Table of Contents

Cold Heavy Oil Production with Sand in the Canadian Heavy Oil Industry
Some Recommendations Relating to Alberta Heavy Oil
1. Royalty/Taxation Regime
2. Survey of CHOPS Economic and Recovery Impact
3. The Issue of Upgrading Capacity
4. Technologies and Resource Recovery Efficiency
5. Suspended Wells
6. Use of Natural Gas as a Fuel for Thermal Recovery
7. Reporting Sand Volumes and Waste Volumes Monthly

1 Introduction
 1.1 Issues and Definitions
 1.1.1 The Scope of the Report
 1.1.2 Definitions
 1.2 General Geological Setting
 1.3 CHOPS and Other New Technologies
 1.3.1 CHOPS
 1.3.2 Other New Production Technologies
 1.4 Canadian Heavy Oil Production
 1.4.1 Production and Upgrading
 1.4.2 Increase in Heavy Oil vs. Conventional Oil Production
 1.4.3 Heavy Oil Price Cyclicity

2 World Conventional and Heavy Oil
 2.1 Sources of Hydrocarbons
 2.2 How Much Heavy Oil is There?
 2.2.1 World and Canadian Heavy Oil Resources
 2.2.2 Canadian Heavy Oil Belt Resources
 2.3 World Issues

3 CHOPS
3.1 CHOPS and Related Technologies

3.2 History of CHOPS Development
 3.2.1 History of Sand Production in Canadian Heavy Oil
 3.2.2 Current CHOPS status worldwide

3.3 Typical Alberta Reservoirs

3.4 Typical CHOPS Well Behavior Summary

3.5 CHOPS Production Behavior
 3.5.1 Production Profiles
 3.5.2 Well Productivity and Evolution

3.6 Typical Sanding Rates in Canadian Wells and Fields

3.7 What Constitutes a CHOPS Project?

4 Physical Processes in CHOPS Production
 4.1 Reservoir Mechanisms Maintaining Sand Influx
 4.1.1 Energy Sources and Stresses
 4.2 Flow Enhancement Mechanisms
 4.2.1 Darcy Velocity Increase with Sand Influx
 4.2.2 Permeability Enhanced Zone Development
 4.2.3 Foamy Oil Behavior in Viscous Oil
 4.2.4 Elimination of Skin Effects
 4.2.5 Change of Mechanisms with Time
 4.3 Channels or Compact Growth Zone?
 4.3.1 Uniform Remolded Zone Growth Concepts
 4.3.2 Piping Channel (Wormhole) Growth Concepts
 4.3.3 Combined Compact and Wormhole Processes
 4.4 Discussion of Stresses
 4.4.1 Stresses in the Wellbore Region
 4.4.2 Reservoir-Scale Stress Changes
 4.4.3 Stresses Around a Channel

5 Case Histories: Luseland Field & Horizontal Wells
 5.1 Luseland Field History and Reservoir Parameters
 5.2 Production History for Luseland Field
5.3 Individual Well Behavior
5.4 Field Behavior
5.5 Horizontal Versus Vertical Wells?
 5.5.1 Lindbergh Field Horizontal/CHOPS Comparison
 5.5.2 Plover Lake Field
 5.5.3 Cactus Lake Field
 5.5.4 Evaluation of Non-Thermal Horizontal Wells vs Vertical CHOPS Wells
5.6 The Mathematical Simulation of CHOPS
 5.6.1 Non-Conventional Processes in CHOPS
 5.6.1.1 Liquefaction of Sand
 5.6.1.2 The Enhanced Permeability Zone=
 5.6.1.3 Foamy Oil Behavior
 5.6.1.4 Slurry flow
 5.6.2 Conventional Approaches to Simulation
 5.6.3 Stress-Flow Coupling and Physics-Based Modeling
5.7 CHOPS or Not?

6 Canadian CHOPS Production Practices
6.1 Initiating and Sustaining Sand Influx
6.2 Lifting Approaches
 6.2.1 Reciprocating Pumps and Related Devices
 6.2.2 Continuous Sand Extraction CSE Pump
 6.2.3 Jet Pump Development and Use
6.3 Progressing Cavity Pumps
 6.3.1 Evolution of PC Pump Use in Canadian Heavy Oil
 6.3.2 Current PC Pump Practice in the HOB
 6.3.3 “Sloppy-fit” PC Pumps
 6.3.4 Charge Pumps
 6.3.5 Constant Elastomer Thickness PC Pumps
 6.3.6 Rotor Wear
 6.3.7 Downhole Drives for PC Pumps
6.4 PC Bottom Hole Configuration and Operational Management
6.4.1 PC Pump Bottom-Hole Installation
6.4.2 Surface Drives
6.4.3 PC Pump Operation in a New CHOPS Well
6.4.4 PC Pump Rates, Sand Tolerance
6.4.5 PC Pumps as Surface Transfer Pumps

6.5 Sand Transport and Erosion
6.5.1 Erosion Problems in Tubulars and Wellheads
6.5.2 Sand Transport in Flowlines

7 Well Instrumentation
7.1 Downhole Measurements
 7.1.1 BHP Gauges
 7.1.2 Other Downhole Measurements
7.2 Surface Monitoring Equipment
 7.2.1 Fluid Production Metering
 7.2.2 Stocktank Measurements
7.3 Gas Sampling
7.4 BS&W Measurements
7.5 Risk, Chaotic Behavior, Sampling
 7.5.1 Risk from Sanding
 7.5.2 Chaotic Behavior and Sampling
 7.5.3 Recommended Sampling Program for a CHOPS Field
7.6 Requirements for Reporting to Regulatory Agencies

8 Workovers for CHOPS Wells
8.1 Surface, Wellbore, Reservoir
8.2 Time Series Information
8.3 Types of Workover
8.4 Workover Methods
8.5 Staged Workover Strategy
 8.5.1 Stages to Manage Risk
 8.5.2 Workover Payback
8.6 Summary
9 Sand and Fluids Management at the Surface

9.1 Stocktanks (Vertical Gravity Separators)

9.2 Produced Materials Management
 9.2.1 Water Management
 9.2.2 Gas Management
 9.2.3 Sand Extraction from Stocktanks
 9.2.4 Stable Emulsion Management

9.3 Treatment of Fluids
 9.3.1 Solids Separation at Local Batteries
 9.3.2 Stable Emulsion Treatment
 9.3.3 Other Approaches Used in the Past

9.4 Materials Management for an Integrated CHOPS Project

10 Environmental Aspects and Regulations

10.1 Introduction and Information Sources
 10.1.1 Definition of Wastes
 10.1.2 Classification of Sand Wastes
 10.1.3 Volumes of Produced Sand, Limits to Sand Production

10.2 Other Hydrocarbon Fluid Wastes From CHOPS
 10.2.1 Stable Emulsion
 10.2.2 Slops, Site Clean-Up Wastes, Treater Residues

10.3 Large Storage Tank Sludges and Solids
 10.3.1 Storage Tanks as Separators
 10.3.2 Cleaning or Decommissioning of Facilities Containing Sludges

10.4 Environmental Interactions
 10.4.1 Landfills and Subsurface Groundwater Protection
 10.4.2 Surface Stockpile Issues
 10.4.3 Surface Spills of Oilfield Wastes
 10.4.4 Environmental Liability, Companies and Contractors

10.5 History of Regulatory Authority Development
 10.5.1 History of Environmental Guideline Development
 10.5.2 EUB (Alberta Energy Utilities Board)
11 Waste Transport, Treatment, Disposal

11.1 Introduction

11.2 Stocktank Cleaning and Stockpiling
 11.2.1 Stocktank Cleaning Practices
 11.2.2 Stockpiles, “Eco-Pits”, and Concrete Sumps
 11.2.3 Clean-up of Slops
 11.2.4 Treatment of Stable Emulsions

11.3 Sand Disposal by Road Use and Land Spreading
 11.3.1 Road Spreading: Methods, Advantages and Disadvantages
 11.3.2 Sand Incorporation into Road Bases
 11.3.3 Land Spreading: Methods, Advantages, Disadvantages

11.4 Permanent Landfill Placement

11.5 Sand Washing Approaches
 11.5.1 Sand Washing by Thermal and Non-Thermal Methods
 11.5.1.1 Non-thermal washing
 11.5.1.2 Thermal Washing:
 11.5.2 Sand Wettability Issues
 11.5.3 Generation of Additional Streams
 11.5.4 Summary of Washing Technologies for Produced Sand

11.6 Produced Sand as Industrial Feedstock
 11.6.1 Cement Plant Feedstock
 11.6.2 Road Asphalt Component
 11.6.3 Glass and Fiberglass Sand
 11.6.4 Sand Blasting or Other Uses
 11.6.5 Industrial Uses Summary

11.7 Salt Cavern Placement of Produced Sand
 11.7.1 Why Salt Caverns?
 11.7.2 Salt Cavern Potential for Toxic Waste Disposal
 11.7.3 Cavern Design and Management
 11.7.3.1 Cavern Development and Design
11.7.3.2 Waste Placement in a Salt Cavern
11.7.3.3 Management of Cavern Growth
11.7.3.4 Placement of Produced Sand in Caverns
11.7.3.5 Liquids Management in Salt Caverns

11.7.4 Rock Mechanics and Geological Engineering Issues

11.7.5 Monitoring Salt Cavern Disposal

11.8 Slurry Injection of Solid Sand and Other CHOPS Wastes

11.8.1 Principles of Site and Well Selection for Slurry Injection
 11.8.1.1 Target Formation Selection
 11.8.1.2 Geological Conditions for Maximum Environmental Security
 11.8.1.3 Well Perforations
 11.8.1.4 Wellbore Cementation
 11.8.1.5 Tubing and Casing Design and Conditions

11.8.2 Operational Practices
 11.8.2.1 General Approach
 11.8.2.2 Daily Injection Cycle Procedure (Figure 11.8)
 11.8.2.3 Flow-Through Waste Mixing System
 11.8.2.4 Fixed or Mobile Injection Operations
 11.8.2.5 Slops, Sludge, Drilling Mud, and Emulsion Disposal in Wells

11.8.3 Environmental Compliance and Monitoring for Process Control

11.8.4 PanCanadian-Terralog Automated Sludge Injection Well

11.8.5 Disadvantages

11.9 Other Treatment Options
 11.9.1 Thermal Decomposition
 11.9.2 Biodegradation Cells
 11.9.3 Chemical Treatments

12 Economic Analysis of Disposal Options

12.1 General Statement and Background of Cost Estimates
 12.1.1 Uncertainty and Variance in Costs
 12.1.2 Corporate Cost Figures
 12.1.3 Comparative NOW Disposal Costs in West Texas
12.2 Stocktank Cleaning Approaches and Costs
 12.2.1 High Pressure Jetting and Vacuum Trucks
 12.2.2 Auger Trucks and LHD Units
 12.2.3 Better Ways to Clean Stocktanks
12.3 Transportation and Handling Costs
 12.3.1 Lease Stocktanks
 12.3.2 Sand Transportation
 12.3.3 Stockpiling and Handling Costs
12.4 Land Spreading and Road Spreading Costs
12.5 Landfill Costs
12.6 Sand Washing Costs
12.7 Salt Cavern Placement Costs
 12.7.1 Third-Party Operated Salt Caverns
 12.7.2 Use of Existing Salt Caverns
12.8 Slurry Waste Injection
 12.8.1 Mobile Injection Unit Operating Costs
 12.8.2 Static Dedicated Slurry Injection Site Operating Costs
 12.8.3 Central Integrated Disposal Facility for “Custom” Disposal
12.9 Costs of Other Approaches
12.10 Climatic and Geographic Issues

13 Technology and the Canadian Heavy Oil Industry
13.1 The Old Technologies
 13.1.1 Problems with Older Technologies
 13.1.2 Cyclic Steam Stimulation (CSS)
 13.1.3 Steam-Drive Methods
 13.1.4 In Situ Combustion Methods
13.2 Producers of Alberta Primary Heavy Oil
 13.2.1 History of Major Oil Companies in CHOPS
 13.2.2 Other Companies
 13.2.3 Public Research Agencies
13.3 Science and Technology Development in Heavy Oil
13.3.1 AOSTRA: Alberta Oil Sands Technology and Research Authority

13.3.2 Technology Emergence

13.4 Emerging Technologies

13.4.1 VAPEX

13.4.2 THAI™: Toe-to-Heel Air Injection

13.4.3 Pressure Pulsing Technologies

13.4.3.1 Darcy Theory and Biot Theory

13.4.3.2 The Porosity Dilation (PD) Wave

13.4.3.3 Benefits to Flow Processes

13.4.3.4 Field Successes for Pressure Pulsing

13.5 After CHOPS?

13.5.1 PPT With CHOPS

13.5.2 SAGD With CHOPS?

14 Appended Documents

14.1 Appendix 1: CANADA'S OIL SANDS AND HEAVY OIL DEPOSITS

14.2 Appendix 2: HEAVY OIL POTENTIAL: THE NEXT 50 YEARS

14.3 Appendix 3: CANADIAN-VENEZUELAN COMPARISON

14.4 Appendix 4: END NOTES

14.5 Appendix 5: DISPOSAL OF DIRTY LIQUID USING SLURRY FRACTION INJECTION