users may choose to focus on 

any one of the measures or balance all three measures for some intended purposes. 

9. The PAve can be more meaningful in practice than either the PR or PC, if one is only interested in a singular overall 

accuracy for each individual species. It purports the reporting of a 100% accuracy or a 100% reliability only when it is a 

true 100% accuracy or reliability for a species in an inventory.  

10. The PR and PC will always follow and be tied to the ground reference (in rows in our examples) and map classification (in 

columns in our examples). Switching the rows and columns in an error matrix will have no impact on the PR and PC 

values. We prefer to put “classification” from an aerial-based remote sensing technique on top (as it is typically obtained 

from above), and “reference” on level (as ground is usually used as the reference). This way the R in PR can also signify 

“row” and the C in PC can also signify column. But these preferences have no impact on the outcome.  

While opinions and preferences may differ, and it could always be argued that there may not be anything fundamentally wrong 

with the conventional idioms (and that the new terms could be equally confusing if one is not careful), the vague, impertinent 

and easily misinterpretable nature of the conventional idioms made their practical use unwarranted, or at least undesirable. 

Most of us simply prefer the use of some terms that are more intuitive and less prone to misunderstanding and 

misinterpretation in practice. Some additional more technical reasons for our preference are imbedded in the discussion next.  

5.2 Accuracy and agreement measures based on the error matrix  

Many statistics can be calculated from an error matrix. To illustrate, an error matrix shown in Table 30 is used. It is a simplified 

version of the error matrix shown in Table 2. All variables in Table 30 are identical to those defined before for Table 2.  

TABLE 30. An error matrix (in actual counts) with k possible categories. 

 

  Classification 
Total 

  Category 1 2 ⋯ k 

Reference 

1 n11 n12 ⋯ n1k nr1 

2 n21 n22 ⋯ n2k nr2 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

k nk1 nk2 ⋯ nkk nrk 

 Total nc1 nc2 ⋯ nck N 

Note: nr1, nr2, ⋯, nrk are row totals and nc1, nc2, ⋯, nck are column totals for categories 1, 2, ⋯, k, respectively, and N is the total number of counts. 

To facilitate the discussion (later), Table 30 is also expressed in proportions by dividing the actual count in each cell by the 

total number of counts (N), producing the following corresponding table of proportions (Table 31). 
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TABLE 31. AN ERROR MATRIX (IN PROPORTIONS) WITH K POSSIBLE CATEGORIES. 

 

  Classification 
Total 

  Category 1 2 ⋯ k 

Reference 

1 p11 p12 ⋯ p1k pr1 

2 p21 p22 ⋯ p2k pr2 

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 

k pk1 pk2 ⋯ pkk prk 

 Total pc1 pc2 ⋯ pck 1 

Note: this table corresponds to Table 30. It is obtained by dividing the count in each cell of Table 30 by the total number of counts (N). 

Based on Table 30 or Table 31, a large number of accuracy and error measures can be calculated. Table 32 lists many of 

these measures, where i=1, 2, ⋯, k. While the efforts put into the development of these measures may be laudable, and there 

are numerous cases in which they were used in many remote sensing studies for different reasons and purposes, the practical 

utility and efficacy of most of these measures, however, are questionable and debatable to say the least.  

TABLE 32 (PART 1 of 2). ACCURACY AND ERROR MEASURES DERIVED FROM AN ERROR MATRIX. 

 

 No. Name Formula or example reference 

1 Overall accuracy (Po) Po = ∑ 𝑛𝑖𝑖
𝑘
𝑖=1 /𝑁 = ∑ 𝑝𝑖𝑖

𝑘
𝑖=1  

2 Correct proportion re reference/row (PR) PRi = nii/nri = pii/pri   

3 Correct proportion re classification/column (PC)  PCi = nii/nci = pii/pci   

4 Pooled average (PAve)  PAvei = 2nii/(nri+nci) = 2pii/(pri+pci) 

5 Overall error (Eo)  Eo = 1 - Po 

6 Omission error or error of omission (EO) EOi = 1 - PRi 

7 Commission error or error of commission (EC) ECi = 1 - PCi 

8 Pooled average error (PE) PEi = 1 - PAvei 

9 Kappa, kappa coefficient, or Cohen’s kappa Cohen 1960 

10 Weighted kappa Cohen 1968, Fleiss et al. 1969 

11 Fleiss' kappa Fleiss 1971 

12 Kappa with random chance agreement Foody 1992 

13 Modified kappa Liu et al.  2007 

14 The KHAT statistic (an estimate of kappa) Congalton et al. 1983 

15 Scott's Pi Scott 1955 

16 Krippendorff's alpha coefficient Krippendorff 1978, 2018 

17 Producer's risk Aronoff 1982 

18 Aronoff’s index of classification accuracy Aronoff 1985 

19 Combined accuracy (user’s) Nelson 1983 

20 Combined accuracy (producer’s) Nelson 1983 

21 Average accuracy (user’s)  Fung and LeDrew 1988 

22 Average accuracy (producer’s) Fung and LeDrew 1988 

23 Average mutual information Finn 1993 

24 Map-level normalized accuracy Congalton 1991, Zhuang et al. 1995 

25 Normalized mutual information (NMImap) Finn 1993 

26 Normalized mutual information (NMIreference) Finn 1993 

27 Normalized mutual information (NMImap and reference) Strehl and Ghosh 2002 

28 The tau (τ) coefficient Ma and Redmond 1995 

29 Classification success index Koukoulas and Blackburn 2001 

30 Combined accuracy (user’s and producer’s)  Liu et al.  2007 

31 Double average accuracy (user’s and producer’s)  Liu et al.  2007 

32 Average of Short’s mapping accuracy index Liu et al.  2007 

33 Average of Helldén’s mean accuracy index Liu et al.  2007 

34 Overall agreement measure Pontius and Santacruz 2014 

35 Jaccard coefficient  Rosenfield and Fitzpatrick-Lins 1986 

36 Ground truth index Türk 1979 

37 Short’s mapping accuracy Short 1982 

38 Conditional kappa (map) Rosenfield and Fitzpatrick-Lins 1986 

39 Conditional kappa (reference) Rosenfield and Fitzpatrick-Lins 1986 

40 Category-level normalized accuracy Congalton 1991 

41 Relative change of entropy (map)  Finn 1993 

42 Relative change of entropy (reference) Finn 1993 

43 Individual classification success index Koukoulas and Blackburn 2001 

44 Average of user’s and producer’s accuracy Liu et al.  2007 

45 Balanced accuracy Chicco et al. 2021  

46 F1 score Chicco and Jurman 2020 

47 Matthews correlation coefficient Matthews 1975 

48 Fowlkes–Mallows index Fowlkes and Mallows 1983 

49 Informedness or bookmaker informedness Powers 2011 
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TABLE 32 (PART 2 of 2). ACCURACY AND ERROR MEASURES DERIVED FROM AN ERROR MATRIX. 

 

 No. Name Formula or example reference 

50 Markedness Powers 2011 

51 Pearson’s phi coefficient Davenport and El-Sanhury 1991. 

52 Diagnostic odds ratio Tharwat 2020 

53 Threat score or critical success index Schaefer 1990 

 

From a practical point of view, the first four measures in Table 32 are clear, succinct, useful and most relevant to the 

classification accuracy assessment (for categorical variables). Many other measures have limited or no value in the 

classification accuracy assessment. They mostly serve to obscure and muddy the information that is truly relevant and 

valuable to the question we want to answer. They are more distracting than enlightening to most practitioners. In fact, some of 

these measures are entirely wrong or misleading for accuracy assessment and comparison purposes. They actually create 

problems rather than solving them. Here, since a detailed comparison of these measures is not a main objective of this study, 

we only provide some brief explanations, notes, examples and summaries on most of these measures in Table 32. To facilitate 

the description and discussion, we again use the conventional terminologies for most of these measures as they appeared in 

the literature.  

1. The Kappa Statistic 

The kappa statistic has been widely used to evaluate the accuracy of classifications in hundreds or perhaps more of remote 

sensing studies. The controversies surrounding and the futilities of the kappa statistic are well-documented in remote sensing 

literature (Hudson and Ramm 1987, Stehman 1997, Olofsson et al. 2014, Stehman and Foody 2019, Foody 2020) and 

elsewhere (Feinstein and Cicchetti 1990, Powers 2012). It is known that the common practice of using the kappa statistic to 

indicate classification accuracy in remote sensing studies is flawed. We will only highlight a few key points here.  

The kappa statistic can be calculated in two different ways, as in [5.1], where Po is the overall accuracy and Pe=∑ 𝑝𝑟𝑖 · 𝑝𝑐𝑖
𝑘
𝑖=1  

(notations for the proportions and actual numbers are defined in Tables 30-31): 

[5.1] κ = 
Po−Pe

1−Pe
= 

∑ 𝑝𝑖𝑖
𝑘
𝑖=1 −∑ 𝑝𝑟𝑖·𝑝𝑐𝑖

𝑘
𝑖=1

1−∑ 𝑝𝑟𝑖·𝑝𝑐𝑖
𝑘
𝑖=1

        or  κ =  
∑ 𝑛𝑖𝑖/𝑁𝑘

𝑖=1 −∑
𝑛𝑟𝑖
𝑁

·
𝑛𝑐𝑖
𝑁

𝑘
𝑖=1

1−∑
𝑛𝑟𝑖
𝑁

·
𝑛𝑐𝑖
𝑁

𝑘
𝑖=1

 = 
𝑁 ∑ 𝑛𝑖𝑖

𝑘
𝑖=1 −∑ 𝑛𝑟𝑖·𝑛𝑐𝑖

𝑘
𝑖=1

𝑁2−∑ 𝑛𝑟𝑖·𝑛𝑐𝑖
𝑘
𝑖=1

 

To illustrate the calculation of the kappa statistic in [5.1], an error matrix shown in Table 33 is used. The kappa statistic 

calculated for the data in Table 33 is: 

κ = 
∑ 𝑝𝑖𝑖

𝑘
𝑖=1 −∑ 𝑝𝑟𝑖·𝑝𝑐𝑖

𝑘
𝑖=1

1−∑ 𝑝𝑟𝑖·𝑝𝑐𝑖
𝑘
𝑖=1

=
(37+11+16)/85−(42·52+18·15+25·18)/852

1−(42·52+18·15+25·18)/852  = 0.5869. 

TABLE 33. AN ERROR MATRIX AND SOME RELATED CALCULATIONS. 

 

  Classification Total 

(row) 
PR 

  Species  Sw Sb Fb 

Ground (reference) 

Sw 37 3 2 42 88% (37/42) 

Sb 7 11 0 18 61% (11/18) 

Fb 8 1 16 25 64% (16/25) 

Total (column) 52 15 18 85  

PC 71% (37/52) 73% (11/15) 89% (16/18)   Po = 75% 

Note: species are defined in Table 1. PR and PC are correct proportions relative to the reference (row) and classification (column), respectively. 

The kappa statistic can range from -1 to 1. According to the conventional understanding, a value of κ=1 indicates that the 

classifications from two methods/raters/samples are in complete agreement. A value of κ=0 indicates that the classifications 

are no better than what would be expected by random chances. A value of κ>0 indicates that the classifications are better than 

what would be expected by random chances. A value of κ<0 indicates that the classifications are worse than random.  

Evidently, part of the above conventional understanding is not correct. This is illustrated in Table 34 using five error matrices 

(cases), where for instance, the overall classification accuracy for two species is 99% (Case 5), yet the kappa statistic is 

negative (κ =-0.0068). It would be extremely untenable to argue that a 99% accuracy is “worse than random”. In fact, for all 

overall accuracies in Table 34, no matter how good they are, the kappa statistics are all negative (κ<0), leading to “worse than 

random”. 
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TABLE 34. EXAMPLE MATRICES AND CORRESPONDING OVERALL ACCURACY AND KAPPA VALUES. 

 

  Classification 

  Case 1  Case 2  Case 3  Case 4  Case 5 

 Species Sw Sb  Sw Sb  Sw Sb  Sw Sb  Sw Sb 

Reference Sw 10 2  25 2  100 2  200 2  350 2 

 Sb 3 0  3 0  3 0  3 0  3 0 

Overall accuracy 67%  83%  95%  98%  99% 

Kappa statistic -0.1905  -0.0870  -0.0234  -0.0118  -0.0068 

McNemar’s test  

(p-value) 

0.2000 

(0.6547) 

 0.2000 

(0.6547) 

 0.2000 

(0.6547) 

 0.2000 

(0.6547) 

 0.2000 

(0.6547) 

 

Furthermore, the use of McNemar test as one of the potential alternatives in accuracy assessment is also of little or no value, 

as the McNemar test statistic (calculated as 2 = (b-c)2/(b+c) for the 2×2 matrix |
𝑎 𝑏
𝑐 𝑑

|),  is a constant for all five cases in Table 

34 (as it is independent of the a and d elements in the 2×2 matrix), regardless of how good or bad the overall classification 

accuracy is. McNemar test is a hypothesis test used on paired nominal data. It is very restrictive, and is limited to 2×2 matrices 

only. The suggestion to use it as a possible alternative for assessing classification accuracy (Foody 2020), is likely an 

unsuitable and unfitting option.  

One of the particularly undesirable traits of the kappa statistic is that, in the conventional understanding, the kappa statistics 

were often used for comparing the quality of different classifications. Larger kappa values were thought to represent better 

classification accuracies. This conventional understanding is again not true. There are many cases in which a classification 

can be ranked as being more accurate than another in terms of the overall accuracy, but when it is ranked by the kappa 

statistic, a completely opposite order may occur. This is illustrated in Table 35 using two 2×2 matrices and three 3×3 matrices, 

where more accurate classifications ranked by the overall accuracy are completely reversed when ranked by the kappa 

statistic. This occurs for the 2×2 matrices as well as the 3×3 matrices, where the increasing overall accuracies correspond to 

the decreasing kappa statistics. 

TABLE 35. ADDITIONAL EXAMPLE MATRICES AND CORRESPONDING OVERALL ACCURACY AND KAPPA VALUES. 

 

  2×2 matrix 3×3 matrix 

 Matrix 5 24   0 1   10 30 50   10 20 50   10 0 50 

  0 3   2 27   0 0 10   0 0 10   0 0 10 

              10 0 20   10 0 20   10 0 20 

Overall accuracy  25% 
 

90% 
 

23% 
 

25% 
 

30% 

Kappa statistic 0.0376 
 

-0.0465 
 

-0.0484 
 

-0.0588 
 

-0.0938 

 

The trends in Table 34 and Table 35 illustrate the fact that larger kappa values could lead to opposite directions. They could 

indicate more accurate classifications, as in Table 34 where the overall accuracy increases (67% → 99%) as the kappa 

statistic becomes larger (-0.1905 → -0.0068). They could also indicate less accurate classifications, as in Table 35 where the 

increasing overall accuracies (e.g., 25% → 90%) are associated with the decreasing kappa values (e.g., 0.0376 → -0.0465). 

Clearly, this could be very dangerous and misleading in practical accuracy assessment if the kappa statistic is used.  

Many other kappa-based statistics listed in Table 32 and frequently mentioned and used in remote sensing studies, such as 

weighted kappa, Fleiss' kappa, kappa with random chance agreement, modified kappa, conditional kappa and the KHAT 

statistic (an estimate of the kappa statistic), most likely suffer from similar problems illustrated above. In a study to evaluate the 

pixel-by-pixel agreement between two lodgepole pine site index maps derived from climate variables, we applied the weighted 

kappa statistic without enough diligence and forethought (Monserud et al. 2006). We were aware that there were hundreds of 

peer-reviewed research papers that had used the kappa or kappa-based statistics to judge the accuracy of classifications, so 

we thought that it must be correct to use them. Obviously we erred in our judgment and made a blunder in this regard. While 

the kappa and kappa-based statistics may still have some utilities in chance-based probability realms, or in certain specific 

areas related to the level of balance or symmetry of matrices, their continued use in practical accuracy assessment and in 

comparing different classifications from remote sensing studies, is incorrect and should be avoided.  

2. Helldén’s Mean Accuracy Index or Pooled Average 

In its original description the mean accuracy index “denotes the probability that a randomly chosen point of a specific class on 

the map has a correspondence of the same class in the same position in the field and that a randomly chosen point in the field 

of the same class has a correspondence of the same class in the same position on the map” (Helldén 1980, p.18). This is a 

long definition that will likely cause some confusion to many practitioners. On the one hand, Helldén’s mean accuracy index is 

regarded as “a logical (heuristic) development of Helldén and cannot be derived on either a probability basis or a mathematical 
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basis” (Rosenfield and Fitzpatrick-Lins 1986). On the other hand, it is just “the harmonic mean of producer’s accuracy and 

user’s accuracy” (Türk 2002, Liu et al.  2007).  

The harmonic mean (HM) of a set of numbers x1, x2, ⋯, xk is defined to be HM = k/(1/x1+1/x2+⋯+1/xk). For instance, for the 

special case of three numbers, x1, x2 and x3, the harmonic mean can be written as: 

[5.2] HM =   
3𝑥1𝑥2𝑥3

𝑥1𝑥2+𝑥1𝑥3+𝑥2𝑥3
 . 

For two numbers, x1 and x2, the harmonic mean is:  

[5.3] HM =
2𝑥1𝑥2

𝑥1+𝑥2
 . 

The mean accuracy (MA) index used by Helldén (1980) for category i (i=1, 2, ⋯, k) is: 

[5.4] MA𝑖 =
2𝑛𝑖𝑖

𝑛𝑟𝑖+𝑛𝑐𝑖
 or   MA𝑖 =

2𝑝𝑖𝑖

𝑝𝑟𝑖+𝑝𝑐𝑖
 . 

where nii, nri, nci, pii, pri and pci are defined in Tables 30 and 31. Since the “producer’s accuracy” (PRi) and the “user’s 

accuracy” (PCi) are defined by: 

[5.5] PR𝑖 = 𝑛𝑖𝑖/𝑛𝑟𝑖 PC𝑖 = 𝑛𝑖𝑖/𝑛𝑐𝑖   

Their harmonic mean is (following [5.3]): 

[5.6] HM = (2 ×
𝑛𝑖𝑖

𝑛𝑟𝑖

𝑛𝑖𝑖

𝑛𝑐𝑖
) (

𝑛𝑖𝑖

𝑛𝑟𝑖
+

𝑛𝑖𝑖

𝑛𝑐𝑖
)⁄ =

2𝑛𝑖𝑖

𝑛𝑟𝑖+𝑛𝑐𝑖
= MA𝑖 =

2𝑝𝑖𝑖

𝑝𝑟𝑖+𝑝𝑐𝑖
 

So the mean accuracy index used by Helldén can in fact be readily derived on a mathematical basis. It is just “the harmonic 

mean of producer’s accuracy and user’s accuracy”. 

While the calculation of the harmonic mean is simple enough, the concept of “harmonic mean” is foreign to most practitioners 

in forestry. Indeed, the mean accuracy index can be more easily and simply understood mathematically or statistically as the 

pooled or weighted average of “producer’s accuracy” and “user’s accuracy”, weighted by the sample sizes of nri and nci: 

[5.7] PAve𝑖 =
PR𝑖×𝑛𝑟𝑖+PC𝑖×𝑛𝑐𝑖

𝑛𝑟𝑖+𝑛𝑐𝑖
=

(𝑛𝑖𝑖/𝑛𝑟𝑖)×𝑛𝑟𝑖+(𝑛𝑖𝑖/𝑛𝑐𝑖)×𝑛𝑐𝑖

𝑛𝑟𝑖+𝑛𝑐𝑖
=

2𝑛𝑖𝑖

𝑛𝑟𝑖+𝑛𝑐𝑖
 . 

As an example, for Sw in Table 33, the pooled average is PAve (Sw)=2×37/(42+52)=79%. For Sb and Fb, the pooled 

averages are PAve (Sb)=2×11/(18+15)=67% and PAve (Fb)=2×16/(25+18)=74%. 

Most practitioners are very familiar with and have used for long the pooled or weighted average of two or more subsamples 

with different sample sizes. Therefore, it is intuitively more understandable and much simpler to use a term like “pooled 

average” or “weighted average”, instead of the “harmonic mean” or “Helldén’s mean accuracy index”, even though in this study 

we still refer the term “Helldén’s mean accuracy index” in the main text, to recognize the work of Helldén (1980), who used the 

pooled average. But there is really no need to evoke any probability theory in the definition and use of such a measure. It is 

simply a pooled average of the “producer’s accuracy” (PRi) and “user’s accuracy” (PCi). 

3. Averaging the Averages   

Many accuracy measures in conventional remote sensing studies were formulated by “averaging the averages”. For example, 

given the overall accuracy (Po = ∑ 𝑛𝑖𝑖
𝑘
𝑖=1 /𝑁 = ∑ 𝑝𝑖𝑖

𝑘
𝑖=1 ), the “producer’s accuracy” (PRi = nii/nri = pii/pri), the “user’s accuracy” 

(PCi = nii/nci = pii/pci ) and the pooled average (PAvei = 2nii/ (nri+nci) = 2pii/(pri+pci)) defined earlier in Section 2.1 and Table 32, 

the following average accuracy measures (listed in Table 32) were formulated, used or compared in different remote sensing 

studies (Short 1982, Nelson 1983, Rosenfield and Fitzpatrick-Lins 1986, Fung and LeDrew 1988, Koukoulas and Blackburn 

2001, Liu et al. 2007):  

(1). Average of user’s and producer’s accuracy (AC1) 

[5.8] AC1 = (PCi + PRi)/2 

(2). Average accuracy - user’s (AC2) 

[5.9] AC2 = ∑ PC𝑖
𝑘
𝑖=1 /k  

(3). Average accuracy - producer’s (AC3) 
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[5.10] AC3 = ∑ PR𝑖
𝑘
𝑖=1 /k 

(4). Double average accuracy - user’s and producer’s (AC4) 

[5.11] AC4 = 
(∑ PC𝑖

𝑘
𝑖=1 /𝑘+ ∑ PR𝑖/𝑘𝑘

𝑖=1 )

2
  

(5). Combined accuracy - user’s (AC5) 

[5.12] AC5 = (Po + ∑ PC𝑖
𝑘
𝑖=1 /𝑘)/2 

(6). Combined accuracy - producer’s (AC6) 

[5.13] AC6 = (Po + ∑ PR𝑖
𝑘
𝑖=1 /𝑘)/2 

(7). Average of Helldén’s mean accuracy (AC7) 

[5.14] AC7 = ∑ PAve𝑖
𝑘
𝑖=1 /𝑘  

(8). Combined accuracy - user’s and producer’s (AC8) 

[5.15] AC8 = (Po + ∑ PAve𝑖
𝑘
𝑖=1 /𝑘 )/2 

(9). Individual classification success accuracy (index) (AC9) 

[5.16] AC9 = PCi + PRi – 1 

(10). Classification success accuracy (index) (AC10) 

[5.17] AC10 = ∑ PC𝑖
𝑘
𝑖=1 /k + ∑ PR𝑖

𝑘
𝑖=1 /k – 1  

(11). Short’s mapping accuracy (AC11) 

[5.18] AC11 = 𝑛𝑖𝑖/(𝑛𝑟𝑖 + 𝑛𝑐𝑖 − 𝑛𝑖𝑖) or AC11 = 𝑝𝑖𝑖/(𝑝𝑟𝑖 + 𝑝𝑐𝑖 − 𝑝𝑖𝑖) 

The above average accuracy measures (AC1-AC11) are questionable to say the least. In fact, it was very surprising that they 

were included, used or compared as accuracy measures in remote sensing studies (Short 1982, Nelson 1983, Rosenfield and 

Fitzpatrick-Lins 1986, Fung and LeDrew 1988, Koukoulas and Blackburn 2001, Liu et al. 2007). They are not really meaningful 

in practice. To illustrate, assuming that an elementary school has two classes. If the average grade for class-1 with 30 

students is 60, and the average grade for class-2 with 40 students is 90, the average grade for this school is (60×30+90×40) 

divided by the total number of students (30+40), or (60×30+90×40)/(30+40)=77.1429. If it was calculated as (60+90)/2 or 

(0.6+0.9-1), that would be completely wrong.  

It is incorrect to simply average the averages to get a grand average when the samples sizes of different subsample groups or 

categories are different (this refers to measures (1)-(4) and (7)). In addition, we should not add a number (e.g., Po, -1) to an 

average or averages, which can invalidate the results and interpretations (this refers to measures (5)-(6) and (8)-(10)). For 

instance, in calculating AC5, one component, ∑ PC𝑖
𝑘
𝑖=1 /𝑘, is already incorrect (as we should not do a simple average of the PCi 

values when PC1, PC2, ⋯, PCk for different categories are from different sample sizes). Adding another number (Po) to an 

incorrect value would still produce an incorrect value. In calculating AC10, two components, ∑ PC𝑖
𝑘
𝑖=1 /𝑘 and ∑ PR𝑖

𝑘
𝑖=1 /k, are 

already incorrect as both PC𝑖 and PR𝑖 are from different sample sizes. Adding another number (which is “-1”) to two incorrect 

values would still result in an incorrect value. Moreover, we should also avoid adding or subtracting a number (e.g., nii or pii) to 

the denominator of a fraction, which can twist the result and invalidate the interpretation (this refers to measure (11)). Since 

the denominator of a fraction typically represents the whole/total (a numerator of a fraction represents the number of parts out 

of the whole), artificially adding or subtracting a number to the denominator can be very misleading. It can distort the entire 

accuracy assessment and comparison outcome.  

or instance, for the data in Table 33, following measure (11) expressed in [5.18], the AC11 values for Sw, Sb and Fb are 

calculated to be: AC11 (Sw) = 37/(42+52-37) = 65%, AC11 (Sb) = 11/(18+15-11) = 50%, and AC11 (Fb) = 16/(25+18-16)= 59%. 

These values, which are all smaller than the corresponding PR and PC values for the species, twist the accuracy assessment 

results and interpretations. What would be the meaning of a 50% for AC11 (Sb)? It would be a stretch to interpret it. On the 

other hand, regardless of one’s preference in calling them, the PR, PC and PAve all have meaningful interpretations (e.g., the 

results in Table 33, Po=(37+11+16)/85=75%, PR (Sb)= 61%, PC (Sb)=73% and PAve (Sb)=2×11/(18+15)=67%, can all be 

meaningfully interpreted). 
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While one could always “creatively define” a quantity to one’s like and call it an accuracy measure, there are certain basic and 

fundamental mathematical and statistical rules that all researchers should all follow before conjuring up any accuracy 

measures. Otherwise, the so-called “accuracies” from these measures would, not only obscure and mask the real accuracy, 

but also create problems and lead to misleading inferences and erroneous conclusions.  

As another example, for a classification (of a category) that is correct 10 out of 10 relative to the ground samples (PR i=100%) 

and 10 out of 200 relative to the classifications (PCi= 5%), the average for the category is 

(100%×10+5%×200)/(10+200)=9.5%. It would be wrong if it was calculated as (100%+5%)/2=52.5% following the “average of 

user’s and producer’s accuracy (AC1)”, or as (1+0.05-1)=5% following the “individual classification success accuracy (AC9)”, or 

as 10/(10+200-10)= 5% following the “Short’s mapping accuracy (AC11)”. The correct “average of averages” for subsamples 

having different sample sizes is the pooled average of subsample averages, defined in [5.19], where k is the number of 

subsample groups (e.g., categories):  

[5.19] Pooled average = 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒1×𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑧𝑒1+𝐴𝑣𝑒𝑟𝑎𝑔𝑒2×𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑧𝑒2+⋯+𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑘×𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑧𝑒𝑘

𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑧𝑒1+𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑧𝑒2+⋯+𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑧𝑒𝑘
 

There is actually no need to use and evaluate any of the accuracies in [5.8]-[5.18]. It is just plain wrong to simply average the 

averages (many of which are proportions or ratios) without accounting for the numerators and denominators that the averages 

were derived from.  

Furthermore, when so (too) many quantities are called “accuracy measures”, there is really no accuracy measure any more 

(just like when we call too many things priorities, there is really no priority). The argument that these and many other accuracy 

measures listed in Table 32 might provide some unique information on certain unique aspects of a classification under some 

unique circumstances, was truly an unjustified stretch and a digression from the real accuracy assessment. Their uses and 

interpretations likely only serve to distract and confuse, rather than enlighten practitioners.   

4. Normalized Accuracy and Error Measures 

Table 32 lists several normalized accuracy and error measures (Congalton et al. 1983, Congalton 1991, Finn 1993, Zhuang et 

al. 1995, Strehl and Ghosh 2002). They have been referred or used in different applications (e.g., Ustin et al. 1996, Smits et al. 

1999, Fashi et al. 2000, Liu et al. 2007). Typically, for instance, in the normalization to derive the normalized error matrix 

(Congalton et al. 1983), the original values in the error matrix must be "normalized" through "iterative proportional fitting”, 

which forces each row and column in the matrix to sum to one. However, as pointed out by Stehman (1997), Stehman and 

Czaplewski (1998), Foody (2002), Stehman (2004) and Stehman and Foody (2019), normalization produces biased and 

imprecise accuracy estimates, with the bias most prominent for user's and producer's accuracies. It leads to estimates of 

parameters for a hypothetical population that has little relevance to the reality of the accuracy assessment.  

The average mutual information (AMI) and its normalized forms have also been used as accuracy and error measures in the 

assessment of classification accuracy (Finn 1993, Strehl and Ghosh 2002, Liu et al. 2007). The AMI is calculated as:  

[5.20] AMI = ∑ 𝑝𝑖𝑗
𝑘
𝑖,𝑗=1 ln (

𝑝𝑖𝑗

𝑝𝑟𝑖𝑝𝑐𝑗
) or  AMI = ∑ ∑ 𝑝𝑖𝑗

𝑘
𝑗=1

𝑘
𝑖=1 ln (

𝑝𝑖𝑗

𝑝𝑟𝑖𝑝𝑐𝑗
) 

where pijs are the proportions defined in Table 31 (i, j=1, 2, ⋯, k), and “ln” denotes the natural (base e  2.71828) logarithm. 

For instance, for the counts listed in Table 33 (k=3), the corresponding proportions (pijs) are listed in Table 36. 

TABLE 36. AN ERROR MATRIX (IN PROPORTIONS) THAT CORRESPONDS TO TABLE 33 WITH THREE CATEGORIES. 

 

  Classification 
Total (row) 

  Category/species Sw Sb Fb 

Reference 

Sw p11=37/85 p12=3/85 p13=2/85 pr1=42/85 

Sb p21=7/85 p22=11/85 p23=0/85 pr2=18/85 

Fb p31=8/85 p32=1/85 p33=16/85 pr3=25/85 

 Total (column) pc1=52/85 pc2=15/85 pc3=18/85 1 (85/85) 

Note: species are defined in Table 1, pr1, pr2 and pr3 are row total proportions and pc1, pc2 and pc3 are column total proportions for categories 1, 2 and 

3, respectively, and 85 is the total number of counts. More detailed definitions for the variables, numbers and proportions are provided in Tables 30, 31 

and 33.  

Based on the data in Table 36 and [5.20], the AMI is calculated to be:  

[5.21] AMI = p11ln(p11/( pr1×pc1)) + p12ln(p12/( pr1×pc2)) + p13ln(p13/( pr1×pc3)) + 

         p21ln(p21/( pr2×pc1)) + p22ln(p22/( pr2×pc2)) + p23ln(p23/( pr2×pc3)) + 
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        p31ln(p31/( pr3×pc1)) + p32ln(p32/( pr3×pc2)) + p33ln(p33/( pr3×pc3)) = 0.34487. 

Therefore, following Finn (1993), Strehl and Ghosh (2002) and Liu et al. (2007), the normalized mutual information using the 

entropy on map (NMImap), the normalized mutual information using the entropy on ground reference (NMIreference) and the 

normalized mutual information using the (arithmetic) mean of the entropies on map and ground reference (NMImap & reference), 

can be computed: 

[5.22] NMImap = 
AMI

− ∑ 𝑝𝑐𝑖
𝑘
𝑖=1 ln(𝑝𝑐𝑖) = 

AMI

−[𝑝𝑐1ln(𝑝𝑐1)+𝑝𝑐2ln(𝑝𝑐2)+𝑝𝑐3ln(𝑝𝑐3)]
 = 

0.34487

0.93545
 = 0.36867.  

[5.23] NMIreference = 
AMI

− ∑ 𝑝𝑟𝑖
𝑘
𝑖=1 ln(𝑝𝑟𝑖) = 

AMI

−[𝑝𝑟1ln(𝑝𝑟1)+𝑝𝑟2ln(𝑝𝑟2)+𝑝𝑟3ln(𝑝𝑟3)]
 = 

0.34487

 1.03700
 = 0.33256.  

[5.24] NMImap & reference = 
2×AMI

[− ∑ 𝑝𝑐𝑖
𝑘
𝑖=1 ln(𝑝𝑐𝑖)]+[− ∑ 𝑝𝑟𝑖

𝑘
𝑖=1 ln(𝑝𝑟𝑖)]

 = 
2×0.34487

0.93545+1.03700
 = 0.34969. 

To illustrate the problems of AMI and its normalized forms without going into the details, following the above example, we 

calculated AMI, NMImap, NMIreference and NMImap & reference for five simpler error matrices listed in Table 37, each with only two 

categories or two species (Sw and Sb). Results of the calculations are listed in Table 37. For comparison, the overall 

accuracies and the kappa statistics associated with the five matrices are also calculated and listed in Table 37.      

TABLE 37. EXAMPLE MATRICES AND CALCULATED AVERAGE MUTUAL INFORMATION AND ITS NORMALIZED FORMS. 

 

  Classification 

  Case-I  Case-II  Case-III  Case-IV  Case-V 

 Species Sw Sb  Sw Sb  Sw Sb  Sw Sb  Sw Sb 

Reference Sw 10 2  200 2  5 24  0 1  25 0 

 Sb 3 0  3 0  0 3  2 27  0 25 

Overall accuracy (Po) 67%  98%  25%  90%  100% 

Kappa statistic -0.1905  -0.0118  0.0376  -0.0465  1.0 

AMI  0.03223  0.00014  0.01680  0.00234      0.69315 

NMImap 0.08207  0.00263  0.03877      0.00956      1.0 

NMIreference 0.06440  0.00189  0.05400  0.01601      1.0 

NMImap & reference 0.07217  0.00220  0.04514  0.01197  1.0 

Note: AMI=average mutual information, NMImap=normalized mutual information (NMI) using the entropy on map, NMIreference=NMI using the entropy on 

ground reference, and NMImap & reference=NMI using the (arithmetic) mean of the entropies on map and ground reference. 

The futilities of the AMI, NMImap, NMIreference and NMImap & reference in indicating the classification accuracy should be clear from 

the results in Table 37. When the overall accuracy is 100% (case-V), the AMI= 0.69315. What does this AMI value mean? 

Does it mean a good or a poor classification accuracy? When the overall accuracy increases from 67% (case-I) to 98% (case-

II) and 100% (case-V), the NMImap, NMIreference and NMImap & reference first decrease, then increase. For instance, the NMImap first 

decreases from 0.08207 (case-I, Po=67%) to 0.00263 (case-II, Po=98%), then increases to 1.0 (case-V, Po=100%). What do 

they mean for the classification accuracies in these cases? It would be highly untenable to use any of these and other “mutual 

information” related measures to determine the classification accuracy.  

In probability theory and information theory, the mutual information or normalized mutual information of two random variables 

is a measure of the mutual dependence between the two variables (Kvålseth 2017). More specifically, it quantifies the "amount 

of information" between the two random variables in units foreign to most practitioners, such as “shannons (bits)”, “nats” or 

“hartleys”. It does not measure the correctness or accuracy (it measures “consistency” rather than “correctness” according to 

Finn (1993)). Using a combination of kappa and AMI to assess error matrices, as suggested by Finn (1993), is inapt and 

should be avoided in future studies as both kappa and AMI (and other AMI-induced measures such as relative change of 

entropy given a category on map and relative change of entropy given a category on ground reference) have little to do with 

the assessment of classification accuracy.  

5. Other Accuracy and Error Measures 

Throughout the main text (Sections 1-4), we purposely avoided mentioning “true positive”, “true negative”, “false positive”, 

“false negative”, “type I error” and “type II error” – terms and concepts that are near and dear to many statisticians’ hearts but 

dreadful and confusing to many practitioners. Since these terms and concepts typically refer to the 2×2 (confusion) matrices in 

the context of accuracy assessment, and numerous accuracy and error measures are derived from the 2×2 matrices, we will 

just use the results in Table 4 (a 2×2 matrix), and put them into Table 38, to illustrate the concepts and calculations.  

Table 38 lists the results of species classification from an inventory technique (lidar) for “two species”, coniferous and non-

coniferous (deciduous). Since there are only two species in Table 38, it belongs to the classic binary (two-class) classification, 
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where coniferous can be considered “positive” and non-coniferous can be considered “negative”. Hence, for other variables in 

Table 38, true positive (TP) refers to the correct classification for coniferous, true negative (TN) refers to the correct 

classification for non-coniferous, false positive (FP) or type-I error refers to the false alarm or overestimation of the positive, 

false negative (FN) or type-II error refers to the false alarm or overestimation of the negative, condition positive (P) is the 

number of actual positive counts in the data, condition negative (N) is the number of actual negative counts in the data, 

positive (PP) is the sum of true positive (TP) and false positive (FP) and negative (NN) is the sum of true negative (TN) and 

false negative (FN). 

TABLE 38. A 2×2 CLASSIFICATION PERFORMANCE MATRIX FOR CONIFEROUS AND NON-CONIFEROUS (DECIDUOUS). 

 

  

 Predicted (classification) 
Total (row) 

Species Coniferous Non-coniferous 

Actual (ground) 

 

Coniferous True positive (TP) 

119 

False negative (FN) 

7 

(Type-II error) 

Condition positive (P) 

126 

Non-coniferous False positive (FP) 

2 

(Type-I error) 

True negative (TN) 

81 

Condition negative (N) 

83 

Total (column) 
Positive (PP) 

121 

Negative (NN) 

88 

Grand total 

209 

Note: species are defined in Table 1. The data are from Table 4.  

A large number of accuracy and error measures can be derived based on the variables defined in Table 38 

(https://en.wikipedia.org/wiki/Confusion_matrix, Fawcett 2006, Powers 2011, Sammut and Webb 2011, Tharwat 2020, Chicco 

and Jurman 2020, Chicco et al. 2021). They include: 

(1). Balanced accuracy (BA) 

[5.25] BA = 
1

2
(

TP

TP+FN
+

TN

TN+FP
) 

(2). F1 score (F1):   

[5.26] F1 = 
2PPV×TPR

PPV+TPR
 = 

2TP

2TP+FP+FN
 (TPR = 

TP

P
 = 

TP

TP+FN
; PPV = 

TP

TP+FP
) 

(3). Matthews correlation coefficient (MCC) 

[5.27] MCC = 
TP×TN−FP×FN

√(TP+FP)(TP+FN)(TN+FP)(TN+FN)
 

(4). Fowlkes–Mallows index (FM) 

[5.28] FM = √
TP

TP+FP
×

TP

TP+FN
 

(5). Informedness or bookmaker informedness (BM) 

[5.29] BM =  
TP

TP+FN
+

TN

TN+FP
− 1 

 (6). Markedness (MK) 

[5.30] MK = 
TP

TP+FP
 +

TN

TN+FN
 -1 

(7). Threat score (TS) or critical success index 

[5.31] TS =  
TP

TP+FN+FP
 

These and other accuracy and error measures derived from the 2×2 confusion matrix have been used frequently in computer 

science and machine learning. Four of them, F1 score, bookmaker informedness (BM), markedness (MK) and Matthews 

correlation coefficient (MCC), have also appeared in remote sensing studies for accuracy assessment. Unfortunately, as we 

will see next, they should have no role to play in object-based accuracy assessment in remote sensing studies. 

To explain the above statement, we again use the previous examples that showed the futility of the kappa statistic in remote 

sensing studies.  
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Table 39 lists five simple binary classification matrices, together with the calculated statistics defined in [5.25]-[5.31]. The 

overall accuracies and the kappa statistics for the matrices are also calculated and listed in Table 39.  

TABLE 39. EXAMPLE MATRICES AND CORRESPONDING ACCURACY AND ERROR MEASURES. 

 

  Classification 

  Case-I  Case-II  Case-III  Case-IV  Case-V 

 Species Sw Sb  Sw Sb  Sw Sb  Sw Sb  Sw Sb 

Reference Sw 10 2  200 2  5 24  0 1  24 1 

 Sb 3 0  3 0  0 3  2 27  2 25 

Overall accuracy (Po) 67%  98%  25%  90%  94% 

Kappa statistic -0.1905  -0.0118  0.0376  -0.0465  0.8846 

Balanced accuracy (BA) 0.4167  0.4951  0.5862  0.4655  0.9430 

F1 score (F1) 0.8000  0.9877  0.2941  0.0000  0.9412 

MCC  -0.1961  -0.0121  0.1384  -0.0496  0.8853 

Fowlkes–Mallows index (FM) 0.8006  0.9877  0.4152  0.0000  0.9414 

BM -0.1667  -0.0099  0.1724  -0.0690  0.8859 

Markedness (MK) -0.2308  -0.0148  0.1111  -0.0357  0.8846 

Threat score (TS) 0.6667  0.9756  0.1724  0.0000  0.8889 

Note: species are defined in Table 1, MCC=Matthews correlation coefficient, and BM=Bookmaker informedness. 

It should be very clear from the results in Table 39 that the accuracy and error measures defined in [5.25]-[5.31] should have 

no role to play in judging the accuracy of any classifications from remote sensing studies. More specifically, for instance, when 

the overall accuracy increases from 25% (case-III) to 90% (case-IV) and 94% (case-V), the F1 score first decreases from 

0.2941 to 0 as the Po increases from 25% to 90%, then increases to 0.9412 as the Po becomes 94%. The BA first decreases 

from 0.5862 (case-III, Po=25%) to 0.4655 (case-IV, Po=90%), then increases to 0.9430 (case-V, Po=94%). The MCC first 

decreases from 0.1384 (Po=25%) to -0.0496 (Po=90%), then increases to 0.8853 (Po=94%). The TS first decreases from 

0.1724 (Po=25%) to 0 (Po=90%), then increases to 0.8889 (Po=94%). Similar observations can also be made from other 

measures (FM, BM and MK). The trends displayed by these measures and the values themselves are as indefensible as the 

kappa statistic in judging the accuracy of classifications from remote sensing techniques. In fact, these measures may be 

useful in describing the balance or symmetry of the elements in a confusion matrix, but not in judging the accuracy of 

classifications unless certain theoretic restrictions and pre-conditions are met. 

Many additional accuracy and error measures can also be formulated based on Table 38 (Fawcett 2006, Powers 2011, 

Tharwat 2020, Chicco et al. 2021). Some are listed in Table 40. Example calculations based on the TP, FN, FP and TN values 

in Table 38 are provided in Table 40 for interested readers. 

TABLE 40. ADDITIONAL ACCURACY AND ERROR MEASURES DERIVED BASED ON TABLE 38. 

 

Name Formula and example calculation (based on TP=119, FN=7, FP=2 

and TN=81 from Table 38) 

True positive rate (TPR), hit rate or sensitivity TPR = TP/P = TP/(TP+FN) = 0.9444 

True negative rate (TNR), specificity or selectivity TNR = TN/N = TN/(TN+FP) = 0.9759 

Positive predictive value (PPV) PPV = 
TP

TP+FP
 = 0.9835 

Negative predictive value (NPV) NPV = 
TN

TN+FN
 = 0.9205    

False negative rate (FNR) FNR = 
FN

P
=  

FN

FN+TP
 = 0.05556    

False positive rate (FPR) or fall-out FPR = 
FP

N
=  

FP

FP+TN
 = 0.02410    

False discovery rate (FDR) FDR =  
FP

FP+TP
 = 0.01653    

False omission rate (FOR) FOR =  
FN

FN+TN
 = 0.07955    

Prevalence threshold (PT) PT= 
√FPR

√TPR+√FPR
 = 0.1377  

Positive likelihood ratio (PLR) PLR = 
TPR

FPR
 = 39.1944     

Negative likelihood ratio (NLR) NLR = 
FNR

TNR
 = 0.05693     

Diagnostic odds ratio (DOR) DOR= PLR/NLR = 688.5 

 

To facilitate the understanding and discussion next, the 2×2 confusion matrix shown in Table 38 is simplified to Table 41 

below: 
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TABLE 41. AN EXAMPLE (BINARY) CLASSIFICATION MATRIX FOR TWO SPECIES (CONIFEROUS AND NON-CONIFEROUS). 

 

  

 Predicted (classification) 
Producer’s accuracy 

Species Coniferous Non-coniferous 

Actual  

 

Coniferous True positive (TP) False negative (FN) TP/(TP+FN) 

Non-coniferous False positive (FP) True negative (TN) TN/(FP+TN) 

User’s accuracy TP/(TP+FP) TN/(FN+TN)  

 

Based on Table 41 and the conventional terminologies associated with such a table, the “producer’s accuracy” and “user’s 

accuracy” can be calculated: 

[5.32] Producer’s accuracy =  
TP

TP+FN
  for coniferous 

[5.33] Producer’s accuracy =  
TN

FP+TN
  for non-coniferous 

[5.34] User’s accuracy =  
TP

TP+FP
  for coniferous   

[5.35] User’s accuracy =  
TN

FN+TN
  for non-coniferous. 

Note that producer’s accuracies for coniferous and non-coniferous are equivalent to TPR and TNR in Table 40, respectively; 

and user’s accuracies for coniferous and non-coniferous are equivalent to PPV and NPV in Table 40, respectively.   

However, in some remote sensing studies, the “producer’s accuracy” and “user’s accuracy” were completely mixed up (e.g., 

Scofield et al. 2015, Radoux and Bogaert 2017). "Producer’s accuracy” was called "user’s accuracy”, and "user’s accuracy” 

was called "producer’s accuracy”. For instance, Radoux and Bogaert (2017) expressed the “producer’s accuracy” and “user’s 

accuracy” as follows:  

[5.36] Producer’s accuracy =  
TP

TP+FP
    

[5.37] User’s accuracy =  
TP

TP+FN
    

Radoux and Bogaert’s (2017) “producer’s accuracy” in [5.36] is actually the “user’s accuracy” in [5.34], and their “user’s 

accuracy” in [5.37] is actually the “producer’s accuracy” in [5.32].  

Researchers who used [5.36]-[5.37] or those that appeared in Scofield et al. (2015) likely misunderstood the original definitions 

of “producer’s accuracy” and “user’s accuracy”, and flip-flopped the two terms. This is not surprising, for the concepts of 

“confusion matrix”, “producer’s accuracy”, and “user’s accuracy” or “reliability” can be very confusing and easily mixed up. This 

is also a reason that why practitioners may need to avoid or abandon these concepts and the accompanying measures in 

assessing classification accuracy. Radoux and Bogaert (2017) also proposed several other related measures, which we will 

not comment here. Other researchers also attempted to expand some of the measures in [5.25]-[5.31], which apply to binary 

classifications only, to multi-class classifications (e.g., Matthews correlation coefficient in [5.27] has been generalized to multi-

class classifications, https://en.wikipedia.org/wiki/Matthews_ correlation_coefficient). We will not comment on them either, but 

caution that, they are kappa-like statistics and for assessing classification accuracy in remote sensing studies, they do not 

even apply to the simplest two-class classifications (see Table 39). 

While the efforts to create new or introduce existing concepts and ideas from other scientific disciplines into remote sensing 

studies are commendable, past experience and literature suggested that, in accuracy assessment, it could be very 

challenging. Misunderstanding and misuses occurred frequently in published literature. This was most clearly evident from the 

widely and inappropriately adopted kappa type of statistics in remote sensing studies. The introduction of many accuracy and 

error measures derived from a confusion matrix, such as those defined in [5.25]-[5.31] and Table 40 and frequently seen in 

computer science and machine learning, provides no further improvement over the kappa statistics when used in judging the 

accuracy of classifications in remote sensing studies (e.g., see Table 39). Like the kappa statistics, most of these measures 

derived from a confusion matrix may have some utilities in very theoretical chance-based probability realms in machine 

learning and computer science, or in certain specific areas related to the level of balance or symmetry/asymmetry of the 

confusion matrix, their use in object-based accuracy assessment and in comparing different classifications from remote 

sensing techniques, should be avoided. Otherwise, we could make other kappa-sized debacles.  

Practitioners should be particularly aware that there are numerous idiosyncratic accuracy and error measures that can be 

derived from a “confusion matrix” as it is termed in machine learning and computer science. Many of these measures bear a 

nebulously labelled moniker like “accuracy index”, “truth index”, “success index”, “average mutual information”, “normalized 
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mutual information”, “entropy” or “relative change of entropy” (e.g., see Table 32). Moreover, there seems to be no agreement 

in the research community on which measures are better. It could always be argued from a theoretical point of view that, each 

of these measures might provide a different piece of information contained in the confusion matrix, and each might be more 

relevant or unique than others in a particular situation, under a particular circumstance, for a particular study with a particular 

goal and objective, or for a different theme, etc.  

However, the use of these different accuracy measures frequently results in different, inconsistent and conflicting 

interpretations and conclusions. To most practitioners, they are more distracting than enlightening. More importantly, most of 

these measures and their interpretations are of no real practical value in indicating classification accuracy and comparing 

different classifications in remote sensing studies. They only serve to obscure, muddy, distract and unnecessarily complicate 

the accuracy information that is truly relevant and valuable to the question we want to answer. Many of these measures are 

entirely irrelevant, misleading or completely wrong for assessing and comparing classification accuracies when applied in 

remote sensing studies.  

A Note on the Definition of Remote Sensing  

In this study, we used several terms to describe an inventory or an inventory technique, such as “aerial-based inventory”, 

“remote sensing-based inventory”, “aerial-based remote sensing technique”, etc. We are still unsure about the proper definition 

of “remote sensing”. Traditionally, for instance, these definitions of remote sensing are commonly used: 

1. From Lillesand et al. (2015):  

“Remote sensing is the science and art of obtaining information about an object, area, or phenomenon through the 

analysis of data acquired by a device that is not in contact with the object, area or phenomena under investigation.” 

2. From U.S. Geological Survey (https://www.usgs.gov/faqs/what-remote-sensing-and-what-it-used#): 

“Remote sensing is the process of detecting and monitoring the physical characteristics of an area by measuring its 

reflected and emitted radiation at a distance (typically from satellite or aircraft).” 

3. From U.S. National Oceanic and Atmospheric Administration (NOAA) (https://oceanservice.noaa.gov 

/facts/remotesensing.html): 

“Remote sensing is the science of obtaining information about objects or areas from a distance, typically from 

aircraft or satellites.”  

4. From Wikipedia (https://en.wikipedia.org/wiki/Remote_sensing):  

“Remote sensing is the acquisition of information about an object or phenomenon without making physical contact 

with the object, in contrast to in situ or on-site observation.”  

Although “remote sensing” is defined in different ways in the above examples, the essence embedded in these definitions 

remains the same: it is the acquisition of information about an object from a distance, without making physical contact with the 

object.  

In forest mensuration and forest inventory, information about tree and stand attributes is frequently obtained from a distance 

without making physical contact with the trees in a stand. This is regularly done through “point sampling”, “point plots”, “prism 

sweeps”, “prism plots” or “variable-radius plots”, based on, for example, different “basal area factors” (BAFs). If the above 

remote sensing definitions were proper, every time when we measure a plot using prism, it would be considered applying 

remote sensing.   

Obviously, the vast majority of practitioners would not consider measuring a plot using prism to be “remote sensing”, even 

through some academics argued in the research realm that as soon as one opens the eyes and starts to see or read 

something, one is employing “remote sensing” (Lillesand et al. 2015). We will not contest this here but note that many of the 

“remote sensing” definitions were proposed by engineers, who may not be aware of the forest inventory techniques we use 

regularly (like prism sweeps and BAFs). In fact, remote sensing is likely better to be defined as follows, at least in forestry: 

- Remote sensing is the science of obtaining information about objects or areas on the ground from the air or space, 

via aircrafts, satellites, or other aerial-based vehicles, devices or sensors on different platforms.  

Although for some other reasons, we refrained from calling it "aerial sensing" in this study, the above definition may be more 

fitting as it connotes the use of air- or space-based sensors and technologies to acquire information on the ground. 
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Practitioners typically do not call ground-based prism sweeps or tri-pod mounted devices or sensors remote sensing, although 

this might still be debatable among some researchers and academics. We will leave this up to the readers to ponder and 

explore further.  

5.3 Agreement measures for continuous variables 

Some of the accuracy measures listed in Table 32 for categorical variables were frequently referred to as agreement 

measures. In fact, the original kappa statistic put forward by Cohen (1960) was termed “a coefficient of agreement”. 

Subsequent modifications to the kappa statistic were also frequently referred to as agreement measures. It appears that the 

terms “accuracy measures” and “agreement measures” have been used interchangeably for categorical variables in many 

remote sensing studies.  

For continuous variables, the traditional goodness-of-fit statistics such as those presented in Section 4.1 and the coefficient of 

determination (R2) and Pearson’s correlation coefficient (r), are typically related to the correlation (association) between two 

variables, observed and predicted, where “observed” can mean observed on the ground or from an accepted reference 

standard, and “predicted” can mean classified, extracted, interpreted, estimated or mapped, etc. In day-to-day usages, the 

correlation between two variables is often mixed with the agreement between two variables. Fundamentally, though, 

correlation and agreement are two entirely different concepts (Robinson 1957; Altman and Bland 1983, 1987; Bland and 

Altman 1986, Hollis 1996; Stehman 1997; Liao and Lewis 2000, Ludbrook 2002, Bunce 2009, Agresti 2013; Choudhary and 

Nagaraja 2017). This is explained in detail in Huang et al. (2019) using forestry examples. For accuracy assessment and 

comparison, we could look at both correlation and agreement, but the focus must be on accuracy and agreement.  

A large number of agreement measures under various names, such as “agreement index”, “intra- and inter-class correlation 

coefficients”, “agreement coefficient”, “measure of agreement” and “concordance correlation coefficient” have been proposed 

by different researchers across different scientific disciplines. Comprehensive reviews of these measures focused primarily on 

their uses in clinical trials, pharmacology and other medical fields are provided by many researchers (Müller and Büttner 1994, 

Atkinson and Nevill 1998, Krummenauer and Doll 2000, Choudhary and Nagaraja 2005, Liao and Capen 2009, Ungerer and 

Pretorius 2017, Barnhart 2018). At least eight books, to varying degrees of scope and depth, focusing almost entirely on 

various aspects of agreement measures and agreement evaluations have been published within the last 18 years (Dunn 2004, 

von Eye and Mun 2004, Broemeling 2009, Carstensen 2010, Shoukri 2010, Lin et al. 2012, Gwet 2012, Choudhary and 

Nagaraja 2017).  

Table 42 lists nine of the more commonly seen agreement measures. The index of agreement (d) and agreement coefficient 

(AC) appear to have been used relatively more frequently in remote sensing and some other scientific disciplines (e.g., 

Willmott et al. 1985, Legates and McCabe 1999, Ji et al. 2008, Riemann et al. 2010, Wilson et al. 2012, Zald et al. 2016, 

Duveiller et al. 2016, Neeti and Kennedy 2016, Matasci et al. 2018).  

TABLE 42. AGREEMENT MEASURES FOR CONTINUOUS VARIABLES. 

 

No. Name Reference  

1 Coefficient of agreement (COA) Robinson 1957 

2 Measure of agreement (MOA) Mielke 1984, 1991 

3 Modified measure of agreement (M) Watterson 1996 

4 Concordance correlation coefficient (CCC1) Lin 1989, Lin et al. 2002 

5 Improved CCC (CCC2) Liao 2003 

6 Agreement parameter () Duveiller et al. 2016 

7 Index of agreement (d) Willmott 1981, 1982 

8 Agreement coefficient (AC) Ji and Gallo 2006 

9 Limits of agreement (LoA) Altman and Bland 1983, Bland and Altman 1986 

 

Comparison of the agreement measures listed in Table 42 is not a trivial task. Interested readers can read Huang et al. (2019) 

for some technical details and lengthy analyses and discussions (including those on why the R2 and r are not relevant in 

agreement analysis). Only some of the relevant highlights are listed here.  

1. Many agreement measures are similar. Several are equivalent mathematically, or are simple re-scaling of or modification 

to each other. They appear logically similar in interpretations to the traditional R2 and r statistics, but they were designed 

to be better and more meaningful than the R2 and r in agreement studies. It was shown that the measure of agreement 

(MOA), modified measure of agreement, concordance correlation coefficient (CCC1), improved concordance correlation 

coefficient and agreement parameter () all functioned similarly. In fact, CCC1 is identical to MOA, and  is identical to 

CCC1 and thus to MOA in all cases in agreement studies where r ≥ 0. Thus, for practical uses, Mielke’s MOA is 

recommended for its originality and theoretical soundness. 



 

Method comparison  65 

Classification: Public 

2. The index of agreement (d) proposed by Willmott (1981) has been used widely across different disciplines (e.g., Duveiller 

et al. 2016, Neeti and Kennedy 2016 (with a typo in the d formula)). It was originally designed for model validation, where 

one set of measurements (yi) was “fixed” and considered to be the truth or “gold standard”, and the other set of 

measurements (xi) was model predictions to be compared to the truth. For agreement studies, whose main purpose is to 

assess if the values from two measurements are comparable and if one measurement can be replaced by the other more 

efficient measurement or model prediction, the d possesses a critical drawback. It is not invariant to the switching of the yi 

and xi values, which means that the d values will be different or inconsistent if the positions of y and x are switched in the 

calculation of d.  

For instance, for a simple data set of three y-x pairs used in the calculation of MOA (see Section 4.1), yi = 4, 12, 18 and xi 

= 3, 20, 21, the d is 0.8765 (from d = 1 - ∑(𝑦𝑖 − 𝑥𝑖)
2/(∑(|𝑦𝑖 − 𝑦̅| + |𝑥𝑖 − 𝑦̅|)2), see Willmott 1981, 1982). 

However, if the positions of yi and xi are switched, i.e., if xi = 4, 12, 18 and yi = 3, 20, 21, the d becomes 0.8872 (as 

opposed to 0.8765). This essentially implies that if d is used as an agreement measure, the agreement can be different 

between the same sets of data. This would be analogous to argue, for instance, that two people A and B agree with each 

other, and from A’s point of view this is true. But from B’s point of view this may not be true. Obviously as an agreement 

measure this critical drawback (inconsistency) would be considered undesirable.    

3. The agreement coefficient (AC) proposed by Ji and Gallo (2006) has some distinct shortcomings that make its utility 

inadvisable and unwarranted. For instance, Ji and Gallo (2006) claimed that “AC is bounded below by 0 and above by 1” 

(i.e., 0  AC  1), which is not true. The AC is not only unbounded by zero, but also not bounded by -1, i.e., it is out of 

bounds on the negative side. More strikingly, the AC could produce completely opposite values in many cases to what is 

supposed to be and what the real agreement is. Positive agreement could become negative agreement and vice versa.  

To illustrate the seriousness of the problems associated with the AC, a simple data set of three positively related y-x pairs 

is used, yi = [18.0, 23.0, 30.0] and xi = [22.0, 24.0, 24.5]. The calculated AC for this data set is AC = -1.645, from AC = 1 −

∑(𝑦𝑖 − 𝑥𝑖)
2 /(∑(|𝑦̅ − 𝑥̅| + |𝑦𝑖 − 𝑦̅|)(|𝑦̅ − 𝑥̅| + |𝑥𝑖 − 𝑥̅|)). It is obvious that this AC = -1.645 is not bounded by 0 (not even by -

1). Moreover, it is negative for an obvious positive relationship between y and x (i.e., y increases as x increases, with r = 

0.909 between yi and xi). A completely wrong conclusion would have been reached if AC was used and interpreted as the 

agreement measure.  

 

To make matters worse, the errors associated with the calculation of the AC also propagate into the calculation of the so-

called unsystematic (ACu) and systematic (ACs) agreement coefficients. This makes any inferences based on the ACu and 

ACs (and AC) inappropriate. For the three positively related y-x pairs (yi = [18.0, 23.0, 30.0] and xi = [22.0, 24.0, 24.5]), the 

ACu and ACs were calculated to be (see Huang et al. 2019, p.54), ACu = 0.838 and ACs = -1.483. The negative ACs and 

subsequently the ACu are totally meaningless.  

 

Fundamentally, the problems associated with the AC, ACu and ACs stem from the questionable definitions of AC, ACu and 

ACs, rendering any inferences based on them irrelevant and misleading. Note that this occurred when the positive trend in 

the data set is quite obvious and strong (r = 0.909).  

 

Irrational “flip-flop” AC, ACu and ACs values were also observed on many other data sets (examples of such data sets are 

available to interested readers). Similar observations were also reported by Duveiller et al. (2016), who demonstrated the 

AC problems through theoretical considerations, simulations and actual data. Indeed, it is very dangerous to use the AC 

and AC-induced measures to make any inferences when measuring and comparing the agreement between any two sets 

of measurements from different methods, devices or techniques, as they can lead to distorted, irrelevant or completely 

opposite results to what the correct results should be. It is really indefensible and injudicious that some remote sensing 

studies used the AC and AC-induced measures as their ultimate accuracy and agreement measures (see examples in 

Duveiller et al. 2016 and Huang et al. 2019). 

 

4. The “limit of agreement” (LoA) concept introduced by Bland and Altman (1986) represents a real breakthrough in 

agreement analysis. It has shifted the paradigm and transformed how agreement analysis (and method comparison 

studies in general) should be conducted. The LoA-based Bland-Altman analysis is the most common and standard 

analytic technique used for agreement studies across a wide range of scientific disciplines. Bland and Altman’s (1986) 

paper, based on a well-established and widely accepted “very simple and obvious” concept, and by virtue of its simplicity 

and readability, was listed by the leading scientific journal Nature as one of the top 100 most-referenced research papers 

of all time (Van Noorden et al. 2014), with 48,778 citations to date (May 19, 2021).  
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The LoA (or Bland-Altman analysis, Bland-Altman plot) has a number of distinct advantages, including: 1). It possesses 

the good characteristics of simplicity and validity. Only some well-established, widely used very simple statistics familiar to 

most practitioners need to be computed; 2). It avoids the problematic (and often irrelevant and misleading) and complex 

agreement measures; 3). It can be clearly decomposed into separate bias and precision components to provide a clear 

and complete depiction about bias, precision and accuracy; 4). It emphasizes the use of simply and neatly presented, 

easy-to-understand graphics, which are more informative, illuminating and powerful than many complex statistics; 5). It is 

directly linked to the same scale as the original data, allowing for easy interpretation on the same scale as the original 

data.  

It is for these advantages of LoA, plus the above highlights and discussions on other agreement measures especially the index 

of agreement and agreement coefficient, that we recommended and used the LoA and MOA in our analysis, together with 

other statistics and statistical methods described in Sections 2, 3 and 4, as the methods for determining the accuracy of 

classifications and comparing the agreement between ground measures and forest inventory techniques.   

5.4 Caveats on the chi-square test and Kolmogorov-Smirnov test 

Earlier in Section 3.4, it was stated that the chi-square test and the KS test only enable us to determine whether there is a 

statistically significant difference between two sets of frequencies in proportions, but not two sets of frequencies in actual 

numbers, nor two sets of vaguely defined distributions. In short, the chi-square test and the KS test only test the frequency 

proportions, but not frequency numbers.  

However, a casual search of the literature would lead to many articles that claim that such a test could be used to test, e.g., 

the null hypothesis (H0) that the distributions from two samples are the same, against the alternative hypothesis (Ha) that 

the distributions from two samples are not the same. Clearly there are some confusion and probable misunderstanding in 

this area either way, especially about the KS test.  

To avoid dwelling on some potentially futile argument on too many technical details, and to facilitate the understanding by 

most practitioners in our subject areas, we will just use two examples to illustrate the point. One for the chi-square test. The 

other for the KS test. Since Fisher’s exact test functions the same as the chi-square test (but is usually considered better for 

small sample sizes), the logic imbedded in the example for the chi-square test also applies to Fisher’s exact test for our 

purpose. 

The Chi-Square Test  

The chi-square test applies to categorical variables. Table 43 lists the species frequency counts for the same area from the 

ground and two inventory techniques, inventory-1 and inventory-2. The frequency counts from the ground and inventory-1 are 

actual observations taken directly from Table 3. Inventory-2 is assumed to be a completely wrong inventory (inventory-2 

counts = 19 times inventory-1 counts). The frequency proportions (in %) correspond to the frequency counts are listed in Table 

43. The means and the standard deviations (SD) of the frequency counts are also listed in Table 43. Note that the frequency 

proportions for inventory-1 and inventory-2 are identical for each species, but the frequency counts for inventory-2 are 19 

times of those for inventory-1. 

TABLE 43. SPECIES FREQUENCY COUNTS FROM THE GROUND AND TWO INVENTORY TECHNIQUES. 

 

Type Aw Bw Dp Fb Lt Pb Pl Sb Sg Sw Total Mean SD 

Ground 55 18 0 8 14 10 9 28 4 63 209 20.9 21.6 

Proportion (in %) 26.3 8.6 0.0 3.8 6.7 4.8 4.3 13.4 1.9 30.1 100   

Inventory-1 48 15 0 6 9 7 6 18 2 45 156 15.6 17.2 

Proportion (in %) 30.8 9.6 0.0 3.8 5.8 4.5 3.8 11.5 1.3 28.8 100   

Inventory-2 912 285 0 114 171 133 114 342 38 855 2964 296.4 326.1 

Proportion (in %) 30.8 9.6 0.0 3.8 5.8 4.5 3.8 11.5 1.3 28.8 100   

Note: SD is the standard deviation. Inventory 1 and Inventory 2 represent two inventory techniques. Species are defined in Table 1. 

The frequency counts in Table 43 are displayed in Figure 15, where Figure 15(a) shows the frequency counts from the ground 

and inventory-1 and Figure 15(b) shows the frequency counts from the ground and inventory-2. It is strikingly clear from Figure 

15(b) that the frequency counts from the ground and inventory-2 are very different, because inventory-2 is from a completely 

wrong inventory. The frequency distribution of inventory-2 (in terms of the mean and SD of the actual counts) is entirely 

different from those of the ground and inventory-1, as shown in Table 43. 

Table 44 shows the computations for the chi-square test between the ground and inventory-2 (similar computations between 

the ground and inventory-1 were shown in Table 11). The calculated chi-square statistic is 2 = 3.1913, which is the sum of the 
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last two columns of Table 44. This 2 = 3.1913 statistic corresponds to a p-value of 0.9218, which is greater than  = 0.05. 

This means that there is no significant difference between the two sets of frequency proportions in Table 43 for the species 

from the ground and inventory-2.  

  

Figure 15. Ground frequency counts compared to the frequency counts from inventory-1 (a) and inventory-2 (b). The data 

are listed in Table 43. 

It would be completely wrong if the chi-square statistic was interpreted to mean that there was no significant difference 

between the two sets of frequency numbers in Table 43 for the species from the ground and inventory-2. The frequency 

numbers for the species from the ground and inventory-2 are entirely different (inventory-2 is from a completely wrong 

inventory). They have drastically different means and SDs (mean=20.9 and SD=21.6 for the ground data; and mean=296.4 

and SD=236.1 for inventory-2 classifications). It would be totally incorrect to mix frequency proportions with frequency 

numbers (counts) when using the chi-square test for inferencing. 

Table 44. The chi-square test for the data from the ground and inventory-2. 

 

Species Ground (O1) Inventory 2 (O2) Row total E1 E2 (O1-E1)2/E1 (O2-E2)2/E2 

Aw 55 912 967 63.69 903.31 1.1869 0.0837 

Bw 18 285 303 19.96 283.04 0.1921 0.0135 

Fb 8 114 122 8.04 113.96 0.0002 0.0000 

Lt 14 171 185 12.19 172.81 0.2702 0.0190 

Pb 10 133 143 9.42 133.58 0.0358 0.0025 

Pl 9 114 123 8.10 114.90 0.0996 0.0070 

Sb 28 342 370 24.37 345.63 0.5403 0.0381 

Sg 4 38 42 2.77 39.23 0.5500 0.0388 

Sw 63 855 918 60.47 857.53 0.1061 0.0075 

Total 209 2964 3173 209.00 2964.00 2.9811 0.2102 

Note: the calculations follow [3.1] and [3.2], where the number of species (rows) is i=1, 2, …, 9 and the number of columns is j=1, 2. The ground and 

inventory-2 counts are listed in Table 43, O1 and O2 are observed values and E1 and E2 are corresponding expected values. 

Hence, it was emphasized earlier in Section 3.4 that it was critically important to recognize that the chi-square test only 

enables us to determine if there is a significant difference between two frequency proportions, but not two frequency numbers, 

nor two distributions unless the “distributions” are explicitly defined as the frequency proportions. The chi-square test only 

allows us to test whether two sets of proportions from two samples for a categorical variable differ from each other. It does not 

allow us to test whether two sets of actual numbers from two samples for a categorical variable differ from each other. 

The Kolmogorov-Smirnov Test 

The KS test is primarily used for continuous variables. Table 45 lists the tree height frequency counts for a species from the 

ground and two inventory techniques, inventory-1 and inventory-2. The counts from the ground and inventory-1 are identical to 

those listed in Table 17 and shown in Figure 5. Inventory-2 is assumed to be a completely wrong inventory (inventory-2 counts 

= 21 times inventory-1 counts). The cumulative counts and the cumulative proportions that correspond to the frequency counts 

are also listed in Table 45. Note that the cumulative proportions for inventory-1 and inventory-2 are identical (but the 

cumulative counts for inventory-2 are 21 times of those for inventory-1). 

 



 

Method comparison  68 

Classification: Public 

TABLE 45. TREE HEIGHT FREQUENCY COUNTS FROM THE GROUND AND TWO INVENTORY TECHNIQUES. 

 

Type 
Tree height (m) 

Total 
12 13 14 15 16 17 18 19 

Ground 1 2 0 1 0 4 3 1 12 

Cumulative count 1 3 3 4 4 8 11 12   

Cumulative proportion 0.0833 0.25 0.25 0.3333 0.3333 0.6667 0.9167 1.0000   

Inventory-1 2 1 2 0 1 3 1 0 10 

Cumulative count 2 3 5 5 6 9 10 10   

Cumulative proportion 0.2 0.3 0.5 0.5 0.6 0.9 1.0 1.0   

Inventory-2 42 21 42 0 21 63 21 0 210 

Cumulative count 42 63 105 105 126 189 210 210   

Cumulative proportion 0.2 0.3 0.5 0.5 0.6 0.9 1.0 1.0   

 

The data in Table 45 are displayed in Figure 16, where the top two graphs show the ground frequency counts compared to the 

frequency counts from inventory-1 (a) and inventory-2 (b), and the bottom two graphs show the cumulative proportions from 

the ground compared to inventory-1 (c) and inventory-2 (d). Notice that the bottom two graphs are identical (even though the 

cumulative counts for inventory-1 and inventory-2 are drastically different). 

 

Figure 16. Top graphs show ground frequency counts compared to the frequency counts from inventory-1 (a) and 

inventory-2 (b). Bottom graphs show cumulative proportions from the ground compared to those from inventory-1 (c) and 

inventory-2 (d). Actual data are listed in Table 45. 

It is rather clear from Figure 16(b) that the frequency counts from the ground and inventory-2 are very different (on average the 

frequency counts of inventory-2 are 210/12=17.5 times of those from the ground). This is not surprising because inventory-2 is 

from a completely wrong inventory.  

Calculations of the KS test statistic (the D statistic) for the frequency counts from the ground and inventory 2 follow those 

demonstrated in Table 18 from the ground and inventory-1. The calculated D (D=0.26667) is identical to that shown in Table 

18 (readers can actually infer this from the identical graphs in Figure 16(c) and Figure 16(d)). Therefore, the z calculated 

according to [4.12] is:  
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 𝑧 = 𝐷√
𝑛1𝑛2

𝑛
= 0.26667√

12×210

222
 = 0.89846. 

Hence, the p-value computed by [4.11] or [4.13] is:  

p-value = 2[(−1)(1−1)𝑒(−2𝑧2) + (−1)(2−1)𝑒(−2×22𝑧2) + (−1)(3−1)𝑒(−2×32𝑧2)] + ···  

   = 2[0.19900 + (-0.00157) + 0.00000 + (-0.00000) + 0.00000 + ···] = 0.3949. 

 

This p-value is greater than  = 0.05, suggesting that the samples from the ground and inventory-2 follow the same frequency 

proportions.  

It would be completely wrong if the calculated D=0.26667 (p-value=0.3949) was interpreted to mean that there was no 

significant difference between the two sets of frequency counts for the tree height from the ground and inventory-2. The 

frequency counts for the tree height from the ground and inventory-2 are totally different (Table 45). It would be completely 

wrong to mix frequency proportions with frequency counts when using the KS test for inferencing. 

Therefore, it was emphasized earlier in Section 3.4 that it was critically important to recognize that the KS test only enables us 

to evaluate if there is a significant difference between two sets of frequency proportions. It does not evaluate if there is a 

significant difference between two sets of frequency counts (numbers), nor does it test the vaguely defined “distributions” 

between two samples unless the “distributions” are defined explicitly as the frequency proportions.  

The KS test is nonparametric. It does not assume that the two sets of data are sampled from any defined statistical 

distributions (e.g., normal distributions). It calculates the maximum difference between the two cumulative distributions from 

two data sets, and reports a p-value from that and the sample sizes. The null hypothesis of the KS test is that both data sets 

(groups) were sampled from populations with identical frequency distributions or cumulative frequency distributions. So long as 

the frequency distributions or cumulative frequency distributions are statistically identical, the KS test is invariant to different 

locations (e.g., means, medians) and different variations (e.g., variances, standard deviations). 

The Kolmogorov-Smirnov Test for Normality 

Sometimes, the two sample Kolmogorov-Smirnov test discussed in this study (which compares two groups of data) may be 

confused with the one sample Kolmogorov-Smirnov test. Together with the Shapiro-Wilk test, the Cramer-von Mises test, and 

the Anderson-Darling test, the one sample KS test is most frequently used as a test of normality for one set of data (SAS 

Institute Inc. 2011). For instance, it has been used to test whether a set of data (e.g., a set of errors) comes from a normal 

distribution (Huang 2002, Yang et al. 2004, Huang et al. 2019).  

Since we are comparing two groups of data (e.g., from the ground and inventory), the two sample KS test is used throughout 

this study. Readers who are interested in using the one sample KS test to test the normality of a data set may follow the 

examples described in the above-mentioned references. 

 Variables Characterizing a Statistical Distribution 

Although most people understand the difference between “frequency distribution” and “cumulative distribution”, the distinction 

between “distribution” and “frequency distribution” can sometimes be blurry. Many people consider their difference to be 

“semantics” and refer to them interchangeably. This may be fine in some day-to-day conversations. But in the context of 

statistical tests, they must be clearly and explicitly defined. Failing to do so can lead to confusion and misleading conclusions. 

As mentioned before (in Section 3.4), in statistics and data science, a “distribution” is typically characterized by three variables: 

its location, dispersion and shape. Any significant difference between two distributions can be caused by the difference in any 

one of these three variables. In practice we often use, at a minimum, mean and standard deviation to describe (the location 

and dispersion of) a statistical distribution. In some more technical contexts, we also include the skewness (a measure of data 

symmetry) or kurtosis (a measure of data heavy or light tail-ness relative to a normal distribution) to describe the shape of a 

distribution. For a set of samples (e.g., yi’s) that consists of n data points (i=1, 2, ⋯, n), the mean (𝑦̅), standard deviation (SD) 

and skewness (or kurtosis) are defined by:  

[5.38] 𝑦̅ = ∑ 𝑦𝑖 /𝑛  

[5.39] SD = √∑(𝑦𝑖 − 𝑦̅)2/(𝑛 − 1) 

[5.40] Skewness = 
∑(𝑦𝑖−𝑦̅)3/𝑛

(√∑(𝑦𝑖−𝑦̅)2/𝑛)
3  (or kurtosis = 

∑(𝑦𝑖−𝑦̅)4/𝑛

(√∑(𝑦𝑖−𝑦̅)2/𝑛)
4) 
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If a statistical test is used to claim that there is no significant difference between two distributions, it must prove 

simultaneously, that at least two of the three variables from the two distributions, location (mean) and dispersion (variance or 

standard deviation), are statistically equivalent. Unfortunately, to date, we are unaware of the existence of any single test that 

can prove this simultaneously, even though there are many tests that can test each individual variable and any significant 

difference in any one of the individual variables can be used to claim that the distributions are different. In our view, it is a 

common mistake in the literature to claim that the distributions of the two samples are the same based on the chi-square test 

or the KS test. This is demonstrated in the above examples, where entirely different distributions in terms of the means and 

standard deviations led to the same chi-square test or KS test result.  

A Further Note on the Kolmogorov-Smirnov Test Applied to Grouped Data 

For the KS test, although on the surface it is used to evaluate the difference between two frequency proportions, inherently 

and more specifically, it is implemented through testing the cumulative proportions. This should be clear from [4.10], and from 

the graphs in Figures 6, 9, 12 and 16(c) or 16(d).  

Sometimes, a continuous variable is divided into user-defined class-intervals (groups). Histograms (or frequency bars, 

frequency charts) are then drawn to display and compare the frequency distributions of the grouped data. For instance, for 

Data-2 in Table 16, tree heights from the ground (y) and inventory (x) can be grouped by a 1, 2, 3 m or any other user-defined 

height class. Table 46 and Table 47 list the data grouped by 2 and 3 m height classes, respectively, alongside the frequency 

counts that correspond to the height classes.  

TABLE 46. TREE HEIGHT COUNTS BY 2 M HEIGHT CLASSES FOR DATA-2 IN TABLE 16. 

 

 Type 
Tree height  

Total 
14 16 18 20 22 24 26 28 30 32 34 36 

Ground frequency count 0 0 3 8 3 3 8 4 8 3 0 2 42 

Inventory frequency count 1 1 4 9 6 9 6 3 3 0 0 0 42 

Note: 2 m height class ranges are defined by 13≤height<15, 15≤height<17, ⋯, 35≤height<37. 

TABLE 47. TREE HEIGHT COUNTS BY 3 M HEIGHT CLASSES FOR DATA-2 IN TABLE 16. 

 

Type 
Tree height  

Total 
16 19 22 25 28 31 34 37 

Ground frequency count 0 8 7 9 8 7 2 1 42 

Inventory frequency count 3 11 9 13 5 1 0 0 42 

Note: 3 m height class ranges are defined by 14.5≤height<17.5, 17.5≤height<20.5, ⋯, 35.5≤height<38.5. 

Figure 17 shows the histograms of the grouped data by 1, 2, 3 and 4 m height classes. While histograms provide an intuitive 

and convenient graphical technique for showing the grouped data, their use and interpretation must be done carefully (to avoid 

becoming part of misleading data visualization). 

 

Figure 17 (part 1 of 2). Frequency counts for Data-2 in Table 16 grouped by 1 m (a), 2 m (b), 3 m (c) and 4 m (d) height 

classes. Grouped data for graphs (b) and (c) are listed in Table 46 and Table 47, respectively. 
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Figure 17 (part 2 of 2. Frequency counts for Data-2 in Table 16 grouped by 1 m (a), 2 m (b), 3 m (c) and 4 m (d) height 

classes. Grouped data for graphs (b) and (c) are listed in Table 46 and Table 47, respectively. 

For instance, the histograms in Figure 17 look quite different or “flexible” depending on the height class intervals we happened 

to choose. This flexibility, caused by the arbitrary choice of a 1, 2, 3 or 4 m height class (or any other user-defined height 

class), can lead to misuses by some data analysts, who may be tempted to “pick and choose” or “manipulate” a class interval 

that satisfies his/her intent. The problem may be exacerbated if the KS test is applied to make inferences and prove the intent. 

To illustrate, following the procedures described in Section 4.2, the KS test is applied to Data-2 in Table 16 grouped by 1, 2, 3 

and 4 m height classes shown in Figure 17. The calculated D statistics and p-values that correspond to different class intervals 

are listed in Table 48. For comparison, the D statistic and p-value obtained earlier in Section 4.2 for the original (ungrouped) 

Data-2 are also listed in Table 48. 

It is clear from Table 48 that, using the original data, the KS test (p-value=0.0188) indicates that the tree heights from the 

ground and inventory do not follow the same frequency distribution (i.e., frequency proportion). However, when the data are 

grouped by a 1 m height class, the KS test (p-value=0.0649) suggests that the tree heights from the ground and inventory 

follow the same frequency distribution. But when the data are grouped by a 2 m height class, the KS test (p-value=0.0358) 

returns to indicate that the tree heights do not follow the same frequency distribution. Furthermore, when the data are grouped 

by a 3 m height class (p-value=0.0649) and a 4 m height class (p-value=0.1121), the KS tests come back to suggest again 

that the tree heights follow the same frequency distribution.  

TABLE 48. THE KOLMOGOROV-SMIRNOV TEST STATISTICS (AND THEIR P-VALUES) FOR ORIGINAL AND GROUPED DATA. 

 

Data 
Original 

(ungrouped) 

Tree height grouped by 

1 m class 2 m class 3 m class 4 m class 

Data-2 in Table 16 D = 0.3333  

(p = 0.0188) 

D = 0.2857  

(p = 0.0649) 

D = 0.3095  

(p = 0.0358) 

D = 0.2857  

(p = 0.0649) 

D = 0.2619 

(p = 0.1121) 

 

The back-and-forth of the significance in Table 48 is clearly an artifact of the selected class-intervals. Basically it says, 

depending on the arbitrary choice of the height class intervals, we can get statistically significant and insignificant results for 

the frequency distributions of tree heights from the ground and inventory, even though the original data are unchanged. 

The above example and discussion on grouping a continuous variable into some user-defined class-intervals are very relevant 

in our subject areas (i.e., forest inventory, forest mensuration and forest modeling), as we frequently group our data into 

different classes or strata, then analyze them. There are several important implications about grouping, displaying and 

analyzing such data:  

1. Methodologically, while using histograms (e.g., Figure 17) can provide an intuitive and convenient graphical tool for 

showing the grouped data, they can be “manipulated” to look differently to serve an analyst’s intent, by purposely 

(and arbitrarily) selecting class intervals that satisfy his/her intent. Therefore, their true value and effectiveness in 

analyzing continuous data are limited and questionable, albeit that they can be quite useful for categorical data. We 

should not overuse or rely on them for continuous data. They may not really tell much, and they are prone to bias 

caused by the arbitrary choice of the width and location of the chosen class-intervals. The shape of the histograms 

can always be changed or “manipulated” to look better or worse depending on the arbitrary choice of class-intervals. 

Intentional or deliberate choice of class-intervals can make asymmetrical histograms look more symmetrical, and vice 

versa.  
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2. When a continuous variable is grouped into some user-defined class-intervals, any statistics and statistical tests 

based on the class-intervals are prone to bias, because it can always be argued that the class-interval boundaries are 

inherently arbitrary, and that some alternative class-intervals can yield very different results. These are clearly 

explained in Dransfield and Brightwell (2012) and illustrated in Table 48. Arbitrary elements and choices in statistical 

analysis are always potentially biased. They should be avoided whenever possible. The process of grouping a 

continuous variable into different class-intervals always results in the loss of more detailed information.  

3. In many practical applications, we often group, e.g., tree DBH and tree height into some pre-determined class-

intervals, such as 2 cm or 1 inch DBH classes, and 1, 2, 3, 5 or 6 m height classes. It is imperative to recognize that 

any statistics and statistical tests obtained from the specific class-intervals only pertain to those class-intervals used 

in the analysis. They must be interpreted and used as such in inferencing and applications. They cannot be used to 

make any broad generic inferences, or changed in the middle of inferencing and applications.  

4. Unless a particular objective or constraint dictates otherwise, it is always preferable and better to analyze a 

continuous variable in its original undivided form, and to conduct statistical analysis on original, rather than grouped, 

normalized or transformed data. Results and inferences derived from the grouped, normalized or transformed data 

only apply to such data, not to the original data. Practitioners should be aware that, no matter how good the results 

may appear on grouped, normalized or transformed data, they may not be relevant to the original data.  

One other important implication worth highlighting from the above example in Table 48 is that, statistical significance can be 

changed back-and-forth depending on the arbitrary choice of class-intervals. It shows how easy it can be, to potentially “pick 

and choose” and misuse “statistical significance” in inferencing and decision-making. We provide some of our critical thoughts 

on this next, while fully recognizing that there is no “best solution” for this and that different viewpoints, objectives and 

philosophies exist.  

5.5 Statistical significance and practical significance 

It is really unfortunate that “statistical significance chasing” or “statistical significance fishing” has been entrenched into some 

scientific fields, resulting in many questionable, misleading and erroneous conclusions (and causing the “damning” of statistics 

by some researchers and practitioners alike). This is largely caused, intentionally or unintentionally, by the misunderstanding 

and misuse of statistical and data science, rather than by the science itself. It has led to some true experts in their fields to 

caution that “most of what is published in journals is just plain wrong or nonsense” (Richard Smith, former BMJ (British Medical 

Journal) editor-in-chief, quoted in Freedman 2010), and that “most published research findings are false and untrustworthy” 

(Ioannidis 2005, Smith 2014, Lose and Klarskov 2017).  

If not careful, statistics and particularly statistical significance/insignificance can add the air of scientific rigor to bad research 

and help researchers fool themselves and research users. It is often easier to get a peer-reviewed paper published if one uses 

erroneous statistical analysis than if one uses no statistical analysis at all (Hurlbert and Lombardi 2003). Chalmers and 

Glasziou (2009) and Glasziou and Chalmers (2016) noted that a large percentage (85%) of research in biomedical fields is 

“wasted”, echoing what was already observed by Altman (1994) more than a quarter century ago that, "huge sums of money 

are spent annually on research that is seriously flawed through the use of inappropriate designs, unrepresentative samples, 

small samples, incorrect methods of analysis and faulty interpretation", and that “we need less research, better research and 

research done for the right reasons”. Feyerabend (1981) lamented that most researchers today are devoid of ideas, intent on 

producing some paltry result “so that they can contribute to the flood of inane number of papers that now constitutes ‘scientific 

progress’ in many areas”. As pointed out forcefully by Ioannidis (2005) and reaffirmed by Smith (2014), in “many current 

scientific fields, claimed research findings may often be simply accurate measures of the prevailing bias”, and “most scientific 

studies are wrong, and they are wrong because scientists are interested in funding and careers rather than truth”. 

While it is understandable that for various reasons some researchers may not like or agree with the criticisms raised by the 

above experts, many researchers do recognize that a large percentage of the published papers in biology contain serious 

statistical mistakes. This is well-documented in Dransfield and Brightwell (2012) and Makin and Orban de Xivry (2019). We 

should at least be aware of the potential traps and pitfalls of statistical significance and avoid the common statistical mistakes 

observed by many experts. More importantly, we need to realize that statistical significance (or any single statistic or test) is 

just a part of many factors that may need to be considered during inferencing and decision-making. It is not the sole deciding 

factor. In particular, forest practitioners should recognize the difference between statistical significance (i.e., if the p-value is 

less than a specified significance level, typically at =0.05) and practical significance (i.e., if the magnitude of the difference is 

large enough to have any important or meaningful practical consequence), and be able to use them appropriately during 

inferencing and decision-making. 

Statistical significance defined by p-values is impacted directly by sample size and sample variability. It might seem logical that 

statistical significance and p-values relate to importance and causality. But this is not true. With enough samples or low 
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sample variability, even a tiny difference will result in a statistic or a statistical test to be statistically significant. But statistical 

significance does not imply that the difference has any practical real world consequence. It is not necessarily related to 

importance, nor to causation. The tiny difference may be trivial, inconsequential and meaningless in practice even through it is 

statistically significant. 

Practical significance is not directly impacted by sample size and sample variability. While statistical significance tells whether 

the difference exists, practical significance tells whether the magnitude of the difference is practically significant. What is 

practically significant and meaningful may sound subjective and can depend on the specific situation and objectives, but it is 

typically determined by trained professionals based on the specialized knowledge, expertise and experience on the subject. 

These knowledge, expertise and experience include relevant biological and operational considerations, the inherent variation 

of the variable and data in interest, and other subject matter understanding and goals, as well as the operational impact of the 

difference or “error”. 

We described several statistical tests in this study. They can be used to answer some specific questions from the repeated 

sampling point of view. They can also help to guide the direction of further analysis. The practical importance of the test 

results, however, is judged differently, as it is highly impacted by many other factors. In addition, the power of these tests is 

highly influenced by the sample sizes. A small sample size may result in insufficient power to detect a true difference between 

two techniques. A large sample size may result in very high power, making practically trivial and non-meaningful differences 

appear statistically significant. In fact, almost all statistical tests will result in the rejection of the null hypothesis if the sample 

size is very large. Aronoff (1982), Fitzgerald and Lees (1994), Stehman (1997), Fleiss et al. (2003), Foody (2004), Dransfield 

and Brightwell (2012) and Stehman and Foody (2019) provided good examples and discussions on this topic. But a practical 

dilemma is that, how “small” is too small and how “large” is too large are generally not quantitatively defined. They depend on 

many factors, and there seems to be no indication from the literature we have found as to what might constitute a “suitable 

subjective balance”. Therefore, we suggest that the test results, wherever relevant, be considered only as approximations and 

as one of the factors in holistically judging forest inventory techniques. Calculations of the descriptive statistics and inferential 

statistics for categorical and continuous variables are just one of the steps in any rigorous data analysis and inference. 

It is always greatly preferable and often necessary, to jointly consider statistical significance together with practical 

significance, which, depending on the subject areas involved, has also been referred to as clinical significance, 

biological/ecological significance, economical significance, or mensurational significance (e.g., Bland and Altman 1986, 

Engsted 2009, Schober et al. 2018, Huang et al. 2019). Practical significance is often more important and meaningful than 

statistical significance in many situations. In any analysis we should always avoid statistical significance chasing and “data 

dredging” (or p-hacking, data snooping, data butchery, data torturing, data massaging, data nursing). Interested readers are 

strongly recommended to read and comprehend the statements by the American Statistical Association (Wasserstein and 

Lazar 2016), and the articles by Ioannidis (2005), Lambdin (2012), Makin and Orban de Xivry (2019), and especially Nuzzo 

(2014).  

5.6 Calibration and localization for remotely sensed inventory data 

In practice, it is unlikely that two sets of measurements for the same variable, one obtained on the ground and the other from 

an inventory technique, are in perfect or near perfect agreement. Random and/or systematic errors almost always occur in any 

type of measurement. Random errors are part of the natural variation. They are more difficult to remove or reduce. However, 

systematic errors in the measurements (classifications, predictions) can always be removed or calibrated to the “observed 

truth” on the ground, or to a commonly accepted consensus or gold (reference) standard.  

Figure 18 illustrates two imperfect scenarios in which the ground measures (yi or simply y) differ from the corresponding 

inventory measures/estimates (xi or simply x). The differences between the measures can be positive or negative, linear or 

nonlinear in nature. Assuming that the ground measures are the truth or the accepted reference (gold) standard, inventory 

estimates often need to be adjusted or calibrated to the ground measures, so when the situation warrants, the purportedly 

more effective and efficient (i.e., reduced costs at increased scope and speed of data collection) inventory estimates may be 

used to substitute the ground measures (more common), and vice versa (less common).  

There are different ways to calibrate a set of measurements against a different set of measurements. They belong to the 

general concept of method (or model) calibration, sometimes also referred to as method adjustment, method modification, 

correction, conversion, or localization (Huang 2002, Huang et al. 2019). If an analysis or an agreement study shows that two 

measurements, one from the ground and the other from an inventory are the same and thus interchangeable, there is no need 

to do any method calibration. However, if the analysis shows that the two measurements are not the same, two follow-up 

actions may be taken. 
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Figure 18. An illustration of imperfect agreement scenarios between the ground (y) and inventory (x) measures, where 

the diagonal line is the 45° line that passes through the origin. It represents perfect agreement (y=x). The imperfections 

can be positive or negative, linear or nonlinear in nature. 

In the first case, one may want to calibrate a set of measurements from a new inventory method against another set of 

measurements from the ground or a well-established method that is considered the truth or the accepted reference standard, 

so that the new method, which supposedly represents a simpler or a more effective and efficient method, is in-line with the 

truth or the accepted reference standard. In the second case, one may not know the truth or the accepted reference standard, 

but just want to establish an intrinsic quantitative functional relationship between the two sets of measurements, such that 

whenever the situation presents or requires, one set of measurements can be converted into the other, and vice versa. In both 

cases the concept of method calibration comes up. 

Regardless of the cases, in broad mathematical and statistical terms, the concept of method calibration by and large involves 

the fitting of one of the following regression models expressed in the general forms of:  

[5.41] 𝑦𝑖 = 𝑓(𝑥𝑖) 

[5.42] 𝑦𝑖 = 𝑓(𝑥𝑖 , other potential variables) 

where yi denotes the ground (or reference) measure and xi denotes the corresponding inventory measure (or classification, 

estimate, prediction) for the ith observation (i=1, 2, ⋯, n, n is the total number of observations), f denotes a linear or nonlinear 

function, and “other potential variables” denote other potential inventory (more common) and ground (less common) 

variables/measures/metrics that may contribute to or can explain the difference between yi and xi. 

For many practical applications, [5.41] expressed in a simple linear form (i.e., yi = b0+b1xi, where b0 is the intercept and b1 is 

the slope) may be all that is needed. When “other potential variables” are included in the regression in [5.42], the sources of 

the discrepancies between ground (yi) and inventory (xi), and the exact amount of the impact of the “other potential variables” 

on calibration, can be quantified in addition to that of xi. Readers who are interested in more detailed descriptions about the 

methods for calibration and localization can look into Huang (2002), Yang and Huang (2014) and Huang et al. (2019), where 

step-by-step examples are provided.  

Here, only the most commonly used calibration method based on the ordinary least squares (OLS) fit of the simple linear 

regression is shown. The felled tree height data (Table 20) and the stand density data (Table 24) from the ground and the lidar 

inventory in the FMA area of Canadian Forest Products Ltd. (Grande Prairie) are used again to demonstrate the calibration 

method. 

Calibrating Lidar Height to Felled Tree Height  

In Section 4.3, it was shown that based on the results in Figures 7-8, Table 21 and the KS test, it can be inferred that the 

agreement between felled height and lidar height is reasonably good. Lidar height and felled height can be used 

interchangeably. However, the results shown in Table 21 indicate that overall, there still is a 𝑒̅=-0.371 (m) or 𝑒̅%=-2.2% 

prediction bias from lidar. If one wants to achieve a bias-free prediction on average from lidar (relative to the felled heights), 

the following simple linear regression can be fitted: 

[5.43] HTfelled = b0 + b1×HTlidar 
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where the felled height (yi, HTfelled) and lidar height (xi, HTlidar) are given in Table 20, b0 is the intercept and b1 is the slope, 

estimated to be b0=0.01039 and b1=0.97787 from the OLS fit. The root mean square error of the fit is RMSEr = 1.543 (from 

[4.21]), and the coefficient of determination is R2 = 0.912 (from [4.22]), which describes the correlation between HTfelled and 

HTlidar. Figure 19(a) shows the fit (the dashed line). 

  

 

Figure 19. Scatter plot (a), error plot (b) and the Bland-Altman plot for felled heights and lidar heights after the adjustment. 

Actual data are listed in Table 20. The solid line in (a) is the 45° line. The dashed line in (a) is the fitted regression from 

[5.43]. The LoA lines in (c) are limits of agreement. 

The fitted regression line defined by [5.43] can be used to adjust the lidar heights (i.e., to predict felled heights from lidar 

heights). The errors after the adjustment (eadj) are the residuals from the OLS fit, calculated by: 

[5.44] eadj = HTfelled – HT̂felled = HTfelled – (b0 + b1×HTlidar). 

Graph (b) in Figure 19 shows the errors after the adjustment (difference_adjusted) on the y-axis, plotted against the lidar 

heights on the x-axis (standard residual plot of residuals against the predicted felled heights from the OLS fit is available but 

not shown here). Graph (c) in Figure 19 shows the Bland-Altman plot after the adjustment. Since the mean of the adjusted 

errors each calculated by [5.44] is zero, an OLS property (Draper and Smith 1998), after the adjustment the predictions of 

felled heights from lidar heights are bias-free on average. This is shown in Table 49 (first row), along with other goodness-of-fit 

statistics and agreement measure calculated after the adjustment.  

TABLE 49. GOODNESS-OF-FIT STATISTICS AND AGREEMENT MEASURE AFTER THE ADJUSTMENT.  

 

Type n 𝒆̅ MAE RMSE 𝒆̅% MAE% RMSE% e10  e33  e50 MOA 

Tree height  108 0   1.205 1.528 0 7.1% 9.1% 0.713 0.981 0.981 0.954 

Stand density 28 0   193.6 243.5 0 27.7%   34.8%   0.214 0.679 0.750 0.685 

Note: tree height data are listed in Table 20, stand density data are listed in Table 24, n denotes the sample size, 𝑒̅, MAE, RMSE, 𝑒̅%, MAE%, RMSE%, 

e10, e33, e50 and MOA are defined in [4.1]-[4.5] and [4.7]. 
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Compared to the results from the unadjusted goodness-of-fit statistics and agreement measure in Table 21 and the graphs in 

Figures 7-8, the gain from the adjustment is not obvious. This is expected because for this example, the agreement between 

the original (unadjusted) lidar heights and felled heights is already reasonably good.  

The comparison also reveals that, although after the adjustment the predictions of felled heights from lidar heights are bias-

free on average (i.e., 𝑒̅=0 and 𝑒̅%=0, Table 49, first row), other goodness-of-fit statistics are not guaranteed to be better after 

the adjustment. For instance, after the adjustment MAE=1.205 (Table 49), which is larger than that before the adjustment 

(MAE=1.128, Table 21). This is because that on average, the adjustment will achieve bias-free (the individual errors sum up to 

zero), but the size of each individual error after the adjustment is not guaranteed to be smaller. It is the case of average versus 

individual errors. An improved average does not necessarily mean an improvement for all individuals. 

Notice also that the RMSE in Table 49 (RMSE=1.528) is different from the RMSEr from the regression fit (RMSEr=1.543), 

notwithstanding that the difference is small in this case. But it is important to understand the exact mathematical difference 

between RMSE and RMSEr. 

Calibrating Lidar Density to Ground Density  

For the stand density data in Table 24, the following simple linear regression can be fitted: 

[5.45] Nground = b0 + b1×Nlidar 

where Nground is the ground density (stems/ha) and Nlidar is the lidar density (stems/ha). 

The intercept and the slope for [5.45] are estimated to be: b0=71.20421 and b1=1.39811. The root mean square error and the 

coefficient of determination from the OLS fit are RMSEr=252.7 and R2=0.521, respectively. Figure 20(a) shows the fit (the 

dashed line). 

 

 

Figure 20. Scatter plot (a), error plot (b) and the Bland-Altman plot for ground densities and lidar densities after the 

adjustment. Actual data are listed in Table 24. The solid line in (a) is the 45° line. The dashed line in (a) is the regression 

from [5.45]. The LoA lines in (c) are limits of agreement. 
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The fitted line defined by [5.45] is used to adjust the lidar density. The errors after the adjustment (eadj) are the residuals from 

the OLS fit, calculated by: 

[5.46] eadj = Nground – 𝑁̂ground = Nground – (b0 + b1× Nlidar). 

Graph (b) in Figure 20 shows the errors after the adjustment (standard residual plot of residuals against the predicted ground 

densities from the OLS fit is available but not shown here). Graph (c) in Figure 20 shows the Bland-Altman plot after the 

adjustment. Once again, after the adjustment the predictions of ground densities from lidar densities are bias-free on average 

(i.e., 𝑒̅=0 and 𝑒̅%=0). This is also shown in Table 49 (second row), along with other goodness-of-fit statistics and agreement 

measure calculated after the adjustment.  

Compared to the results from the unadjusted goodness-of-fit statistics and agreement measure in Table 25 and the graphs in 

Figures 10-11, the gains from the adjustment are obvious. For instance, after the adjustment the RMSE is reduced from 356.4 

(Table 25) to 243.5 (Table 49, second row), the absolute error (MAE) is reduced from 285.7 to 193.6, the measure of 

agreement MOA is increased from 0.421 to 0.685, and the e10 is increased from 0.107 to 0.214. The adjusted errors are 

scattered (more or less) homogeneously in a band around the zero line (Figure 20(b)), whereas the unadjusted errors are 

clearly skewed upwards above the zero line (Figure 10(b)), implying that if unadjusted, the lidar densities would underestimate 

the ground densities (by an average of 250 stems/ha, Table 25).  

However, when comparing the adjusted (Figure 20(c)) and unadjusted (Figure 11(a)) Bland-Altman plots for ground densities 

and lidar densities, the number of data points outside the LoA lines in the Bland-Altman plot after the adjustment increased 

from zero (Figure 11(a)) to two (Figure 20(c)). This is due to what was mentioned earlier, that on average the adjustment will 

achieve bias-free (the individual errors sum up to zero), but the size of each individual error after the adjustment is not 

guaranteed to be smaller. The overall improvement of Figure 20(c) over Figure 11(a), though, is obvious. Whether the 

improvement is good enough is a different question, as after the adjustment, there are 26 out of 28 observations (26/28 =93%) 

fall within the LoA lines. This is slightly lower than the 95% specified by Bland and Altman (1986) for good agreement.  

Further improvement to the stand density calibration can be explored by incorporating additional variables on the right hand 

side of the calibration model, or by dividing or grouping the data into more homogenous subgroups or strata (e.g., based on 

height, density and/or geographical area) and fit the models by the strata. For instance, [5.45] may be expanded or changed 

to: 

[5.47] Nground = b0 + b1×Nlidar + b2×HDC 

[5.48] Nground = b0 + b1× Nlidar + b2×Htop 

[5.49] Nground = b0 + b1× Nlidar + b2×H% + b3×CC 

[5.50] Nground = b0 + b1× Nlidar + b2× HDC + b3×Htop + b4×CC 

[5.51] Nground = b0 + b1× Nlidar + b2×HDC + b3×Htop + b4×Hstd + b5×CC  

[5.52] Nground = 𝑏0𝑁lidar
𝑏1 HDC

𝑏2  

[5.53] Nground = 𝑏0𝑁lidar
𝑏1 HDC

𝑏2 exp (Htop
−𝑏3)  

[5.54] Nground = 𝑏0𝑁lidar
𝑏1 HDC

𝑏2 exp (Htop
−𝑏3) CC𝑏4 

where all the right hand side variables are extracted from lidar, HDC is the dominant and co-dominant height, Htop is the top 

height, H% is the top percent height (see Section 4.4 and Table 23), CC is the crown closure (either in percentage or in actual 

size/area), and Hstd is the standard deviation (std) of lidar extracted tree heights.  

Numerous additional lidar-derived variables based on height, crown cover and vertical structure metrics (or even some 

variables obtained on the ground) can also be evaluated and incorporated into [5.47]-[5.54], provided that they are readily 

available or easy to obtain and can explain additional variations (Næsset et al. 2005, Li et al. 2008, Bater et al. 2011). 

However, the minimum (Hmin) and maximum (Hmax) of lidar extracted tree heights are often not used in the models, because 

Hmin is almost always the same number (whatever minimum threshold chosen) and Hmax might be an outlier or a highly 

influential data point (which may invoke the use of robust regression – we will not go there in this study). Instead, height 

percentiles such as the 25th and 95th percentiles are typically used (Bater et al. 2011). Other functional forms can also be 

explored. They all fall within the general expression given by [5.42].  
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The Dependent Variable and Independent Variables in Calibration 

There are two ways to develop a regression function between ground measure and inventory measure, depending on whether 

the ground measure or the inventory measure is used as the dependent variable (the y-variable):   

[5.55] Ground measure = f(inventory measure)  

[5.56] Inventory measure = f(ground measure)  

where ground measure denotes a ground-measured forest attribute, inventory measure denotes the forest attribute extracted 

or derived from an inventory technique, and f denotes a general expression for a linear or nonlinear function. For instance, 

corresponding to the above general expressions, for ground height and lidar height, we could have:  

[5.57] Ground height = a1+b1×lidar height. 

 

[5.58] Lidar height = a2+b2×ground height.  

If the standard OLS method is applied to estimate the parameters in [5.57] and [5.58], we would get two distinct lines for the 

same set of data, because the OLS estimates of both the intercepts (a1 and a2) and the slopes (b1 and b2) would be different. 

This would impact calibration, as two inconsistent ground values could be predicted, one directly from [5.57], and the other 

indirectly from [5.58] through inversing, i.e., through re-arranging [5.58] and solving for ground measure (ground height in this 

example, producing ground height = (lidar height - a2)/b2). 

In remote sensing studies, the choice of which one to use between [5.55] and [5.56] appears quite arbitrary. Means et al. 

(1999), Heurich et al. (2004), Zhao et al. (2018) and Liu et al. (2018) chose to use [5.55] while Lim et al. (2001, as cited in St-

Onge et al. 2003), Coops et al. (2007), Kwak et al. (2007), Sibona et al. (2017), Wang et al. (2019), Krause et al. (2019) and 

most of the others chose to use [5.56]. While the choice of which variable to use as dependent or independent variable is 

inconsequential in a simultaneous equation system where a variable appearing on the right-hand side of an equation can also 

appear on the left-hand side of another equation in the system (e.g., Huang and Titus 1999), most of the equations developed 

in remote sensing studies are separate individual equations. Therefore, which variable to use as dependent or independent 

variable is very consequential (Piñeiro et al. 2008).  

In addition, since in practice the predominant reason for developing a regression function is almost always to predict a more 

difficult and costly variable from a relatively simpler and less expensive variable (or several relatively simpler and less 

expensive variables), it is the optimum to fit the regression function using the more difficult and costly variable as the y-

variable, because the OLS method minimizes the errors of the y-variable, not the x-variable(s). Therefore, it is always better to 

fit a regression function using the ground measure as the y-variable if the main purpose is to predict the ground attribute from 

remote sensing metrics, or to calibrate the remote sensing estimate to the ground measure. In the ground height-lidar height 

example in [5.57]-[5.58], since ground height is usually more difficult and costly to measure, and lidar height may be simpler 

and less expensive to measure (on a large scale), we would develop Ground height = a1+b1×lidar height, not the other way 

around. Using lidar height as the y-variable produces non-optimum results when predicting ground height.  

It could always be argued that for theoretical and non-practical academic reasons, one may only be interested in 

understanding the intrinsic quantitative functional relationship between the two sets of measurements from the ground and 

inventory. Achieving the best prediction for a more difficult and costly variable from a simpler and less expensive variable may 

not be the goal. If that is the case, it would be hard to refute, as we cannot prevent people from using a more difficult and 

costly variable to predict a simpler and less expensive variable. But that would be contrary to common sense.  

Furthermore, if indeed one may not know which variable can be considered the truth and used as the y-variable, but instead 

just want to establish an intrinsic quantitative functional relationship between the two sets of measurements, then the OLS 

method is inadequate, or at least non-optimum. One should implement the orthogonal distance regression, geometric mean 

regression, OLS-bisector regression or arithmetic mean (OLS-mean) regression. Each of these four regression methods treats 

both dependent variable (y) and independent variables (x) equally or symmetrically (Isobe et al. 1990, Babu and Feigelson 

1992, Van Huffel 1997). But still, none of them is as good as the OLS method if a goal or a by-product is to obtain the best 

prediction for a target variable, be it y or x. Since our goal of developing a regression function is almost always to predict a 

more difficult and costly variable from a simpler and less expensive variable (or variables when relevant), we will not discuss 

the symmetric regression methods further in this study. Interested readers may want to look into Huang et al. (2019) on the 

technical details of these four symmetric regression methods and their comparison to other methods.  

Approximation through Proportional or Ratio Adjustment 
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A simple proportional or ratio adjustment method can also be used for calibration. This method is implemented by calculating 

the proportion (P) or ratio between the average of the predictions from an inventory (𝑥̅) and the average of the corresponding 

ground observations (𝑦̅):  

[5.59] P = 
𝑥̅

𝑦̅
 

Once the P is available, the values of any existing or future ground observations are calibrated as: 

[5.60] Ground value (y) = prediction (𝑥)/P  

For instance, if on average lidar heights (derived from a lidar metric or metrics) are found to be 90% (P=0.9) of the ground 

heights, any lidar height can be calibrated to obtain ground height via: ground height=lidar height/0.9. 

The proportional adjustment method can be equally as effective as other more complex calibration methods if the data sets 

from the ground measures and inventory predictions meet certain conditions (e.g., linearity and proportionality between the 

data sets across the observation and prediction ranges). This method is described in more details elsewhere (e.g., Huang 

2002, Huang 2016, Huang et al. 2016). It is quite straightforward and will not be repeated further in this study. 

Calibration through Mixed-Effects Methods 

Some more complex and computationally more demanding methods for calibration can be achieved through mixed-effects 

methods. Interested readers may want to start with the step-by-step examples first (Huang 2016, Huang et al. 2016), then, if 

necessary, move on to incorporate correlated error structures (Meng and Huang 2009, 2010; Meng et al. 2012), and 

ultimately, generalized error structures (Huang et al. 2009a, Yang and Huang 2011a, Huang et al. 2011). Detailed descriptions 

on the mixed-effects methods, along with the conditions and input required for using these methods in practice, are presented 

extensively elsewhere (e.g., Huang et al. 2009b, 2009c; Meng and Huang 2009, Yang and Huang 2011b). They will not be 

elaborated and repeated further in this study.  

A Note of Caution on Calibration 

Using a regression function expressed in the general forms of [5.41]-[5.42], or the simple proportional or ratio adjustment 

method, any measures predicted or extracted from an inventory technique, no matter how bad or good they are, can always 

be calibrated to the ground measures bias-free (i.e., 𝑒̅=0 and 𝑒̅%=0).  

However, regression (correlation, association) analysis is very different from accuracy assessment and agreement analysis. 

Whether the calibrated measures are accurate enough or are in agreement with the ground measures is a different question. 

The answer to it depends on other factors, including the dispersion or precision of the calibrated measures (e.g., in terms of 

RMSE, e10, e33 and e50), the agreement between the calibrated measures and the ground measures (e.g., in terms of MOA, 

the error plot and the Bland-Altman plot), and the subject matter biological, mensurational and operational considerations for 

the specific variable in interest and the objectives of a study (besides the needs to consider time, relevant expertise and 

requirements, cost and economic viability and other potential variables and constraints). Calibration is not a panacea nor an 

alchemy for any inaccurate and inoperable measures from inventory techniques. It is always the best to aim for accurate 

estimates in the first place without the thought of calibration, which may be considered the last resort, or sometimes, the last 

“salvage” operation.  
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6 Conclusions and recommendations 

The conclusions and recommendations reached based on the analyses conducted in this study are summarized as follows:  

1. To be considered an operationally valid forest inventory technique or a preferred forest inventory technique among the 

competing inventory techniques at the tree and stand level, the inventory technique at a minimum must demonstrate the 

accuracy and agreement to ground measures in predicting tree species, species composition (species frequency 

distribution), and species-specific height and density to a meaningful tagging limit. The statistical methodologies 

presented in this study allow for the determination of the accuracy and agreement for these four primary inventory 

variables that are critically important to strategic and operational forest management, and that can be extracted or derived 

from promising new inventory techniques at the tree and stand level.  

2. To determine the accuracy of tree species classification/prediction, an error matrix in the form of Table 2 should be 

provided. Within this error matrix, four accuracy measures should be calculated: the overall accuracy for all species 

combined (Po), the correct proportion relative to the ground reference (PR) and the correct proportion relative to the 

classification (PC) for each species, and the pooled average of the correct proportions for each species (PAve). No other 

accuracy measures should be computed from the error matrix, as they generally obscure, distract, dilute, confuse or even 

mislead the real accuracy assessment for tree species classification, and many of them involve questionable formulations 

or are very idiosyncratic to the specific situation that bears little relevance to the reality of tree species classification.  

3. For tree-based approach, prior to assessing the accuracy of species classification in the form of an error matrix, it is 

important to look at the accuracy of crown delineation or stem segmentation. The overall accuracy of species 

classification for an individual tree-based inventory is determined by the crown delineation accuracy, as well as the 

species classification accuracy. It is very important to at least take a look at the proportion of the stems/crowns that are 

missed by crown delineation. Without assessing and understanding the crown delineation or stem segmentation errors (at 

least the missing errors), implementation of any tree-based inventory technique in operations must be exercised with 

great caution and caveats. In any case, without assessing, understanding and finding ways to address the crown 

delineation or stem segmentation errors, practitioners should not adopt a tree-based approach or any approach as a data 

collection tool in place of measuring PSPs and TSPs on the ground. Ground-measured PSPs and/or TSPs are necessary 

to act as the truth or reference standards when determining the accuracy and judging the validity of any forest inventory 

techniques. 

4. The equivalence between species compositions (i.e., species frequency distributions) from the ground measures and 

inventory measures can be assessed using the chi-square test or Fisher's exact test. In general, the chi-square test 

should be used. But if more than 20% of the cells in the matrix tabulated for the chi-square test have expected values 

less than five, then Fisher’s exact test should be implemented instead. However, if Fisher’s exact test fails to execute due 

to a large sample size or a large matrix, the chi-square test is a valid approximation and a suitable replacement. The 

accuracy of the chi-square test increases with the increasing sample sizes and the dimensions of the matrix.  

5. When judging the accuracy and agreement (to ground measures) for height and density, at least one of the error plots and 

three of the goodness-of-fit statistics described in Section 4.1 should be evaluated and included. One of the three 

goodness-of-fit statistics must be the root mean square error (RMSE) or mean squared error (MSE), which is an overall 

accuracy measure that combines both bias and precision. For more detailed analysis, especially when focusing on 

assessing the agreement between ground measures and inventory measures, Mielke’s measure of agreement (MOA) and 

the Bland-Altman plot and analysis should also be included, and the Kolmogorov-Smirnov test should also be conducted.  

6. The validity of an inventory technique shall not and cannot be judged by a single matrix, a single statistic or a single test, 

no matter how powerful it is claimed to be. It is critically important to assess the performance of all four primary inventory 

variables collectively, so the accuracy and the level of agreement of an entire inventory technique can be determined 

holistically. 

7. Among many potential stand heights, the tree height-ranked top height (Htop, the average height of the 100 tallest trees 

per hectare), the top percent or percentile height (e.g., the average height of the tallest 20% or 25% of the trees per unit 

area), and the more precisely defined dominant and co-dominant height or overstory height (HDC, the average height of all 

trees taller than or equal to 80% of the tallest tree per unit area), are recommended for aerial-based forest inventories. 

The HDC and/or Htop are generally preferred in practice, for they are precisely defined and thus repeatable and can be 

consistently implemented no matter who is using them. Both of them also do not require a full tree list, nor the prediction 

of tree diameters as a priori.  
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8. There are a number of technical and operational caveats in assessing forest inventory techniques and applying the 

statistical methods for the assessment. They include: (1) the three statistical tests used in this study (the chi-square test, 

Fisher's exact test and the Kolmogorov-Smirnov test), only evaluate the difference between two sets of frequency 

proportions from two methods, not two sets of frequency numbers, nor two sets of broadly and vaguely defined 

“distributions”; (2) it is necessary to focus on assessing the key variables that are directly extracted from an inventory 

technique. Good accuracy and agreement for any other indirectly derived variables such as volume, biomass and carbon, 

although highly desirable, may not be really indicative of the accuracy and agreement of an inventory technique (it may 

indicate the quality of ancillary data, the “helper” models or processes involved, the calibration technique chosen, or the 

viability and strength of the connecting relationships implicated); (3) the standard scatter plot and calibration may mask 

the true accuracy and agreement of an inventory technique. They need to be used and interpreted with great caution; (4) 

many conventional idioms and measures associated with the error matrix were derived from questionable concepts and 

formulations. They have confused many researchers and practitioners alike, and their continued use in assessing the 

classification accuracy in photogrammetric and remote sensing studies, is unwarranted and should be avoided; and (5) 

results from any statistical tests should be considered only as approximations and as one of the factors in holistically 

judging forest inventory techniques. Statistical significance is not necessarily related to importance, nor to causation. It 

should always be looked at in conjunction with relevant practical, biological and mensurational significance, which can be 

more important and meaningful than statistical significance in many practical situations.  

Comparing new and emerging forest inventory techniques to ground measures can be an intricate and challenging process. 

The intricacies arise because the comparison typically involves categorical and continuous variables obtained in various 

qualitative and quantitative forms. The methods presented in this study collectively should provide the right tools capable of 

addressing and answering the most relevant questions related to such comparisons. There are other considerations in judging 

a forest inventory technique (such as time, relevant expertise and required resources, cost or economic viability, sampling and 

other potential operational variables and constraints), which are beyond the scope of what has been discussed in this study. 

Ultimately, the validity and usefulness of any new and advanced forest inventory technique is determined by how accurate and 

timely it is in mirroring on-the-ground reality (i.e., the actual forest attributes, characteristics, structures and conditions), and 

how effective, efficient, reliable, consistent, user-friendly and economically viable it is in real world applications. We are fairly 

confident that in due course, with the tremendous ongoing efforts by numerous forest inventory specialists, consultants, 

researchers, academics and other stakeholders, accurate future forest inventories based on Fully Automated Census 

Techniques (FACTs) at different levels (e.g., tree, stand, landscape and population), will become a reality. 
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