

QUEST CARBON CAPTURE AND STORAGE PROJECT

Response to Supplemental Information Request #2

Quest Carbon Capture and Storage Project

RESPONSE

TO

THE SUPPLEMENTAL INFORMATION REQUEST #2

FROM

ALBERTA ENVIRONMENT

Table of Contents

1. Acronyms used in	this Supplemental Information Request	1-1
2. Board		2-1
Noise		2-1
Question 1: Ra	ail Noise Impacts	2-1
	g Noise Emissions	
Question 3: No	otification of Impacted Residents	2-2
	ound Monitoring upon Receipt of Complaints	
	te Noise Management Plan	
Question 6: Re	evised Response to SIR 33	2-4
Question 7: Kı	nown Changes Referred to in the Response to SIR 33c	2-5
	arification on Sound Levels	
Question 9: At	ttenuation Measures and Revision for Response to SIR 34	2-7
Question 10: F	Field Measurements for Noise	2-8
Question 11: F	Revision for the Response to SIR 37a	2-9
3. Hydrogeology		3-1
Question 12: F	Revised Response to SIR 84, Table 84-1 and Figure 84-1	3-1
	egacy Wells Penetrating the Seals of the BCS	
Question 14: S	Status of Technical Feasibility Studies	3-22
	Status of Additional Numerical Modelling	
	ithological Information near Well 8-19	
Question 17: E	Exposure Pathways and Guidelines	3-34
Question 18: H	Hydraulic Isolation in the AOI	3-49
Question 19: F	Revision for the Response to SIR 98, Table 98-1	3-49
Question 20: N	Monitoring Technologies Accuracy	3-51
4. Approvals		4-1
4.1. Alberta Sustainab	ole Resource Development	4-1
Question 21: A	ASRD Review of the Contingency Plan	4-1
Question 22: C	Crossing of the North Saskatchewan River	4-2
	List of Tables	
Table 34-1 (Revised)	Base Case Sound Levels	2-8
Table 37-1 (Revised)	Predicted Application Case Sound Levels	2-9
Table 37-3 (Revised)	Predicted Planned Development Case Sound Levels	
Table 84-1 (Revised)	Summary of Water Act Licenses within the AOI	
Table 99-2 (Revised)	Surficial Deposits Crosstab – AENV	3-35
Table 99-3 (Revised)	Surficial Deposits Crosstab – Seismic	3-36
Table 99-4 (Revised)	Oldman Crosstab – AENV	3-37
Table 99-5 (Revised)	Oldman Crosstab – Seismic	3-38
Table 99-6 (Revised)	Foremost Crosstab – AENV	
Table 99-7 (Revised)	Foremost Crosstab – Seismic	3-44

Table 98-1 (Re	evised) Total Number of Data Sets Evaluated for Hydraulic Condu	ectivity
	Estimates	3-50
	List of Figures	
Figure 84-1 (R	Revised) Location of Licenced Non-Saline Groundwater Diversion	s in the
	AOI	3-2
Figure 15-1	Det Norske Veritas Statement of Fitness for Purpose (Page 1 of 5).	3-24
Figure 15-1	Det Norske Veritas Statement of Fitness for Purpose (Page 2 of 5).	3-25
Figure 15-1	Det Norske Veritas Statement of Fitness for Purpose (Page 3 of 5).	3-26
Figure 15-1	Det Norske Veritas Statement of Fitness for Purpose (Page 4 of 5).	3-27
Figure 15-1	Det Norske Veritas Statement of Fitness for Purpose (Page 5 of 5).	3-28
Figure 97-4	Radway Groundwater Monitoring Well Installation	3-30
Figure 16-1	Water Well Drilling Report (Page 1 of 3)	3-31
Figure 16-1	Water Well Drilling Report (Page 2 of 3)	3-32
Figure 16-1	Water Well Drilling Report (Page 3 of 3)	3-33

1. Acronyms used in this Supplemental Information Request

AENV	Alberta Environment and Water
AOI	Area of Interest
	Alberta Sustainable Resource Development
BCS	Basal Cambrian Shield
CO ₂	
DFO	Department of Fisheries and Oceans Canada
DNV	Det Norske Veritas
EIA	Environmental Impact Assessment
HDD	Horizontal Directional Drilling
km	kilometre
LSA	Local Study Area
	metre
MMV	Measurement, monitoring and verification
PLA	Pipeline Lease Agreement
Q3	Third Quarter
RSA	Regional Study Area
	Shell Canada Limited
SIR	Supplemental Information Request
TC	Transport Canada
TOR	Terms of Reference
UTM	

2. Board

The responses to questions in this Board section will not be considered as part of the EIA completeness decision made by Alberta Environment and Water.

The Board's Economics, Environment and Social Analysis (EESA) Group have reviewed SIR (1) Responses dated July 2011 and have the following supplemental information requests.

Noise

Question 1: Rail Noise Impacts

SIR 24a., Pages 3-56 to 3-57

Shell has not addressed rail noise impacts during the operation phase of the project for the residences assessed.

- a. Has the noise impact from rail noise for the operational phase been included in the NIA?
- b. Provide the expected noise impacts from rail noise during construction, operation, decommission and abandonment phases for the project.

Response 1

- a. Noise effects from railway use associated with the Project were not considered in the NIA. As discussed in the response to Round 1 SIR 24, the Project contribution to existing rail noise levels is anticipated to be minimal. Current operations at Shell Scotford average approximately 2000 rail cars per month (in and out). Project operations may require up to one additional rail car per month. Given the small number of additional rail cars, additional noise effects from railway use associated with the Project will not be perceptible at the identified residences.
- b. As for railway use during operations for the Project, use of the railway for the Project during the construction, decommissioning and abandonment is expected to be minimal, if required at all. For railway noise during operations, see the response to Round 1 SIR 24a and Round 2 SIR 1a.

Question 2: Rig Noise Emissions

SIR 25b., Page 3-58

Shell states "...pre-inspection of the rig and review of the rig's acoustical rating to confirm that noise mitigation measures are in place and the rig's noise emission level would not exceed 40 dBA at any receptor's location during drilling."

a. Confirm how Shell will ensure the rig(s) noise emission levels will not exceed 40 dBA at any receptor's location during drilling.

Response 2

- a. As discussed in the response to Round 1 SIR 25b, Shell will complete the following activities to minimize any noise disturbance during drilling:
 - ensure all noise mitigation on the rig is in working order
 - understand the noise rating of the rig and the closest receptors
 - optimize rig orientation to minimize noise experienced at any potential receptors
 - complete an initial measurement of sound levels at the rig site upon start up

As per section 1.4 of Directive 038, the compliance for drilling and servicing rigs is on a complaint basis only. If a complaint is received, Shell will work with the complainant to determine if noise monitoring is appropriate.

Question 3: Notification of Impacted Residents

SIR 25c and 25d., Page 3-58

Shell states, "If Shell receives a noise complaint, Shell will investigate the complaint and attempt to implement appropriate remedial measures, if necessary. If the complaint cannot be resolved, Shell will do a comprehensive sound survey at the relevant receptor in compliance with *Directive* 38. A Class B adjustment would be made to the baseline survey level, in accordance with Section 2.1.2.3 of *Directive* 38, if the duration of drilling activities is less than 60 days and if there is a residence within 1.5 km of the drilling site....Class B adjustments will only be applied when a noise complaint is received and there is a potentially impacted resident within 1.5 km of the drilling site." Section 2.1.2.3 8) of *Directive* 038 states, "In order to use this adjustment, the licensee must fully inform the potentially impacted residents of the duration and character of noise."

a. Confirm when Shell will inform potentially impacted residents of the duration and character of noise in order to use the Class B Adjustment.

Response 3

a. Shell will inform potentially affected residents of the expected duration and character of the noise in a timely fashion in advance of the drilling. Upon confirmation of the drilling schedule, Shell will make appropriate notifications to potentially affected residents and inform them if the Class B Adjustment was required. Shell will also ensure potentially affected residents are given appropriate contact information should they have any concerns or questions during the drilling operations. In addition, Shell Scotford uses the NRCAER Updateline to post messages related to anything that neighbours may see, smell or hear that would be outside of normal operating conditions. Posted messages on the NRCAER Updateline also provide contact information for Shell Scotford should neighbours wish to ask questions or voice concerns.

Question 4: Sound Monitoring upon Receipt of Complaints

SIR 29a., Page 3-65

Shell states, "...fence line measurements would provide reliable isolated information on actual sound levels from the capture infrastructure alone. The process outlined in the Application, Volume 2A, Section 6.4.7.1 satisfies Section 4.3.2 of *Directive* 38, which recommends the use of isolation analysis techniques to separate out sound sources and obtain the sound level from the source of interest alone."

The fence line measurement process described in Response to Question 29 a,b,c and d appears to correlate to Section 4.3.1, Methodology for Assessing Multiple Noise Sources of *Directive* 038. The last paragraph of Section 4.1, Investigation Procedures, page 19 of *Directive* 038 states, "When measured CSL exceeds the PSL but noise from the facility and its related activities is not considered to be responsible for the exceedence, a further assessment using an appropriate isolation analysis (Section 4.3.2) technique to separate the facility noise contribution from the measured CSL may be carried out. This will, in effect, separate noise not related to the facility. The isolated facility contribution can then be compared to the PSL for compliance."

a. Confirm Shell will conduct a continuous sound monitoring survey at the complainant's residence to verify compliance with *Directive* 038.

Response 4

a. As per the current procedures at the Scotford Upgrader, in the event that a complaint about the operations of the Project is received, Shell will work with the complainant to resolve the situation. If appropriate, Shell will conduct a continuous sound monitoring survey at the complainant's residence, in accordance with the procedures discussed in Directive 038.

Question 5: Site Noise Management Plan

SIR 31a., Page 3-67

Shell states, "Shell will update the Site Noise Management Plan to incorporate noise management policy, best practices, monitoring and complaint response procedure for monitoring and investigation at the fence line."

- a. Provide a copy of Shell's Site Noise Management Plan.
- b. Discuss the Site Noise Management Plan monitoring and measurement program to assess site noise performance and updating of the Regional Noise Model.

Response 5

- a. Noise, as other environmental aspects managed at Shell's operations, is managed as part of the Health Safety Security and Environment- Management System (HSSE-MS). Although the elements of the Regional Noise Management Plan (RNMP) are embedded within the HSSE-MS, Shell is preparing a navigation document that will become Shell's Site Noise Management Plan. When completed, the Site Noise Management Plan will become available for ERCB review. Shell is expecting to have this document completed in Q2 2012 and will submit it to the ERCB.
- b. The Site Noise Management Plan will include monitoring and measurement programs to assess site noise performance. As per the RNMP framework, it is expected that the NCIA will be providing an annual noise report to the ERCB. Shell will provide the required information to the NCIA for this report.

Question 6: Revised Response to SIR 33

SIR 33b., Page 3-71

Shell states, "See Table 6-6 for the facilities that are included in the cumulative environmental effects assessment."

a. Revise Table 6-6 to indicate the year of compilation or last update to the noise model for each facility.

Response 6

a. Shell has used publicly available data for the facilities included in the cumulative environmental effects assessment. The last update to the noise model for each of these facilities is, therefore, reflected in the application submission dates. The revised Table 6-6 from the response to Round 1 SIR 6 shows the application submission date for each assessment.

Table 6-6 (Revised) Summary of Facilities in the Cumulative Environmental Effects
Assessment Cases

Cumulative Environmental Effects Assessment Case	Sound Sources Included in Noise Model	Application Submission Date
Base Case	ASLs (per Directive 038)	N/A
	Predicted contributions from existing facilities near the Project (obtained from other approved EIAs in the area (e.g., Shell 2005; TOTAL 2007)	N/A
	BA Energy Upgrader (approved) ¹	May, 2004
	AOSP Scotford Upgrader Expansion 1 Project (approved)	May, 2005
	North West Upgrader (approved) 1	November, 2006
	AOSP Bitumen Blending Facility (approved)	May, 2008
	Provident/Williams Energy BB-Mix Project (approved)	November, 2010
	Fort Hills Sturgeon Upgrader Project (approved) 1	December, 2006
Application Case	Base Case	November , 2010
	CO ₂ Capture Infrastructure	November, 2010
Planned	Application Case	November, 2010
Development Case	TOTAL Upgrader Project (planned)	November, 2008
Case	Provident/Williams Energy C5 Hydrotreater and C2 Recovery Projects (planned)	July, 2011
NOTE:		<u> </u>

These approved projects are currently on hold and were included in the noise model to provide a conservative assessment.

Question 7: Known Changes Referred to in the Response to SIR 33c

SIR 33c., Page 3-71

Shell states, "Yes, Shell updated its existing noise model for the assessment to include any known changes to noise sources or receptors in the area of the Project, dating to 2005."

a. Provide a summary of the known changes included in response to 33c.

Response 7

a. Shell has updated its noise model to include noise sources associated with the AOSP Bitumen Blending Facility Project. Shell has also included Receptors 14 and 16 as modelled receptors, consistent with Appendix C of the AOSP Bitumen Blending Facility Project SIR Responses.

Question 8: Clarification on Sound Levels

SIR 34a., Pages 3-72 to 3-73

Shell states, "The predicted sound contribution from existing facilities in the LAA is based on sound data from the baseline CSL noise model used in previous approved EIAs completed in the area by Shell in 2005, 2007 and 2008 and by BA Energy in 2004."

- a. Discuss why Shell has not conducted current Comprehensive Sound Level (CSL) measurements for this application?
- b. How will Shell verify the predicted sound levels from the existing facilities, Base Case, Application Case and Planned Development Case?
- c. Has the contribution of noise from the Viking Oil and Gas wells and associated facilities been included in the assessment? If not, revise the NIA to include cumulative effects from these sources.

Response 8

- a. Permissible Sound Levels (PSLs) in the Alberta Industrial Heartland are based in part on historical data and have been confirmed through other submitted NIAs. According to Directive 038 (page 9), primary data is only required if an operator is applying for an adjustment to the Basic Sound Level (BSL). Therefore, because Shell is not applying for an adjustment to the BSL, Shell chose to rely on pre-established data for this assessment.
- b. As an active member of the Northeast Capital Industrial Association, Shell will comply with the Regional Noise Management Plan (RNMP). Part of the RNMP involves creating a regional noise model; therefore, Shell will provide Project noise information for incorporation in to the model. Shell currently and will continue to participate, as appropriate, in NCIA efforts to validate the results of the regional model.
- c. No, the Viking Oil and Gas wells and associated facilities have not been included in the assessment. Shell has considered the major noise sources in the local assessment area and has provided a conservative assessment by including noise sources such as the BA Energy Upgrader, the North West Upgrader, and the Fort Hill Sturgeon Upgrader that are currently on hold. The exclusion of the Viking wells is also consistent with other noise assessments conducted in the area.

Question 9: Attenuation Measures and Revision for Response to SIR 34

SIR 34a., Pages 3-72 to 3-73

Shell states, "Table 34-1 indicates that the predicted Base Case CSLs for all the residences, except Residence 74 and Residence 81, meet ERCB PSL noise Limits." Section 3.6 19) b, Compliance Determination/Attenuation Measures, page 17 of *Directive* 038 states, "If the predicted sound level indicates noncompliance with this directive, identify attenuation measures that the licensee is committing to and implementing for compliance."

- a. Identify attenuation measures that Shell is committing to and implementing for compliance with residences where predicted sound levels indicate noncompliance with *Directive* 038.
- b. Revise Table 34-1, Note E to read Residence 74 instead of 72.

Response 9

- a. As shown in Tables 34-1 and 37-1 of the responses to Round 1 SIR 34 and 37, the predicted cumulative sound levels at Receptors 72 and 81 do not change when comparing the Base and Application Case results. That is, the cumulative sound levels are 47.5 and 46.2 dBA at receptors 74 and 81, respectively for both cases. Therefore, the Project does not contribute to any potential exceedances of the PSLs at these receptors and noise attenuation measures for the Project are not required.
 - Shell is an active member of the NCIA and is participating in the development and implementation of the RNMP. One of the objectives of this regional initiative is to minimize noise levels in the environment from member companies and their associated facilities, to the extent possible. Shell supports these regional efforts.
- b. A revised Table 34-1 for the response to Round 1 SIR 34 is presented here. Note 'e' is updated to include Residence 74.

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
Residence No	Predicted Contributions from Existing and Approved Projects ^a (dBA L _{eq} (9))	PSL-5 (dBA L _{eq} (9))	Predicted Base Case CSL (Column 2+3) ^b (dBA L _{eq} (9))	Nighttime Permissible Sound Level ^c (dBA L _{eq} (9))	Meets ERCB Guidelines? (Yes/No)
4	44	42	46.1	47	Yes
10	41	42	44.5	47	Yes
12	41	42	44.5	47	Yes
14	40	42	44.1	47	Yes
16	40	42	44.1	47	Yes
23	39	42	43.8	47	Yes
24	40	42	44.1	47	Yes
33 ^d	43	42	45.5	47	Yes
74 ^e	46	42	47.5	47	No
81 ^e	45	40	46.2	45	No

NOTES:

Question 10: Field Measurements for Noise

SIR 35c., Page 3-74

Shell states, "Calibrated using data from field measurements means confirming that model results for existing sources at the receptors are consistent with field measurements."

- a. Provide a table confirming model results for existing sources at the receptors are consistent with field measurements.
- b. Provide the date(s) and meteorological conditions during the field measurements.

Response 10

a. As stated in the response to Round 1 SIR 35c, calibration is used to denote a consistency check between modelled and monitored values. Field measurements were not taken as part of this assessment. Model calibration has been incorporated into a previous assessment conducted in the area (Question 59, Shell 2005) and this model forms part of the Base Case. Therefore, it is

^a Based on extensive data available from other EIAs in the area and calibrated using data from field measurements (e.g., Shell 2005, 2007 and 2008; BA Energy 2004)

For an explanation of logarithmic addition of sound levels, see "Decibel Addition" in Appendix 6A (in the Application).

^c Based on approved PSLs by the ERCB for these residences in previous assessments in Alberta's Industrial Heartland (e.g., Shell 2005, 2007 and 2008; BA Energy 2004)

d Residence No. 33 is located within the fenceline of the planned TOTAL Upgrader Project. It is no longer occupied and is included in the assessment for information purposes only because the ERCB might be interested in knowing the predicted sound levels at this location.

^e Residence 81 is approximately 5.3 km north of the Project and Residence **74** is 2.2 km southwest of the Project. Results are rounded to one decimal place.

reasonable to conclude that there is agreement between the model for existing sources and measurements conducted in the area.

b. Field measurements were not undertaken.

REFERENCE:

Shell Canada Limited. 2005. Supplemental Information Responses for the Scotford Upgrader Expansion Project. Submitted to Alberta Energy Resources Conservation Board and Alberta Environment. Calgary, AB.

Question 11: Revision for the Response to SIR 37a

SIR 37a., Pages 3-75 to 3-78

ERRATA. "See Tables 37-1 to 37-4 for revisions (shown in bold) to the Application..."

a. Revise Tables 37-1 and Table 37-4 to read Residence 74 instead of 72.

Response 11

a. Tables 37-1 (Revised) and 37-3 (Revised) show the corrections to the response to Round 1 SIR 37. Table 37-4 does not refer to Residence 72 and is, therefore, not reproduced here.

Table 37-1 (Revised) Predicted Application Case Sound Levels

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
Residence No.	Predicted Base Case CSL (dBA L _{eq} (9))	Predicted Sound Level Contribution from the CO ₂ Capture Infrastructure (dBA L _{eq} (9))	Predicted Application Case CSL (Column 2+3) (dBA L _{eq} (9))	Nighttime Permissible Sound Level (dBA Leq (9))	Meets ERCB Guidelines? (Yes/No)
4	46.1	28	46.1	47	Yes
10	44.5	30	44.5	47	Yes
12	44.5	30	44.5	47	Yes
14	44.1	29	44.1	47	Yes
16	44.1	30	44.1	47	Yes
23	43.8	27	43.8	47	Yes
24	44.1	27	44.1	47	Yes
33	45.5	29	45.5	47	Yes
74	47.5	32	47.5	47	No
81	46.2	20	46.2	45	No

NOTE:

The revised table indicates that the predicted Application Case CSLs for all the residences except 74 and 81 meet ERCB PSL noise limits. Residence 81 is located approximately 5.3 km north of the Project while Residence **74** is 2.2 km southwest of the Project. The contribution from the CO_2 capture infrastructure is not noticeable and is substantially less than the PSL at each of the residences.

Table 37-3 (Revised) Predicted Planned Development Case Sound Levels

Column 1	Column 2	Column 3	Column 4	Column 5	Column 6
Residence No.	Predicted Application Case CSL (dBA L _{eq} (9))	Predicted Sound Level Contribution from other Publicly Disclosed Planned Projects (dBA L _{eq} (9))	Predicted Planned Development Case CSL (Column 2+3) (dBA L _{eq} (9)) ^{a,b}	Nighttime Permissible Sound Level (dBA L _{eq} (9))	Meets ERCB Guidelines? (Yes/No)
4	46.1	29	46.1	47	Yes
10	44.5	18	44.5	47	Yes
12	44.5	18	44.5	47	Yes
14	44.1	18	44.1	47	Yes
16	44.1	19	44.1	47	Yes
23	43.8	22	43.8	47	Yes
24	44.1	22	44.1	47	Yes
33	45.5	44	47.8	47	No
74	47.5	28	47.5	47	No
81	46.2	15	46.2	45	No

NOTE:

The revised table indicates that the predicted Application Case CSLs for all the residences except 74 and 81 meet ERCB PSL noise limits. Residence 81 is located approximately 5.3 km north of the Project while Residence 74 is 2.2 km southwest of the Project. Residence No. 33 is located within the fenceline of the TOTAL Upgrader Project. It is no longer occupied and is included in the assessment for information purposes only. The contribution from the CO_2 capture infrastructure is not noticeable and is substantially less than the PSL at each of the residences.

3. Hydrogeology

Question 12: Revised Response to SIR 84, Table 84-1 and Figure 84-1

SIR 84 b., Pages 4-1 to 4-15.

Shell includes a summary of *Water Act* licences within the AOI (Table 84-1) and a map with water well locations (Figure 84-1).

- a. Not all information requested in the original SIR is included in Table 84-1. Update tables to include licencee information, where available.
- b. Table 84-1 includes diversion location in latitude and longitude; however, the accompanying map (Figure 84-1) is referenced in UTM coordinates. Update Table 84-1 to include locations referenced as UTM coordinates, consistent with Figure 84-1.
- c. Table 84-1 includes more than 150 active *Water Act* licences; however, the accompanying map (Figure 84-1) appears to include fewer water licence locations. Confirm that Figure 84-1 includes the locations of all active licences listed in Table 84-1.

Response 12

- a. Table 84-1 in the response to Round 1 SIR 84 has been revised to include the licencee information.
- b. Table 84-1 has also been revised to include UTM coordinates.
- c. Figure 84-1 did include all of the Water Act license locations; however, there was an issue with the symbology such that the agricultural licenses were represented with very small symbols. The revised Figure 84-1 is provided.

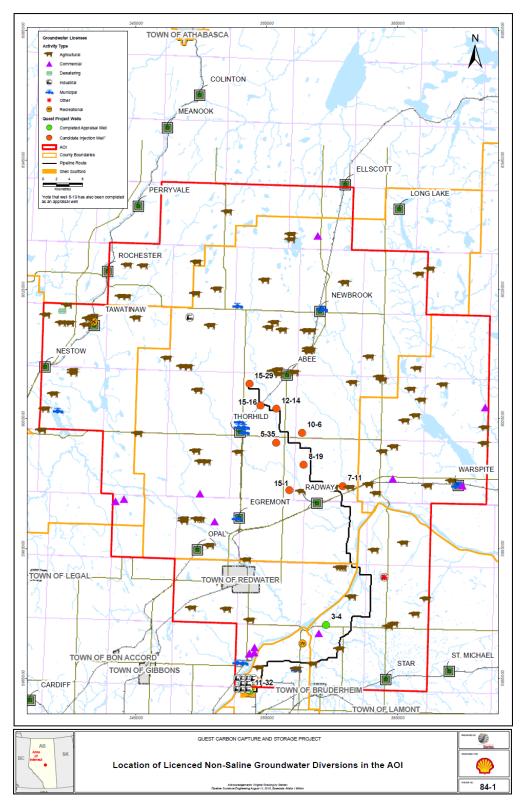


Figure 84-1 (Revised) Location of Licenced Non-Saline Groundwater Diversions in the AOI

Approval ID	Licensee	Status	Status Date	Effective Date	Expiry Date	Activity Type	Specific Activity	SOURCE	Total Quantity (m3/year)	Maximum Diversion Rate (m3/day)	Priority Number	UTM Easting	UTM Northing
23937	LAFARGE CONSTRUCTION MATERIALS	Expired and Renewable	01-JAN-2004	13-MAY-1996	31-DEC-2003	Dewatering	Drainage	Unnamed Aquifer - Unclassified	18500	1963.92	19950804006	333696.133	6021714.439
24164	ORICHOWSKI, DAVID; ORICHOWSKI, JANICE	Active	11-AUG-1995	11-AUG-1995		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	8390	58.91	19950223004	366775.793	6012505.875
24351	SAWCHUK, LEONARD	Active	17-NOV-1994	17-NOV-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1730	26.18	19940930004	368695.051	6032583.767
24351	SAWCHUK, LEONARD	Active	17-NOV-1994	17-NOV-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	13.09	19940930005	368717.900	6033387.749
24351	SAWCHUK, LEONARD	Active	17-NOV-1994	17-NOV-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	990	19.64	19940930006	368717.900	6033387.749
24399	ZOLKEWSKI, HENRY; ZOLKEWSKI, VIOLET	Active	07-SEP-1994	07-SEP-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	39.28	19940802005	354177.786	5999983.572
24399	ZOLKEWSKI, HENRY; ZOLKEWSKI, VIOLET	Active	07-SEP-1994	07-SEP-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	13.09	19940802006	354177.786	5999983.572
24399	ZOLKEWSKI, HENRY; ZOLKEWSKI, VIOLET	Active	07-SEP-1994	07-SEP-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1600	6.55	19940802007	354177.786	5999983.572
24433	OKE, JOAN	Active	08-AUG-1994	08-AUG-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1360	52.37	19940616007	338545.389	6020737.474
24434	QUAGHEBEUR, RAYMOND	Active	08-AUG-1994	08-AUG-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	32.73	19940616006	355757.411	5998305.648
24495	KUBICA, ROY KUBICA, ROY	Active	19-MAY-1994	19-MAY-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	13.09	19940330001	360686.728	5999775.506
24497	KIRK, WESLEY; KIRK, MARILYN	Active	19-MAY-1994	19-MAY-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1850	16.37	19940326002	366164.092	6019814.560
24497	KIRK, WESLEY; KIRK, MARILYN	Active	19-MAY-1994	19-MAY-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	19.64	19940325003	365339.789	6019040.493
24497	KIRK, WESLEY; KIRK, MARILYN	Active	19-MAY-1994	19-MAY-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1850	19.64	19940325004	366164.092	6019814.560
24564	LECHOT, CARINA; LECHOT, CLAUDE	Active	09-MAR-1994	09-MAR-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	19.64	19940210002	352946.160	6012984.561
24564	LECHOT, CARINA; LECHOT, CLAUDE	Active	09-MAR-1994	09-MAR-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	19.64	19940210003	352142.531	6013010.221
24564	LECHOT, CARINA; LECHOT, CLAUDE	Active	09-MAR-1994	09-MAR-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1850	15.71	19940210004	352946.160	6012984.561
24565	LECHOT, CARINA; LECHOT, CLAUDE	Active	09-MAR-1994	09-MAR-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	19.64	19940210001	352946.160	6012984.561
24593	JARVIS, ERIC; JARVIS, TOM	Active	08-MAR-1994	08-MAR-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	4930	32.73	19940126004	356280.440	5985375.419
24593	JARVIS, ERIC; JARVIS, TOM	Active	08-MAR-1994	08-MAR-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	4930	39.28	19940126005	356280.440	5985375.419
24600	BROOKS, ELMER	Active	08-MAR-1994	08-MAR-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	5550	654.64	19931216003	376917.151	6025961.905
24601	BROOKS, ELMER	Active	08-MAR-1994	08-MAR-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1850	0.65	19931216001	376917.151	6025961.905

Approval ID	Licensee	Status	Status Date	Effective Date	Expiry Date	Activity Type	Specific Activity	SOURCE	Total Quantity (m3/year)	Maximum Diversion Rate (m3/day)	Priority Number	UTM Easting	UTM Northing
24601	BROOKS, ELMER	Active	08-MAR-1994	08-MAR-1994	. ,	Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	4930	0.65	19931216002	376917.151	6025961.905
24615	BOYCE, ANDREW; BOYCE, JOHANNA	Active	07-MAR-1994	07-MAR-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	13.09	19931231002	345294.274	6002676.421
24615	BOYCE, ANDREW; BOYCE, JOHANNA	Active	07-MAR-1994	07-MAR-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	32.73	19931231003	345294.274	6002676.421
24708	WESTLOCK SAND & GRAVEL CO LTD.	Active	17-JAN-1996	17-JAN-1996		Commercial	Aggregate Washing	Unnamed Aquifer - Unclassified	48110	5237.09	19931026002	341886.408	5992331.525
24730	SIL SILICA INC	Expired	01-JAN-2008	20-SEP-1993	31-DEC-2007	Commercial	Aggregate Washing	Unnamed Aquifer - Unclassified	61670	6546.37	19920424002	372973.948	5971933.130
24952	ELLISON ENTERPRISES LTD	Active	06-MAY-1993	06-MAY-1993		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	16.37	19930120006	354808.690	5989444.878
24953	ELLISON ENTERPRISES LTD	Active	06-MAY-1993	06-MAY-1993		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	16.37	19930120001	354402.697	5989457.616
24953	ELLISON ENTERPRISES LTD	Active	06-MAY-1993	06-MAY-1993		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1850	16.37	19930120002	354402.697	5989457.616
24953	ELLISON ENTERPRISES LTD	Active	06-MAY-1993	06-MAY-1993		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	16.37	19930120003	354402.697	5989457.616
24953	ELLISON ENTERPRISES LTD	Active	06-MAY-1993	06-MAY-1993		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	16.37	19930120004	354402.697	5989457.616
24953	ELLISON ENTERPRISES LTD	Active	06-MAY-1993	06-MAY-1993		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	620	16.37	19930120005	354402.697	5989457.616
25195	TAWATINAW VALLEY SKI CLUB	Active	29-OCT-1992	29-OCT-1992		Recreational	Recreational	Unnamed Aquifer - Unclassified	74010	1296.19	19921020001	338541.783	6019985.515
25218	KOISTINEN, WILBERT	Active	21-SEP-1992	21-SEP-1992		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	3080	39.28	19920824003	367389.803	6018660.256
25218	KOISTINEN, WILBERT	Active	21-SEP-1992	21-SEP-1992		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	39.28	19920824004	367389.803	6018660.256
25244	AGRIUM PRODUCTS INC.	Expired	01-JAN-2007	22-MAR-1995	31-DEC-2006	Commercial	Other	Unnamed Aquifer - Unclassified	80180	0.65	19950103024	363129.305	5969780.148
25245	AGRIUM PRODUCTS INC.	Expired	01-JAN-2007	07-MAR-1994	31-DEC-2006	Commercial	Other	Unnamed Aquifer - Unclassified	35770	261.85	19940128001	362312.811	5968797.181
25246	AGRIUM PRODUCTS INC.	Expired	01-JAN-2007	28-SEP-1992	31-DEC-2006	Commercial	Other	Unnamed Aquifer - Unclassified	46870	261.85	19920717003	362312.811	5968797.181
25247	AGRIUM PRODUCTS INC.	Expired	01-JAN-2007	04-NOV-1996	31-DEC-2006	Commercial	Other	Unnamed Aquifer - Unclassified	8630	0.65	19960820002	363107.914	5968977.186
25250	DEREWIANKA, CLIFFORD	Active	16-AUG-1994	16-AUG-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	3700	32.73	19920727002	380609.756	5994797.489
25269	ROSA, MIKE; ROSA, ANNE	Active	16-AUG-1994	16-AUG-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	3080	39.28	19920714001	385969.706	5985757.227
25307	BALASCAK, STEVEN	Active	04-AUG-1992	04-AUG-1992		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	19.64	19920623007	334877.844	6019714.974
25307	BALASCAK, STEVEN	Active	04-AUG-1992	04-AUG-1992		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	3080	32.73	19920623008	334877.844	6019714.974

Approval ID	Licensee	Status	Status Date	Effective Date	Expiry Date	Activity Type	Specific Activity	SOURCE	Total Quantity (m3/year)	Maximum Diversion Rate (m3/day)	Priority Number	UTM Easting	UTM Northing
25309	HANSEN, MARY; HANSEN, HUBERT	Active	04-AUG-1992	04-AUG-1992		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	32.73	19920623002	333648.228	6019759.391
25309	HANSEN, MARY; HANSEN, HUBERT	Active	04-AUG-1992	04-AUG-1992		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1850	65.46	19920623003	333648.228	6019759.391
25492	OLEKSYN, JOHN	Active	08-SEP-1994	08-SEP-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	52.37	19920403004	361917.667	5983193.196
25493	OLEKSYN, JOHN	Active	08-SEP-1994	08-SEP-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1850	98.19	19920403002	352366.190	5989522.049
25493	OLEKSYN, JOHN	Active	08-SEP-1994	08-SEP-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1850	654.64	19920403003	352353.433	5989121.605
25500	SAMSON MANAGEMENT LTD.	Active	10-AUG-1995	10-AUG-1995		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	620	13.09	19920402001	376524.361	5981946.939
25500	SAMSON MANAGEMENT LTD.	Active	10-AUG-1995	10-AUG-1995		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	620	19.64	19920402002	376524.361	5981946.939
25500	SAMSON MANAGEMENT LTD.	Active	10-AUG-1995	10-AUG-1995		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	620	39.28	19920402003	376124.299	5981957.590
25518	BALASCAK, DOUGLAS; BALASCAK, CHERYL	Active	11-JUL-1994	11-JUL-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	5550	32.73	19920316003	337362.132	6019414.636
25519	BALASCAK, DOUGLAS; BALASCAK, CHERYL	Active	11-JUL-1994	11-JUL-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1850	16.37	19920316002	337362.132	6019414.636
25596	GEIGER, LEONARD; GEIGER, JEANNETTE	Active	12-JUL-1994	12-JUL-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	0.65	19920122007	337762.283	6020413.952
25597	GEIGER, LEONARD; GEIGER, JEANNETTE	Active	12-JUL-1994	12-JUL-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	4930	78.55	19920122006	337762.283	6020413.952
25598	GEIGER, LEONARD; GEIGER, JEANNETTE	Active	12-JUL-1994	12-JUL-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	6.55	19920122005	337762.283	6020413.952
26503	HOLGATE, HERBERT; HOLGATE, ROSE	Active	29-JAN-1990	29-JAN-1990		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	32.73	19891212004	354486.427	6009341.540
26504	HOLGATE, HERBERT; HOLGATE, ROSE	Active	29-JAN-1990	29-JAN-1990		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	13.09	19891212002	354486.427	6009341.540
26504	HOLGATE, HERBERT; HOLGATE, ROSE	Active	29-JAN-1990	29-JAN-1990		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	294.58	19891212003	354486.427	6009341.540
26505	MELNYCHUK, MIKE	Active	29-JAN-1990	29-JAN-1990		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	3700	49.10	19891211002	382657.516	6010953.027
26506	MELNYCHUK, MIKE	Active	29-JAN-1990	29-JAN-1990		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	26.18	19891211001	382657.516	6010953.027
26508	PAUL, WANDA; PAUL, CYRIL	Active	16-JAN-1990	16-JAN-1990		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	3700	26.18	19891204007	375628.838	5963358.268
26571	KIRK, LINDA; KIRK, JOHN	Active	29-JUL-1991	29-JUL-1991		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	65.46	19910215009	369228.909	6012116.717
26572	KIRK, LINDA; KIRK, JOHN	Active	29-JUL-1991	29-JUL-1991		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	19.64	19910215008	369228.909	6012116.717
26609	KAPACH, NICK; KAPACH, ARLENE	Active	19-FEB-1991	19-FEB-1991		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	22.91	19901205004	366793.413	6011785.801

Approval ID	Licensee	Status	Status Date	Effective Date	Expiry Date	Activity Type	Specific Activity	SOURCE	Total Quantity (m3/year)	Maximum Diversion Rate (m3/day)	Priority Number	UTM Easting	UTM Northing
26610	KAPACH, NICK; KAPACH, ARLENE	Active	19-FEB-1991	19-FEB-1991		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	26.18	19901205003	366793.413	6011785.801
26610	KAPACH, NICK; KAPACH, ARLENE	Active	19-FEB-1991	19-FEB-1991		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	0	16.37	19901205006	366793.413	6011785.801
26611	KAPACH, NICK; KAPACH, ARLENE	Active	19-FEB-1991	19-FEB-1991		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	19.64	19901205001	365970.985	6012210.503
26611	KAPACH, NICK; KAPACH, ARLENE	Active	19-FEB-1991	19-FEB-1991		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	0	32.73	19901205002	365970.985	6012210.503
26698	BAIER, JOY; BAIER, JOHN	Active	17-DEC-1990	17-DEC-1990		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	65.46	19901018002	331134.219	6006452.350
26699	BAIER, JOY; BAIER, JOHN	Active	17-DEC-1990	17-DEC-1990		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	0.65	19901018001	331134.219	6006452.350
27094	DEHOD, MARLENE; DEHOD, ROMAN	Active	16-AUG-1994	16-AUG-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	4930	65.46	19900314001	389602.590	5994574.127
27183	REGNER, ARNOLD; REGNER, MARTHA	Active	26-MAR-1990	26-MAR-1990		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	9.82	19900214002	371385.052	6015295.662
27184	REGNER, ARNOLD; REGNER, MARTHA	Active	30-DEC-1992	30-DEC-1992		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	0.65	19900214001	371396.575	6015707.267
27184	REGNER, ARNOLD; REGNER, MARTHA	Active	30-DEC-1992	30-DEC-1992		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	4930	65.46	19900214022	371396.575	6015707.267
27184	REGNER, ARNOLD; REGNER, MARTHA	Active	30-DEC-1992	30-DEC-1992		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	620	65.46	19900214023	371385.052	6015295.662
27184	REGNER, ARNOLD; REGNER, MARTHA	Active	30-DEC-1992	30-DEC-1992		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	620	65.46	19900214024	371385.052	6015295.662
27363	MALICA, MARK	Active	11-DEC-1989	11-DEC-1989		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	26.18	19890907001	383627.775	5972858.560
27420	MELNYCHUK, CLARENCE; MELNYCHUK, ZORIA	Active	04-DEC-1989	04-DEC-1989		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	65.46	19890921001	382250.662	6011364.175
27923	SIMONS, NORMAN	Active	20-JUN-1989	20-JUN-1989		Commercial	Other	Unnamed Aquifer - Unclassified	1230	0.65	19890516001	343150.838	5992664.464
27951	HERRMANN, ILKE; HERRMANN, RONALD	Active	29-AUG-1989	29-AUG-1989		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	6.55	19890410012	371040.050	6018556.237
27951	HERRMANN, ILKE; HERRMANN, RONALD	Active	29-AUG-1989	29-AUG-1989		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1230	39.28	19890410013	371040.050	6018556.237
28022	MOERMAN, GRACE; MOERMAN, CORNELIS	Active	07-FEB-1989	07-FEB-1989		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	4930	52.37	19881215001	358864.042	5975558.155
28022	MOERMAN, GRACE; MOERMAN, CORNELIS	Active	07-FEB-1989	07-FEB-1989		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	7400	130.92	19881215002	358864.042	5975558.155
28103	NIL-RAY FARMS LTD	Active	14-SEP-1994	14-SEP-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	3700	78.55	19881129008	335415.562	6011988.588
28103	NIL-RAY FARMS LTD	Active	14-SEP-1994	14-SEP-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	3700	98.19	19881129009	335430.288	6012400.141
28117	543077 ALBERTA LTD.	Active	09-MAY-1989	09-MAY-1989		Commercial	Aggregate Washing	Unnamed Aquifer - Unclassified	19740	490.98	19890414001	357035.828	5989186.353

Approval ID	Licensee	Status	Status Date	Effective Date	Expiry Date	Activity Type	Specific Activity	SOURCE	Total Quantity (m3/year)	Maximum Diversion Rate (m3/day)	Priority Number	UTM Easting	UTM Northing
28461	WOYTENKO, NICK	Active	15-SEP-1994	15-SEP-1994		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	2470	98.19	19910424001	349753.769	6014315.236
29641	COUNTY OF THORHILD NO. 7	Active	03-JUN-1985	03-JUN-1985		Municipal	Cooperative	Unnamed Aquifer - Unclassified	1230	0.65	19850506003	360492.614	5989704.501
32262	HERRMANN, ILKE; HERRMANN, RONALD	Active	29-AUG-1989	29-AUG-1989		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	13570	0.65	19780714006	371872.910	6018532.911
32340	BAZIAN, BILL	Active	15-OCT-1979	15-OCT-1979		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	7400	0.65	19661231002	393290.975	5995322.379
32341	DUNCAN, PETER	Active	03-MAR-1981	03-MAR-1981		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	7400	78.48	19700918001	380609.756	5994797.489
32946	COUNTY OF THORHILD NO. 7	Active	24-NOV-1995	24-NOV-1995		Municipal	Urban	Unnamed Aquifer - Unclassified	12330	654.64	19930624008	373552.832	6022009.706
32947	COUNTY OF THORHILD NO. 7	Active	24-NOV-1995	24-NOV-1995		Municipal	Urban	Unnamed Aquifer - Unclassified	9870	654.64	19910717001	373552.832	6022009.706
32947	COUNTY OF THORHILD NO. 7	Active	24-NOV-1995	24-NOV-1995		Municipal	Urban	Unnamed Aquifer - Unclassified	0	654.64	19910717002	373552.832	6022009.706
32948	COUNTY OF THORHILD NO. 7	Active	27-JAN-1986	27-JAN-1986		Municipal	Urban	Unnamed Aquifer - Unclassified	7400	39.28	19800516002	373552.832	6022009.706
32948	COUNTY OF THORHILD NO. 7	Active	31-AUG-2010	31-AUG-2010		Municipal	Urban	Unnamed Aquifer - Unclassified	4930	52.37	19840529003	373552.832	6022009.706
32948	COUNTY OF THORHILD NO. 7	Active	31-AUG-2010	31-AUG-2010		Municipal	Urban	Unnamed Aquifer - Unclassified	0	0.00	19800516004	373552.832	6022009.706
32949	COUNTY OF THORHILD NO. 7	Active	27-JAN-1986	27-JAN-1986		Municipal	Urban	Unnamed Aquifer - Unclassified	1230	13.09	19800516001	373552.832	6022009.706
32949	COUNTY OF THORHILD NO. 7	Active	27-JAN-1986	27-JAN-1986		Municipal	Urban	Unnamed Aquifer - Unclassified	0	0.00	19800516003	373552.832	6022009.706
33040	DIRECT ENERGY MARKETING LIMITED REINE, TERRY	Active	11-JAN-1984	11-JAN-1984		Industrial	Gas/Petroleum	Unnamed Aquifer - Unclassified	1230	52.37	19790305001	353218.213	6020706.253
33539	VILLAGE OF THORHILD	Cancelled	30-NOV-1987	30-JAN-1980		Municipal	Urban	Unnamed Aquifer - Unclassified	24670	130.92	19640507001	361636.083	6003779.342
33539	VILLAGE OF THORHILD	Cancelled	30-NOV-1987	30-JAN-1980		Municipal	Urban	Unnamed Aquifer - Unclassified	29600	78.55	19781117001	360837.361	6004616.049
33539	VILLAGE OF THORHILD	Cancelled	30-NOV-1987	30-JAN-1980		Municipal	Urban	Unnamed Aquifer - Unclassified	18500	45.82	19541230002	360812.270	6003812.815
33539	VILLAGE OF THORHILD	Cancelled	30-NOV-1987	30-JAN-1980		Municipal	Urban	Unnamed Aquifer - Unclassified	19740	52.37	19781117002	361611.232	6002977.106
33539	VILLAGE OF THORHILD	Cancelled	30-NOV-1987	30-JAN-1980		Municipal	Urban	Unnamed Aquifer - Unclassified	7400	19.64	19680425006	361611.232	6002977.106
34263	HALF MOON LAKE WATER CO-OP	Active	02-NOV-1990	02-NOV-1990		Municipal	Subdivision	Unnamed Aquifer - Unclassified	0	13.09	19860603003	360597.273	6022513.647
34991	VILLAGE OF CLYDE	Active	07-APR-1986	07-APR-1986		Municipal	Urban	Unnamed Aquifer - Unclassified	88810	818.29	19800326006	333139.119	6006325.527
35289	TOWN OF BRUDERHEIM	Cancelled	02-JUN-1983	19-NOV-1980		Municipal	Urban	Unnamed Aquifer - Unclassified	0	0.00	19800903001	369577.183	5966339.714

Approval ID	Licensee	Status	Status Date	Effective Date	Expiry Date	Activity Type	Specific Activity	SOURCE	Total Quantity (m3/year)	Maximum Diversion Rate (m3/day)	Priority Number	UTM Easting	UTM Northing
35291	TOWN OF BRUDERHEIM	Cancelled	02-JUN-1983	19-NOV-1980		Municipal	Urban	Unnamed Aquifer - Unclassified	0	0.00	19691231012	372765.890	5963001.181
35816	SMOKY LAKE COUNTY	Active	10-AUG-1995	10-AUG-1995		Municipal	Urban	Unnamed Aquifer - Unclassified	18500	130.92	19940222007	394087.193	5994732.850
35817	SMOKY LAKE COUNTY	Active	13-JUL-1983	13-JUL-1983		Municipal	Urban	Unnamed Aquifer - Unclassified	0	26.16	19801205002	394516.989	5994860.159
35817	SMOKY LAKE COUNTY	Active	13-JUL-1983	13-JUL-1983		Municipal	Urban	Unnamed Aquifer - Unclassified	4930	52.32	19801205003	394516.989	5994860.159
155396	KARVONEN, EDWARD	Expired	22-OCT-2002	22-OCT-2001	21-OCT-2002	Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1825	5.00		387979.477	6012720.861
155399	HESSE, NORMAN	Active	26-OCT-2001	26-OCT-2001		Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	730	2.00		352142.531	6013010.221
156651	MOFFITT, DAVID	Expired	11-NOV-2002	09-NOV-2001	08-NOV-2002	Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1985	5.40		370319.859	5993717.547
156650	JAREMA, DANIEL	Expired	21-NOV-2002	21-NOV-2001	20-NOV-2002	Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	916	2.50		398307.311	6001122.038
157282	JAKE & EDITH WIELER	Expired	19-NOV-2002	19-NOV-2001	18-NOV-2002	Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1990	5.50		330583.471	6003176.671
158099	RUCH DAIRIES	Expired	20-DEC-2002	20-DEC-2001	19-DEC-2002	Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	1443	4.00		345036.618	6020520.702
158793	MCNARY, WAYNE	Expired	13-JAN-2003	11-JAN-2002	10-JAN-2003	Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	3982	11.00		356406.790	6019353.312
179272	DMETRUK, ERNIE	Expired	11-FEB-2003	11-FEB-2002	10-FEB-2003	Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	757	2.00		378134.524	6010524.894
181576	POSS, RICHARD	Expired	03-APR-2003	03-APR-2002	02-APR-2003	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1677	6.20		364732.608	6026350.462
173206	LIPIEC, FRANK	Expired	02-APR-2003	02-APR-2002	01-APR-2003	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1104	8.90		331238.608	6020995.276
160106	DEAN & LINDA MCCOY	Expired	02-APR-2003	02-APR-2002	01-APR-2003	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1792	5.50		332423.189	6008789.524
183045	WIEGAND, DEAN	Expired	22-APR-2003	22-APR-2002	21-APR-2003	Agricultural	Stock Watering	Unnamed Aquifer - Potable	4734	19.00		354951.350	5998330.548
186412	GLASIER, RYAN	Expired	04-JUL-2003	04-JUL-2002	03-JUL-2003	Agricultural	Stock Watering	Unnamed Aquifer - Potable	292	2.40		378000.027	5977467.799
188700	ALBERTA AGRICULTURAL FORUM	Active	25-FEB-2003	25-FEB-2003	02-SEP-2027	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1298	3.50	20010516002	389977.942	6028058.342
188347	BRODNIANSKY, GEORGE	Expired	04-SEP-2003	04-SEP-2002	03-SEP-2003	Agricultural	Stock Watering	Unnamed Aquifer - Potable	3000	4.00		357396.089	6024977.945
188347	BRODNIANSKY, GEORGE	Expired	04-SEP-2003	04-SEP-2002	03-SEP-2003	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1500	4.00		354125.615	6024273.083
160137	KUEFLER, RICK	Active	16-OCT-2002	16-OCT-2002	15-OCT-2027	Agricultural	Stock Watering	Unnamed Aquifer - Potable	5000	13.70	20021007001	362444.583	5973864.707
173992	RICHARDSON, FRANK	Active	31-OCT-2002	31-OCT-2002	30-OCT-2027	Agricultural	Stock Watering	Unnamed Aquifer - Potable	4977	13.60	20011220004	343532.781	6023810.464

Approval ID	Licensee	Status	Status Date	Effective Date	Expiry Date	Activity Type	Specific Activity	SOURCE	Total Quantity (m3/year)	Maximum Diversion Rate (m3/day)	Priority Number	UTM Easting	UTM Northing
191579	JAREMA, DANIEL	Active	11-DEC-2002	11-DEC-2002	10-DEC-2027	Agricultural	Stock Watering	Unnamed Aquifer - Potable	916	2.50	20011030005	398307.311	6001122.038
191580	WIELER, EDITH	Active	11-DEC-2002	11-DEC-2002	10-DEC-2027	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1990	5.50	20011114006	330583.471	6003176.671
191879	MCNARY, WAYNE	Active	16-DEC-2002	16-DEC-2002	15-DEC-2027	Agricultural	Stock Watering	Unnamed Aquifer - Potable	3982	11.00	20011210005	356406.790	6019353.312
192732	EBERHARD, UELI	Active	16-JAN-2003	16-JAN-2003	15-JAN-2023	Agricultural	Stock Watering	Unnamed Aquifer - Potable	9623	26.40	20030114002	377708.686	5994328.805
193746	RUCH, DAIRIES; RUCH, IRENE	Active	07-FEB-2003	07-FEB-2003	06-FEB-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1443	4.00	20011218003	345036.618	6020520.702
192942	NORTHCOTT, DEREK	Active	21-FEB-2003	21-FEB-2003	20-FEB-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	654	1.50	20030131001	357727.970	5979656.603
192152	MASCHMEYER, DENNIS	Active	14-FEB-2003	14-FEB-2003	13-FEB-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1000	13.00	20030131002	376160.623	5969407.384
189825	GAUMONT, CONRAD	Active	25-FEB-2003	25-FEB-2003	24-FEB-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	345	2.30	20021017002	363867.671	5966525.397
194436	REGNER, BERNIE	Active	28-FEB-2003	28-FEB-2003	27-FEB-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	4993	13.70	20020118007	371747.201	6015579.230
194443	DMETRUK, ERNIE	Active	28-FEB-2003	28-FEB-2003	27-FEB-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	757	2.00	20020205001	378134.524	6010524.894
194447	POSS, RICHARD	Active	28-FEB-2003	28-FEB-2003	27-FEB-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1677	6.20	20020130004	364732.608	6026350.462
189819	WEGERNOSKI, DAVID	Active	10-MAR-2003	10-MAR-2003	09-MAR-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	179	1.00	20021022002	346145.589	6028575.044
195650	ALBERTA AGRICULTURAL FORUM	Active	31-MAR-2003	31-MAR-2003	30-MAR-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1375	33.00	20030307001	388336.285	6027275.366
192900	BOYCHUK, CURTIS & SHARON	Active	07-APR-2003	07-APR-2003	06-APR-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1818	5.00	20021209001	388659.101	6007831.130
192900	BOYCHUK, CURTIS & SHARON	Active	07-APR-2003	07-APR-2003	06-APR-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	682	2.00	20021209002	391980.189	6010191.647
194366	SHILOH YOUTH RANCH	Active	07-APR-2003	07-APR-2003	06-APR-2028	Recreational	Recreational	Unnamed Aquifer - Potable	532	1.50	20030312001	370497.007	5970395.784
194366	SHILOH YOUTH RANCH	Active	07-APR-2003	07-APR-2003	06-APR-2028	Recreational	Recreational	Unnamed Aquifer - Potable	1139	12.70		370497.007	5970395.784
196275	MCCOY, DEAN	Active	22-APR-2003	22-APR-2003	21-APR-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1792	5.50	20011119005	332423.189	6008789.524
196201	OLLIKKA, GLEN	Active	12-MAY-2003	12-MAY-2003	11-MAY-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1472	7.50	20030331002	387071.026	6009492.104
196978	ZARUSKY, STEVE	Active	16-MAY-2003	16-MAY-2003		Agricultural	Stock Watering	Unnamed Aquifer - Potable	47	0.00	20010507003	398359.895	6003558.895
196999	POLAK FARMS LTD.	Active	29-APR-2004	29-APR-2004	28-APR-2029	Agricultural	Stock Watering	Unnamed Aquifer - Potable	3320	0.00	20010307001	354280.487	6029139.500
196999	POLAK FARMS LTD.	Active	29-APR-2004	29-APR-2004	28-APR-2029	Agricultural	Stock Watering	Unnamed Aquifer - Potable	3707	0.00	20010307002	354280.487	6029139.500

Approval ID	Licensee	Status	Status Date	Effective Date	Expiry Date	Activity Type	Specific Activity	SOURCE	Total Quantity (m3/year)	Maximum Diversion Rate (m3/day)	Priority Number	UTM Easting	UTM Northing
195927	ANDRUSIAK, SHARON	Active	20-MAY-2003	20-MAY-2003	19-MAY-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	846	2.30	20030328004	382757.384	5999879.841
197041	SCHRAM, BARRY	Active	21-MAY-2003	21-MAY-2003	20-MAY-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	915	0.00	20020103008	372036.412	5967105.246
198171	GLASIER, RYAN	Active	22-NOV-2006	22-NOV-2006	21-NOV-2031	Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	292	32.75	20020603002	378000.027	5977467.799
198190	SMOKY LAKE COUNTY	Active	18-JUN-2003	18-JUN-2003	17-JUN-2023	Commercial	Groundwater Hauling	Unnamed Aquifer - Potable	59860	172.80	20030331003	394895.137	5994713.976
198746	VILLAGE OF WASKATENAU	Active	14-JUL-2003	14-JUL-2003	13-JUL-2023	Commercial	Groundwater Hauling	Unnamed Aquifer - Potable	59860	164.00	20030331005	384289.844	5995793.968
196089	COUNTY OF THORHILD NO. 7	Active	11-JUL-2003	11-JUL-2003	10-JUL-2023	Commercial	Groundwater Hauling	Unnamed Aquifer - Potable	59860	180.00	20030513001	372792.129	6033275.016
182946	SAMS, LAWRENCE	Active	17-SEP-2003	17-SEP-2003	16-SEP-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	2400	8.00	20020227008	343697.139	6028656.376
196093	COUNTY OF THORHILD NO. 7	Active	20-AUG-2003	20-AUG-2003	19-AUG-2023	Commercial	Groundwater Hauling	Unnamed Aquifer - Potable	39785	140.40	20030513002	354799.861	5993495.214
200787	BRODNIANSKY, GEORGE	Active	09-SEP-2003	09-SEP-2003	08-SEP-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	3000	4.00	20020424001	357396.089	6024977.945
200787	BRODNIANSKY, GEORGE	Active	09-SEP-2003	09-SEP-2003	08-SEP-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1500	4.00	20020424002	354125.615	6024273.083
201211	CANEXUS CHEMICALS CANADA LIMITED PARTNERSHIP	Active	29-MAY-2008	29-MAY-2008	29-SEP-2023	Other	Other	Unnamed Aquifer - Potable	5500	0.00	20030806001	375183.437	5962950.028
200939	DEHOD, RICHARD	Active	06-OCT-2003	06-OCT-2003	05-OCT-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	600	5.00	20030905001	381764.432	5993420.889
203255	LETAWSKY, WILLIAM	Active	03-DEC-2003	03-DEC-2003	02-DEC-2028	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1578	0.00	20020103010	387708.333	5974785.127
203483	MALICA, ROBERT	Active	30-JAN-2004	30-JAN-2004	29-JAN-2024	Agricultural	Stock Watering	Unnamed Aquifer - Potable	2302	0.00	20020103011	384410.142	5973258.281
224840	TOEWS, WARREN	Active	27-OCT-2005	27-OCT-2005	26-OCT-2030	Agricultural	Stock Watering	Unnamed Aquifer - Potable	386	0.00	20011228017	375246.582	5994392.427
224840	TOEWS, WARREN	Active	27-OCT-2005	27-OCT-2005	26-OCT-2030	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1078	0.00		375246.582	5994392.427
209465	HORHUT, EDWARD	Active	16-FEB-2006	16-FEB-2006	15-FEB-2026	Agricultural	Stock Watering	Unnamed Aquifer - Potable	487	1.30	20040601001	384411.315	6000644.297
209465	HORHUT, EDWARD	Active	16-FEB-2006	16-FEB-2006	15-FEB-2026	Agricultural	Stock Watering	Unnamed Aquifer - Potable	137	1.00		384411.315	6000644.297
229660	DEHOD, MIKE	Active	12-MAY-2006	12-MAY-2006	11-MAY-2031	Agricultural	Stock Watering	Unnamed Aquifer - Potable	2557	7.00	20040706002	386144.023	6004649.212
230967	DEHOD, MIKE	Active	12-MAY-2006	12-MAY-2006	11-MAY-2031	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1705	4.60	20060404002	387794.614	6005435.031
231913	MAHALO ENERGY LTD.	Expired	20-JUN-2007	20-JUN-2006	19-JUN-2007	Industrial	Injection	Unnamed Aquifer - Potable	30000	0.00		382967.196	5980578.856
197992	MEDYNSKI, RICHARD	Active	16-OCT-2006	16-OCT-2006	15-OCT-2026	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1468	0.00	20040607002	389393.156	5977177.194

Table 84-1 (Revised) Summary of Water Act Licenses within the AOI (cont'd)

Approval ID	Licensee	Status	Status Date	Effective Date	Expiry Date	Activity Type	Specific Activity	SOURCE	Total Quantity (m3/year)	Maximum Diversion Rate (m3/day)	Priority Number	UTM Easting	UTM Northing
234895	CHURCHILL, DONALD	Active	18-OCT-2006	18-OCT-2006	17-OCT-2026	Agricultural	Stock Watering	Unnamed Aquifer - Potable	916	98.00	20040614001	353521.958	5975754.135
154524	TURKO, DAVID	Active	22-NOV-2006	22-NOV-2006	21-NOV-2031	Agricultural	Stock Watering	Unnamed Aquifer - Unclassified	4090	32.75	20010920001	380678.708	6014514.460
237800	JOE FEDYNIAK & SONS	Active	23-APR-2007	23-APR-2007	22-APR-2032	Agricultural	Stock Watering	Unnamed Aquifer - Potable	13900	38.00	20011211010	381444.664	5984661.651
240881	KOOTENAY ENERGY INC.	Expired	26-OCT-2007	26-OCT-2007	13-AUG-2008	Other	Other	Unnamed Aquifer - Potable	30000	0.00		382967.196	5980578.856
241233	HANSEN, GORDON	Active	23-JAN-2008	23-JAN-2008	22-JAN-2033	Agricultural	Stock Watering	Unnamed Aquifer - Potable	1700	0.00	20070412001	334548.035	6022489.873
250746	HANSEN, COLBY	Active	16-OCT-2008	16-OCT-2008	17-OCT-2033	Agricultural	Stock Watering	Unnamed Aquifer - Potable	3400	0.00	20080925001	342730.696	6023837.925
246893	ACCESS PIPELINE INC.	Expired	22-JUN-2009	03-NOV-2008	01-JUN-2009	Municipal	Camps	Unnamed Aquifer - Potable	420	0.00		361435.822	5967422.466
253731	ATHABASCA COUNTY	Active	17-JUN-2009	17-JUN-2009	16-JUN-2029	Agricultural	Stock Watering	Unnamed Aquifer - Potable	4996	68.40	20090226003	359005.650	6036915.405
263222	STRATHCONA COUNTY	Expired	06-SEP-2010	04-SEP-2009	03-SEP-2010	Agricultural	Stock Watering	Unnamed Aquifer - Potable	9600	120.00		369560.187	5966348.983
263157	ACCESS PIPELINE INC.	Active	22-SEP-2009	22-SEP-2009	21-SEP-2019	Municipal	Camps	Unnamed Aquifer - Potable	836	135.80	20090901001	360626.836	5967448.556
262600	DALE CROSWELL CONSTRUCTION CO. LTD.	Active	16-NOV-2009	16-NOV-2009	31-OCT-2016	Commercial	Aggregate Washing	Unnamed Aquifer - Potable	36000	0.00	20090720001	398430.201	6006801.887
244237	SHELL CANADA LIMITED	Active	05-JUN-2008	05-JUN-2008	04-JUN-2018	Industrial	Gas/Petroleum	Unnamed Aquifer - Unclassified	225000	0.00	20070815001	360512.012	5963361.490
244237	SHELL CANADA LIMITED	Active	05-JUN-2008	05-JUN-2008	04-JUN-2018	Industrial	Gas/Petroleum	Unnamed Aquifer - Unclassified	0	0.00	20070815001	361318.056	5963345.631
244237	SHELL CANADA LIMITED	Active	16-FEB-2010	16-FEB-2010	04-JUN-2018	Industrial	Gas/Petroleum	Unnamed Aquifer - Unclassified	0	0.00	20070815001	362142.813	5963329.805
244237	SHELL CANADA LIMITED	Active	05-JUN-2008	05-JUN-2008	04-JUN-2018	Industrial	Gas/Petroleum	Unnamed Aquifer - Unclassified	0	0.00	20070815001	360555.484	5964996.787
244237	SHELL CANADA LIMITED	Active	05-JUN-2008	05-JUN-2008	04-JUN-2018	Industrial	Gas/Petroleum	Unnamed Aquifer - Unclassified	0	0.00	20070815001	361363.309	5964981.650
244237	SHELL CANADA LIMITED	Active	05-JUN-2008	05-JUN-2008	04-JUN-2018	Industrial	Gas/Petroleum	Unnamed Aquifer - Unclassified	0	0.00	20070815001	361341.991	5964178.909
244237	SHELL CANADA LIMITED	Active	05-JUN-2008	05-JUN-2008	04-JUN-2018	Industrial	Gas/Petroleum	Unnamed Aquifer - Unclassified	0	0.00	20070815001	362188.844	5964961.788
244237	SHELL CANADA LIMITED	Active	16-FEB-2010	16-FEB-2010	04-JUN-2018	Industrial	Gas/Petroleum	Unnamed Aquifer - Unclassified	0	0.00	20070815001	362992.345	5964936.595
244237	SHELL CANADA LIMITED	Active	16-FEB-2010	16-FEB-2010	04-JUN-2018	Industrial	Gas/Petroleum	Unnamed Aquifer - Unclassified	0	0.00	20070815001	362166.743	5964154.508
266971	STRATHCONA COUNTY	Active	09-JUN-2010	09-JUN-2010	08-JUN-2030	Agricultural	Stock Watering	Unnamed Aquifer - Potable	19200	240.00	20100407001	369560.187	5966348.983

Question 13: Legacy Wells Penetrating the Seals of the BCS

SIR 88 a., Page 4-19.

Shell indicates that since the submission of the Application, Westcoast et al. Newbrook 100-09-31-062-19W40 (Westcoast 9-31) was reclassified as a legacy well that penetrates through all three major seals in the BCS storage complex.

- a. Elaborate on why Westcoast 9-31 was not originally identified as a legacy well penetrating all three major seals of the BCS.
- Confirm Shell has identified all legacy wells penetrating all three major seals of the BCS.

Response 13

- a. Westcoast 9-31 was originally interpreted as a Category 1 legacy well and not a Category 3 legacy well penetrating all three major seals because it did not appear in Shell's original query of the IHS database for formation well tops penetrating the BCS. The IHS Formation tops indicate that the last formation penetrated by the Westcoast 9-31 well was the Devonian Basal Red Beds. Since the November 2010 filings, work associated with correlation of shallower formations within the AOI resulted in new well queries of the IHS database for total well depths greater than 1,400 m, which resulted in identifying Westcoast 9-31 as a deep well. Further quality checks and correlation of the well tops confirmed that Westcoast 9-31 penetrates the top of the BCS, leading to its reclassification as a Category 3 legacy well.
- b. To ensure completeness of the current classification of legacy wells, Shell engaged Integrated Modeling Inc. to complete an independent well search over a search area one township larger than the AOI for wells penetrating the major seals in the BCS storage complex. This independent search used data from the GeoVista product by Divestco. The independent search found no wells not previously identified by Shell. Thus, Shell is confident that all wells licensed through the ERCB and available on the public databases that penetrate the three major seals within the AOI have been identified.

Question 14: Status of Technical Feasibility Studies

SIR 91, Page 4-26.

Shell states this selection will be based on the outcome of ongoing technical feasibility studies. An updated MMV Plan that specifies the initial Base-Case Monitoring Plan will be submitted for review before baseline monitoring starts. Shell further states an updated MMV Plan that specifies the initial baseline groundwater sampling frequency will be submitted for review before baseline monitoring starts.

a. Provide an update on the status of the technical feasibility studies and expected timeframe for when the updated MMV Plan will be submitted to regulatory agencies for review.

Response 14

a. Technical feasibility studies

Technical feasibility studies are ongoing to support the selection of monitoring methods for the initial monitoring plan and to establish the expected monitoring performance. Table 61-1 (from the response to Round 1 SIR 61) lists the monitoring technologies whose technical feasibilities studies are sufficiently mature to support their inclusion within the initial monitoring plan. The next update to the MMV Plan will describe the expected monitoring performance of each selected monitoring system.

Updates to the MMV Plan

The terms of the sequestration leases with the Government of Alberta require Shell to provide an updated MMV Plan and an updated Closure Plan every three years subsequent to the first submission in April 2011.

An updated MMV Plan, which specifies the initial monitoring plan, will be submitted for review before baseline measurements start, at least two years before sustained CO_2 injection. Sustained injection is expected to be achieved in Q4 2015.

The updated MMV Plan, along with the analysis of the baseline data, will be submitted as soon as the data has been analysed and incorporated into the MMV Plan. Formal submissions will occur on the three year cycle.

Question 15: Status of Additional Numerical Modelling

SIR 93 b., Page 4-32 to 4-33.

The review by DNV includes recommendations for Shell to setup a numerical model for shallow aquifer that incorporates results of mineralogical characterization as well as laboratory experiments on CO2-water-rock interactions.

a. Comment on whether Shell is currently completing numerical modeling and/or laboratory experiments referenced by DNV, and if so, the status of this work.

Response 15

a. Since the DNV review in September 2010, Shell has drilled five groundwater wells on the Radway 8-19 Well pad, and collected extensive core material and water samples for analysis. These analyses—including mineralogical characterization, laboratory experiments on CO₂-water-rock interactions and core flood experiments—are ongoing at this time.

Preliminary numerical geochemical models for the shallow aquifer were constructed. However, these models are uncalibrated and, therefore, incomplete. These models will be finalized once the laboratory measurements are completed and the models have been appropriately calibrated to the laboratory results.

In addition, Shell has completed a second review, lead by Det Norske Veritas (DNV), in September 2011. DNV assembled a panel of seven CCS experts from academia and research institutions to assess the suitability of the Quest Project's underground storage formation to safely and permanently store CO₂. The review also assessed the Project's Measurement, Monitoring and Verification program to validate that it would provide the necessary rigor to demonstrate effective containment. With the conclusion of the second review, Quest becomes the first CCS Project in the world to have its storage development plan certified by an external panel of CCS experts. DNV has issued the world's first certificate of fitness for safe CO₂ storage to Quest (see Figure 15-1).

Statement no.: SFP 2011/001 Project # PP018586

DET NORSKE VERITAS

STATEMENT OF FITNESS FOR PURPOSE

This is to state that the

QUEST Storage Development Plan (SDP)

has been evaluated to be fit-for-purpose for the QUEST CCS project by a panel of independent experts as part of an external project review facilitated by DNV. Based on the conclusions of the panel, DNV considers the QUEST SDP suited to establish and maintain confidence in the following metrics:

- The storage site injectivity and capacity are sufficient and the injection and operating plans are suitable to meet the projects system capacity objectives (1.08 Mt per annum over 25 years);
- The storage site will provide containment, i.e., stored volumes of CO₂ and formation fluids from the Basal Cambrian Sands will be contained within the QUEST storage complex;
- The project risk register documents that all relevant risk scenarios are comprehensively assessed and that plans have been put in place to ensure that risk is appropriately managed;
- The Measurement, Monitoring and Verification (MMV) plan is fit-for-purpose to demonstrate containment;
- The MMV plan is fit-for-purpose to demonstrate conformance, i.e., that actual storage performance will conform to predicted performance within range of uncertainty (based on appropriate predictive modelling).

This statement of fitness for purpose is issued together with five tables on pages 3-5 of this statement. These tables describe actions that the panel recommends should be implemented by the QUEST subsurface team.

Operator: Shell Canada Ltd.

Project: Storage component of QUEST Carbon Capture and Storage (CCS) Project

Description: In accordance with the recommendations in /1/ the QUEST SDP /2/1 contains:

- Description of characterization of the QUEST storage complex
- Injection and operating plans, including tentative site closure plan
- Up-to-date integrated storage performance modelling
- · An environmental impact assessment
- · Project risk register with risk treatment plans and performance targets
- A site-specific MMV plan, including an environmental monitoring plan

Reference document: /1/ CO2QUALSTORE – Guideline for Selection and Qualification of Sites and Projects for Geological Storage of CO2", DNV Report No. 2009-1425.

/2/ QUEST Storage Development Plan, Doc. No. 07-0-AA-5726-0001, Rev. 1 (restricted draft)².

DNV shall not be responsible for limitations or errors in the SDP that could result in loss or damage.

If any person suffers loss or damage related to this Certificate which is proved to have been caused by any negligent act or omission of Det Norske Veritas, then Det Norske Veritas shall pay compensation to such person for their proved direct loss or damage. However, the compensation shall note exceed an amount equal to five times the fee charged for the service in question, provided that the maximum compensation shall never exceed CAD 51 million. In this provision: "Det Norske Veritas" shall mean the Foundation Det Norske Veritas as well as all this subsidiaries, directors, officers, employees, agents and any other acting on behalf of Det Norske Veritas.

Det Norske Veritas (Canada.) Ltd., Suite 150, 2618 Hopewell Place NE, Calgary, Alberta, Canada T1Y 7J7,

Figure 15-1 Det Norske Veritas Statement of Fitness for Purpose (Page 1 of 5)

¹ This document, which is titled "QUEST Storage Development Plan," only provides a synthesis of the information listed. However, this statement is issued based on a comprehensive evaluation of supporting documentation covering the listed information in much greater detail. Reference to these documents is made in /2/, Section 17.
² In evaluating the fitness for purpose of the SDP it is implicitly assumed that the SDP is considered as an evergreen

² In evaluating the fitness for purpose of the SDP it is implicitly assumed that the SDP is considered as an evergreen document that is updated as required throughout the life of the Project, i.e., until liability and responsibility has been transferred to the Government of Alberta or another designated authority.

Calgary, 11/10/2011 for Det Norske Veritas (Canada.) Ltd Christian Nerland Head of Department	Jørg Aarnes Project Manager	Hans Bratfos Verifier	
 Christian Nerland	Jørg Aarnes	Hans Bratfos	
Christian Nerland	Jørg Aarnes	Hans Bratfos	
Head of Department	Project Manager	Verifier	

Figure 15-1 Det Norske Veritas Statement of Fitness for Purpose (Page 2 of 5)

Statement Number: SFP 2011/001 Page 3 of 5

Tables 1-5 below describe actions that can be implemented by the QUEST team which are expected to raise confidence in corresponding metric. The importance of implementing these actions is rated as follows:

- Significant: Actions the panel agrees need to be implemented to establish and maintain sufficient
 confidence in metric to support the statement of fitness-for-purpose of the QUEST SDP.
- Low significance: Panel has sufficient confidence in metric, but the level of confidence can likely be further raised by implementing these actions.

Table 1: Actions to establish/maintain confidence in Metric 1: The storage site injectivity and capacity are sufficient and the injection and operating plans are suitable to meet the projects system capacity objectives (1.08 Mt per annum over 25 years).

Observation	Recommended action	Significance		
While a range of injection wells is carried in the SDP to account for injectivity uncertainty, CO ₂ injectivity has been estimated using water injectivity tests that potentially overestimate near-term rates. This can potentially provide unconservative estimates of longer term declining injectivity as the CO ₂ plume contacts larger regions of the reservoir.	Re-assess water injection test with a focus to refine injectivity values and to potentially adjust or refine subsequent water injection in the impending two new wells.	Low significance: Optimistic injectivity estimates may result from the water injection tests that highlight near-well region processes that may not occur in the far-field. This may affect the number of required injection wells.		
While thermal impacts have been assessed for stress changes within the BCS, less attention has been paid to near-well formation temperature changes that may reduce the fracture gradient in the LMS and potentially the MCS. Therefore CO ₂ injection pressures below 90% of the LMS fracture pressure estimate may potentially result in fracture propagation through these horizons.	Re-examine or re-run the thermal simulation models prior to start of injection to evaluate the magnitude of potential thermal stress related changes in the near well and assess against maximum BHP constraints.	Low significance: Confidence is needed to ensure that the BHP constraint is appropriately assessed. Detailed assessments of flow paths in the Upper Cambrian above the MCS have not been studied to the same level of detail as for the BCS. While the flow of CO ₂ in the Upper Cambrian is still within the storage complex, it may result in the development of flow paths that potentially move out of the storage complex.		

Table 2: Actions to establish/maintain confidence in Metric 2: The storage site will provide containment, i.e., stored volumes of CO₂ and formation fluids from the Basal Cambrian Sands will be contained within the QUEST storage complex.

Observation	Recommended action	Significance
Calculations of trigger pressures at legacy well locations did not account for possible buoyancy lift due to exsolution of potential dissolved gases in the BCS brine. This may imply that trigger pressures are overestimated. Pressure plume predictions in BCS by InSAR, BCS observation well and modelling provides only early warning.	Re-run calculations for determining trigger pressures at legacy wells taking the effect of buoyancy lift due to exsolution of potential dissolved gases in BCS brine into account. Action should be done before monitored pressure front is predicted to reach legacy well locations.	Low significance: Very low likelihood that it will have any impact on containment.

Table 3: Actions to establish/maintain confidence in Metric 3: The project risk register documents that all relevant risk scenarios are comprehensively assessed and that plans have been put in place to ensure that risk is appropriately managed.

Observation	Recommended action	Significance
The panel does not have confidence that the probability for Risk 4503 – Inability to differentiate contamination from external sources – will be managed down to low with the identified actions, particularly with respect to the CO ₂ tracer and the Hydrosphere and Biosphere Monitoring Plan (HBMP).	Execute the actions defined for Metric 4 with regard to the HBMP and CO ₂ tracer.	Significant: Action is needed to provide panel with confidence that QUEST will be able to verify absence of loss of containment and differentiate project CO ₂ from external (organic or other anthropogenic source) CO ₂ .

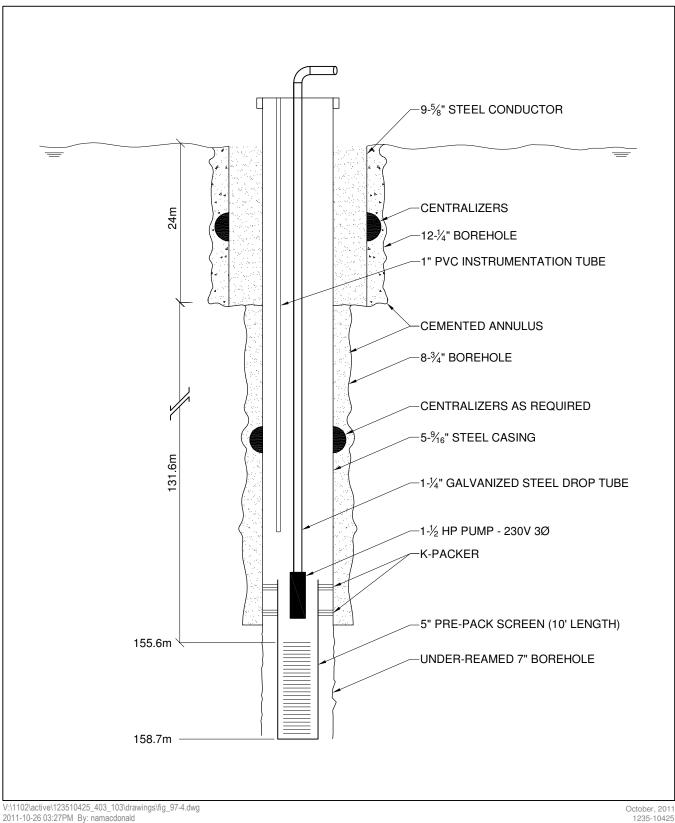
Figure 15-1 Det Norske Veritas Statement of Fitness for Purpose (Page 3 of 5)

Figure 15-1 Det Norske Veritas Statement of Fitness for Purpose (Page 4 of 5)

Table 5: Actions to establish/maintain co	onfidence in Metric 5: The MMV plan is fit- 	
Observation	Recommended action	Significance
The assumed range of relative- permeability curves may not be sufficient to reflect the uncertainty in reservoir heterogeneity and its impact on plume extent.	Relative permeability characteristics should be updated during early stages of injection to ensure that plume modelling is adequately calibrated to support management of conformance.	Low significance: Relative permeability is an influential parameter that governs plume evolution.
No microseismic baseline planned.	Start with microseismic recording after installation of MMV well, but before starting CO ₂ injection.	Low significance: It would help mitigate concerns of a change in background seismicity that can be attributed to the project.

Figure 15-1 Det Norske Veritas Statement of Fitness for Purpose (Page 5 of 5)

Question 16: Lithological Information near Well 8-19


SIR 97, Page 4-57.

Shell states that a monitoring well (1F1/081905920W4/00) was installed near Well 8-19.

a. Provide the complete litholog for the recently drilled observation. The log should also provide information on the static water level, casing depth, annular seal and screened interval as well as any pump test data obtained.

Response 16

a. The lithogical information—along with the static water level, casing depth, annular seal, screened interval, recovery data—and other relevant completion information are provided in Figure 97-4, which is additional information for the response to Round 1 SIR 97. This information is also provided in the water well drilling report for 1F1/081905920W4/00 (Groundwater Information Centre Well ID 1165608); see Figure 16-1.

V:\1102\active\123510425_403_103\drawings\fig_97-4.dwg 2011-10-26 03:27PM By: namacdonald

Client/Project

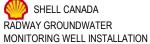
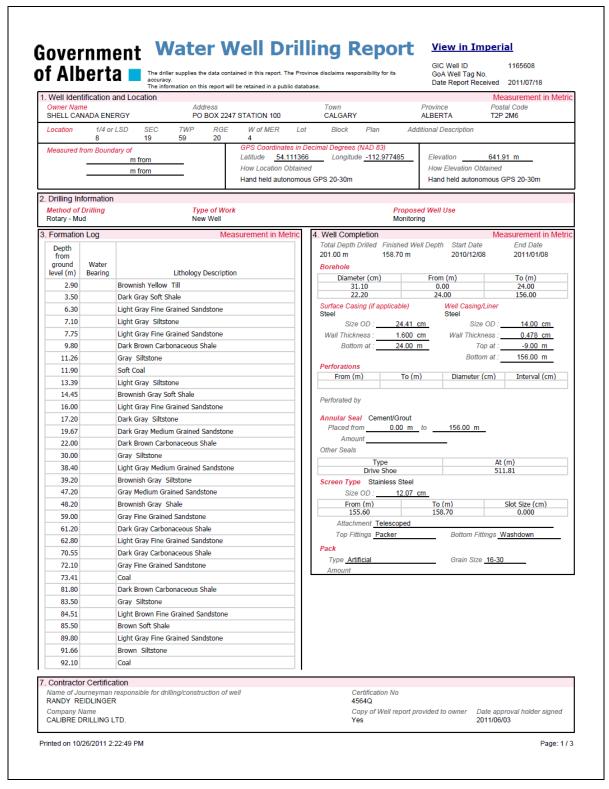



Figure No.

97-4

Title

1F1 / 08-19-059-20W4 / 00

Water Well Drilling Report (Page 1 of 3) Figure 16-1

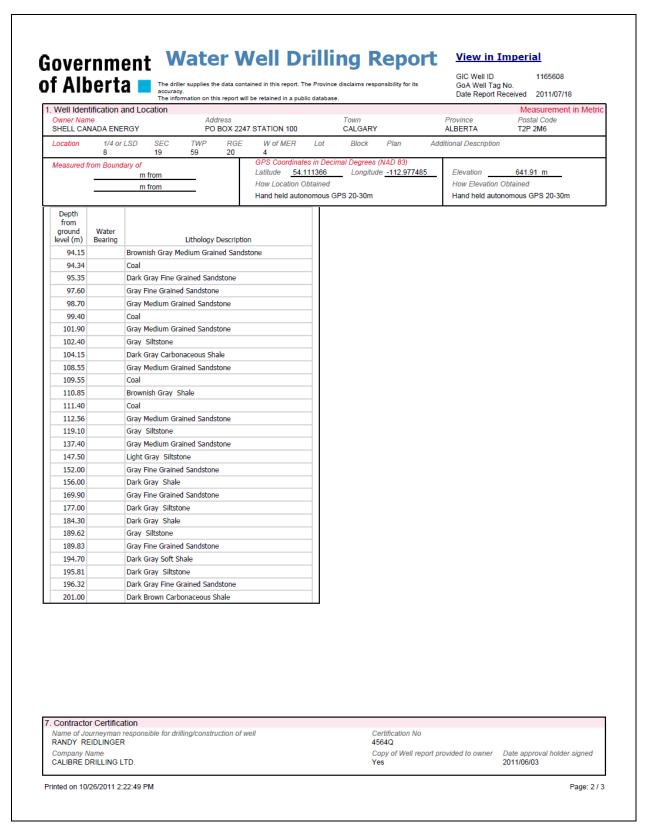


Figure 16-1 Water Well Drilling Report (Page 2 of 3)

of Alberta The drille accuracy.	Tater Well Dri r supplies the data contained in this report. The Pr mation on this report will be retained in a public da	rovince disclaims responsibility for its	GIC Well ID GoA Well Tag	1165608 No. eceived 2011/07/18
Well Identification and Location Owner Name SHELL CANADA ENERGY	Address PO BOX 2247 STATION 100	Town CALGARY	Province ALBERTA	Measurement in Metri Postal Code T2P 2M6
Location 1/4 or LSD SEC		ot Block Plan	Additional Description	
8 19 Measured from Boundary of m from		Decimal Degrees (NAD 83) 66 Longitude -112.9774	85 Elevation How Elevation (641.91 m
m from	Hand held autonomo			nomous GPS 20-30m
Additional Information				Measurement in Metri
Distance From Top of Casing to Ground	Level 91.01 cm			
Is Artesian Flow	/min	Is Flow Control Installed		
Recommended Pump Rate		Pump Installed	Denth	m
	m TOC) 152.50 m	TypeM	Depthlodel	H.P.
	00 ppm TDS) Depth	m Well Disinfect	ed Upon Completion Yes	
	Gas Depth	m Geophy		
Additional Comments on Mall			ubmitted to GIC	
Additional Comments on Well	1.2M - 62.8M ALSO SOFT, 62.8M - 70.55f			Result Attached
- 89.5M ALSO SOFT, 94.34M - 95.35M 104.15M ALSO SOFT, 104.15M - 108.5 CEMENTED 3 M3, LINER = CEMENTE	ALSO SOFT, 95.35M - 97.6M ALSO FRAG 5M ALSO SOFT, 119.1M - 137.4M ALSO D 7.6 M3, CORED CONTINOUS FROM 0	CTURED, 97.6M - 98.7M ALSO SOFT, PACK = PRE-PACK SO TO 27M SET CONDUCTOR, (O SOFT, 99.4M - 101.9M / CREEN, WASHDOWN = V CORE FROM 27M TO 201	ALSO SOFT, 102.4M - VITH FISHTAIL, CASING = IM PLUG BACK TO 156M
2010/12/08 TO 2011/01/08	R REAM 200MM FROM 156M TO 159M, \$	SET TELESCOPED SCREEN,	WATER DIVERTED FOR	DRILLING FROM
5. Yield Test		Measuremen		Taken From Ground Leve
Test Date Start Time 2011/01/07 2:00 PM	Static Water Level 40.67 m	Drawdown (m)	Depth to water level Elapsed Time Minutes:Sec	Recovery (m)
2011/01/07 2:00 PM		Drawdown (m)	Elapsed Time Minutes:Sec 0:00	152.50
2011/01/07 2:00 PM Method of Water Removal			Elapsed Time Minutes:Sec	
2011/01/07 2:00 PM Method of Water Removal Type Air	40.67 m		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00	152.50 142.54 142.15 141.76
2011/01/07 2:00 PM Method of Water Removal Type Air Removal Rate 9.0	40.67 m		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00	152.50 142.54 142.15 141.76 141.37
2011/01/07 2:00 PM Method of Water Removal Type Air	40.67 m		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00	152.50 142.54 142.15 141.76 141.37 140.91
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5	40.67 m 5 L/min 0 m		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00	152.50 142.54 142.15 141.76 141.37 140.91
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30 140.03 139.79 139.56
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30 140.03 139.79 139.56 139.35
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30 140.03 139.79 139.56 139.35 138.64
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30 140.03 139.79 139.56 139.35
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 18:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30 140.03 139.79 139.56 139.35 138.64 137.95 137.27
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 16:00 20:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30 140.03 139.79 139.56 139.35 138.64 137.95 137.27
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 16:00 12:00 20:00 25:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 16:00 20:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30 140.03 139.79 139.56 139.35 138.64 137.95 137.27
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 18:00 20:00 25:00 30:00 35:00 40:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78 134.17 132.59 130.97
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 16:00 13:00 4:00 5:00 10:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78 134.17 132.59 130.97 129.35
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 18:00 20:00 25:00 30:00 35:00 40:00 60:00	152.50 142.54 142.15 141.76 141.37 140.91 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78 134.17 132.59 130.97 129.35 126.51 123.25
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 16:00 13:00 4:00 5:00 10:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78 134.17 132.59 130.97 129.35
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 18:00 20:00 25:00 30:00 35:00 40:00 50:00 60:00 75:00 90:00	152.50 142.54 142.15 141.37 140.91 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78 134.17 132.59 130.97 129.35 126.51 123.25 119.11
Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e.	40.67 m 5 L/min 0 m xp/ain why		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 16:00 15:00 16:00 16:00 16:00 17:00 16:00 16:00 16:00 17:00 18:00	152.50 142.54 142.15 141.76 141.37 140.91 140.30 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78 134.17 132.59 130.97 129.35 126.51 123.25 119.11
2011/01/07 2:00 PM Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e. STATIC WATER LEVEL MEASURED AI	5 L/min 0 m xplain why FTER 48 HRS,		Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 10:00 11:00 12:00 11:00 12:00 10:00 15:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 17:00 18:00	152.50 142.54 142.15 141.76 141.37 140.91 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78 134.17 132.59 130.97 129.35 126.51 123.25 119.11
2:00 PM Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e. STATIC WATER LEVEL MEASURED AI	40.67 m 5 L/min 0 m xp/ain why	40.67	Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 18:00 20:00 25:00 30:00 35:00 40:00 50:00 60:00 75:00 90:00	152.50 142.54 142.15 141.76 141.37 140.91 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78 134.17 132.59 130.97 129.35 126.51 123.25 119.11
2011/01/07 2:00 PM Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e. STATIC WATER LEVEL MEASURED AI	5 L/min 0 m xplain why FTER 48 HRS,	40.67	Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 9:00 10:00 12:00 14:00 15:00 16:00 15:00 16:00 15:00 16:00 16:00 75:00 35:00 40:00 50:00 50:00 105:00 105:00 105:00 105:00	152.50 142.54 142.15 141.76 141.37 140.91 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78 134.17 132.59 130.97 129.35 126.51 123.25 119.11
2011/01/07 2:00 PM Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e. STATIC WATER LEVEL MEASURED AI	5 L/min 0 m xplain why FTER 48 HRS,	40.67	Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 9:00 10:00 12:00 14:00 15:00 16:00 15:00 16:00 15:00 16:00 16:00 75:00 35:00 40:00 50:00 50:00 105:00 105:00 105:00 105:00	152.50 142.54 142.15 141.76 141.37 140.91 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78 134.17 132.59 130.97 129.35 126.51 123.25 119.11
2011/01/07 2:00 PM Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e. STATIC WATER LEVEL MEASURED AI S. Water Diverted for Drilling Water Source TOWN OF RADWAY	40.67 m 5 Umin 0 m xplain why FTER 48 HRS, Amount Taken 33000.00 L	Certification No.	Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 16:00 16:00 25:00 25:00 25:00 40:00 25:00 40:00 55:00 60:00 75:00 90:00 105:00 105:00 105:00 105:00 105:00 105:00 105:00	152.50 142.54 142.15 141.76 141.37 140.91 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78 134.17 132.59 130.97 129.35 126.51 123.25 119.11
2011/01/07 2:00 PM Method of Water Removal Type Air Removal Rate 9.0 Depth Withdrawn From 152.5 If water removal period was < 2 hours, e. STATIC WATER LEVEL MEASURED AI 5. Water Diverted for Drilling Water Source TOWN OF RADWAY	40.67 m 5 Umin 0 m xplain why FTER 48 HRS, Amount Taken 33000.00 L	Certification No. 4564Q	Elapsed Time Minutes:Sec 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 12:00 14:00 16:00 18:00 9:00 10:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 16:00 10:00 10:00 10:00 10:00 10:00 10:00 10:00	152.50 142.54 142.15 141.76 141.37 140.91 140.03 139.79 139.56 139.35 138.64 137.95 137.27 136.53 135.78 134.17 132.59 130.97 129.35 126.51 123.25 119.11

Figure 16-1 Water Well Drilling Report (Page 3 of 3)

Question 17: Exposure Pathways and Guidelines

Response 99 d., Page 4-66 to 4-84.

Tables 99-2 to 99-7 include groundwater quality results from the AENV database and seismic well sampling program. Tables indicate that groundwater quality results are compared to Alberta Tier 1 Guideline Value (potable water).

- a. In general, Tier 1 Guidelines include all exposure pathways and receptors relevant to a given land use (AENV, 2010: Alberta Tier 1 Soil and Groundwater Remediation Guidelines). The Tier 1 Guidelines used for comparison have been modified to include only the "potable water" pathway for comparison to results in Tables 99-2 to 99-7. Revise to include all relevant exposure pathways and receptors.
- b. Guidelines are not included in Tables 99-2 to 99-7 for some dissolved and/or total metals/trace elements parameters. Include a rationale for not providing guidelines for these parameters or revise the table to include generic Tier 1 Guideline values.

Response 17

a. Revised tables 99-2 to 99-7 9 (from the response to Round 1 SIR 97) are provided. The guidelines presented for comparison have been updated to include all exposure pathways. With the inclusion of the aquatic life pathway, additional guideline exceedances are noted in the baseline data for fluoride, nitrite-nitrogen and zinc.

The median fluoride concentrations exceed the 0.12 mg/L guideline for both the AENV database and seismic well sampling data sets in the surficial, Oldman and Foremost aquifers as noted in each of the Tables 99-2 to 99-7.

The median nitrite-nitrogen concentration from the AENV database data (Table 99-2) for the surficial deposit aquifers exceeds the guideline, while the nitrite-nitrogen data from the seismic monitoring is below the guideline (Table 99-3).

Zinc concentration data, which are only available from the seismic well sampling for the Oldman (Table 99-5) and Foremost (Table 99-7) Formation aquifers, indicate median concentrations above the guideline in both cases.

b. Guidelines are available for dissolved and total metals including aluminum, chromium, copper, lead, mercury, nickel and silver (aquatic life pathway); however, they are not provided because their toxicity and resultant guideline values are dependent on the pH of the water. It was not considered appropriate to use averaged pH values to determine guidelines for these parameters.

Table 99-2 (Revised) Surficial Deposits Crosstab - AENV

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Calcium	mg/L	725	660	0.20	104	84	18	51	89	129	206	N/A
Chloride	mg/L	922	2003	0.20	40	117	2.0	4.0	11	37	91	230
Carbonate	mg/L	77	153	0.10	16	20	5.0	6.0	10	20	32	N/A
Electrical Conductivity	μS/cm	698	6600	1	1245	808	470	692	1050	1610	2330	N/A
Fluoride	mg/L	731	3.3	0.05	0.3	0.2	0.12	0.18	0.26	0.4	0.6	0.12
Iron	mg/L	903	125	0.001	1.7	5.7	0.05	0.10	0.33	1.4	4.0	0.3
Bicarbonate	mg/L	618	1567	22	480	220	187	327	479	619	770	N/A
Potassium	mg/L	617	223	0.31	5.9	12	1.5	2.7	4.1	6.3	9.2	N/A
Magnesium	mg/L	723	616	0.30	39	42	4.0	15	30	49	84	N/A
Sodium	mg/L	654	940	1.3	121	155	7.0	17	46	189	344	200
Nitrite-N	mg/L	600	69	0.001	0.3	2.8	0.1	0.1	0.10	0.1	0.4	0.06
Nitrite + Nitrate- N	mg/L	469	130	0.05	5.4	13	0.1	0.1	0.4	3.8	16	N/A
Nitrate-N	mg/L	321	566	0.001	22	54	0.1	0.4	3.9	20.0	57	2.9
рН	Units	725	9.0	1.63	7.8	0.5	7.2	7.5	7.9	8.2	8.4	6.5 - 8.5
Silica	mg/L	374	371	0.5	15	19	8.7	11	14	16.0	18	N/A
Sulphate	mg/L	933	3463	1.0	238	338	15	38	107	289	655	500
Total Alkalinity (as CaCO3)	mg/L	938	1445	18	413	180	195	299	405	526	642	N/A
Total Dissolved Solids	mg/L	940	4842	93	893	640	299	442	729	1128	1766	500
Total Hardness (as CaCO3)	mg/L	945	3109	2	425	340	77	215	363	546	842	N/A

BOLD Indicates Median value exceeds AENV Tier 1 Guideline Value (lowest guideline for all exposure pathways)

Table 99-3 (Revised) Surficial Deposits Crosstab – Seismic

	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Electrical Conductivity	μS/cm	106	5850	300	1864	736	1085	1370	1840	2353	2640	N/A
рН	units	106	8.75	7.52	8.14	0.26	7.8	8.0	8.2	8.3	8.4	6.5-8.5
Total Hardness as CaCO3	mg/L	106	2830	1	422	425	46	121	277	619	985	N/A
Total Alkalinity as CaCO3	mg/L	106	1010	153	614	189	385	489	604	737	865	N/A
Chloride	mg/L	106	527	1.2	35	60	4.1	8.4	22	39	66	230
Sulphate	mg/L	106	1370	0.5	380	336	8.7	108	280	585	877	500
Dissolved Iron	mg/L	106	20.2	0.03	1.7	3.2	0.03	0.05	0.42	1.7	5.3	0.3
Total Iron	mg/L	106	98.6	0.03	4.6	11	0.10	1	1.7	5.5	9.8	N/A
Dissolved Manganese	mg/L	106	1.96	0.005	0.27	0.31	0.02	0.06	0.19	0.39	0.53	0.05
Total Manganese	mg/L	106	1.95	0.005	0.31	0.33	0.02	0.07	0.21	0.44	0.62	N/A
Total Dissolved Solids	mg/L	106	4660	205	1318	614	732	916	1210	1750	2035	500
Total Suspended Solids	mg/L	106	2120	3	47	217	3.0	4.0	8.0	22	51	N/A
Calcium	mg/L	106	648	0.5	103	102	14	32	67	154	245	N/A
Magnesium	mg/L	106	295	0.1	40	43	2.7	10.4	26	53	98	N/A
Potassium	mg/L	106	41.2	0.55	6.1	4.9	2.4	3.3	4.6	7.3	11	N/A
Sodium	mg/L	106	627	3.8	288	142	94	202	269	404	457	200
Bicarbonate	mg/L	106	1230	187	739	223	470	596	737	874	1015	N/A
Carbonate	mg/L	106	44	5	8.7	8.8	5.0	5.0	5.0	5.0	19	N/A
Fluoride	mg/L	106	0.875	0.052	0.36	0.22	0.12	0.19	0.30	0.54	0.74	0.12
Nitrite as N	mg/L	106	0.518	0.05	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.06
Nitrate as N	mg/L	106	381	0.05	5.8	38	0.05	0.05	0.05	0.16	5.2	2.9
Nitrate plus nitrite as N	mg/L	106	382	0.071	5.9	38	0.07	0.07	0.07	0.18	5.2	N/A

BOLD Indicates Median value exceeds AENV Tier 1 Guideline Value (lowest guideline for all exposure pathways)

Table 99-4 (Revised) Oldman Crosstab – AENV

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Calcium	mg/L	531	535	0	45	63	1.0	3.6	15	61	129	N/A
Chloride	mg/L	615	1647	0	47	147	2.0	3.0	10	29	99	230
Carbonate	mg/L	236	798	5.0	30	71	6.0	12.0	20	28	40	N/A
Electrical Conductivity	μS/cm	511	14009	13	1699	1061	775	1195	1528	2000	2580	N/A
Fluoride	mg/L	514	5.0	0.01	0.8	0.7	0.2	0.27	0.52	1.1	1.8	0.12
Iron	mg/L	600	100	0.01	1.3	5.0	0.1	0.10	0.30	0.9	2.7	0.3
Bicarbonate	mg/L	459	1615	5.0	684	242	375	531	714	839	957	N/A
Potassium	mg/L	455	218	0.20	5.0	13	1.3	1.9	3.1	5.0	7.0	N/A
Magnesium	mg/L	528	429	0.10	15	28	1.0	1.0	3.8	21	44	N/A
Sodium	mg/L	503	2000	0.10	339	225	47	173	349	450	568	200
Nitrite-N	mg/L	443	52	0.001	0.24	2.5	0.05	0.05	0.05	0.1	0.20	0.06
Nitrite + Nitrate-N	mg/L	411	336	0.02	3.9	22	0.05	0.05	0.10	0.6	4.7	N/A
Nitrate-N	mg/L	111	157	0.10	8.3	21	0.10	0.20	1.1	5.0	17.9	2.9
рН	Units	531	12	6.0	8.3	0.52	7.6	8.0	8.4	8.6	8.8	6.5 - 8.5
Silica	mg/L	315	32	0.5	10	3.8	6.5	7.1	8.4	11.8	15.3	N/A
Sulphate	mg/L	616	3305	1.0	257	367	10	34	126	323	652	500
Total Alkalinity (as CaCO3)	mg/L	620	3789	2.0	593	271	313	448	606	717	836	N/A
Total Dissolved Solids	mg/L	620	5991	9.0	1102	631	495	751	979	1310	1767	500
Total Hardness (as CaCO3)	mg/L	619	2351	1.0	175	253	5.0	15	62	255	490	N/A

BOLD Indicates Median value exceeds AENV Tier 1 Guideline Value (lowest guideline for all exposure pathways)

Table 99-5 (Revised) Oldman Crosstab – Seismic

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Electrical Conductivity	μS/cm	110	5380	595	2242	938	1158	1543	2055	2890	3371	N/A
pН	units	110	8.78	7.6	8.2	0.3	7.9	8.1	8.2	8.4	8.6	6.5-8.5
Total Hardness as CaCO3	mg/L	110	2370	8.2	234	316	16	50	126	319	473	N/A
Total Alkalinity as CaCO3	mg/L	110	1280	243	717	204	447	551	754	861	951	N/A
Chloride	mg/L	110	428	1.17	47	80	2.5	6.9	18	39	126	230
Sulphate	mg/L	110	1970	0.5	453	488	0.7	33	288	670	1104	500
Dissolved Iron	mg/L	118	18.6	0.03	1.2	2.6	0.03	0.05	0.2	1.2	3.9	0.3
Total Iron	mg/L	114	47.5	0.01	3.1	6.5	0.06	0.23	0.7	2.8	8.5	N/A
Dissolved Manganese	mg/L	118	1.21	0.005	0.15	0.2	0.01	0.03	0.06	0.17	0.41	0.05
Total Manganese	mg/L	114	1.28	0.005	0.16	0.2	0.01	0.03	0.07	0.18	0.41	N/A
Total Dissolved Solids	mg/L	110	4300	414	1570	775	752	985	1345	2055	2360	500
Total Suspended Solids	mg/L	110	861	3	21	86	3.0	3.0	4.0	10	25	N/A
Dissolved Calcium	mg/L	118	567	2.78	63	78	5.1	16	37	79	133	N/A
Dissolved Magnesium	mg/L	118	231	0.31	21	30	0.9	3.8	10	27	49	N/A
Dissolved Potassium	mg/L	118	61	1.5	6	5.7	2.5	3.7	5.1	7.5	9.2	N/A
Dissolved Sodium	mg/L	118	1210	26.3	467	224	149	333	427	650	741	200

Table 99-5 (Revised) Oldman Crosstab – Seismic (cont'd)

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Bicarbonate	mg/L	110	1520	296	854	237	545	662	891	1020	1121	N/A
Carbonate	mg/L	110	50.7	5	13	13	5.0	5.0	5.0	16	35	N/A
Fluoride	mg/L	110	1.5	0.05	0.41	0.29	0.12	0.20	0.33	0.55	0.81	0.12
Nitrite as N	mg/L	110	1.39	0.05	0.09	0.16	0.05	0.05	0.05	0.05	0.06	0.06
Nitrate as N	mg/L	110	65.8	0.05	2.4	10	0.1	0.1	0.1	0.3	1.2	2.9
Nitrate plus nitrite as N	mg/L	110	66.5	0.071	2.4	10	0.07	0.07	0.07	0.27	1.2	N/A
Dissolved Aluminum	mg/L	9	0.011	0.01	0.01	0.00	0.010	0.010	0.010	0.010	0.010	N/A
Dissolved Antimony	mg/L	9	0.00141	0.0004	0.00	0.00	0.0004	0.0004	0.0004	0.0005	0.0014	0.006
Dissolved Arsenic	mg/L	9	0.0006	0.0004	0.00	0.00	0.0004	0.0004	0.0004	0.0005	0.0006	0.005
Dissolved Barium	mg/L	9	0.0913	0.0069	0.03	0.03	0.0071	0.0087	0.0194	0.0382	0.0912	1
Dissolved Beryllium	mg/L	9	0.001	0.001	0.00	0.00	0.001	0.001	0.001	0.001	0.001	N/A
Dissolved Boron	mg/L	9	0.781	0.155	0.54	0.25	0.16	0.34	0.59	0.73	0.77	1.5
Dissolved Cadmium	mg/L	9	0.000113	0.00005	0.00	0.000	0.0001	0.0001	0.0001	0.0001	0.0001	0.005
Dissolved Chromium	mg/L	9	0.005	0.005	0.01	0.000	0.005	0.005	0.005	0.005	0.005	N/A
Dissolved Cobalt	mg/L	9	0.0022	0.002	0.00	0.000	0.002	0.002	0.002	0.002	0.002	N/A
Dissolved Copper	mg/L	9	0.0057	0.001	0.00	0.002	0.001	0.001	0.003	0.005	0.005	N/A
Dissolved Lead	mg/L	9	0.00083	0.0001	0.00	0.000	0.0001	0.0001	0.0003	0.0004	0.0006	N/A

Shell Canada Limited

November 2011

Page 3-39

Table 99-5 (Revised) Oldman Crosstab – Seismic (cont'd)

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Dissolved Lithium	mg/L	9	0.16	0.0737	0.12	0.04	0.075	0.083	0.125	0.150	0.156	N/A
Dissolved Mercury	mg/L	9	0.0001	0.0001	0.00	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	N/A
Dissolved Molybdenum	mg/L	9	0.005	0.005	0.01	0.000	0.005	0.005	0.005	0.005	0.005	N/A
Dissolved Nickel	mg/L	9	0.0098	0.002	0.00	0.0034	0.002	0.002	0.002	0.002	0.010	N/A
Dissolved Selenium	mg/L	9	0.00223	0.0004	0.00	0.0008	0.0004	0.0004	0.0004	0.0005	0.0022	0.001
Dissolved Silver	mg/L	9	0.0001	0.0001	0.00	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	N/A
Dissolved Strontium	mg/L	1	0.583	0.583	0.6		0.6	0.6	0.6	0.6	0.6	N/A
Dissolved Thallium	mg/L	9	0.0001	0.0001	0.00	0.000	0.0001	0.0001	0.0001	0.0001	0.0001	N/A
Dissolved Tin	mg/L	9	0.05	0.05	0.05	0.000	0.05	0.05	0.05	0.05	0.05	N/A
Dissolved Titanium	mg/L	9	0.001	0.001	0.00	0.000	0.0010	0.0010	0.0010	0.0010	0.0010	N/A
Dissolved Uranium	mg/L	9	0.00698	0.00018	0.00	0.0027	0.0005	0.0007	0.0017	0.0043	0.0069	0.02
Dissolved Vanadium	mg/L	9	0.001	0.001	0.00	0	0.001	0.001	0.001	0.001	0.001	N/A
Dissolved Zinc	mg/L	9	6.27	0.002	1.48	2.64	0.005	0.030	0.221	0.377	6.054	0.03
Total Aluminum	mg/L	5	0.015	0.01	0.01	0.0022	0.010	0.010	0.010	0.010	0.013	N/A
Total Antimony	mg/L	5	0.00138	0.0004	0.00	0.0004	0.0004	0.0004	0.0004	0.0004	0.0010	N/A
Total Arsenic	mg/L	5	0.00091	0.0004	0.00	0.0003	0.0004	0.0004	0.0006	0.0009	0.0009	N/A

Table 99-5 (Revised) Oldman Crosstab – Seismic (cont'd)

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Total Barium	mg/L	5	0.0887	0.0066	0.03	0.03	0.0072	0.0082	0.0194	0.0420	0.0700	N/A
Total Beryllium	mg/L	5	0.001	0.001	0.00	0.000	0.001	0.001	0.001	0.001	0.001	N/A
Total Boron	mg/L	5	0.837	0.158	0.6	0.26	0.27	0.45	0.65	0.69	0.78	N/A
Total Cadmium	mg/L	5	0.000068	0.00005	0.00	0.00001	0.00005	0.00005	0.00005	0.00005	0.00006	N/A
Total Calcium	mg/L	5	243	35.9	88	88	38	41	55	64	171	N/A
Total Chromium	mg/L	5	0.005	0.005	0.01	0.000	0.005	0.005	0.005	0.005	0.005	N/A
Total Cobalt	mg/L	5	0.0022	0.002	0.00	0.0001	0.002	0.002	0.002	0.002	0.002	N/A
Total Copper	mg/L	5	0.135	0.001	0.03	0.06	0.001	0.001	0.001	0.003	0.082	N/A
Total Lead	mg/L	5	0.00105	0.00018	0.00	0.0004	0.0002	0.0002	0.0003	0.0006	0.0009	N/A
Total Lithium	mg/L	5	0.189	0.067	0.13	0.05	0.081	0.102	0.149	0.154	0.175	N/A
Total Magnesium	mg/L	5	75.5	9.33	25	29	9.5	10	11	19	53	N/A
Total Mercury	mg/L	5	0.0001	0.0001	0.00	0.000	0.0001	0.0001	0.0001	0.0001	0.0001	N/A
Total Molybdenum	mg/L	5	0.005	0.005	0.01	0.000	0.005	0.005	0.005	0.005	0.005	N/A
Total Nickel	mg/L	5	0.009	0.002	0.00	0.003	0.002	0.002	0.002	0.002	0.006	N/A
Total Potassium	mg/L	5	10.1	4.08	7.2	2.6	4.4	5.0	8.3	8.6	9.5	N/A
Total Selenium	mg/L	5	0.00219	0.0004	0.00	0.0008	0.0004	0.0004	0.0006	0.0006	0.0016	N/A
Total Silver	mg/L	5	0.0005	0.0001	0.00	0.0002	0.0001	0.0001	0.0001	0.0001	0.0003	N/A
Total Sodium	mg/L	5	833	193	613	257	336	550	724	765	806	N/A
Total Strontium	mg/L	1	0.629	0.629	0.6		0.6	0.6	0.6	0.6	0.6	N/A
Total Thallium	mg/L	5	0.0001	0.0001	0.0001	0.000	0.0001	0.0001	0.0001	0.0001	0.0001	N/A

Table 99-5 (Revised) Oldman Crosstab – Seismic (cont'd)

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Total Tin	mg/L	5	0.05	0.05	0.05	0.000	0.05	0.05	0.05	0.05	0.05	N/A
Total Titanium	mg/L	5	0.0012	0.001	0.001	0.0001	0.0010	0.0010	0.0010	0.0011	0.0012	N/A
Total Uranium	mg/L	5	0.00692	0.00014	0.003	0.0028	0.0003	0.0006	0.0016	0.0043	0.0059	N/A
Total Vanadium	mg/L	5	0.0012	0.001	0.001	0.0001	0.0010	0.0010	0.0010	0.0010	0.0011	N/A
Total Zinc	mg/L	5	5.84	0.0574	1.4	2.5	0.0679	0.0836	0.2170	0.5900	3.7400	N/A
Coliform	cfu/100 mL	4	1	1	1.0	0.000	1.0	1.0	1.0	1.0	1.0	N/A

NOTE:

BOLD Indicates Median value exceeds AENV Tier 1 Guideline Value (lowest guideline for all exposure pathways)

Table 99-6 (Revised) Foremost Crosstab – AENV

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Calcium	mg/L	436	3220	0.6	57	193	2.0	4.0	14	55	115	N/A
Chloride	mg/L	554	38815	0.20	469	2569	2.0	6.0	26	167	830	230
Carbonate	mg/L	178	167	5.0	24	22	5.0	10	19	31	43	N/A
Electrical Conductivity	μS/cm	429	19900	144	2208	1964	879	1190	1650	2450	3492	N/A
Fluoride	mg/L	453	2.2	0.04	0.6	0.41	0.14	0.23	0.46	0.8	1.1	0.12
Iron	mg/L	537	75	0.01	1.3	3.9	0.08	0.12	0.41	1.2	2.6	0.3
Bicarbonate	mg/L	345	1340	38	624	197	352	519	640	753	830	N/A
Potassium	mg/L	342	46	0.7	4.3	4.1	1.5	1.8	3.0	5.5	8.0	N/A
Magnesium	mg/L	434	1379	0.10	20	78	1.0	1.0	5.0	19	42	N/A
Sodium	mg/L	401	4020	6.3	463	425	111	249	375	510	775	200
Nitrite-N	mg/L	340	10	0.001	0.14	0.6	0.05	0.05	0.05	0.10	0.13	0.06
Nitrite + Nitrate-N	mg/L	242	143	0.020	2.2	11	0.05	0.05	0.10	0.30	2.1	N/A
Nitrate-N	mg/L	116	57	0.07	4.8	11	0.10	0.20	1.0	2.7	10	2.9
рН	Units	438	11	6.7	8.3	0.46	7.7	8.0	8.4	8.6	8.8	6.5 - 8.5
Silica	mg/L	228	286	0.8	10	19	5.9	6.8	7.7	11	14	N/A
Sulphate	mg/L	544	2066	1.0	249	359	7.4	14	71	327	801	500
Total Alkalinity (as CaCO3)	mg/L	559	4159	32	538	220	318	436	540	652	710	N/A
Total Dissolved Solids	mg/L	555	64058	78	1772	4267	550	767	1075	1693	2738	500
Total Hardness (as CaCO3)	mg/L	556	2107	1.0	162	242	7.0	21	60	217	377	N/A

BOLD Indicates Median value exceeds AENV Tier 1 Guideline Value (lowest guideline for all exposure pathways)

Table 99-7 (Revised) Foremost Crosstab – Seismic

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Electrical Conductivity	μS/cm	235	7730	428	2191	1059	1330	1515	1840	2545	3400	N/A
pН	units	235	8.88	7.68	8.40	0.26	8	8.26	8.46	8.61	8.706	6.5-8.5
Total Hardness as CaCO3	mg/L	235	1780	1	132	220	8.2	13.75	36.4	149	432.2	N/A
Total Alkalinity as CaCO3	mg/L	235	1130	197	649	197	409.4	497	641	800	922.2	N/A
Chloride	mg/L	235	2400	1.2	154	370	6.824	12.25	27.8	79.2	359.6	230
Sulphate	mg/L	235	1420	0.5	293	380	0.5	2.5	77.6	489.5	922.6	500
Dissolved Iron	mg/L	247	13	0.03	0.60	1.67	0.03	0.03	0.064	0.206	1.696	0.3
Total Iron	mg/L	241	55.2	0.029	1.48	4.67	0.035	0.082	0.206	0.839	2.9	N/A
Dissolved Manganese	mg/L	247	1.22	0.005	0.08	0.16	0.005	0.0076	0.023	0.076	0.278	0.05
Total Manganese	mg/L	241	1.21	0.0041	0.10	0.17	0.005	0.0095	0.026	0.087	0.312	N/A
Total Dissolved Solids	mg/L	235	4340	277	1424	636	873	987	1190	1715	2324	500
Total Suspended Solids	mg/L	235	2940	3	33	244	3	3	3	6	16	N/A
Dissolved Calcium	mg/L	247	374	0.5	34.3	52.9	2.746	4.475	11.1	41	113.2	N/A
Dissolved Magnesium	mg/L	247	206	0.1	11.0	21.4	0.37	0.67	1.87	9.995	36.66	N/A
Dissolved Potassium	mg/L	247	96.6	0.54	4.65	8.31	1.656	2.24	3.15	4.68	7.426	N/A

November 2011 Page 3-44

Table 99-7 (Revised) Foremost Crosstab – Seismic (cont'd)

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Dissolved Sodium	mg/L	247	1570	59.2	469	221	262	344	434	545.5	726.8	200
Bicarbonate	mg/L	235	1370	240	755	226	480	584	749	924	1070	N/A
Carbonate	mg/L	235	52.2	5	20.1	14.6	5	5	18.3	33.35	40.78	N/A
Fluoride	mg/L	235	1.71	0.071	0.55	0.35	0.1818	0.277	0.455	0.776	1.086	0.12
Nitrite as N	mg/L	235	0.5	0.05	0.08	0.09	0.05	0.05	0.05	0.05	0.0794	0.06
Nitrate as N	mg/L	235	132	0.05	0.96	8.71	0.05	0.05	0.05	0.1245	0.5646	2.9
Nitrate plus nitrite as N	mg/L	235	132	0.071	0.99	8.71	0.071	0.071	0.071	0.144	0.71	N/A
Dissolved Aluminum	mg/L	22	0.15	0.01	0.03	0.04	0.01	0.01	0.01	0.02	0.094	N/A
Dissolved Antimony	mg/L	22	0.008	0.0004	0.0017	0.0026	0.0004	0.0004	0.0004	0.001	0.0074	0.006
Dissolved Arsenic	mg/L	23	0.0182	0.0004	0.0028	0.0050	0.0004	0.000405	0.0008	0.002	0.0095	0.005
Dissolved Barium	mg/L	22	1.29	0.0081	0.2678	0.3379	0.0114	0.0431	0.1425	0.413	0.6519	1
Dissolved Beryllium	mg/L	22	0.01	0.001	0.003	0.003	0.001	0.001	0.001	0.002	0.0094	N/A
Dissolved Boron	mg/L	22	1.76	0.11	0.73	0.46	0.319	0.510	0.597	0.872	1.624	1
Dissolved Cadmium	mg/L	22	0.001	0.00005	0.00020	0.00033	0.00005	0.00005	0.00005	0.000	0.0009	N/A
Dissolved Chromium	mg/L	22	0.02	0.005	0.007	0.005	0.005	0.005	0.005	0.008	0.0132	N/A
Dissolved Cobalt	mg/L	22	0.008	0.002	0.003	0.002	0.002	0.002	0.002	0.002	0.004	N/A
Dissolved Copper	mg/L	22	0.012	0.001	0.004	0.004	0.001	0.00115	0.0023	0.004	0.0113	N/A

Shell Canada Limited

November 2011

Page 3-45

Table 99-7 (Revised) Foremost Crosstab – Seismic (cont'd)

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Dissolved Lead	mg/L	22	0.002	0.0001	0.0005	0.0006	0.0001	0.0001	0.0002	0.0004	0.0018	N/A
Dissolved Lithium	mg/L	22	0.152	0.036	0.078	0.032	0.0474	0.052375	0.0705	0.096	0.1284	N/A
Dissolved Mercury	mg/L	22	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	N/A
Dissolved Molybdenum	mg/L	22	0.02	0.005	0.007	0.005	0.005	0.005	0.005	0.005	0.01	N/A
Dissolved Nickel	mg/L	22	0.008	0.002	0.003	0.002	0.002	0.002	0.002	0.003	0.0043	N/A
Dissolved Selenium	mg/L	22	0.0218	0.0004	0.0027	0.0056	0.0004	0.0004	0.00074	0.002	0.0074	0.001
Dissolved Silver	mg/L	22	0.0026	0.0001	0.0004	0.0007	0.0001	0.0001	0.0001	0.000	0.0018	N/A
Dissolved Strontium	mg/L	10	1.74	0.149	0.6812	0.5130	0.1526	0.3535	0.506	0.931	1.2900	N/A
Dissolved Thallium	mg/L	22	0.001	0.0001	0.0003	0.0003	0.0001	0.0001	0.0001	0.0002	0.0009	N/A
Dissolved Tin	mg/L	22	0.2	0.05	0.07	0.05	0.05	0.05	0.05	0.05	0.1	N/A
Dissolved Titanium	mg/L	22	0.006	0.001	0.002	0.002	0.001	0.001	0.001	0.002	0.0058	N/A
Dissolved Uranium	mg/L	22	0.00954	0.0001	0.0019	0.0028	0.0001	0.0001	0.0004	0.002	0.0042	0.02
Dissolved Vanadium	mg/L	22	0.0156	0.001	0.003	0.004	0.001	0.001	0.001	0.002	0.0101	N/A
Dissolved Zinc	mg/L	22	1.79	0.0035	0.21	0.43	0.0049	0.0082	0.047	0.094	0.7526	0.03
Total Aluminum	mg/L	16	0.2	0.01	0.05	0.06	0.01	0.01	0.025	0.063	0.1465	N/A

Table 99-7 (Revised) Foremost Crosstab – Seismic (cont'd)

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Total Antimony	mg/L	16	0.008	0.0004	0.0016	0.0025	0.0004	0.0004	0.0004	0.001	0.0048	N/A
Total Arsenic	mg/L	17	0.0183	0.0004	0.0033	0.0053	0.0004	0.00042	0.00081	0.0018	0.0114	N/A
Total Barium	mg/L	16	1.53	0.0106	0.33	0.43	0.01625	0.038225	0.1505	0.486	0.835	N/A
Total Beryllium	mg/L	16	0.02	0.001	0.004	0.006	0.001	0.001	0.001	0.003	0.012	N/A
Total Boron	mg/L	16	1.82	0.098	0.84	0.55	0.287	0.48725	0.654	1.155	1.675	N/A
Total Cadmium	mg/L	16	0.001	0.00005	0.0002	0.0003	0.00005	0.00005	0.00005	0.000	0.0007	N/A
Total Calcium	mg/L	16	146	4.34	36.00	44.17	5.69	8.395	15.55	46.2	98.05	N/A
Total Chromium	mg/L	16	0.016	0.005	0.007	0.004	0.005	0.005	0.005	0.005	0.013	N/A
Total Cobalt	mg/L	16	0.004	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.004	N/A
Total Copper	mg/L	16	0.023	0.001	0.005	0.008	0.001	0.0011	0.00175	0.004	0.02	N/A
Total Lead	mg/L	16	0.002	0.0001	0.0005	0.0006	0.0001	0.00013	0.00018	0.000	0.0014	N/A
Total Lithium	mg/L	16	0.31	0.042	0.0958	0.0657	0.0465	0.0545	0.0805	0.11325	0.137	N/A
Total Magnesium	mg/L	16	61.6	0.72	10.62	17.08	0.965	1.38	2.385	10.775	31.25	N/A
Total Mercury	mg/L	16	0.0001	0.0001	0.0001	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	N/A
Total Molybdenum	mg/L	16	0.01	0.005	0.006	0.002	0.005	0.005	0.005	0.005	0.0071	N/A
Total Nickel	mg/L	16	0.0045	0.002	0.003	0.001	0.002	0.002	0.002	0.003	0.004	N/A
Total Potassium	mg/L	16	8.34	2.2	4.66	2.07	2.655	3.0475	3.92	6.05	7.705	N/A
Total Selenium	mg/L	16	0.0168	0.0004	0.003	0.005	0.0004	0.0004	0.00079	0.002	0.0109	N/A
Total Silver	mg/L	16	0.01	0.0001	0.002	0.004	0.0001	0.0001	0.00035	0.001	0.01	N/A

Table 99-7 (Revised) Foremost Crosstab – Seismic (cont'd)

Parameter	Unit	Total Analysis Count	Max	Min	Mean	Standard Deviation	10th Percentile	25th Percentile	Median	75th Percentile	90th Percentile	AENV Tier 1 Guideline
Total Sodium	mg/L	16	1380	56.4	644.59	334.22	335.5	451.5	547	820	1028.5	N/A
Total Strontium	mg/L	10	1.68	0.151	0.709	0.506	0.1753	0.37075	0.525	1.014	1.338	N/A
Total Thallium	mg/L	16	0.002	0.0001	0.000	0.001	0.0001	0.0001	0.0001	0.000	0.0012	N/A
Total Tin	mg/L	16	0.1	0.05	0.053	0.013	0.05	0.05	0.05	0.05	0.05	N/A
Total Titanium	mg/L	16	0.0358	0.001	0.006	0.009	0.001	0.00115	0.00225	0.007	0.012	N/A
Total Uranium	mg/L	16	0.00965	0.0001	0.002	0.003	0.0001	0.0001	0.000345	0.002	0.0055	N/A
Total Vanadium	mg/L	16	0.018	0.001	0.004	0.006	0.001	0.001	0.001	0.002	0.0126	N/A
Total Zinc	mg/L	16	2.16	0.004	0.332	0.679	0.004	0.00655	0.072	0.229	1.1275	N/A
Coliform	cfu/100 mL	6	1	1	1	0.00	1	1	1	1	1	N/A

BOLD Indicates Median value exceeds AENV Tier 1 Guideline Value (lowest guideline for all exposure pathways)

November 2011 Shell Canada Limited Page 3-48

Question 18: Hydraulic Isolation in the AOI

SIR 116, Page 4-117 to 4-118.

Shell indicates that the pressure differential between the Cooking Lake Formation and the extrapolated BCS pressure gradient at Well 8-19 suggest there is currently no flow path between these formations.

a. Has Shell collected additional gradient information that supports the assessment that hydraulic isolation exists between the BCS and overlying aquifers across the AOI?

Response 18

a. Well 8-19 was the last well Shell drilled into the BCS. This well was drilled in fall of 2010 but the data were not available at the time of the November 2010 regulatory submission. The data was submitted in response to Round 1 SIR 116.

No additional gradient information has been collected. The assessment of hydraulic isolation between the Cooking Lake Formation and the BCS is not based on pressure gradient information alone. The following evidence was also taken into account:

- The response to Round 1 SIR 108 discusses evidence for primary, secondary, and ultimate seal continuity, thickness, integrity, and lateral extent and an absence of faults through the seals.
- The unique formation fluid chemistry of the BCS provides strong evidence of hydraulic isolation and supports the inclusion of BCS brine tracer monitoring within the MMV plan (see the response to Round 1 SIR 61).

Question 19: Revision for the Response to SIR 98, Table 98-1

SIR 98, Page 4-65 to 4-66.

Shell provides ranges for the hydraulic conductivity estimates for the shallow and deeper overburden, Oldman and Foremost Formations.

a. Provide the total number of data sets evaluated for each individual group.

Response 19

a. Table 98-1 (from the response to Round 1 SIR 98) is revised to include the number of data sets used in the hydraulic conductivity estimates.

Table 98-1 (Revised) Total Number of Data Sets Evaluated for Hydraulic Conductivity Estimates

	Number of	Hydra	aulic Conduct (m/s)	ivity	_	Gradient /m)	Average Linear Veloc (m/	city
Aquifer	Data Sets Evaluated	Minimum	Maximum	Geometric Mean	Minimum	Maximum	Minimum*	Maximum*
Upper Surficial Deposits	125	6.5E-07	2.5E-03	3.0E-05	ND	ND	ND	ND
Lower Surficial Deposits	9	3.6E-06	1.5E-02	1.1E-04	0.002	0.01	23	115
Oldman Formation	211	1.8E-08	2.3E-03	2.2E-06	0.0008	0.02	0.2	5
Foremost Formation	50	2.4E-08	4.7E-03	5.1E-06	0**	0.01	0**	5

NOTES:

ND-not determined

^{*} Minimum and maximum velocity calculated using geometric mean hydraulic conductivities and effective porosity of 0.3.

^{*} Due to groundwater flow divides within the Foremost Formation, the minimum hydraulic gradient is considered to be effectively zero.

Question 20: Monitoring Technologies Accuracy

SIR 132, Page 4-165.

Shell indicates that the CO_2 inventory measurement error depends on site-specific performance of the monitoring technologies used, but is expected to be better than 10%.

a. Elaborate on the type of monitoring technologies and the how the less than 10% error was determined.

Response 20

The inventory of CO₂ stored within the BCS storage complex will be determined according to the difference between the mass of injected CO₂ and the mass of any unexpected CO₂ emissions from the BCS storage complex. CO₂ inventory measurement error depends on site-specific performance of the monitoring technologies identified in the response to SIR 61 (Table 61-1).

a. The 10% CO₂ inventory error was determined early in the design process. At that time, a single fiscal meter at the Shell Scotford fenceline was included in the design but the type of well head flow meter had not been selected.

Flow meter technology has since been selected to measure the mass of CO₂ injected at each well head. Although the selection of hardware, software and processing steps is currently still being finalized, the expected maximum error of each individual meter is 0.1% to 0.5%, based on manufacturer's specifications. This will be verified through a programme of maintanence, calibration, and analysis of the observed metering performance during the injection period. After reconciliation between the network of flow meters, the expected monthly maximum error of injected CO₂ mass is less than 1%. The mass of CO₂ emissions from the BCS storage complex is expected to be zero. Therefore, in this case of zero emissions, the CO₂ inventory measurement error is expected to be less than 1%.

An analysis of the CO₂ inventory measurement error will be included in updates to the MMV Plan submitted for review every three years, coincident with the required submission of the updated Closure Plan to Alberta Energy.

4. Approvals

The responses to questions in this Approvals section will not be considered as part of the EIA completeness decision made by Alberta Environment and Water.

4.1. Alberta Sustainable Resource Development

Question 21: ASRD Review of the Contingency Plan

SIR 51, Page 3-117.

Shell states Shell is committed to providing to DFO and Transport Canada (TC) a contingency plan for the crossing of the North Saskatchewan River using a trenched crossing. The contingency plan will include the assessment of effects, mitigation measures and methodology summary provided above. The contingency plan will be submitted to DFO in Q3 2011 and to TC before construction or clearing activities on the bed and banks of the North Saskatchewan River.

a. Confirm that Shell plans to also provide ASRD with an opportunity to review the contingency plan.

Response 21

a. Shell is committed to providing to Fisheries and Oceans Canada (DFO), Transport Canada (TC) and Alberta Sustainable Resource Development (ASRD) a contingency plan for the crossing of the North Saskatchewan River using a trenched crossing. The contingency plan will include the assessment of effects, mitigation measures and methodology summary provided above.

Shell is continuing to progress engineering design for the pipeline and anticipates having the detailed engineering completed for the North Saskatchewan River crossing in 2012. Shell will incorporate the detailed engineering of the crossing into its contingency plan for submission to DFO, TC and ASRD. The contingency plan will be submitted for review in Q4 2012 before starting construction or clearing activities on the bed and banks of the North Saskatchewan River.

Question 22: Crossing of the North Saskatchewan River

SIR 70, Page 3-143.

Shell states Shell has elected to cross the North Sakatchewan River using horizontal directional drilling (HDD). In the event this crossing method cannot be used, an isolated trench using a two-stage coffer-dam will be used.

- a. Confirm Shell understands that the PLA for the crossing is only valid if the applied method of crossing (HDD) is used. The PLA will need to be cancelled and a new one applied for if the HDD fails and the contingency crossing is required.
- b. Confirm Shell plans to provide ASRD the proposal to cross the North Saskatchewan River at this location using an isolated trench with a two-stage coffer dam.

Response 22

- a. Shell submitted an application for a Pipeline Agreement (PLA) to ASRD to cross the North Saskatchewan River using HDD in March 2011. A PLA was issued for this crossing on May 26, 2011 under Disposition No. PLA110614. Shell understands that this PLA is valid only if the HDD crossing method is used. In the event that a contingency crossing method is required, Shell will request the PLA be cancelled and submit a new application for the contingency method.
- b. Shell will submit a contingency plan for the North Saskatchewan River crossing for review to ASRD in Q4 2012, concurrent with submission to DFO and TC.