Background

“How are the fish in my lake doing?” We need this answer to set appropriate fishing regulations, to understand and correct any problems with fish habitat, and to guard against invasive species. A healthy fish population and fish community means we can all enjoy the benefits of sustainable fisheries and healthy ecosystems. A standard method of assessing the status of fish populations is necessary to allow comparisons of fish sustainability across the years at a lake, and to compare to other lakes. In Alberta, we use an accepted standard of index netting for lake fisheries assessment. This method provides the necessary data on fish abundance, biological data (such as age and sex), and species diversity to assess sustainability.

Fall Index Netting (FIN)

Alberta Environment and Parks monitor Walleye and Northern Pike populations using standardized index netting (Morgan, 2002). Fall index netting occurs during late summer and fall when water temperatures are 10-15 °C. Standardized multi-mesh gill nets are set at random locations between 2 and 15 metres deep, set for 21-27 hours (i.e., a net-night), and then reset in new random locations. Information from Yellow Perch, Lake Whitefish, Burbot, minnow, and sucker species are also collected. The information collected from each fish includes length, weight, age, gender, and maturity. After sampling, if fish are appropriate for human consumption, Alberta biologists provide the fish to local Indigenous peoples or to persons on approved subsistence lists. Typically, a tiny proportion of the lake’s fish population (usually less than 1 or 2%) are killed in this sampling.

How is this information used?

Catch rates (i.e., number of fish captured per net-night) of Walleye and Northern Pike are an index of the populations’ abundance, with higher catch rates meaning there are more fish in the lake. The abundance of adult fish is compared to the standardized thresholds for 5 broad categories of risk to the long-term sustainability of the fish population, with higher densities of fish having lower risk (Table 1). The sizes and age of fish also tell us if problems with overharvest (e.g. too few fish living to old age) or habitat (e.g., poor spawning success) are a concern. Biologists use this information, as well as a variety of data on water quality, access, development, and habitat threats as part of Alberta’s Fish Sustainability Index (FSI).

The management goal for most Alberta fisheries is long-term sustainability, shown by the red lines on the graphs below. Achieving this goal uses the netting data and the FSI to determine the most appropriate sport fishing regulations for a lake. This landscape-level assessment allows for consistent, broad temporal comparisons of fish sustainability and status. For more information please see Alberta’s FIN and FSI websites,

http://aep.alberta.ca/fish-wildlife/fisheries-management/fall-index-netting/default.aspx

http://aep.alberta.ca/fish-wildlife/fisheries-management/fish-sustainability-index/default.aspx

Table 1 – Alberta’s Fish Sustainability Index risk thresholds for Walleye and Pike using the standardized Fall Index Net (FIN) method. Note: Thresholds align with species management frameworks.

<table>
<thead>
<tr>
<th>Mature Walleyes / net</th>
<th>Mature Pike / net</th>
<th>Risk to Sustainability</th>
</tr>
</thead>
<tbody>
<tr>
<td>>29.0</td>
<td>>21.8</td>
<td>Very Low</td>
</tr>
<tr>
<td>20.3-29.0</td>
<td>15.3-21.8</td>
<td>Low</td>
</tr>
<tr>
<td>14.5-20.2</td>
<td>10.9-15.2</td>
<td>Moderate</td>
</tr>
<tr>
<td>5.8-14.4</td>
<td>4.4-10.8</td>
<td>High</td>
</tr>
<tr>
<td><5.8</td>
<td><4.4</td>
<td>Very High</td>
</tr>
</tbody>
</table>

Results of the 2014 FIN at Haig Lake

Haig Lake (877 ha) is located 104 km northeast from the town of Peace River. From September 29 to October 1, 2014, five gill nets captured 58 Lake Whitefish, 5 Northern Pike, and 157 Walleye, from Haig Lake.

Walleye

The mean catch rate of Walleye was 31.4/net-night. The catch rates of mature (Figure 1) and immature Walleye were 21.4/net-night and 9.8/net-night, respectively. The corresponding FSI score for the current mature density of Walleye was assessed at low risk.

The length distribution indicates unstable yet abundant recruitment of Walleye, and very abundant fish from 290 to 600 mm (Figure 2). The population seems to be supported by several abundant size-classes.

The 2014 FIN sample represented approximately 1.0 % of the estimated mature Walleye population size.
Northern Pike

The mean catch rate of mature Northern pike was 1.0/net-night (Figure 3). The corresponding FSI score for the mature density of Northern Pike was assessed at **very high risk**.

The length distribution indicates no recruitment and individual fish between 420 and 890 mm (Figure 4). The population seems to be supported by a few and very weak size-classes.

The 2014 FIN sample represented approximately 0.2% of the estimated Northern Pike population size.

Summary

Since the FIN assessment in 2008, the corresponding FSI status of the Walleye population in Haig Lake has improved from **moderate risk** to **low risk**. Dependant on the management objectives, the Walleye population may now provide opportunities for carefully managed harvests, such as minimum size limits or Special Harvest Licences.

Since the 2008 FIN assessment, the FSI status of Northern Pike has remained at **very high risk**. For long-term sustainability, stringent conservation-based management is necessary, dependant on the management objectives.

Literature