Disclaimer
This Report, including the data and information contained in this Report, is provided to you on an “as is” and “as available” basis at the sole discretion of the Government of Alberta and subject to the terms and conditions of use below (the “Terms and Conditions”). The Government of Alberta has not verified this Report for accuracy and does not warrant the accuracy of, or make any other warranties or representations regarding, this Report. Furthermore, updates to this Report may not be made available. Your use of any of this Report is at your sole and absolute risk.

This Report is provided to the Government of Alberta, and the Government of Alberta has obtained a license or other authorization for use of the Reports, from:

Shell Canada Energy, Chevron Canada Limited. and Marathon Oil Canada Corporation, for the Quest Project

(collectively the “Project”)

Each member of the Project expressly disclaims any representation or warranty, express or implied, as to the accuracy or completeness of the material and information contained herein, and none of them shall have any liability, regardless of any negligence or fault, for any statements contained in, or for any omissions from, this Report. Under no circumstances shall the Government of Alberta or the Project be liable for any damages, claims, causes of action, losses, legal fees or expenses, or any other cost whatsoever arising out of the use of this Report or any part thereof or the use of any other data or information on this website.

Terms and Conditions of Use
Except as indicated in these Terms and Conditions, this Report and any part thereof shall not be copied, reproduced, distributed, republished, downloaded, displayed, posted or transmitted in any form or by any means, without the prior written consent of the Government of Alberta and the Project.

The Government of Alberta’s intent in posting this Report is to make them available to the public for personal and non-commercial (educational) use. You may not use this Report for any other purpose. You may reproduce data and information in this Report subject to the following conditions:

* any disclaimers that appear in this Report shall be retained in their original form and applied to the data and information reproduced from this Report
* the data and information shall not be modified from its original form
* the Project shall be identified as the original source of the data and information, while this website shall be identified as the reference source, and
* the reproduction shall not be represented as an official version of the materials reproduced, nor as having been made in affiliation with or with the endorsement of the Government of Alberta or the Project
By accessing and using this Report, you agree to indemnify and hold the Government of Alberta and the Project, and their respective employees and agents, harmless from and against any and all claims, demands, actions and costs (including legal costs on a solicitor-client basis) arising out of any breach by you of these Terms and Conditions or otherwise arising out of your use or reproduction of the data and information in this Report.

Your access to and use of this Report is subject exclusively to these Terms and Conditions and any terms and conditions contained within the Report itself, all of which you shall comply with. You will not use this Report for any purpose that is unlawful or prohibited by these Terms and Conditions. You agree that any other use of this Report means you agree to be bound by these Terms and Conditions. These Terms and Conditions are subject to modification, and you agree to review them periodically for changes. If you do not accept these Terms and Conditions you agree to immediately stop accessing this Report and destroy all copies in your possession or control.

These Terms and Conditions may change at any time, and your continued use and reproduction of this Report following any changes shall be deemed to be your acceptance of such change.

If any of these Terms and Conditions should be determined to be invalid, illegal or unenforceable for any reason by any court of competent jurisdiction then the applicable provision shall be severed and the remaining provisions of these Terms and Conditions shall survive and remain in full force and effect and continue to be binding and enforceable.

These Terms and Conditions shall: (i) be governed by and construed in accordance with the laws of the province of Alberta and you hereby submit to the exclusive jurisdiction of the Alberta courts, and (ii) ensure to the benefit of, and be binding upon, the Government of Alberta and your respective successors and assigns.
Shell Canada will be conducting a 3D seismic program for the Quest CCS Project. Environmental impacts such as potential disturbance to wildlife and culturally sensitive areas will be identified and mitigation plans will be put in place to minimize disturbance and avoid sensitive areas. During this process, Shell Canada will work cooperatively with the community and regulatory agencies to promote and implement a sustainable seismic program and minimize environmental impacts.

HOW DO WE REDUCE THE ENVIRONMENTAL EFFECTS?

We believe that resource development can be compatible with environmental protection when the principles of sustainable development, which include modern technology and environmental protection, are applied. We strive to achieve a healthy, safe, and implement a sustainable seismic program and minimize environmental impacts. How do we reduce the environmental effects?

WHAT IS SEISMIC SURVEY?

A seismic survey is a method of determining subsurface information by analyzing sound waves originating from an energy source. This energy source is typically from an explosive charge placed in holes up to 20 meters (66 ft) deep, or from vibrations generated from a series of “Vibroseis” trucks. The reflected sound waves are detected by listening devices called geophones attached to cables that are laid out along the seismic line. The cables connect into a recording truck or “dog house” that contains computers for recording the data.

WHAT TYPES OF SEISMIC PROGRAMS ARE THERE?

The different types of seismic operations are 2D or 3D programs. 2D seismic lines are single lines of regularly spaced geophone stations (e.g., every 20 meters), with energy source points established along the line, typically at every 3rd or 4th station. This program is generally used to retrieve a general sample of the subsurface being explored.

3D seismic programs are generally uniform and evenly spaced grids of lines. Receiver lines, containing the recording devices, are usually perpendicular to the direction of the source lines comprised of regularly spaced source points (e.g., at 50 or 60 meters intervals). This method generates a much more detailed “picture” of the subsurface.

THE SEVEN-STEP SURVEY PROCESS

After permission has been granted by the landowner and regulatory agencies, the following work processes are followed to retrieve data:

1. **PROJECT-SPECIFIC REQUIREMENTS**

All contractors and visitors are welcomed to the seismic project and with a thorough site-specific orientation related to the nature of the ongoing program—in this case Quest. During this briefing, the requirements from stakeholders and regulators are addressed.

2. **LINE CUTTING**

This portion of the seismic operation is site specific and is sensitive to the environment surrounding the project. As this is specific to forested areas, very little to no line cutting may be needed for this 3D seismic project. The use of low-impact seismic technology is used to reduce the effect of the project on the terrain. Crews work on foot and in machines called Mulchers. They are trained to avoid rare and endangered plants and animals. Mulchers “mulch” dense vegetation and spread it on the land, creating access for large wildlife once the survey is complete, and encouraging the growth of forage for these animals. In addition, this would be expected to improve ground nesting for larger birds. This would be beneficial for some smaller species that use dense vegetation to avoid predators, but over the long-term we would expect enhance habitat for larger wildlife such as deer.

3. **SURVEYING**

Surveying requires crews to determine co-ordinates and elevations using conventional survey methods, or with Global Positioning System (GPS) techniques. GPS is a method that uses a receiver capable of triangulating signals from a range of satellites, which enables it to render an accurate longitude, latitude and altitude.

The Inertial Navigation System (INS) is another common surveying technique that uses a reference point, sometimes referred to as the starting point. It uses a device, an INS pack, which tracks and senses the movements in reference to the known start point.

Both systems enable the users to collect reference points, which may signify terrain hazards and information for mapping (e.g., cliffs, fences, water bodies, rough terrain).

4. **DRILLING**

This phase of the seismic operation is only present when the energy source is dynamite. A series of shot points are reflected on a map, usually spaced between 10m to 100m. At each shot point, a hole is drilled and loaded with a charge and detonator. Once the hole is plugged, all that is left exposed is a wire connected to the detonator in the hole. These are left to be detonated later by a certified Shooter once the recording crew has their equipment in place.

5. **RECORDING**

The recording phase is the most important phase of the operation. It provides all of the subsurface records that the geophysicist needs to make a decision. This portion of the operation requires many pieces of equipment. Geophysical equipment cables and geophone recording devices will be deployed by helicopter. Geophones are placed by layout crews, which record the seismic activity from the energy source. These cables—with the geophones attached—are connected to recording devices, which are connected to the cable at known locations. Once all of the equipment has been laid out and connected, the recorder vehicle connects to the cable and the line is ready to be recorded.

6. **SHOOTING**

The methods for this portion of the project are specific to the type of energy used to create the seismic activity. The Quest seismic program is proposed as a mixture of Vibroseis trucks and traditional dynamite in drilled holes. With dynamite as the energy source, Shooters are required. The certified Shooters will visit each shot point and detonate the charge loaded in the hole.

Once the charges are detonated, the seismic waves are recorded by Geophones connected to the recording vehicle, where they are documented for future reference. After the records are taken, the information is sent to Calgary, Alberta for further analysis by a geophysicist.

7. **CLEAN-UP**

Once the records have been acquired in an area and the recording equipment is no longer needed, crews pack their equipment and leave. Crews will clear the line of all survey materials, garbage and debris in order to uphold our commitment to the environment.

QUEST 3D 2010 FURTHER INFORMATION

<table>
<thead>
<tr>
<th>Senior Staff Seismic Supervisor</th>
<th>Dave Deren</th>
<th>Telephone: 403 691 3697</th>
<th>Email: gary.deren@shell.com</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-site Manager</td>
<td>Dave Berry</td>
<td>Telephone: 403 815 6995</td>
<td>Email: david.berry@shell.com</td>
</tr>
<tr>
<td>Operation Type</td>
<td>3D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Source</td>
<td>Dynamic & Vibroseis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approximate Dates</td>
<td>Commencement: January 2010</td>
<td>Completion: April 2010</td>
<td></td>
</tr>
<tr>
<td>Proposed km²</td>
<td>330 km²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Information</td>
<td>DYNAMITE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shot Point Spacing</td>
<td>50 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shot Point Depth</td>
<td>1.5 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge</td>
<td>1-2 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Information</td>
<td>VIBROSEIS:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shot Point Spacing</td>
<td>50 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shot Point Depth</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge</td>
<td>3 X Vib Trucks</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUEST CCS PROJECT: 3D SEISMIC BACKGROUND

Quest CCS project: 3D seismic backgounder

Shell Canada will be conducting a 3D seismic program for the Quest CCS Project. Environmental impacts such as potential disturbance to wildlife and culturally sensitive areas will be identified and mitigation plans will be put in place to minimize disturbance and avoid sensitive areas. During this process, Shell Canada will work cooperatively with the community and regulatory agencies to promote and implement a sustainable seismic program and minimize environmental impacts.

HOW DO WE REDUCE THE ENVIRONMENTAL EFFECTS?

We believe that resource development can be compatible with environmental protection when the principles of sustainable development, which include modern technology and environmental protection, are applied. We strive to achieve a healthy, safe, and implement a sustainable seismic program and minimize environmental impacts. How do we reduce the environmental effects?

WHAT IS SEISMIC SURVEY?

A seismic survey is a method of determining subsurface information by analyzing sound waves originating from an energy source. This energy source is typically from an explosive charge placed in holes up to 20 meters (66 ft) deep, or from vibrations generated from a series of “Vibroseis” trucks. The reflected sound waves are detected by listening devices called geophones attached to cables that are laid out along the seismic line. The cables connect into a recording truck or “dog house” that contains computers for recording the data.

WHAT TYPES OF SEISMIC PROGRAMS ARE THERE?

The different types of seismic operations are 2D or 3D programs. 2D seismic lines are single lines of regularly spaced geophone stations (e.g., every 20 meters), with energy source points established along the line, typically at every 3rd or 4th station. This program is generally used to retrieve a general sample of the subsurface being explored.

3D seismic programs are generally uniform and evenly spaced grids of lines. Receiver lines, containing the recording devices, are usually perpendicular to the direction of the source lines comprised of regularly spaced source points (e.g., at 50 or 60 meters intervals). This method generates a much more detailed “picture” of the subsurface.