

Innovative Energy Technologies Program

Project Approval No. 01-003 Final Report

June 30, 2012

Table of Contents

1. Report Abstract	
 2. Summary Project Status Report 2.1 Key Project Team Members 2.2 Chronological Report of All Activities and Operations Conducted 2.3 Production, Material and Energy Balance 2.4 Estimate of Reserves 	
 3. Well Information 3.1 Well Layout Map 3.2 Drilling, Completion and Work-Over Operations 3.3 Well Operation 3.4 Well List and Status 3.5 Wellbore Schematics 3.6 Spacing and Pattern 	
 4. Production Performance 4.1 Production and Injection History 4.2 Composition of Produced / Injected Fluids 4.3 Pilot Performance 4.4 Injection, Production, Observation Well and Reservoir Pressure History 	
 5. Pilot Data 5.1 Additional EnCAID Project Data and Interpretation 5.1.1 Geology. 5.1.2 Oil Composition 5.1.3 Simulation & Results 5.1.4 Temperature Data 5.1.5 Air Injection and Well Pressure Response 	37 37 37 37 38 48
6. Pilot Economics Summary	58
 7. Facilities 7.1 Major Capital Items 7.2 Capacity Limitation, Operational Issues, and Equipment Integrity 7.3 Process Flow Diagram and Site Layout 8. Environment/Regulatory/Compliance 	
 8.1 Summary of Project Regulatory Requirements and Compliance Status	
 9. Summary - Operating Plan 9.1 Actual Project Schedule 9.2 Changes in Pilot Operation, Planned vs Actual 9.3 Optimization Strategies 	
 10. Interpretations and Conclusions. 10.1 Assessment of the Overall Performance of the Pilot. 10.1.1 Lessons learned. 10.1.2 Technical and Economic Viability	

List of Tables and Figures

Table 2.3.1 Gas Production History Table 2.3.2 Material Balance	
Table 2.3.3 Energy Balance	
Table 2.3.4 Net Cumulative Energy and Material Balance	,
Table 3.4.1 Well List	
Figure 2.4.1 Net Gas Balance	8
Figure 2.4.2 Pool Material Balance	
Figure 3.1.1 Well Layout Map	
Figure 3.5.1 Wellbore Schematic for 100/5-10-73-6W4 Injector	
Figure 3.5.2 Wellbore Schematic for 102/5-10-73-6W4 Observation Well	. 15
Figure 3.5.3: Wellbore Schematic for 6-10-73-6W4 Observation Well	
Figure 4.1.1 EnCAID Composite Production History	. 17
Figure 4.1.2 7-8-73-6W4 Production History	
Figure 4.1.3 2-16-73-6W4 Production History	. 18
Figure 4.1.4 14-9-73-6W4 Production History	. 19
Figure 4.1.5 11-15-73-6W4 Production History	. 19
Figure 4.1.6 1-17-73-6W4 Production History	. 20
Figure 4.1.7 6-5-73-6W4 Production History	. 20
Figure 4.1.8 EnCAID Air Injection History	
Figure 4.2.1 Historical Nitrogen Composition Changes	. 22
Figure 4.2.2 Map of Nitrogen Response	. 22
Figure 4.2.3 Laboratory Gas Analysis for 1-17-73-6W4 Producer	
Figure 4.2.4 Laboratory Gas Analysis for 2-16-73-6W4 Producer	
Figure 4.2.5 Laboratory Gas Analysis for 6-5-73-6W4Producer	
Figure 4.2.6 Laboratory Gas Analysis for 7-8-73-6W4 Hz Producer	. 26
Figure 4.2.7 Laboratory Gas Analysis for 11-15-73-6W4 Producer	. 27
Figure 4.2.8 Laboratory Gas Analysis for 14-9-73-6W4 Hz Producer	. 28
Figure 4.2.9 Map of Carbon Dioxide Response	
Figure 4.2.10 EnCAID Historical O2 Levels	
Figure 4.2.11 EnCAID BTU Impact	
Figure 4.3.1 EnCAID Voidage Balance History	
Figure 4.4.1 Wabiskaw K3 Reservoir Pressure Before Injection	
Figure 4.4.2 Reservoir Pressure Changes to January 2011 Figure 4.4.3 Pressure History for Groups of EnCAID Wells	
Figure 4.4.3 Pressure History for Groups of EffCATD wells	
Figure 5.1.1 Pre-EnCaid Areal Simulation Model; Early-stage nitrogen profile	
Figure 5.1.2 Pre-EnCaid Areal Simulation Model; Late-stage nitrogen profile	
Figure 5.1.3 Pre-EnCaid near-wellbore simulation model; thermal impact on bitumen	
Figure 5.1.4 Pre-EnCaid near-wellbore simulation model; extent of burned zone	
Figure 5.1.5 Post EnCaid full field dual grid 3D model	. 42
Figure 5.1.6 Detailed Near Wellbore Combustion Front Model; Geology	
Figure 5.1.7 Detailed Near Wellbore Combustion Front Model; cross-section	
Figure 5.1.8 Detailed Near Wellbore Model; 5-10 temperature match	
Figure 5.1.9 Detailed Near Wellbore Model; refined grid temperature profile	
Figure 5.1.10 EnCaid impact on bitumen	
Figure 5.1.11 102/05-10-073-06W4 Observation Well Temperature Trend	. 49
Figure 5.1.12 Observation Well Temperature History	
Figure 5.1.13 EnCAID Thermo Snapshot – Feb 4, 2011	
Figure 5.1.14 100/05-10-073-06W4 Injection Well Temperature Trend	
Figure 5.1.15 Observation Well 6-10-73-6w4 Temperature Trend	
Figure 5.1.16 EnCAID Injectivity Index Trend	. 55
Figure 5.1.17 100/5-10-73-6 W4 Injection Well Fall-off Test #1	. 56
Figure 5.1.18 100/5-10-73-6 W4 Injection Well Fall-off Test #2	. 57
Figure 7.3.1 EnCAID Site Layout	
Figure 9.1.1 Proposed Project Schedule	
Figure 9.1.2 Actual Project Schedule	. 67

1. <u>Report Abstract</u>

The EnCAID project was designed to explore the use of air injection and downhole combustion to maintain formation pressure while accomplishing enhanced recovery of natural gas from shut-in "Gas Over Bitumen" (GOB) reservoirs. The project consisted of using a single air injection well in the Kirby K3 Wabiskaw gas pool to maintain the gas cap reservoir pressure and sweep gas to 6 existing production wells. A downhole combustion front was initiated and maintained to prevent oxygen from causing safety issues in the gas gathering system.

This Final Report summarizes the operational and financial results of the project, from the initiation of injection on June 2, 2006 thru the end of IETP funding December 31, 2010. The project went largely as planned despite some issues with plugging on the air injection well caused by compressor oil carry over. At the end of the reporting period a solvent squeeze on the injection well and coalescing filters downstream of the air compressors were planned to prevent the problem from reoccurring. Later in the reporting period, higher N2 production had to be restrained due to the lack of high heat value gas to blend the produced gas to sales specs. At the end of 2010 Cenovus was working on obtaining the necessary regulatory and partner approvals to bring on 4 additional producers at the far west end of the pool (referred to as EnCAID +). The drastic decline in natural gas prices over the project period significantly impacted project economics. The project demonstrated that this method for recovering GOB gas is technically sound and operationally viable. US and Canadian patent applications were submitted and were under review by the respective Patent Offices at the end of 2010.

Note: A Corporate entity change occurred on 2009-12-01 when Cenovus Energy Inc. split off from EnCana Corporation. Cenovus is referred to throughout this report.

2. <u>Summary Project Status Report</u>

2.1 Key Project Team Members

Larry Freeman – Production Engineer Dr. Ben Nzekwu - Process & Reservoir Simulation Julie Colwell – Reservoir Engineer Dale Neufeld – Facilities Engineer Larry Weiers – Vice President Dr. Gordon Moore – Combustion Testing & Expertise Ross Krill - Facility Engineering Shelley Golebeski - Critical Controls and Monitoring design from Segment Engineering Dr. Kenny Adegbesan - Reservoir Simulation with KADE Jonah Resnick - Geologist for Geostatistical model for detailed history match Scott Dutkiewicz, Ryan Samuel, Gary Joncas, Albert Whitford, Roger Boucher - Key Field Operating Staff during start up of EnCAID Bill Hogue – Production Engineer Kevin Cole - Geologist Jessica Wu – Reservoir Engineer Scott Obrigewitsch – Team Lead Matt Toews – Reservoir Engineer Dean Bierkos – Group Lead Lee Emms - Facilities Engineer

2.2 Chronological Report of All Activities and Operations Conducted

- November, 2005: Alberta Department of Energy IETP 01-003 Approval
- January, 2006: ERCB Approval
- Spud 102/5-10-73-6W4 observation well • February, 2006:
- June 2, 2006: Ignition & start-up
- January, 2007: Nitrogen response at 14-9-73-6W4Hz
- April, 2007: Nitrogen response at 2-16-73-6W4
- Nitrogen response at 11-15-73-6W4 • May, 2007:
- June, 2007: 14-9-73-6W4 Hz Shut in, Nitrogen >65%
- May, 2008: Nitrogen response at 1-17-73-6W4
- January, 2009: Gas production temporarily shut-in until 6-18-73-6W4 segregation repairs completed 1st decrease in injectivity
- October, 2009:
- June, 2009: Nitrogen response at 7-8-73-6W4Hz
- 2-16-73-6W Colony flow test to try to cleanup cross flowed nitrogen from • Q3 & Q4, 2009: the Wabiskaw zone. Colony contaminated with nitrogen due to failure of surface check valve while flowing Wabiskaw & Colony during first 2 years of EnCAID.
- January, 2010: 100/5-10-73-6W4 injector stimulation treatment
- October, 2010: Shut in 1-17-73-6W4, Nitrogen 77%
- December, 2010: 100/5-10-73-6W4 air injection well fall off testing. Cenovus removed the thermocouple string and performed two pressure fall off tests on the EnCAID air injection well from December 12-21, 2010 and December 26-27, 2010. The data was analyzed to understand the wellbore damage which resulted from compressor lube oil carry over.
- Shut in 2-16-73-6W4, Nitrogen 84% • December, 2010:
- December, 2010: Shut in 11-15-73-6W4, Nitrogen 70%

2.3 Production, Material and Energy Balance

The gross and net gas production history for the EnCAID project is shown in Table 2.3.1.

Table 2.3.1	Gas Production H	History
-------------	------------------	---------

Month	Year	7-8-73-6	wa Ha	2-16-7	3.6.4	En(210000 (million)		nd Net 73-6w4		roduct 3-6w4	tion (e3	3m3) 3-6w4	6-10-7	3-6-4	Overall	EDCAID	
		Avg	Avg	2-10-7 Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	Avg	
		Gross	Form	Gross	Form	Gross	Form	Gross	Form	Gross	Form	Gross	Form	Gross	Form	Gross	Form	% Sales Gas
June	2006	Gas 667	Gas 667	Gas 422	Gas 422	Gas 729	Gas 729	Gas 147	Gas 147	Gas 211	Gas 211	Gas 225	Gas 225	Gas 12	Gas 12	Gas 2414	Gas 2414	100.0%
July	2006	626	626	443	443	622	622	269	269	381	381	0	0	9	9	2350	2350	100.0%
August	2006	589	589	244	244	810	810	178	178	377	377	0	0	3	3	2201	2201	100.0%
September	2006	738	738	435	435	788	788	268	268	269	269	0	0	0	0	2499	2499	100.0%
October	2006	763	763	448	448	819	819	316	316	227	227	74	74	0	0	2647	2647	100.0%
November	2006 2006	746	746 711	444 408	444 408	802	802 772	311	311 297	216 255	216 255	0	0	0	0	2518	2518 2443	100.0%
December Totals	2006	711 4840	4840	2844	2844	772 5342	5342	297 1786	1786	1936	255 1936	299	299	25	25	2443 17072	17072	100.0%
January	2007	778	778	458	458	838	808	318	318	150	150	0	0	0	0	2542	2512	98.8%
February	2007	691	691	442	442	654	542	330	330	207	207	0	0	0	0	2325	2213	95.2%
March	2007	721	721	429	429	681	442	413	413	123	123	0	0	0	0	2367	2129	89.9%
April	2007	757	757	450	450	715	417	443	443	140	140	0	0	0	0	2505	2207	88.1%
May	2007	785	785	463	440	541	227	455	409	318	318	0	0	0	0	2562	2180	85.1%
June	2007	771	771	457	379	152	104	444	398	397	397	0	0	0	0	2221	2049	92.3%
July	2007	809	809	295	206	0	0	451	356	414	414	274	274	0	0	2241	2058	91.8%
August September	2007 2007	825 802	825 802	207 136	114 62	0 11	0	453 367	291 209	423 413	423 413	329 319	329 319	0	0	2237 2048	1982 1807	88.6% 88.2%
October	2007	834	834	87	31	3	0	257	100	432	432	331	331	0	0	1945	1728	88.8%
November	2007	813	813	127	31	ő	õ	304	120	422	422	322	322	0	ō	1989	1708	85.9%
December	2007	743	743	105	29	0	0	258	97	387	387	292	292	0	0	1784	1547	86.7%
Totals	2007	9329	9329	3656	3071	3594	2543	4493	3484	3827	3827	1866	1866	0	0	26765	24120	90.1%
January	2008	744	744	74	19	12	2	273	70	438	438	334	334	0	0	1875	1606	85.7%
February	2008	778	778	90	22	0	0	147	37	411	411	218	218	0	0	1643	1465	89.2%
March	2008	749	743	120	20	2	0	169	45	424	421	235	235	0	0	1699	1464	86.1%
April	2008 2008	849	849	131	16	0	0	90	24 23	446	441	248	248	0	0	1763	1578 1633	89.5%
May June	2008	878 853	878 853	134 115	17 13	0	0	89 86	23	461 450	457 435	258 250	258 250	0	0	1820 1754	1570	89.7% 89.5%
July	2008	883	883	133	10	ō	0	89	17	464	412	259	259	0	0	1829	1581	86.4%
August	2008	892	892	133	9	2	0	89	18	462	363	259	259	0	o	1837	1542	83.9%
September	2008	817	817	115	8	14	0	83	20	424	299	238	238	0	0	1690	1383	81.8%
October	2008	901	901	123	8	24	0	88	20	465	304	262	262	0	0	1863	1495	80.2%
November	2008	875	875	137	8	0	0	83	18	453	276	254	254	0	0	1802	1430	79.4%
December	2008	794	794	108	5	2	0	55	13	408	145	230	230	0	0	1598	1187	74.3%
Totals	2008	10013	10007	1412	157	56	3	1342	323	5305	4400	3044	3044	0	0	21173	17933	84.7%
January	2009 2009	509 91	509 91	68 6	3	1	0	45 14	9	276 49	131 23	156 27	156 27	0	0	1054 187	807 144	76.6% 77.1%
February March	2009	840	840	114	6	2	0	67	17	49	156	244	244	0	0	1688	1263	74.8%
April	2009	901	901	133	5	1	õ	99	21	452	178	262	262	0	ŏ	1847	1368	74.0%
May	2009	933	933	140	5	0	0	90	19	469	186	271	271	0	0	1903	1414	74.3%
June	2009	902	896	0	0	0	0	82	15	454	172	262	262	0	0	1700	1344	79.1%
July	2009	932	916	0	0	0	0	76	14	440	160	271	271	0	0	1719	1361	79.2%
August	2009	930	896	7	0	6	0	69	12	390	132	271	271	0	0	1673	1312	78.4%
September	2009	917	863	0	0	0	0	66	11	379	107	265	265	0	0	1627	1245	76.6%
October	2009 2009	945 850	870 760	0	0	10 0	0	67 65	14 13	388 348	105 94	274 267	274 267	0	0	1684 1534	1262 1135	74.9% 74.0%
November December	2009	798	695	38	1	12	0	51	8	309	75	280	280	0	0	1488	1059	71.2%
Totals	2009	9548	9169	508	21	31	0	791	155	4374	1519	2851	2851	ŏ	0	18103	13714	75.8%
January	2010	708	601	52	2	9	0	48	5	231	47	250	250	0	0	1297	905	69.8%
February	2010	712	593	83	3	0	0	53	5	224	43	252	252	0	0	1323	896	67.7%
March	2010	791	658	116	3	0	0	54	8	245	44	280	280	0	0	1486	994	66.9%
April	2010	766	608	96	2	0	0	53	9	223	40	271	271	0	0	1409	931	66.1%
May	2010	792	614	90	2	9	0	55	9	226	44	279	279	0	0	1452	948	65.3%
June	2010	768	590	66	2	0	0	56	9	133	26	272	272	0	0	1295	899	69.4%
July	2010 2010	792 648	609	68	2	10	0	59 8	9	112	22	327	327	0	0	1368 946	969 750	70.8%
August September	2010	733	473 527	9 37	0	0 5	0	59	1	7 45	1	274 377	274 377	0	0	946 1256	750 920	79.2% 73.2%
October	2010	541	390	68	2	0	0	61	12	26	2	334	334	0	0	1029	741	72.0%
W W1	2010	512	362	67	2	ō	0	30	6	0	ō	285	285	0	o	893	655	73.4%
November	2010	585	410	37	1	0	0	39	8	0	0	200	200	0	0	861	620	72.0%
November December		8345	6436	789	23	33	0	575	95	1472	273	3401	3401	0	0	14614	10228	70.0%
	2010	0010				9057	7889	8988	5842	16913	11955	11461	11461	25	25	97728	83068	85.0%

Energy and Material Balance

The following energy and mass streams apply to the EnCaid project:

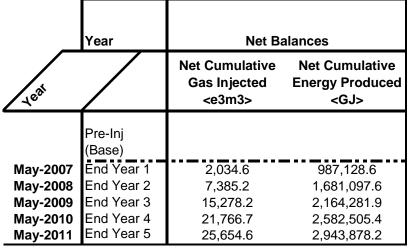
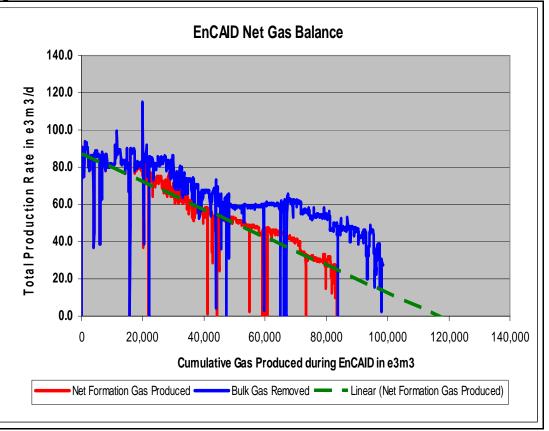
- Steam, injected into the 100/5-10 injector to pre-heat the reservoir for ignition. Steam was injected at an average pressure of 4400 kPa and a quality of 77%.
- Compression energy; for in-situ combustion air injection. Compressors were run on natural gas (fuel gas).
- Produced Gases; both produced methane and produced combustion gases. Produced gases are not distinguished in the tables below, but an average heat content is used (based on frequent samples and lab tests).
- No liquids production occurred during EnCaid, no process air or fresh water was required, and negligible electricity was required (only for instruments and communications)

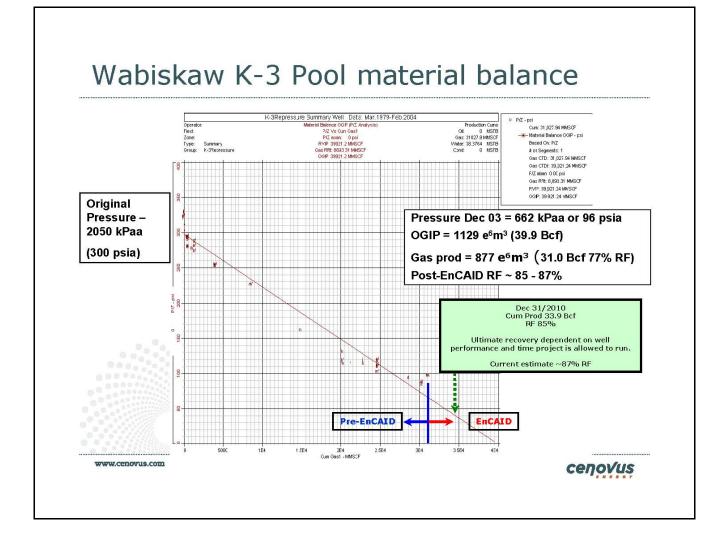
Operating Volumes Year Cumulative Material Balance <e3m3> Daily Air **Daily Gas** Injection 7021 Production Cumulative Steam **Cumulative Air** Cumulative Gas <e3m3/day> <e3m3/day> Production <e3m3> Injection (tons) Injection <e3m3> Pre-Inj (Base) 0.0 0.0 End Year 1 May-2007 86.3 80.8 941.5 31,604.1 29,569.5 May-2008 End Year 2 78.3 63.7 0.0 60,268.6 52,883.4 May-2009 End Year 3 52.2 0.0 87,261.9 71,983.7 73.8 May-2010 End Year 4 67.5 49.8 0.0 111,980.0 90,213.4 End Year 5 May-2011 44.9 34.3 0.0 128,407.3 102,752.7

 Table 2.3.2
 Material Balance

	Year	Operating Energy E	3alance <gj day=""></gj>	Cumulati	ve Energy Bala	nce <gj></gj>
teat		Daily Gas Produced <gj d=""></gj>	Daily Fuel Consumption <gj d=""></gj>	Cumulative Steam Injection (GJ)	Cum Gas Production <gj></gj>	Cum Fuel Gas Consumed <gj></gj>
	Pre-Inj					
	(Base)	0.0	0.0		0.0	0.0
May-2007	End Year 1	1,749	121	2,270	1,069,291	79,892
May-2008	End Year 2	2,107	223	0	1,842,267	161,169
May-2009	End Year 3	1,555	122	0	2,407,801	243,519
May-2010	End Year 4	1,367	123	0	2,906,938	324,433
May-2011	End Year 5	1,113	123	0	3,313,195	369,317

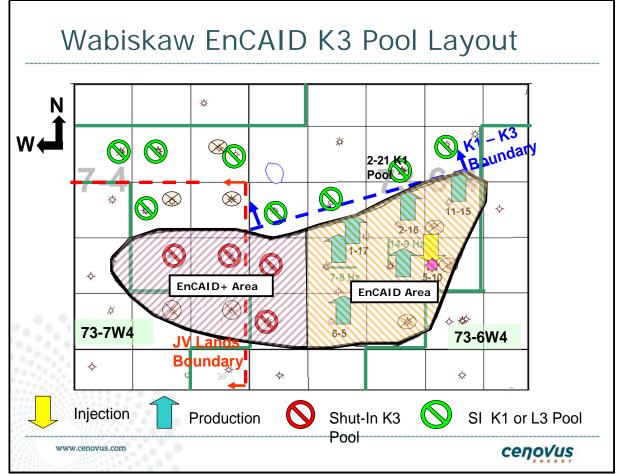
Table 2.3.3 Energy Balance


 Table 2.3.4
 Net Cumulative Energy and Material Balance

2.4 Estimate of Reserves

The plot of the net gas production (Figure 2.4.1) continues to decline with time and appears to be extrapolating to a cumulative EnCAID formation gas recovery of approximately 3.5 to 3.7 BCF (at a minimum rate of 0.5 MMSCFD). As shown in Figure 2.4.2, the currently estimated recovery factor is approximately 87%. This expected EnCAID formation gas recovery is slightly lower than the pretest expectation of 4 BCF but is still within a reasonable tolerance range.



3. Well Information

3.1 Well Layout Map

Figure 3.1.1 Well Layout Map

3.2 Drilling, Completion and Work-Over Operations

100/5-10-73-6W4 Injection Well

For the 100/5-10 injection well, an injectivity test with nitrogen followed by KCI water followed by nitrogen was performed on March 3rd, 2006 to try to assist injection design. An unusual response was observed where nitrogen injection at about 14.4 e3m3/day resulted in a wellhead pressure buildup to 9,200 kPag before a small "breakdown" was observed with final nitrogen slug injection of 6,835 m3. When 5-10 was on sweet gas production, it had reached peak production rates of 13.6 e3m3/day at an initial reservoir pressure of 1,450 kPag so this resistance to injection was unexpected. Following the switchover to water injection at 65 to 100 m3/day, a similar buildup and breakdown was observed around a wellhead pressure of 6,535 kPag (11.0 MPa downhole with the water gradient). During the subsequent repeated step of nitrogen injection, an almost identical surface pressure level of 9,300 kPag was reached at a similar cumulative nitrogen slug size. Given these results, the G-51 Injection Well Application requested and received approval for a short term wellhead pressure limit of 9,200 kPag with a long term operating wellhead pressure limit of 6,000 kPag.

The 100/5-10 well was eventually converted to injection status by reperforating the entire Wabiskaw gas interval, cementing the sump up to the gas-bitumen interface and cementing in place a thermocouple string allowing temperature readings uphole, across the gas interval and across the first fifteen meters of the bitumen interval. Due to corrosion concerns with the potential contact of hot water or steam and oxygen, the Galaxy 2000# thermal wellhead was coated with Impreglon and a 2 7/8" (73 mm) TK-7 coated tubing string was installed. This initial installation utilized an expansion joint, on-off connector, and retrievable packer that were designed for thermal conditions. Unfortunately, the Halliburton downhole retrievable assembly supplied was the "most thermal" available in the small 4 $\frac{1}{2}$ " casing sizes.

Shortly after the initiation of steam injection on April 23rd, 2006, this thermal installation failed at about 280 deg C resulting in a catastrophic destruction of the Petrospec thermocouple string and loss of annular isolation.

The redesign for the existing injector downhole configuration involved installation of a permanent thermal packer & expansion joint with AFLAS (Asbesto based) seal elements and without an on-off connector.

Shortly after startup, the thermocouple string was only reading the temperature of the injection air (see Figure 5.1.14) and in early 2011 Cenovus applied for and received approval to permanently remove it in order to do a more effective cleanout and stimulation of the air injection interval.

102/5-10-73-6W4 Observation Well

The 102/5-10 observation well was drilled in the first half of 2006, 30 meters west of the 100/5-10-73-6W4 injection well. The 102/5-10 well was cored and a total of 35.6 meters of core was recovered from 2 meters of shale, 5 meters of gas, 28 meters of bitumen and 2 meters of bottom shale. The well was subsequently completed as an observation well.

Prior to the completion of the 102/5-10 observation well, discussions with the Foster Creek Thermal group took place including a design study by Noetic Engineering to address the potential thermal stresses of a fire front passing through the observation location. In the final analysis, the safest wellbore design to remove the chance of casing collapse due to thermal stresses was to cement the monitoring string casing in place without an open annular space. The 102/5-10 well contains a Petrospec piezometer & thermocouple sensing string strapped onto the outside of 2 7/8" tubing (acting as casing) with a cement plug down about 300 meters from surface providing 140+ meters of cement over the combustion zone. An excellent cement job was performed with cement returns coming back up the 7" wellbore prior to the cement wiper plug being dropped and pushed to a level at 300 mKB. The core acquired from this well provided confirmation of the correct setting depths for three piezometer pressure measurements (in Joli Fou shale, in gas zone & 3 meters below gas-bitumen interface) and ten temperature measurements (1 in Joli Fou shale, 1 above formation, 2 in gas zone and 6 at varying depths in the top 15 meters of the bitumen leg).

Both the gas zone piezometer and the uphole shale monitoring piezometer failed subsequent to the completion operation. The critical bitumen zone piezometer has been reading values around 1.3 MPag.

The thermocouple string on the 102/5-10-73-6W4 has operated well and been a valuable resource for production monitoring and successful combustion confirmation.

100/6-10-73-6W4 Production & Observation Well

For the 100/6-10 production & observation well, a conversion took place from a single Colony A producer to the dual Wabiskaw Gas & Wabiskaw Bitumen completion. The only major difficulties on this well was the requirement to squeeze off the non-productive Colony zone and then perforate the Wabiskaw Gas zone twice to try to get a strong enough Wabiskaw pressure measurement.

Even after the second perforating run, the well bled down quickly in the gas interval from an initial surface pressure of about 265 kPag to zero. The well is unable to flow gas against a line pressure of about 110 kPag proving that the location is on the very edge of the Wabiskaw K-3 Pool and almost out of the zone with minimal gas crossover on logs. On the December 2006 bottomhole pressure surveys, the acoustic well sounder (AWS) value of 890 kPaa was obtained which is believable with the overall pool pressure so the well may actually be contacting the main pool through a low perm streak.

Due to its tight nature, the 6-10 well is not providing any gas production or any good gas compositional change information however it is supplying a continuous piezometer pressure reading from the bottom of the bitumen string from the perforations about 8 meters into the bitumen leg.

Segregation Problem at 2-16-73-6W4

Gas analysis and a segregation test in August 2007 suggested that there was wellbore communication between the Wabiskaw and Colony zones on the 2-16-73-6W4 dual completion. After consultation with the ERCB, flow was continued on the higher pressure Wabiskaw test zone while shutting in the Colony interval.

Subsequent work in the winter of 2008 showed the zonal segregation to be intact. Wellbore segregation between the Colony and Wabiskaw zones was confirmed with multiple successful segregation tests and zonal gradients that show a 200 kPag differential between the zones. The only explanation that Cenovus was able to find for the presence of nitrogen in the Colony zone was a failure in the surface check valves during the flow of both zones over the first two years of the flood. During flowline pressure fluctuations, the Colony zone would have been loaded up with nitrogen rich gas backflowing from the Wabiskaw zone through the faulty check valve over an extended period of time

Cenovus executed a flow test of the Colony zone in the 2-16-73-6W4 wellbore in the last half of 2009 to try to clean-up the cross flowed nitrogen from the Wabiskaw zone. After 6 months of flow at a controlled rate of 2 e3m3/d, the Colony zone still had not removed much of the nitrogen build-up so Cenovus returned to the original goal of EnCAID and restarted flow from the Wabiskaw zone (with the Colony zone blinded off).

Segregation Repair at 6-18-73-6W4

Following review of the December 2008 static gradient data, Cenovus became aware that the nonproductive Wabiskaw and Colony well at 6-18-73-6W4 was continuously losing pressure. The downhole pressure trend at 6-18 was the only location where Wabiskaw zone pressure appeared to be abnormally decreasing. Cenovus reacted by shutting in all EnCAID gas production on January 19, 2009 as per Clause 16 of the original Approval 10440. (Since the air injection was able to only be reduced somewhat, but needed to be maintained to keep the combustion going, Cenovus selfdisclosed the requirement to temporarily exceed the monthly voidage limit of 1.4 by going up to 1.675 in January 2009 and 10.339 in February 2009 due to this gas production shut-in.) As of February 26, 2009, the repair was completed on the 6-18 wellbore with segregation returned to the well as observed by the expected bottomhole pressure of 940 kPaa rather than the pre-repair pressures below 700 kPaa. In March 2009, the monthly voidage replacement ratio was returned to normal levels around 1.2 with the EnCAID gas production back on-line.

100/5-10-73-6W4 Stimulation to Recover Injectivity

Following review of the injectivity index trends (Figure 5.1.16) Cenovus investigated the rapid decrease in injectivity in October 2009 that lead to the lowest air injection rate of 19.4 e3m3/day (0.69MMSCFD) at a wellhead pressure of 3328 kPag. It is believed that a carryover of oil from the reciprocating compressors caused a downhole resistance near the 100/5-10-73-6W4 air injection well. To address this problem, Cenovus executed a solvent / surfactant / dispersant treatment on January 21, 2010 on the injection well and was able to recover injectivity back to the original injectivity index trend (0.008 m3/day/kPa²). Since starting air injection in June 2006, the injectivity index has shown a straight line decline from initial values of 0.011 to 0.017 to the current levels of 0.008 however concern was raised when the sudden drop to 0.0017 m3/day/kPa² occurred. The steady decline in injectivity index trend is believed to be related to both a slow increase in formation pressure and a small degree of oil banking in the gas zone. The improvement in injectivity proved to be short lived and by Fall 2010, injectivity was again a significant concern. Pressure fall-off testing in December 2010 showed the presence of significant near wellbore damage (Figures 5.1.17 & 5.1.18). A more aggressive stimulation was planned in early 2011 with a backup plan of converting another wellbore to air injection use if that was unsuccessful.

3.3 Well Operation

Operating the project wells consisted of balancing the air injection rates with natural gas production to maintain the approved Voidage Replacement Ratios and maintain or slightly increase the formation pressure. The production wells were produced to fairly high nitrogen contents, although towards the end of the reporting period some of the wells had to be shut in earlier in order to maintain sales quality gas as the EnCAID gas diluted with other production at Cenovus's Primrose North Gas Plant

3.4 Well List and Status

The EnCAID project Wabiskaw K-3 Pool wells are shown in Table 3.4.1.

Well Name	Zone	Pool	Status
00/05-10-073-06W4/0	Wabiskaw	K-3	Air Injection Well
02/05-10-073-06W4/0	Wabiskaw	K-3	Observation Well
00/06-10-073-06W4/2	Wabiskaw	K-3	Observation Well
00/14-09-073-06W4/0	Wabiskaw	K-3	Production Well, Shut In June, 2007
00/01-17-073-06W4/0	Wabiskaw	K-3	Production Well, Shut In Oct 2010
00/02-16-073-06W4/0	Wabiskaw	K-3	Production Well, Shut In Dec 2010
00/11-15-073-06W4/0	Wabiskaw	K-3	Production Well, Shut In Dec 2010
00/06-05-073-06W4/0	Wabiskaw	K-3	Production Well, Flowing
00/07-08-073-06W4/0	Wabiskaw	K-3	Production Well, Flowing
00/06-06-073-06W4/2	Wabiskaw	K-3	Shut In, pending EnCAID +
00/06-07-073-06W4/2	Wabiskaw	K-3	Shut In, pending EnCAID +
00/10-11-073-07W4/0	Wabiskaw	K-3	Shut In, pending EnCAID +
00/10-12-073-07W4/0	Wabiskaw	K-3	Shut In, pending EnCAID +

3.5 Wellbore Schematics

The figures below show the wellbore schematics for the key EnCAID project wells:

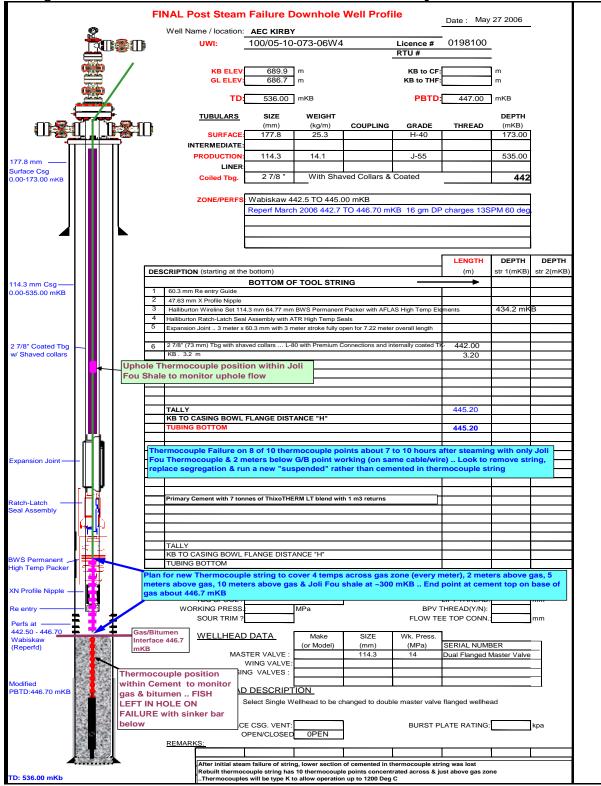
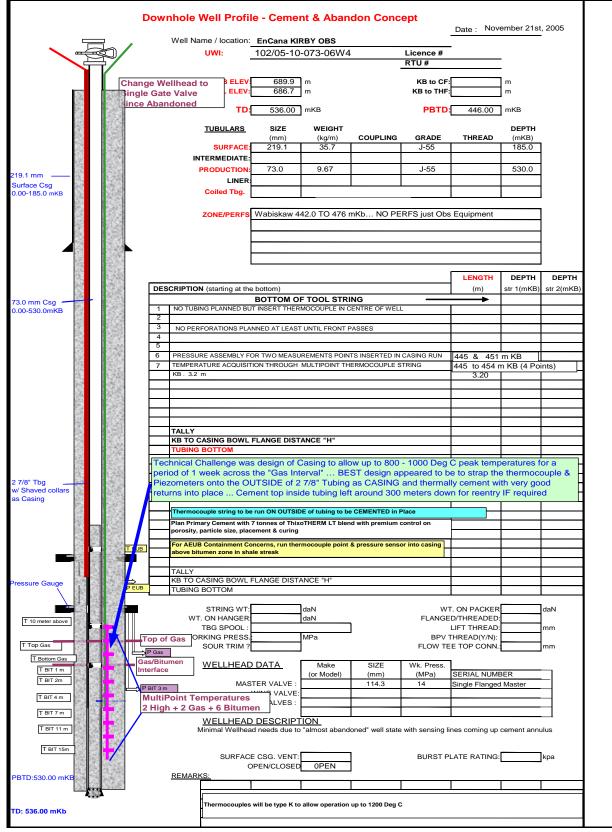



Figure 3.5.1 Wellbore Schematic for 100/5-10-73-6W4 Injector

Figure 3.5.2 Wellbore Schematic for 102/5-10-73-6W4 Observation Well

ENCANA.			hematic - Cur	rent		1
Well Name: AMOC Bottom Hole UWI	Surface Legal Location	Pad	-6	License #		State (Descine)
100/06-10-073-06W4/00	LSD 6-10-73-6W4	6.49.95 	KIRBY	008816	2	State/Province AB
Profile Type /ERTICAL Most Recent Job	Orig KB Elev (KB-Grd 694.60 4.	(m) KB-CF (m) K 50	B-TH (m) Total Depth	(mKB) Sour Clas 607.50	5	Sour Class Date
ob Category WORKOVER	Type SPEC	IAL STUDY	Job Start Da	2006-12-17	Job End Date	2006-12-17
mKB (MD)	mKB (TVD)	Profile Type: VERT	ICAL - Main Hole, 20	07-01-16 8:14:55 AM Schematic - Actual		
	IIIKB (1VD)			Schematic - Actual		
0						
2			2	TURING H	NOED 170 0-	
2				TUBING H	ANGER, 179.0m	m, 2.3-2.4 mKB, N/A
5	ſ	A CONTRACTOR OF THE OWNER OF THE OWNER OF	Internet Internet and	TUBING, 6	0.3mm, 2.4-12.3	mKB
12					, 60.3mm, 12.3-	
14					244.5mm, 12.3-	
105				TUBING, 6	0.3mm, 13.5-444	.3 mKB
318				COILED TU	JBING, 38.1mm,	0.0-471.6 mKB, N/A
319		\times				
436						
444		1. 11				
445						
445						
				PUP JOINT	, 60.3mm, 444.3	-446.2 mKB, N/A
446					LEEVE - CLOSE	D, 82.6mm, 446.2-447.3
447				mKB, N/A		
449				BLAST JOI	NT, 77.8mm, 447	7.3-450.3 mKB, N/A
450	Wabis	kaw 📃				
450	Wabis Gas Inter					
450	TIN	0				
451	Inter	al l				
453				BLAST JOI	NT, 77.8mm, 450).3-453.2 mKB, N/A
454				CROSS OV	ER, 77.8mm, 45	3.2-453.5 mKB, N/A
454				ON-OFF TO	OOL, 139.7mm, 4	53.5-454.1 mKB, N/A
454						
456				PACKER, 1 HALLIBURT	53.2mm, 454.1-4	I56.0 mKB,
456						6.0-456.3 mKB, N/A
10.07092					, 60.3mm, 456.3-	
458						457.5-457.7 mKB, N/A
458						
458	1. J- L-					
459	Wabisk Bitumen Intervi					
463	Bitumen	L				
472	Interv	al	4:	BULLNOSE	JOINT, 38.1mm	, 471_6-471.6 mKB, N/A
472				- P-	+ 0 0	· 1
480					ter for B	
489				Zonea	tendof	Thermocoup
490				String	+ Coil	
500				J		
568				DDODUCT	ON 177 0	
67.36772				PRODUCTI	ON, 177.8mm, 56	56.0 MKB, -0
599						
608		h				

3.6 Spacing and Pattern

Since the project was implemented in an existing shut-in pool the well spacing and pattern was predetermined. Due to the very low viscosity of the gas, similarity of the displacing medium (combustion products) and extremely high permeability of the reservoir, fingering and sweep efficiency are not overriding concerns like they are in enhanced oil recovery projects. The choice of which well to convert for air injection, and where to drill the observation well were the main considerations in planning the project. The 100/5-10 well was chosen as the injector because of its central location in the thickest and most permeable part of the gas reservoir as well as proximity to a source of fuel gas and to a high grade road.

4. Production Performance

4.1 Production and Injection History

The figures below show the production and injection history for the EnCAID project wells:

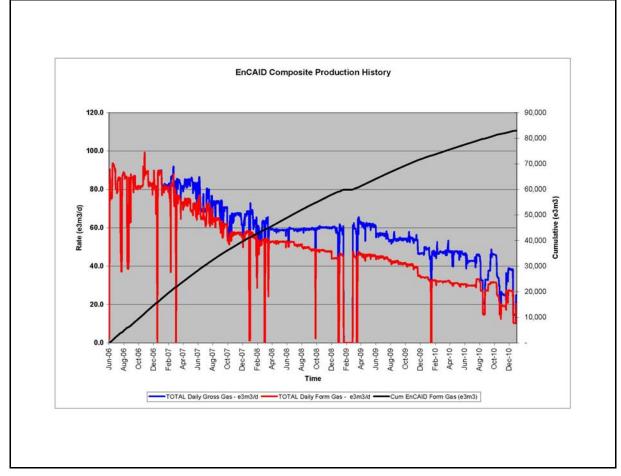
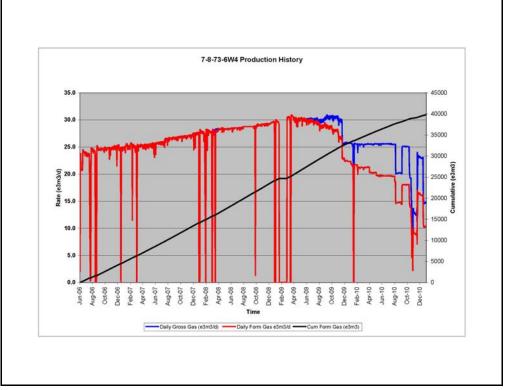



Figure 4.1.1 EnCAID Composite Production History

2-16-73-6W4 Production History 18.0 7000.00 16.0 6000.00 14.0 5000.00 12.0 4000.00 Rate (e3m3/d) 8 0 3000.00 6.0 2000.00 4.0 1000.00 2.0 0.00 0.0 Jun-06 Aug-06 Oct-06 Dec-06 Apr-07 Jun-07 Jun-07 Aug-07 Oct-07 Feb-08 Feb-08 Dec-08 Feb-09 Aug-09 Oct-09 Dec-09 -Feb-10 Jun-08 Aug-08 Oct-08 Apr-09 60-unp Apr-10 Jun-10 Aug-10 Oct-10 Dec-10 Time Daily Gross Gas (e3m3/d) Daily Form Gas e3m3/d Cum Form Gas e3m3

Figure 4.1.3 2-16-73-6W4 Production History

Figure 4.1.4 14-9-73-6W4 Production History

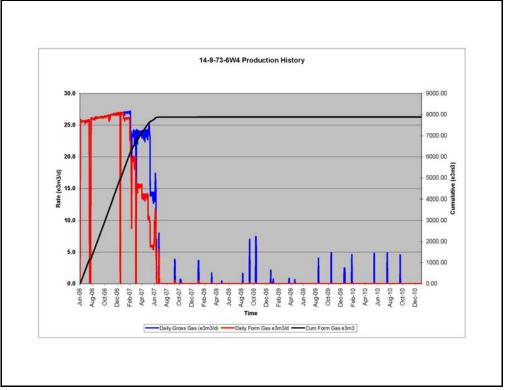


Figure 4.1.5 11-15-73-6W4 Production History

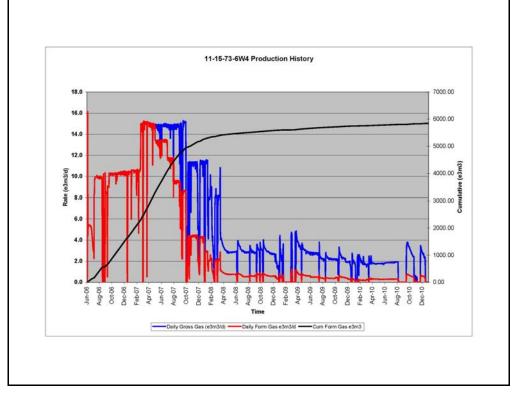


Figure 4.1.6 1-17-73-6W4 Production History

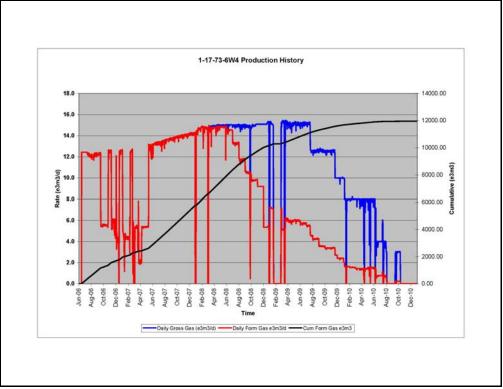
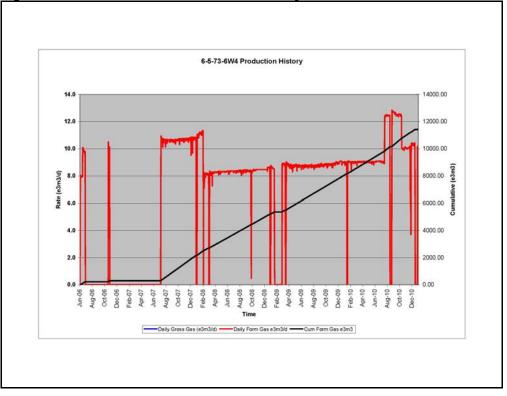
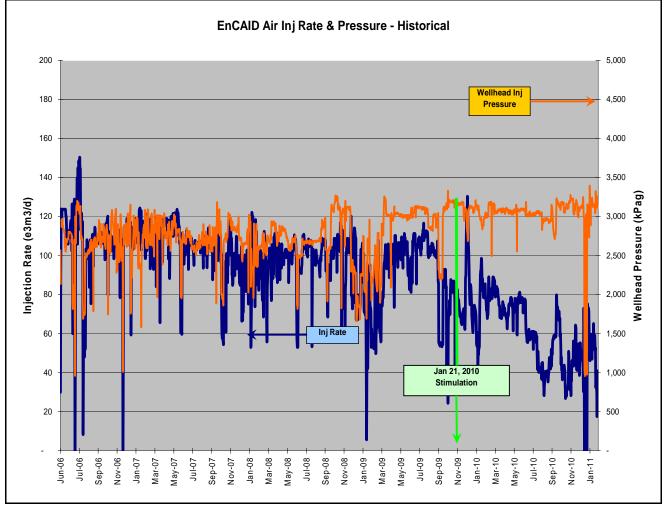
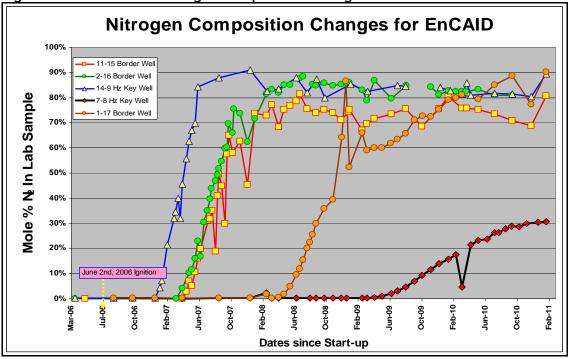




Figure 4.1.7 6-5-73-6W4 Production History



4.2 Composition of Produced / Injected Fluids

The design of the EnCAID project involves the use of a combination of produced gas analyses at commercial laboratories and on-line gas chromatographic readings at the Primrose North Gas Plant inlet. The figures below illustrate the observed changes in gas composition.

Figure 4.2.1 shows the historical nitrogen composition of five wells in relative response time. Figure 4.2.2 shows the nitrogen levels in the pool at the end of 2010. The first producer to show a nitrogen response was the 14-9-73-6W4 horizontal well in January 2007. By June 2007, the 14-9 hz well exceeded 65% nitrogen and was shut-in. Initial numerical simulation models indicated that the first nitrogen response at the closest production well (14-9 hz) was expected in 9 to 14 months so the observed rise in nitrogen in 7.5 months was slightly early. The nitrogen responses at 11-15, 2-16, 1-17 and 7-8 hz also appear to be early compared to the original simulation. The rate of rise in nitrogen levels would appear to suggest somewhat radial flow since the closest producer at 14-9 showed the steepest response with the next "ring" of producers 11-15 & 2-16 showing a slower but similar rise in nitrogen levels and the second row of producers only showing a slow nitrogen response at 1-17 & 7-8, while producer 6-5 continues to show the low concentration levels of nitrogen over its production.

Figure 4.2.1 Historical Nitrogen Composition Changes

Figure 4.2.2 Map of Nitrogen Response

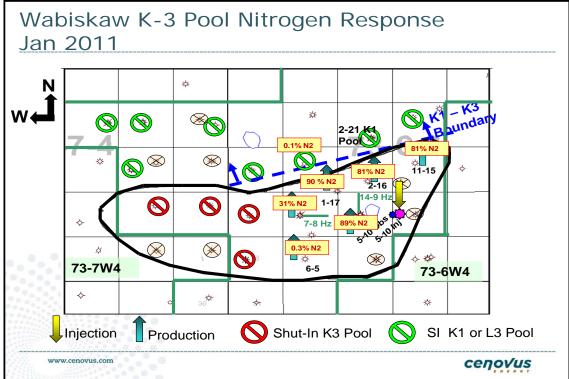


Figure 4.2.3 shows the changes in gas composition for 1-17-73-6W4 over time. Nitrogen levels of 79% were recorded in January 2010, peaking in January 2011 at 90%. Carbon dioxide levels rose from a January 2010 level of 0.1% to 4.6% in January 2011. The delayed carbon dioxide response could be explained by the greatly increasing reservoir volume as you radiate out from the 100/5-10-73-6W4 injector and therefore a larger area for carbon dioxide to go into solution before reaching a saturation point. Minor amounts of CO were observed infrequently with a peak in September 2010 of 0.26%. 1-17 was allowed to flow at average rate of 6.6 e^3m^3/d for the period January 2010 until July 2010 when nitrogen levels rose to 85%. The well was flowed at average rate of 2.7 e^3m^3/d for the period mid-September to mid-October when sufficient blending volumes were available. However, the well has not produced since mid-October 2010 due to lack of blend gas availability at the Primrose plant and the high nitrogen levels in this well.

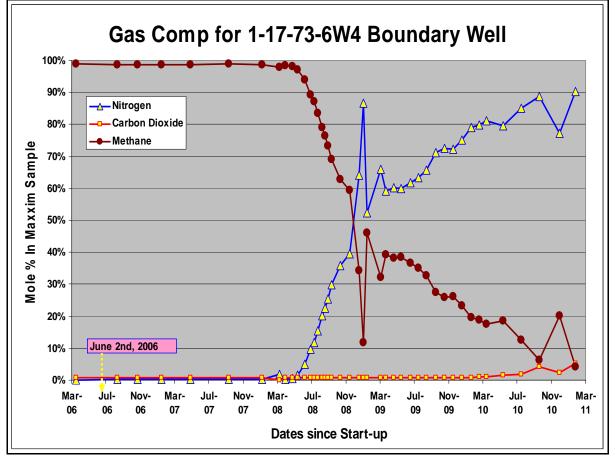
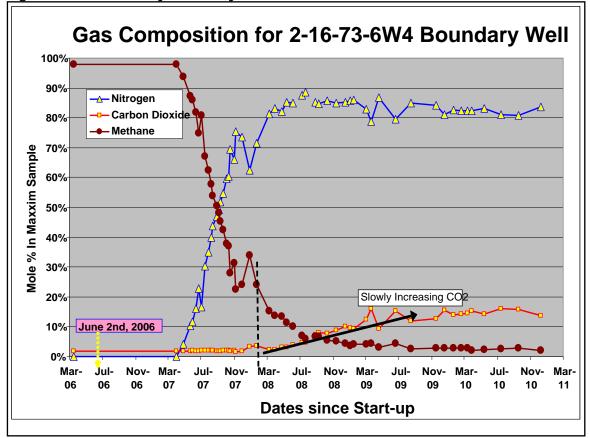



Figure 4.2.3 Laboratory Gas Analysis for 1-17-73-6W4 Producer

Figure 4.2.4 shows the changes in gas composition for 2-16-73-6W4 over time. The nitrogen response started in April 2007, rising to 70% by October 2007 followed by consistent nitrogen levels throughout 2010 ranging from 81% to 83%. Carbon dioxide levels began rising in late 2007 and have been constant at 15%. Minor amounts of CO were observed during the 2010 reporting period with January reporting 0.17% with a peak in September having 0.25% with January 2011 coming in at 0.13%. Due the high nitrogen level 2-16 flowed from January 2010 until mid-December at average rate of 2.3 e^3m^3/d . The well was shut-in mid December 2010 due to lack of blend gas availability at the Primrose plant.

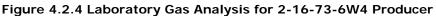


Figure 4.2.5 shows the gas composition for 6-5-73-6W4 over time. Nitrogen, carbon dioxide and CO levels have remained low throughout the reporting period. Due to the low nitrogen levels of this well, the production has not been curtailed.

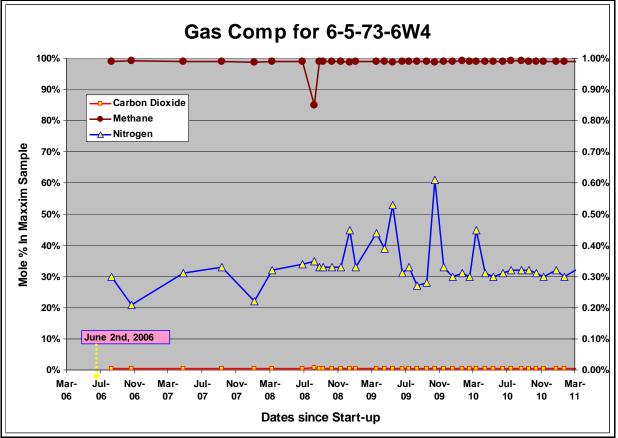


Figure 4.2.5 Laboratory Gas Analysis for 6-5-73-6W4Producer

Figure 4.2.6 shows the changes in gas composition for 7-8-73-6W4 over time. Nitrogen levels of 16% were recorded in January 2010, rising to 31% in January 2011. Carbon dioxide levels have remained constant at 3%. Minor amounts of CO at 0.07% were reported during the first half of 2010, while in the second half of the reporting period no CO was recorded from the gas analysis. The 7-8 well flowed from January 2010 to September 2010 at an average rate of 24.8 e^3m^3/d , however starting in October 2010 the production rate was dropped to an average of 16.8 e^3m^3/d primarily due to the rise in nitrogen levels and the lack of blend gas availability at the Primrose plant.

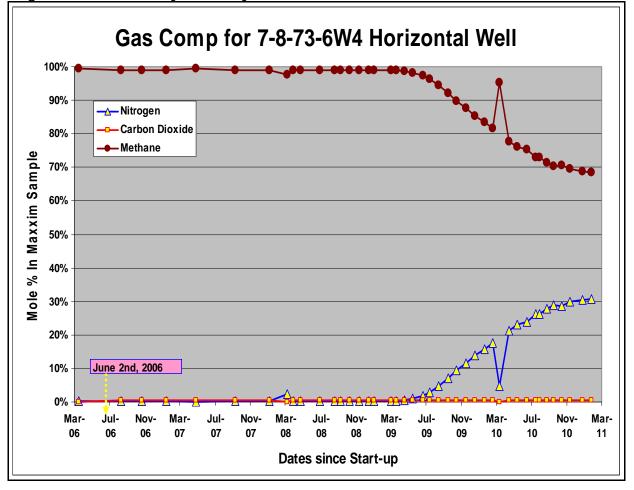


Figure 4.2.7 shows the changes in gas composition for 11-15-73-6W4 over time. Nitrogen response occurred at 11-15 starting in May 2007, rising to 60% by October 2007, reaching 81% by July 2008 and remaining in the 70% to 80% range. The carbon dioxide levels have only risen since July 2008 and are currently in the 10% range. Minor amounts of CO have been observed with January 2010 reporting 0.17% and January 2011 coming in at 0.13%. The 11-15 well was flowed intermittently between January 2010 until August 2010 at daily rates averaging 1.8 e^3m^3/d , then again from mid-September to mid-October at average rate of 3.1 e^3m^3/d . Then finally from late November until mid-December at average rate of 2.7 e^3m^3/d , however commencing mid-December it was shut-in due to the high nitrogen levels and the lack of blend gas availability at the Primrose plant.

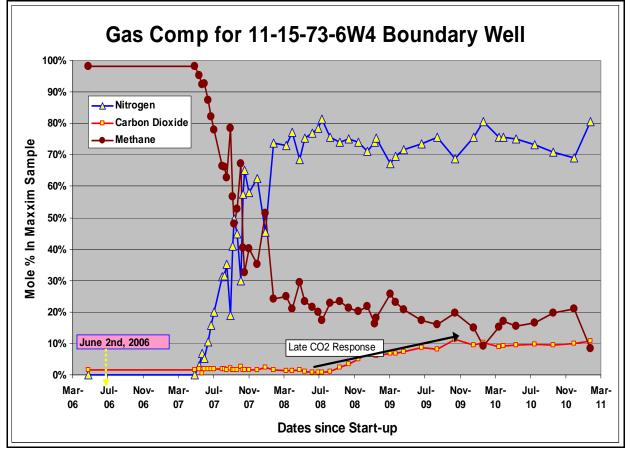


Figure 4.2.8 shows the changes in gas composition for 14-9-73-6W4 over time. Nitrogen response occurred at 14-9 starting in January 2007. By June 2007, the 14-9 Hz well exceeded 65% nitrogen and was shut-in. Nitrogen levels in excess of 80%, with carbon dioxide levels typically in 17% range were recorded during the 2010 reporting period. CO was observed during the 2010 reporting period with January 2010 reporting 0.12% and January 2011 reporting 2.30%. Due the high nitrogen level the 14-9 well is flowed only to capture gas samples for analysis.

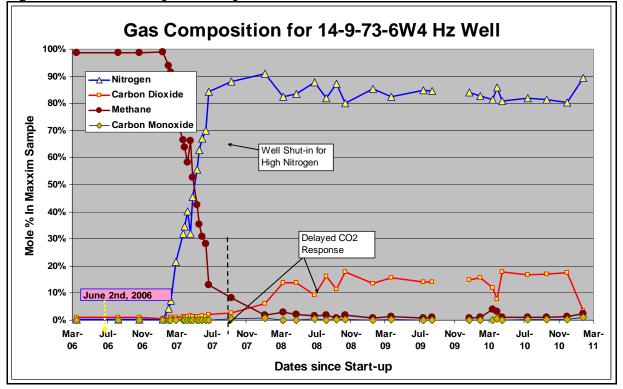


Figure 4.2.8 Laboratory Gas Analysis for 14-9-73-6W4 Hz Producer

Figure 4.2.9 shows the EnCAID historical carbon dioxide levels as of January 2011. Laboratory gas sample trends appear to be showing that some carbon dioxide sequestration may be occurring.

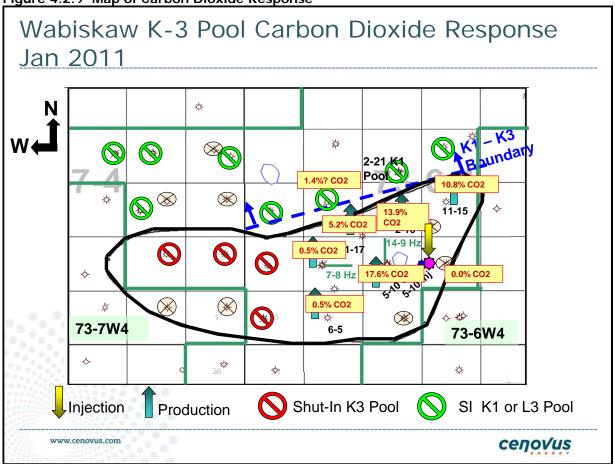
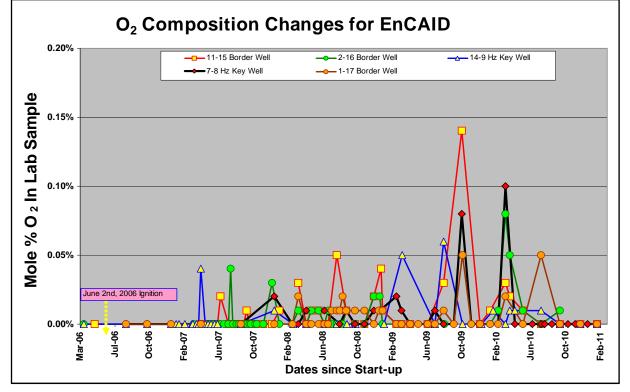



Figure 4.2.9 Map of Carbon Dioxide Response

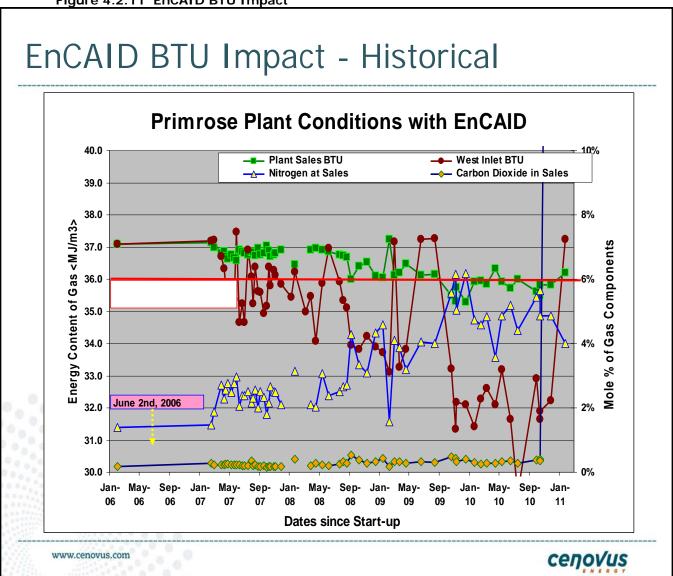
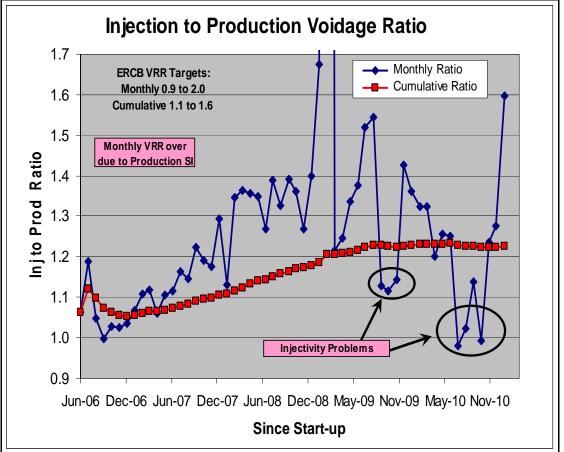

Figure 4.2.10 shows the EnCAID project historical oxygen levels. In the 2010 reporting period, all of the wells (1-17, 2-16, 6-5, 7-8, 11-15, and 14-9) had a high degree of low oxygen concentration variability. During 2010, well 1-17 had two gas samples which returned oxygen levels of 0.02 % in March and 0.05% in July, with all other months reporting oxygen levels of 0.00%. 2-16 was observed to have an oxygen level of 0.8% and 0.05% when sampled twice in March 2010, yet in all the other months the recorded oxygen levels of either 0.00% or 0.01%. The 6-5 well gas analysis indicated oxygen levels of 0.00% during the reporting period. Well 7-8 reported oxygen of 0.10% in March, however upon examination of the gas analysis this gas analysis was rejected since the nitrogen level was noted as 4.6% when historically the nitrogen had been rising at approximately 1.5% per month with February's nitrogen being 17.62% and April's being 21.35%, all the other months in the reporting period showed oxygen levels of 0.00%. In the first half of 2010 the 11-15 wells gas analysis's recorded oxygen levels ranging from 0.03% down to 0.01% before not reporting any oxygen for the balance of 2010 and January 2011. The 14-9 well recorded the highest oxygen level in March 2010 at 2.3%, however the well appears to have not been flowed for the typical 1-2 days prior to catching of gas samples, therefore that sample was discounted as all the other 2010 gas analysis returned oxygen levels between 0.00% and 0.01%.

Figure 4.2.10 EnCAID Historical Oxygen Levels

H₂S analyzers are located at the Primrose North Gas Plant inlet and Cenovus continues to intermittently monitor for changes in sulphur compounds through both on-site Draeger H₂S gas measurements as well as Trace Sulphur Analysis in the laboratory. Testing has shown 1 ppm at the 14-9 Hz and 3.5 ppm at 2-16.

Figure 4.2.11 shows the impact that the EnCAID project production has had on the Primrose Plant heating values over time.


Figure 4.2.11 EnCAID BTU Impact

4.3 Pilot Performance

To the end of January 2011, Cenovus has injected 4.3 BCF ($121 e^{6}m^{3}$) of air and produced 3.5 BCF (98 $e^{6}m^{3}$) of gross gas for a cumulative Injection to Production ratio of 1.22. Due to the dilution effect of nitrogen breaking through to producers and continued withdrawal of high nitrogen gas at several boundary wells, the actual net formation gas withdrawal in this same period is approximately 2.97 BCF (83 $e^{6}m^{3}$) which represents an overall formation to bulk gas of 84%. In January 2010, the EnCAID average daily production was 0.90 MMSCFD of gross gas or 0.73 MMSCFD of actual formation gas at a daily ratio of 81.2% formation gas. These rate were lower than the balance of 2010 due to some of the production wells having been shut-in to control sales gas BTU levels.

The project performance has been well within the ERCB approval voidage replacement ratio (VRR) limits of a monthly ratio of 0.90 to 2.0 and above the minimum annual VRR of 1.0. The early 2009 non-productive period is the only time that Cenovus has exceeded the monthly ratio (as per the self-disclosure). Cenovus continues to use the gross gas production rate to design the air injection rate and voidage balance as the cycled nitrogen and combustion gases are removed from the Wabiskaw pool.

Figure 4.3.1 illustrates both the monthly injection to production voidage ratio as well as the cumulative balance since start-up. The original cumulative injection to production target of 1.1:1.0 was designed based upon a review of the "pre-EnCAID" reservoir simulation model that showed a slight increase in reservoir pressure with this replacement balance. A revised cumulative range of 1.1 to 1.6 granted in ERCB approval 10440F has allowed Cenovus to move forward with the process and exceed the original cumulative ratio to observe the relative pressure increase.

Figure 4.3.1 EnCAID Voidage Balance History

Cenovus received several amendments to the ERCB approval to supply more operational flexibility to utilize available compression capacity to achieve the cumulative ratio target and allow for higher air rate testing. These revisions have taken the monthly ratio range up from the original application values of 0.9 to 1.1 to a range of 0.9 to 1.40 and finally up to as high as 2.0 to allow Cenovus to reach and exceed the desired 1.1 cumulative voidage value.

4.4 Injection, Production, Observation Well and Reservoir Pressure History

Figure 4.4.1 shows the reservoir pressure in the Wabiskaw K-3 pool prior to commencement of injection in winter 2006. Figure 4.4.2 shows the net pressure changes and reservoir pressure in the Wabiskaw K-3 pool at the end of January 2011.

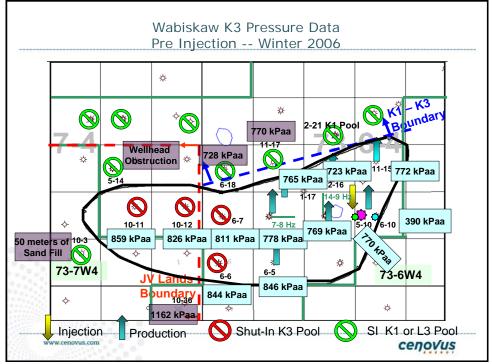
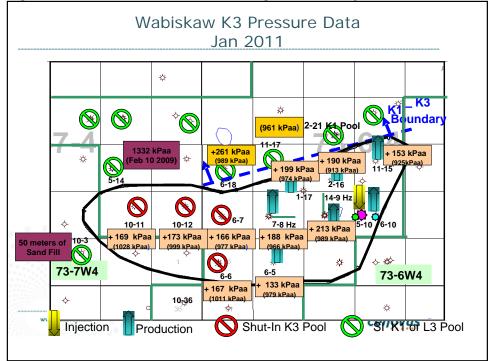



Figure 4.4.1 Wabiskaw K3 Reservoir Pressure Before Injection

Figure 4.4.2 Reservoir Pressure Changes to January 2011

As shown in Figure 4.4.3, since start-up the average pressure change in the EnCAID flooded area is over 180 kPaa with the West shut-in part of the pool having a pressure increase of about 170 kPaa. Overall, as designed, the EnCAID process and natural recharge from low permeability areas have increased the reservoir pressure to 960 kPaa to January 2011.

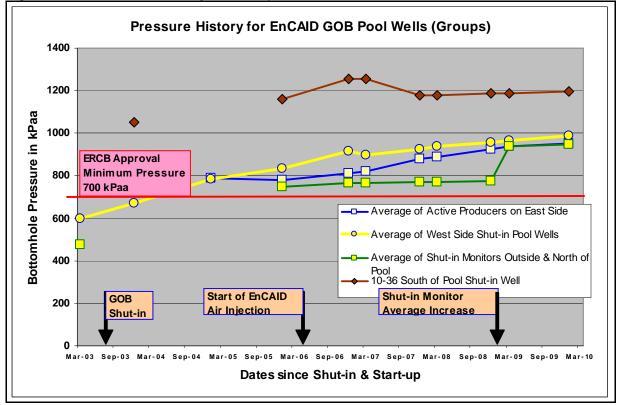


Figure 4.4.3 Pressure History for Groups of EnCAID Wells

The static gradients of December 2008 detected an anomalous pressure trend at the one "out of pool" monitoring well 6-18-73-6W4 with the pressures declining and reaching a level of 641 kPaa. With this movement below the ERCB minimum sandface pressure of 700 kPaa, all of the EnCAID producers were shut in on January 19, 2009. The rest of the pressure monitoring was showing all of the EnCAID K-3 Pool wells above 900 kPaa so this was deemed by Cenovus to be an anomalous data point. In a second segregation test on the non-producing Wabiskaw & Colony well 6-18, Cenovus detected a communication between the zones leading to pressures closer to the Colony level of 600 kPaa. Following a service rig repair of this well in February 2009, a static gradient on 6-18-73-6w4 showed a compliant Wabiskaw pressure of 939 kPaa, leading to the reactivation of all of the EnCAID producers.

The continuous surface pressure monitoring at the 14-9-73-6W4 well is showing a steady rise in pressure from an initial reading of about 644 kPag to a current reading of 866 kPag (end of January 2011). This surface pressure at 14-9 would translate to a bottomhole pressure estimated to be 991 kPaa, assuming 32 kPa for the gas head and 93 kPa for the conversion to absolute pressure. These values were verified with a January 2011 static gradient showing a downhole MPP pressure of 989 kPaa which is above the Approval minimum stabilized bottomhole pressure of 700 kPaa.

Figure 4.4.4 shows the bitumen piezometer pressures at 6-10-73-6W4 and 102/5-10-73-6W4. At 102/5-10-73-6W4, the bitumen piezometer 3 meters below the gas-bitumen interface had averaged 1.15 MPag while the gas zone shut-in pressure is around 960 kPag. The temperature has decreased at the piezometer location from 201C down to 176C. For the 6-10-73-6W4 fringe gas well, the bitumen piezometer 22 meters below the gas-bitumen interface has remained steady at 1.2 MPag.

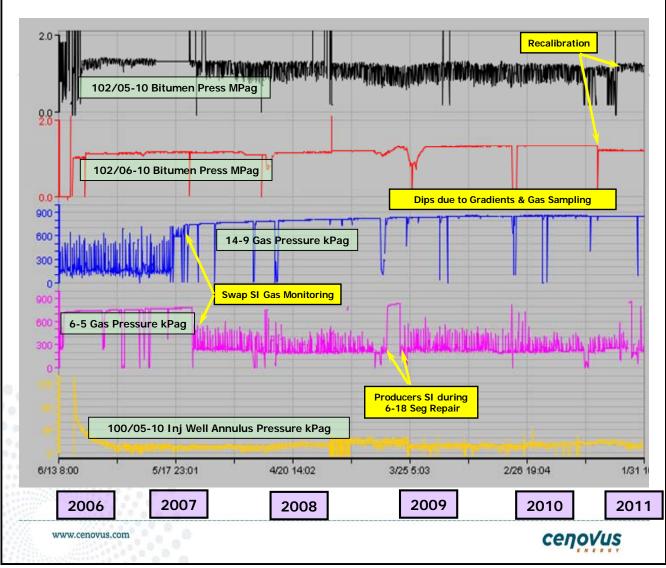


Figure 4.4.4 Bitumen & Gas Pressures at Producers

Cenovus interprets that the EnCAID low pressure gas displacement process is not showing any significant effects on the bitumen zone pressure in the majority of the reservoir. However, we are observing the bitumen pressure approaching the rising gas zone pressure where the temperature into the bitumen has been stimulated to above 100 deg C. In this case, the enhanced fluid mobility similar to SAGD maybe creating some pressure movement.

Overall, the EnCAID process has proven to be able to operate and replace formation gas while demonstrating a slight pressure increase and staying significantly above the 700 kPaa limit for the Wabiskaw K-3 Pool as described in the ERCB Approval 10440.

5. Pilot Data

5.1 Additional EnCAID Project Data and Interpretation

5.1.1 <u>Geology</u>

An observation well was jointly drilled in the first half of 2006 by Petro-Canada (now Suncor Energy) and Cenovus at 102/5-10-73-6W4, 30 meters west of the 100/5-10-73-6W4 injection well. A total of 35.6 meters of core was recovered from 2 meters of shale, 5 meters of gas, 28 meters of bitumen and 2 meters of bottom shale. Overburden analysis conducted at 1000psi for 15 samples were taken at roughly 3m intervals through the gas and bitumen zones to include density, porosity, kmax, kv and Dean Stark saturations. A further 39 Dean Stark samples were highly concentrated within the gas zone and down to 18 meters below the gas-bitumen interface.

In 2009, a particle size analysis of 10 solid samples were conducted using the same 102/5-10 observation well. A sampling interval of 3 to 5 meters was used to achieve an even distribution through the bitumen zone. The samples were analyzed using a "Coulter LS" Laser Diffraction particle size analyzer.

All core photos and core analysis can be found in **Appendix A and Appendix B**.

Core photographs shows a 3.5 meter thick gas zone containing small amounts of residual oil saturation followed by a thick underlying bitumen saturated Wabiskaw with occasional thin shale lenses and calcium carbonate tight streaks. A small core loss at the top of the gas zone can be observed due to the unconsolidated nature of the formation. Dean Stark and small plug analysis conducted show average porosities and horizontal permeabilities of 35% and 1350mD. The best rock quality occurs in the gas zone where permeabilities can increase up to 3000mD, reflecting a slightly coarser grain size in this zone as seen in the particle size analysis. Oil saturations derived from the combination of core analysis and detailed petrophysical analysis are on average 15% in the gas zone and 61% in the bitumen zone.

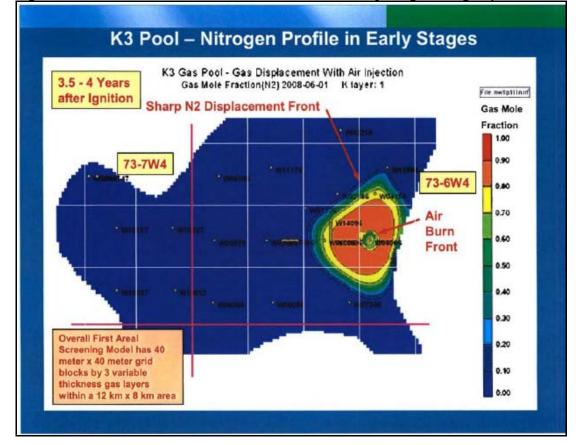
5.1.2 Oil Composition

Using the obtained core at 102/5-10, a sample taken 2 meters below the gas-bitumen interface was selected for oil extraction to determine the density and viscosity at three different temperatures (13C, 75C and 150C) and two different pressures (800kpag and 2500kpag).

Further SARA oil and full oil analysis were conducted on three samples located in the gas zone, directly below the gas-bitumen interface and 10m below the gas-bitumen interface. The sampling involved V notching in the gas zone and 0.4 meter long samples around each bitumen zone to obtain sufficient rock sample for oil extraction.

Full oil analysis can be found in **Appendix C**.

Viscosity and SARA asphaltene composition measurements found no substantial variation in the oil properties with depth


5.1.3 Simulation & Results

Several simulation efforts have been made since project inception:

- 5.1.3.1 Areal Simulation Model for Scoping
- 5.1.3.2 Near-Wellbore Simulation Model
- 5.1.3.6 Full Field 3D Dual Grid Model
- 5.1.3.4 Detailed Near-Wellbore Combustion Front Model

5.1.3.1 Areal Simulation Model for Scoping:

The initial model using the CMG STARS thermal simulator was developed in the summer of 2004 by Dr. Ben Nzekwu, using petrophysical results for both the Cenovus defined Wabiskaw K-3 Pool and a greater region adjacent to EnCAID within the AEUB defined Kirby Upper Mannville I Pool. Incorporation of all of these reservoir & geological properties would allow gas flow outside the Cenovus defined K-3 pool IF the fluid dynamics and physics dictated that movement should take place. This model was built before construction and operations started in the field. This initial model handled three gas layers with a large bitumen layer to forecast overall process performance after initially history matching the existing gas production and pressures. The overall model involved 40 meter x 40 meter x 3 variable thickness gas layer grid blocks covering a Wabiskaw Field area of 12 kilometers by 8 kilometers. This model provided the original long term forecasts for EnCAID in the early stages (3.5 to 4 years) and the end of project nitrogen & methane profiles at 16+ years (2022), and is shown in Figure 5.1.1 and 5.1.2. It was useful for gas movement simulation and total gas recovery, but didn't capture the actual combustion front with a lot of detail. This model is presented in Appendix D - Long Term Simulation. The initial inputs are shown in Appendix D – Simulation Model Input.

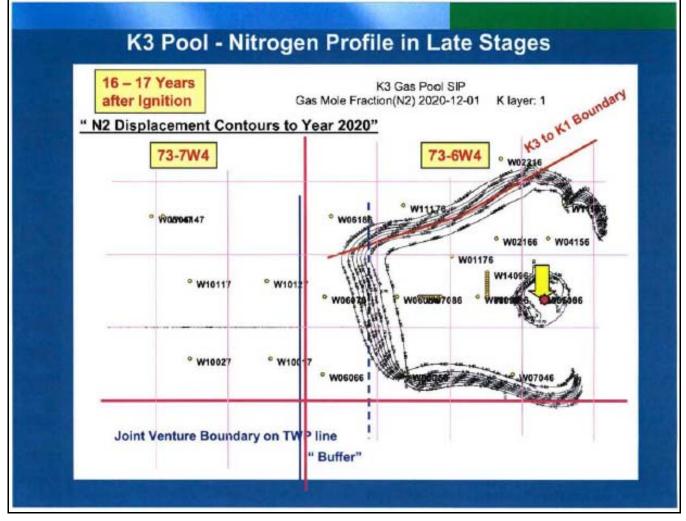
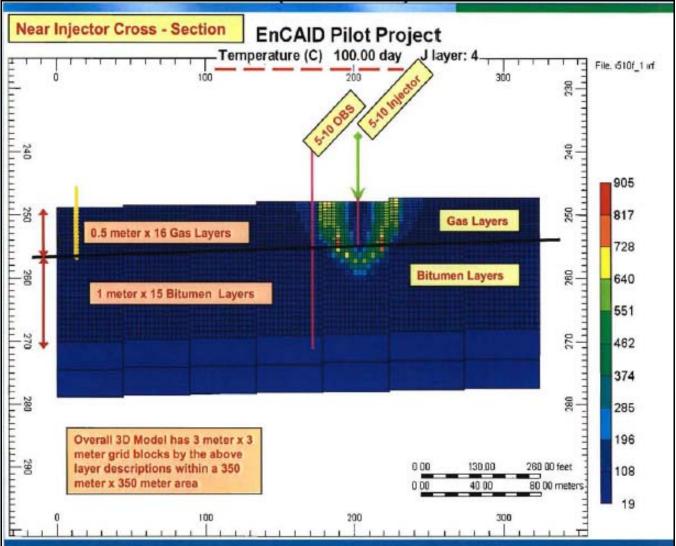



Figure 5.1.2 Pre-EnCaid Areal Simulation Model; Late-stage nitrogen profile

5.1.3.2 Near-Wellbore Simulation Model:

During the AEUB application process and in anticipation of start-up procedural questions, the first model was modified and refined to handle an approximately 3000 meter by 3000 meter square area around the 100/5-10-73-6W4 injection well utilizing 3 meter x 3 meter x 3 variable thickness gas layer grid blocks (Figure 5.1.3 and 5.1.4). This model was built before construction and operations started in the field. It provided an estimate of the combustion front size and was utilized in the decision on where to place the joint Suncor and Cenovus observation well. The observation well was placed 30 meters to the west of the 100/5-10 injector to supply temperature & pressure results. This model is detailed in Appendix D – Short Term Simulation.

Figure 5.1.3 Pre-EnCAID near-wellbore simulation model; thermal impact on bitumen

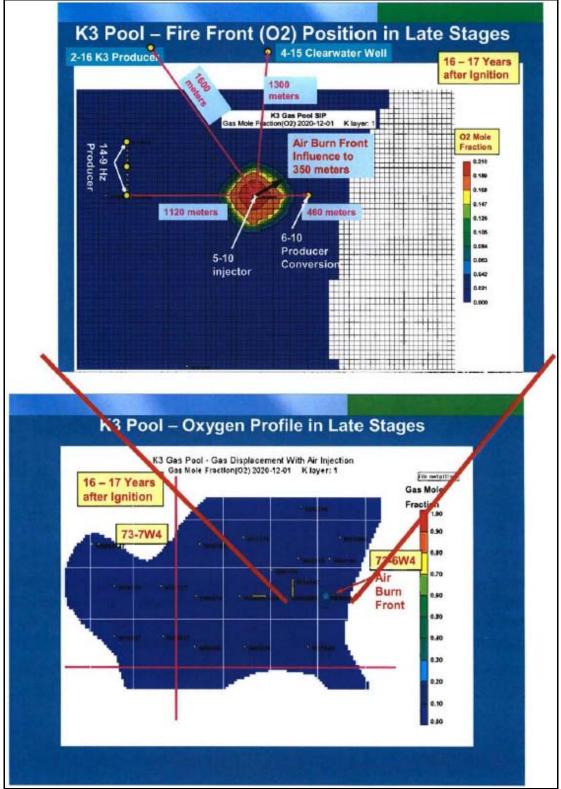
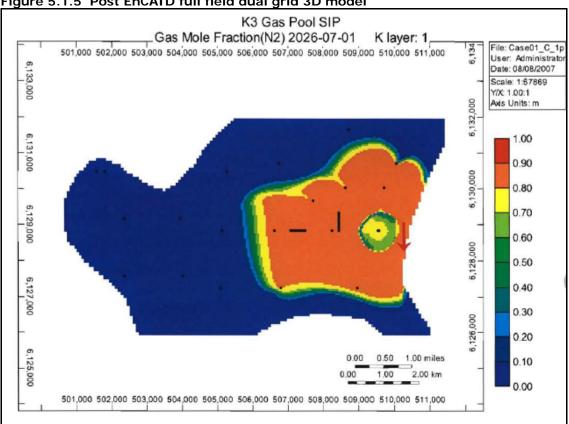


Figure 5.1.4 Pre-EnCaid near-wellbore simulation model; extent of burned zone


5.1.3.3 Full Field 3D Dual Grid Model:

The final detailed version of the model involves a higher resolution multilayer simulation of the region about 500 meters from the injector. The area close to the injector has 3 meter x 3 meter gas grid blocks that are 0.5 meters thick (16 layers) as well as 15 bitumen layers of 1.0 meters each. The model honours thickness and structural changes to allow the detailed view of any temperature and fluid influx into the bitumen zone.

Large scale field results compare directionally to both the original and latest version of the model. The gas sweep and nitrogen breakthrough was appropriately modeled, and show a relatively sharp flue gas – methane boundary. Total gas recovery was shown to reach 100% in the model. However, this involved operating wells at low methane concentrations. In reality, it is expected that the true recovery factor will approach 90%.

The peak temperature response time at the 102/5-10-73-6W4 observation well occurred at about 200 to 210 days rather than the 100 to 120 days forecasted. In addition, the peak temperature was much higher in the model than that observed in the field (396 °C).

Figure 5.1.5 depicts the full field model, showing both the combustion front and the gas sweep. The 5-10 observation location has shown temperatures as high as 396 deg C in the top of the gas zone which is well above the maximum steam temperature of 280 deg C and firmly indicates the generation of heat within the Wabiskaw K-3 formation.

Figure 5.1.5 Post EnCAID full field dual grid 3D model

5.1.3.4 Detailed Near-Wellbore Combustion Front Model:

Cenovus staff, Mr. Matt Toews in Reservoir and Mr. Jonah Resnick in Geology, created and incorporated the geostatistical Model in Figure 5.1.6 into a new 3D CMG STARS thermal simulation model of EnCAID. This history match of EnCAID was continued from the initial work of Dr. Kenny Adegbesan at KADE Technologies and incorporated some of his findings on the sensitivity to different reaction parameters and the shortcomings of the initial

geological/reservoir model. This new model was built to understand the combustion front in more detail, specifically to understand the shape, temperature profile, and impact on bitumen (Figure 5.1.7 - 5.1.8). Mr. Toews was able to get the correct reaction kinetics and reservoir properties to show the proper general trends in formation temperature as well as display the correct physics/mechanics to see the double peak temperature response (on a very refined test grid – Figure 5.1.9). There were also some interesting findings on what dictates the shape of the combustion front. This model is presented in Appendix D – 3D History Match Work.

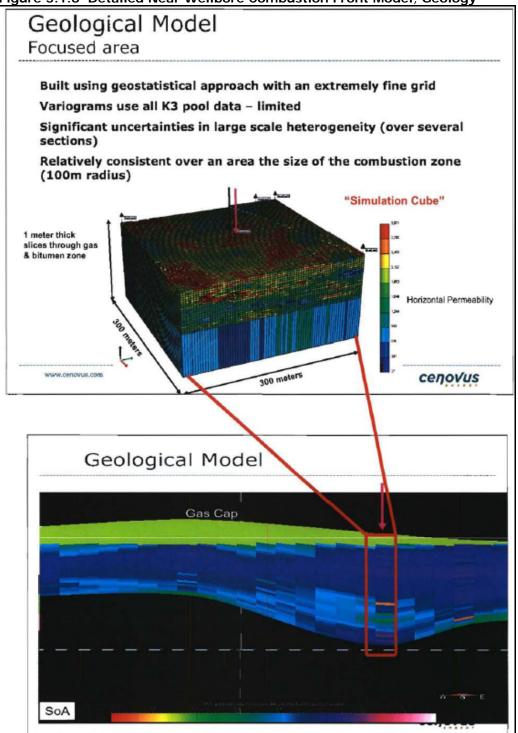


Figure 5.1.6 Detailed Near Wellbore Combustion Front Model; Geology

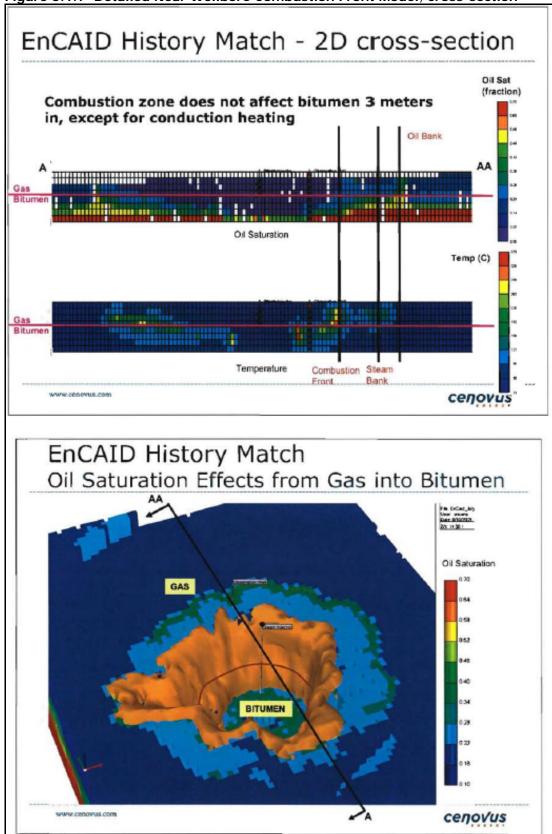
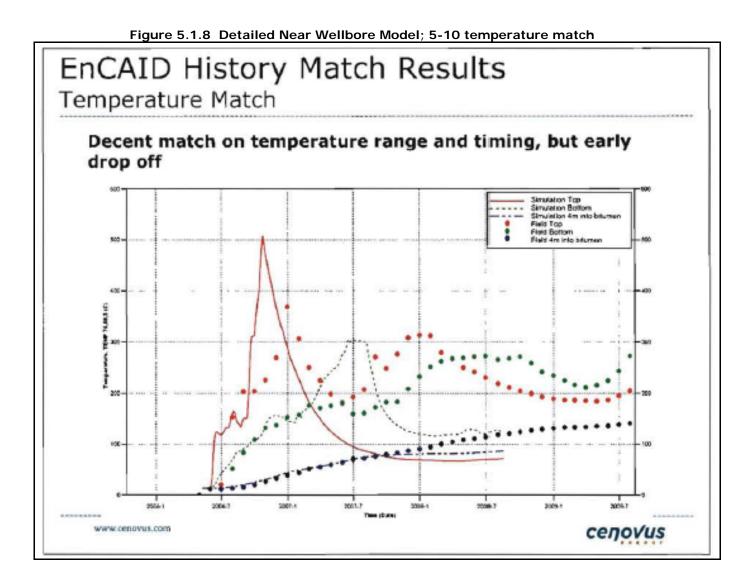
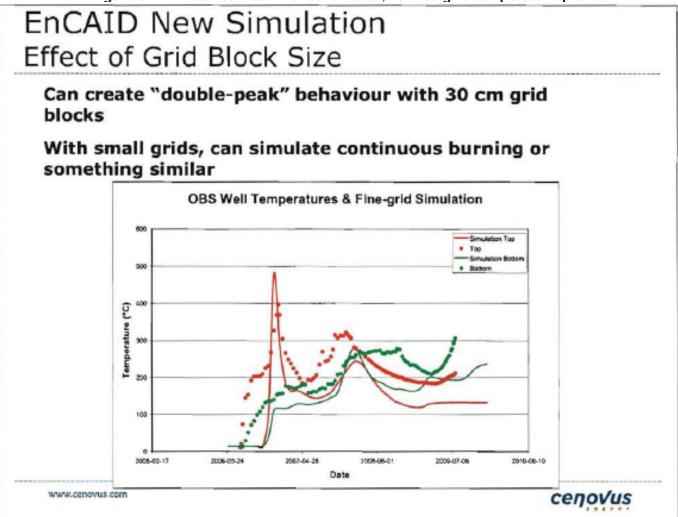




Figure 5.1.7 Detailed Near Wellbore Combustion Front Model; cross-section

In answering some follow-up questions to Progress Report #3, Cenovus decided that the issue of the "impact on the bitumen" should actually be split between the chemically altered bitumen (identified through the presence of temperature, coke and oxygen) and the thermally stimulated bitumen (that can be seen at different temperature levels "above 60 deg C"). Cenovus selected the 60 deg C thermal stimulation level since the Wabiskaw bitumen should be 600 cp at this temperature allowing some mobility to the reservoir fluids. Appendix D has a section showing the bitumen impacted to date and the geometry of the bitumen influence in March 2012 and 2015. Utilizing the geometry expected from both the 3D numerical simulations and the burned volume calculations, the current EnCAID is expected to have about 6,400 m3 of chemically altered bitumen with an additional 71,000 m3 of bitumen thermally stimulated above 60 deg C. By the end of the EnCAID displacement of the east side of the Wabiskaw K-3 Pool in March 2015, 11,700 m3 of chemically altered bitumen would be created with a burn front radius of 140 meters with 131,000 m3 of thermally stimulated bitumen (Figure 5.1.10).

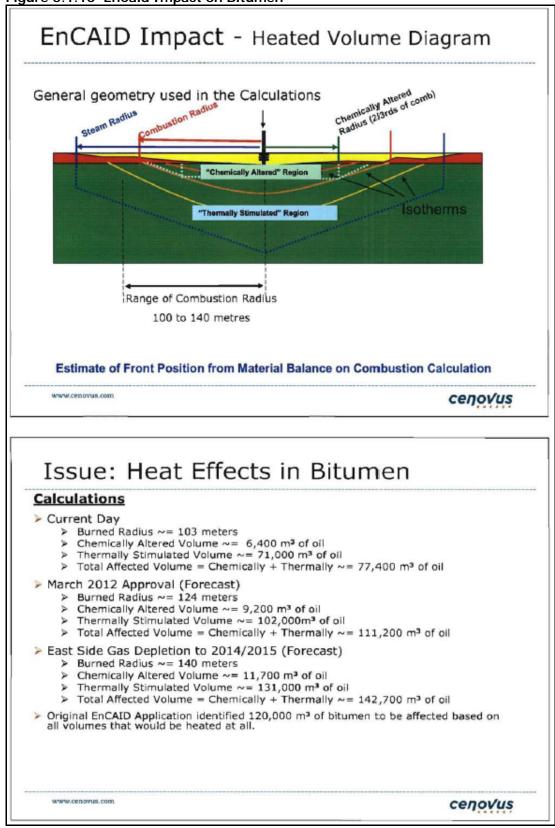


Figure 5.1.10 EnCaid Impact on Bitumen

5.1.4 Temperature Data

The 102/5-10 wellbore is equipped to measure 10 temperature points from above the Wabiskaw zone through the gas interval to 15 metres into the bitumen leg.

Figure 5.1.11 displays the thermocouple locations and temperatures with respect to the geological setting in the 102/05-10-073-06W4 observation well. Since the maximum preheat steam injection temperature was 280 deg C and field measurements have reported temperatures up to 400 deg C within the gas section of the formation, successful heat generation from in-situ combustion fueled by the oil in the gas zone has been demonstrated.

The temperature profiles appear to be showing an initial combustion movement in the top of the gas zone. The peak temperature response time in the gas zone at the 102/05-10-073-06W4 observation well occurred on December 15th, 2006 at about 200 to 210 days. The thermocouple in the top of gas zone showed an unexpected second peak temperature (around 320 deg C) about 1 year after the initial 396 deg C peak. A subsequent response was observed in the bottom of the gas zone where temperatures have risen as high as 275 deg C, dropped to 216 deg C, increased to a second peak of 331 deg C and now retreated to a temperature level below 200 deg C. At this time it is suspected that the combustion front has moved past both the top of gas zone thermocouple that is around 160 deg C and the bottom of gas thermocouple at 180 deg C at this observation location 30 meters from the injector. The thermocouple point at 1 meter into the bitumen is now being monitored to see what combustion responses might be taking place in this first meter of bitumen.

At the time of the first peak temperature in the gas zone (December 2006), thermal trends at the 102/05-10 well correspondingly showed a temperature response between 4 and 7 meters into the bitumen. This event correlated well with the simulation at 100 days at the injector location which showed increased temperatures up to 5 to 6 meters into the bitumen leg between the injector and the observation well. Currently, as shown in Figure 5.1.12, EnCAID is reporting a temperature response of over 60 deg C into the bitumen leg to a depth around 15 meters at a distance of 30 meters from the injection well.

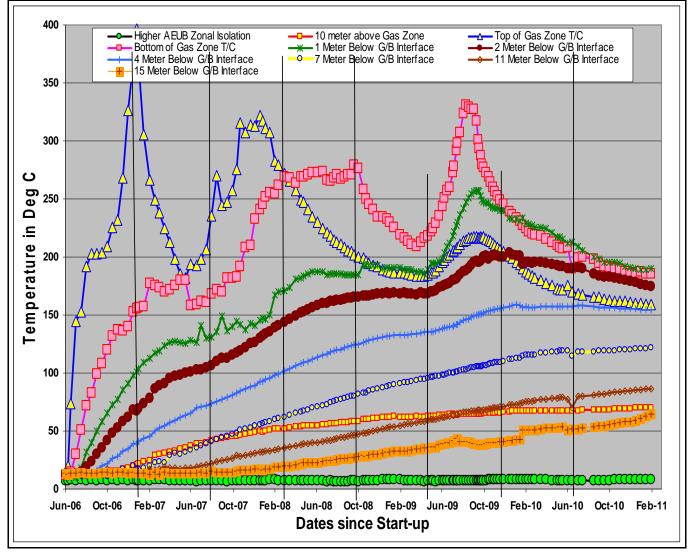


Figure 5.1.11 102/05-10-073-06W4 Observation Well Temperature Trend

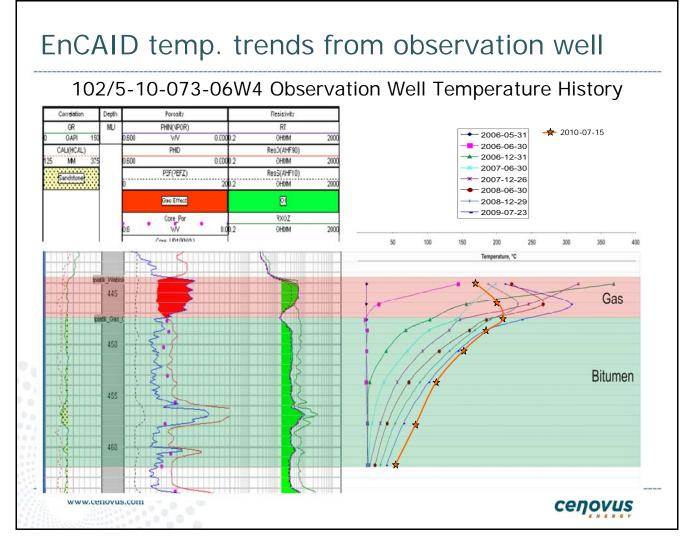


Figure 5.1.13 shows a snapshot of the thermocouple data being recorded in 102/05-10-073-06W4 & 100/06-10-073-06W4 on February 4, 2011.

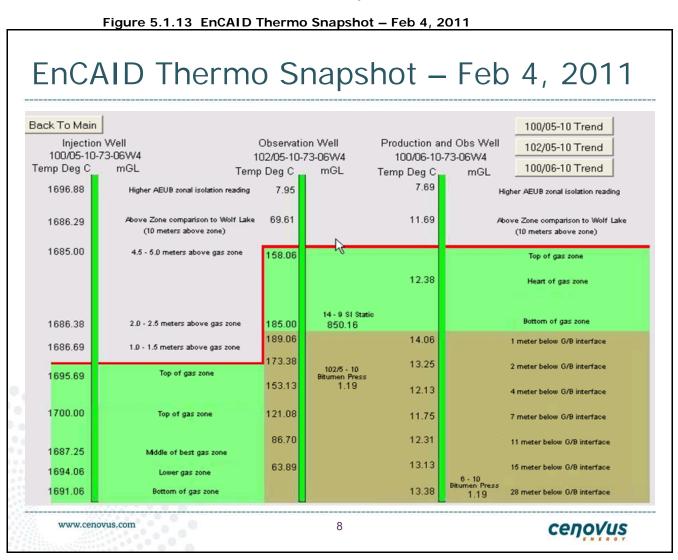


Figure 5.1.14 shows the historical temperatures at the 100/05-10-073-06W4. Temperatures since project startup June 2006 have continued to trend in the range of 15 deg C to 30 deg C with a relationship to inlet air temperature & therefore compressor discharge temperature. The thermocouples were removed from 100/05-10 in December 2010.

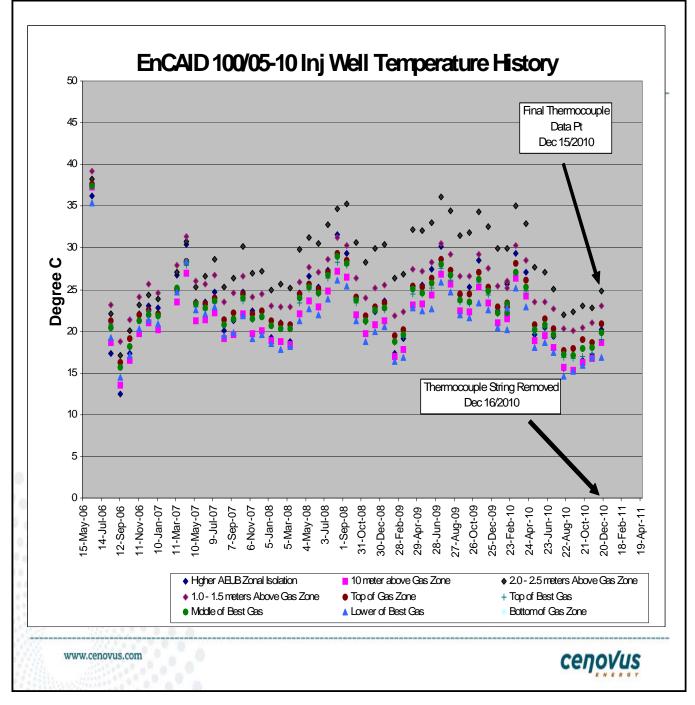


Figure 5.1.14 100/05-10-073-06W4 Injection Well Temperature Trend

Figure 5.1.15 shows the historical temperatures at the 100/06-10-073-06W4 observation well. No temperature response due to combustion has been observed at this well since project startup on June 2006.

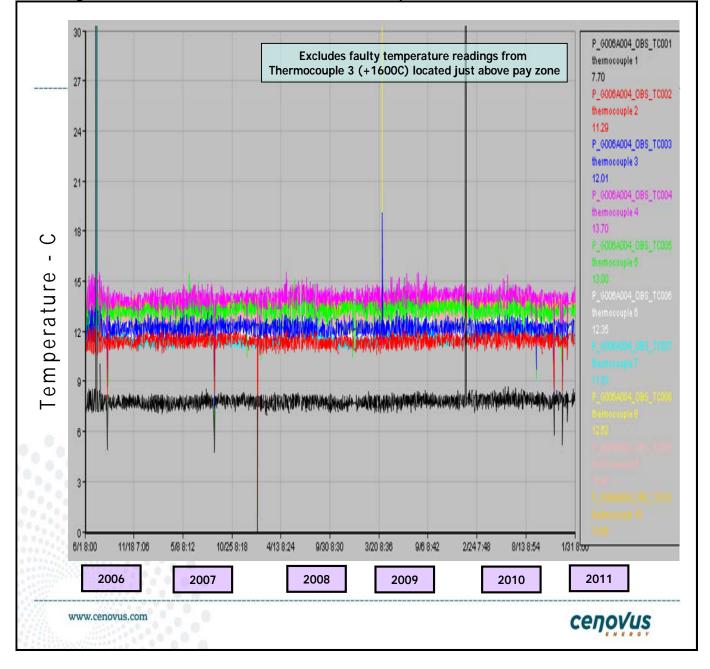


Figure 5.1.15 Observation Well 6-10-73-6w4 Temperature Trend

5.1.5 Air Injection and Well Pressure Response

Cenovus has achieved almost continuous injection of air over the time period since the June 2, 2006 ignition. Weatherford nitrogen membrane and underbalanced drilling air compressors were used for the initial blendup (15 days) and were available to substitute for the Cenovus system when both compressors had rod problems in mid July 2006 (19 days) resulting in only one day of non-injection in July 2006. The only other interruptions to air injection have been a one day pressure falloff test during the process of acquiring Wabiskaw static gradients in mid December 2006 and a sporadic interruption in air flow when we tried low air rates in January 2009 to keep our voidage balance in order. The only interruptions to air injection during the 2010 reporting period were December 19-21 and December 26-27 when pressure tests were undertaken. The average air injection rate since startup has been 2.52 MMSCFD, while for the period January 2010 to January 2011 the average injection rate was 1.69 MMSCFD which has resulted in a cumulative air injection just over 4.3 BCF. Figure 4.1.8 displays the daily air injection rate and injection wellhead pressure history from the inception of the EnCAID process.

Cenovus experienced an injectivity reduction in Fall 2009 from the initial injection rates of 3.0 to 3.2 MMSCFD down to around 2 MMSCFD at the maximum compressor discharge pressures around 3400 kPaq. A slow injectivity loss is expected with both the reservoir pressure increasing (meaning a lower differential pressure to inject) and a slight banking of oil saturation in the gas cap (as seen from simulations) that suggest there is more resistance within the injection zone. These effects explain the gradual reduction in injectivity index from 0.013 m3/day/kPa² to 0.008 m3/day/kPa² (Figure 5.1.16). A larger concern was the sudden drop in air injection rate as low as 0.7 MMSCFD in Fall 2009 which is believed to be due to compressor oil carryover past the cyclonic separator and downhole into the 100/5-10 injection well. This carryover led to the injectivity index dropping as low as 0.002 m3/day/kPa² and led to the January 21st, 2010 stimulation treatment with small amounts of Champion DT-146 (a solvent and surfactant dispersant mix) displaced by nitrogen. The executed program led to a short term recovery of the injectivity index back to the long term trend for approximately five months, then the injectivity problems resumed for the balance of the 2010 reporting period. Overall, the EnCAID air injectivity index since startup has averaged 0.009 m3/day/kPa², with air injectivity index of 0.005 m3/day/kPa² for the reporting period. The reduction in the air injection index Cenovus feels is directly attributable to the compressor oil carryover issue which has created wellbore skin effects in the air injection well.

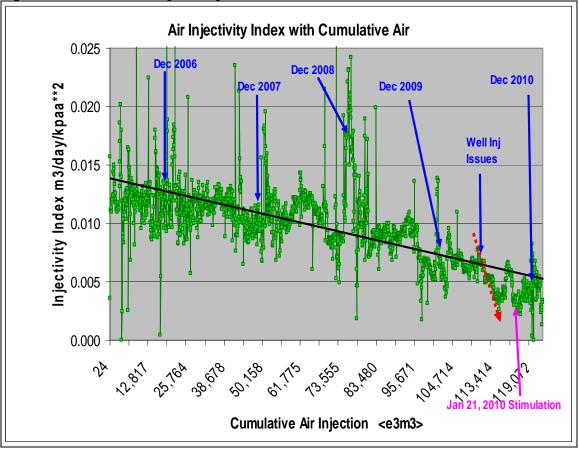


Figure 5.1.16 EnCAID Injectivity Index Trend

In order for Cenovus to better understand the issue of compressor oil carry over and its impact on the injection rate, Cenovus wanted to perform pressure fall off tests on the injector. However in order to perform the fall tests it was necessary to recover the thermocouple string from the injector wellbore. After having reviewed the historical downhole temperature data for the injection well, and concluding that the well had seen no significant changes since project startup in June 2006, Cenovus requested a wavier on continuous monitoring of the downhole temperatures on the injection well. Cenovus received permission under approval 10440H to not reinstall the thermocouple string in the air injection well on December 12th, 2010 and removed the thermocouple string on December 16th, 2010. One key benefit of the removal was that Cenovus was able to gather downhole samples of the compressor oil that had carried over. Cenovus took these samples and had them analyzed in order to determine an appropriate chemical treatment to apply in a workover in order to deal with the reservoir plugging caused by the compressor oil.

Cenovus performed two pressure Fall-off tests on December 12-21 and again on December 26-27, recovering the downhole pressure gauges on January 12, 2011. Cenovus undertook a basic transient well analysis in order to determine the magnitude of near-wellbore damage (skin) damage the injector was experiencing. The results based on analysis utilizing Fekete Well Test software indicate a skin factor of approximately +85, see Figures 5.1.17 & 5.1.18. In order to assess the level of near-wellbore damage (skin), the fall-off test data was analyzed using the Fekete F.A.S.T. WellTest application. The Pressure Transient analytical methods that WellTest is based on assume constant temperature in the reservoir, and does not account for the combustion products present, fire front, and potential "oil bank" near the combustion front. However, the method should be appropriate for analysis of near-wellbore damage as these variables should have little influence in this region.

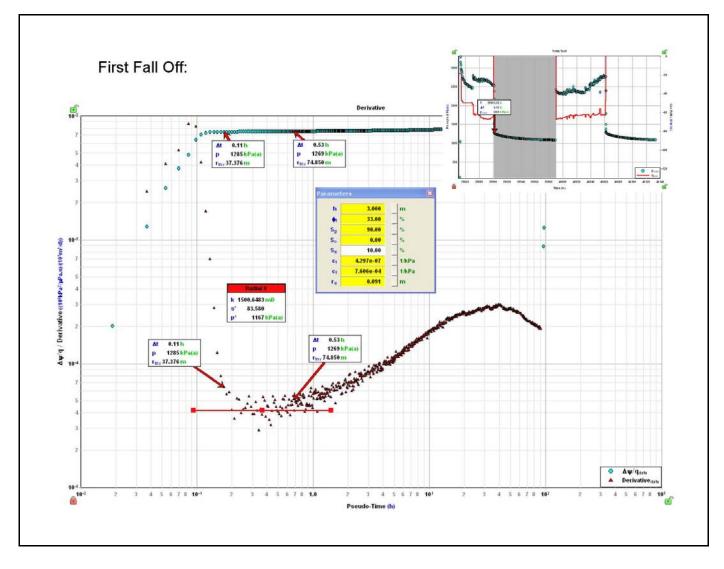


Figure 5.1.17 100/5-10-73-6 W4 Injection Well Fall-off Test #1

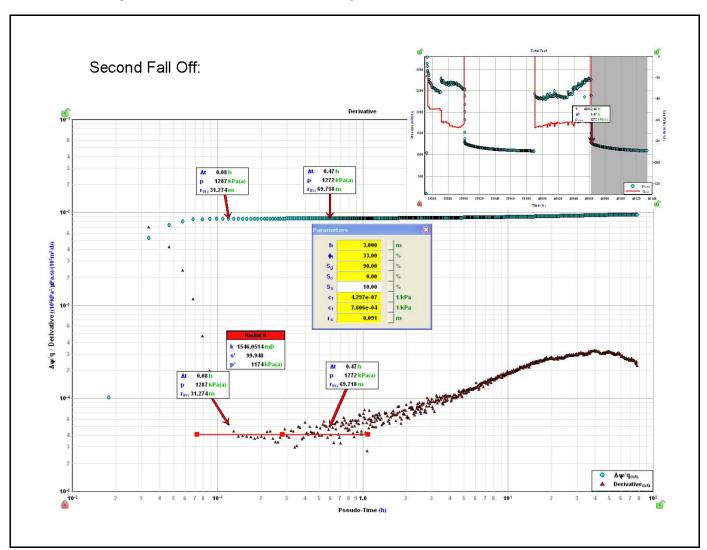


Figure 5.1.18 100/5-10-73-6 W4 Injection Well Fall-off Test #2

6. Pilot Economics Summary

All values in \$ All volumes in '000 m3									
_	2006	2007	2008	2009	2010	2011		PTD	Calculation
Revenue (\$) ¹		6,208,810	3,308,301	1,476,304	1,197,135	840,593	S	13,031,143	а
Revenue (vol) ²		27,601	15,857	15,362	12,335	8,140		79,295	
Royalty Cost		1,244,719	707,388	97,373	24,228	134,851	s	2,208,559	b
Operating Cost	168,295	576,158	970,124	727,124	541,712	256,951	\$	3,240,364	c
Capital Cost ³	8,703,442	784,691	699,659	700,661	334,812	38,239	\$	11,261,504	d
	8,871,736	2,605,569	2,377,172	1,525,158	900,751	430,041	\$	16,710,427	
IETP Royalty Adjustment Claim	1,000,000	1,000,000	1,000,000	999,046		170,954	s	4,170,000	e
Cash Flow	(7,871,736)	4,603,241	1,931,129	950,192	296,384	581,506	\$	490,716	f = a - b - c - d + e

Notes:

¹Based on Net Revenue \$ for Encaid operations activity period.

¹Based on Net Revenue Volume ('000 m3) for Encaid operations activity period.

³Includes the cost of injectant per Annual IETP Filings.

7. Facilities

7.1 Major Capital Items

The major installations / modifications for the project were:

- Two 600 HP 5 Stage Reciprocating Air Compressors
- Conversion of the 100/5-10-73-6W4 well to air injection service including installing a thermocouple string
- Drilling, coring and instrumentation of the 102/5-10-73-6W4 observation well
- Conversion of the 6-10-73-6W4 well to observation with pressure and temperature monitoring
- Installation of gas chromatographs for continuous monitoring of produced gas compositions
- Segregation repair at 6-18-73-6W4
- 100/5-10-73-6W4 injection well solvent squeeze Feb 2010.
- Planned installation in 2011 of coalescing filters to curtail compressor oil carryover into the injection well
- Planned cleanout and solvent stimulation at the 100/5-10 injection well to wash the oxidized compressor lube oil out of the critical near wellbore region

7.2 <u>Capacity Limitation, Operational Issues, and Equipment Integrity</u>

The air compressors had sufficient capacity and minimal downtime over the reporting period. The compressors were fitted with inter stage lube oil recovery, but it was a design oversight that there was not oil recovery on the final stage. This caused extra expenses in working over the injection well and retrofitting with coalescing filters.

Thermocouple strings and pressure monitoring has worked reasonably well and provided good information as to the in-situ process.

The gas chromatographs have turned out to be somewhat problematic in the field requiring frequent recalibration. As compositional changes have occurred over periods of months to years, the monthly laboratory analyzed samples have provided good compositional information on a sufficiently timely basis and the gas chromatographs have turned out to be largely redundant.

The primary operational issues have been managing production rates to maintain sales spec gas at the plant and supplying the appropriate injected air volumes to maintain the required voidage ratios.

7.3 Process Flow Diagram and Site Layout

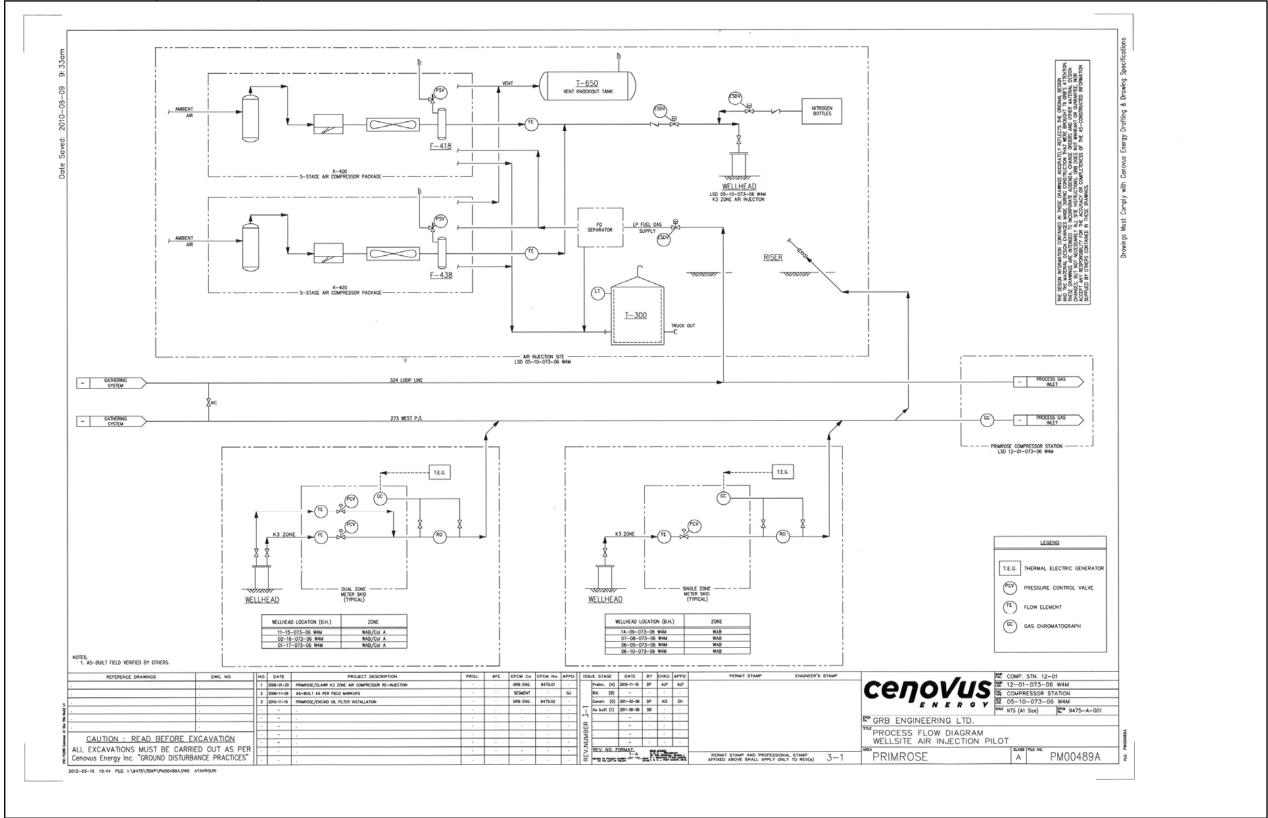
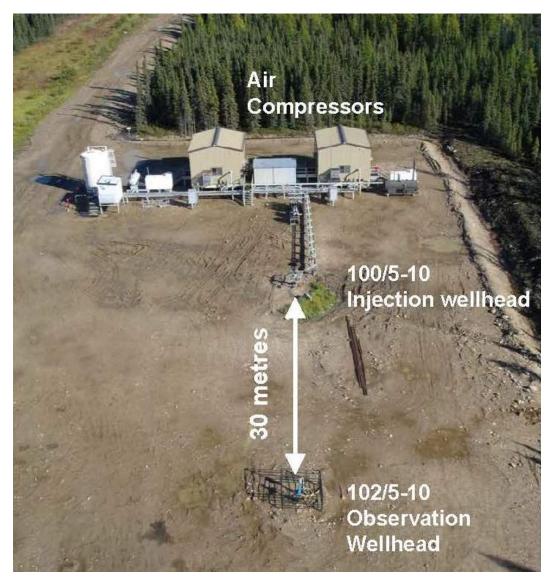



Figure 7.3.1 EnCAID Site Layout

8. Environment/Regulatory/Compliance

8.1 <u>Summary of Project Regulatory Requirements and Compliance Status</u>

8.1.1 Regulatory Approval

The initial EnCAID concept was developed & investigated through simulation work from April 2004 to the Fall of 2004. Following the Final GOB shut-in decision (Order 05-001), Cenovus submitted a Review & Variance (November 23rd, 2005) to allow the Wabiskaw wells involved in the EnCAID process to be restarted in conjunction with the process. The final Approval to produce gas was issued on January 4th, 2006 in combination with the formal process Approval 10440 on December 22nd, 2005

Approval 10440: Issued December 22nd, 2005, Initial Approval Terms Injection:

- Injection pressure below 6000 kPag, Range 1600 4500kPag
- Guide 51 Approval received for 100/5-10-73-6W4 air injector
- Continuous monitoring of injector annulus showing 22 to 160 kPag **Gas Production**:
- Gas production through seven allowed gas producers

Pressures & Temperatures:

- Continual subsurface bitumen & gas measurement through observation well 102/5-10-73-6W4. Bitumen at 102/5-10 but amended to surface gas pressure at 14-9 Hz or 6-5
- Semi-annual downhole pressure gradients at 4 shut-in pool wells plus annual surveys at 3 "out of pool" wells
- Temperatures
 - Mid-point of injection well, actual on-line collection of 10 temp points
 - 4 temperature points at 102/5-10 observation well, continually monitor 2 gas, 6 bitumen and 2 research points
 - Intermittent temperature surveys at 100/6-10 obs / prod well, continuous 10 temps and 1 piezo pressure

Gas Analysis:

• Full Gas Analysis following pressure gradient timing – greatly exceeded this sampling

Major Guidelines:

- Monthly Voidage Ratio must be 0.9 to 1.4 (amended) with minimum annual of 1.0, maintaining top range of voidage
- Bottomhole stabilized pressure at any wells falls below 700 kPaa, production will be shut-in until it recovers, 6-18 segregation problem outside Wabiskaw K-3 Pool occurred in early 2009 resulting in high VRR
- Submission of "bi-annual" progress report
- Reporting of surface & downhole corrosion, no abnormal corrosion observed
- Three year from injection confidentiality, expires about May 1, 2009
- Original Approval expires on April 1, 2009, which has been extended to March 31, 2012

Amendments

10440A: Issued April 3rd, 2006, Swap pressure monitoring

- required due to access problems with bitumen blocking or crimped coil tubing string on the 5-14-73-7W4 wellbore, outside the K-3 pool
- approval allowed Cenovus to utilize another offsetting well 100/10-36-72-7w4 for Wabiskaw zone monitoring.

10440B: Issued August 10th, 2006, Exchange continuous gas pressure monitoring point

- required due to failure of gas pressure piezometer at observation well 102/5-10-73-6W4
- exchanged for continuous surface pressure measurement at 6-5-73-6W4 as long as within 150 kPa of bottomhole pressure

10440C: Issued June 28th, 2007, Exchange Shut-in Gas Pressure Monitoring wells & Monthly Ratio change

- shift surface shut-in gas pressure monitoring duties from 6-5-73-6W4 to 14-9-73-6W4 Hz well once it was shut-in for high nitrogen
- approval to restart shut-in producer 6-5-73-6W4 when 14-9 Hz shut-in
- elimination of requirement to shut-in producers when a nitrogen level of 20% is reached
- Intermittently, the 14-9 Hz well can be flowed for 2 days in order to get a good gas sample then shut-in again
- Allowed to increase upper limit of monthly inj:prod voidage ratio from 1.1 to 1.25

10440D: Issued January 24th, 2008, Increase Monthly Voidage Ratio Limit

• Further increased monthly inj to prod ratio upper limit to 1.40 to better utilize air compression

10440E / 10440F: Issued April 2nd, 2009 / September 24th, 2009, Amendment for Time Extension

- Primary purpose, extension of approval expiry from April 1st, 2009 to March 31st, 2012 to allow additional experimental data to be acquired.
- Approved further increase in upper limit of monthly ratio from 1.4 up to 2.0
- Approved cumulative voidage ratio target up from 1.1 to 1.6 to allow utilization of air injection capacity
- Approved request for reduction of semi-annual pressure surveys within pool to annual
- Approved request to reduce semi-annual progress reporting frequency to annually

10440G / H: Issued January 19th, 2010 / December 12th, 2010, Amendment for Time Extension

- Transfer scheme from EnCana Corporation to Cenovus Energy Inc.
- Project changed from Experimental scheme to Enhanced Recovery Scheme
- Rescinded temperature monitoring requirements in injection well

8.1.2 Regulatory Compliance

Self-Disclosure of Pressure Non-Compliance & Excessive Monthly Voidage Ratio

Cenovus sent the ERCB a self-disclosure letter on January 20th, 2009 when recent static gradient analysis identified that a well inside the Kirby Upper Mannville I pool but outside the EnCAID Wabiskaw K-3 pool had a pressure decline to 641kPaa. As per ERCB approval 10440D, Clause 16 stated that production shall be shut-in if ANY bottomhole stabilized sandface pressure drops below 700 kPaa. This letter identified that the reservoir pressure at the well 6-18-73-6w4 dropped below this limit and EnCana shut in the EnCAID gas production as of January 19th, 2009. Gas production was eventually returned to previous levels on February 25th, 2009 after the 6-18 segregation was repaired and the Wabiskaw formation pressure was confirmed to be 940 kPaa (well above the ERCB minimum pressure level of 700 kPaa)

As a result of the above discussed gas production shut-in, on January 26th, 2009, Cenovus had to self-disclose the violation of Clause 15 of Approval 10440D in regards to maintaining a monthly injection to production ratio between 0.9 and 1.40. Despite reducing the air injection rate from 3+MMSCFD to 2.0 MMSCFD then 1.4 MMSCFD, Cenovus reached a monthly voidage ratio near 1.675 for January 2009 and 10.339 in February 2009 due to the gas production dropping to zero for a large period of each month. It is critical to maintain an air rate to facilitate the combustion process, so Cenovus was unable to drop the rate lower than about 1.6 MMSCFD and keep the air compressors running steady. Following the 6-18 segregation repair, the operation of the air injection and gas production was able to return to normal levels and a compliant monthly VRR in the 1.1 to 1.6 range was achieved for the remainder of 2009.

Gas Migration & Surface Casing Vent Flow Work

Background Samples:

- Taken in 2005 at the suggestion of Don Hennessey at the ERCB
- No development at EnCAID site
- Existing tied-in gas leases at 14-9, 11-15, 6-10, 5-10 and standing well 4-14

October 2006:

- No SCVF observed on any wells
- LEL disappeared when went to "methane elimination mode" which is standard practice for these tests
- Natural methane readings were observed in some of the "control" sites away from the wells.

June 2007:

- Additional testing in response to April 2007 letter to Joanne Petryk
- First time attempted to collect "zero pressure" gas samples at control and test points on 5-10, 6-10 & 11-15.
- LEL detection in "Full Gas Detection Mode" disappeared in "Methane Elimination Mode" suggesting "swamp gas"
- Test company noted that clay cap over most of the sites could be trapping methane from organic peat decomposition

October 2007:

Similar results

September 2008:

• Extra gas migration testing work added to annual work.

- Performed standard gas migration testing plus monitored additional "control" points off site.
- Collected low pressure gas samples for analysis at 5-10 & 11-15. Most tests confirmed "biogenic" gas but one sample at 11-15 was possibly from the Mannville around 400mKB (Dr. Karlis Muehlenbachs' work at U of A)
- Added additional sampling points (8 per lease) under the clay cap on 5-10, 6-10 & 11-15 to better define trapping effects.

October 2009:

- Annual detailed gas migration check
- SDS concluded again that in their opinion it is a biogenic gas / swamp gas problem. Maxxam Gas sample had "insufficient hydrocarbon" to send for carbon isotope analysis. Of note, 5-10 & 6-10 control samples had more methane than the test samples.
- Single sample above 100% LEL came from a wet, sloppy, drilling mud type of soil west of well center. Fewer points indicated a "non-zero" LEL in 2009 and north high samples from 2008 are gone.
- Areas on lease with higher LEL moving around, not in same location as 2008.

October 2010:

- 2010 LEL readings less than 2009 readings, no samples taken.
- SDS opinion is it is a biogenic / swamp gas problem.

Corrosion Monitoring

Cenovus has completed its seventh removal and analysis of corrosion coupons in August 2010. Cenovus continues to monitor the trends in pitting and to see if it is due to changing gas composition or is just a function of analysis techniques. The three original tests and the August 2009 had not measured any pit depth whereas the November 2008 data showed minor pits on three of the six sample points. The August 2010 data has indicated that there now appears to be scattered severe pitting occurring, Cenovus is attempting to gain a better understanding of the source of this pitting in order to develop an appropriate solution to handle the pitting

Plan For Shut-down and Environmental Clean-up

Continuing to operate the project, but standard shutdown and cleanup for gas production facilities will apply.

9. Summary - Operating Plan

9.1 Actual Project Schedule

The initial proposed project schedule at the time of the mid 2005 applications and the actual project schedule are illustrated below. The major delay from an estimated mid January 2006 ignition was due to the timing of winter access, well work within a generally tight industry equipment market and delayed major equipment delivery partially due to late formal approvals. Acquiring a service rig for well work during a short winter access window proved to be difficult to schedule. General industry activity resulted in a significant delay by about 1 month in the installation of the major injection site air compression and monitoring equipment.

Figure 9.1.1 Proposed Project Schedule

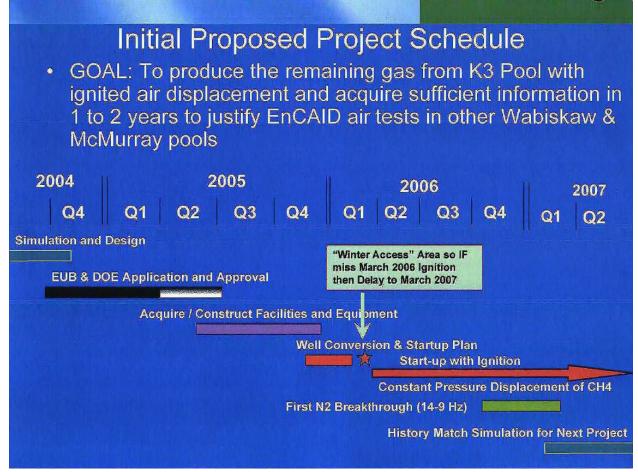
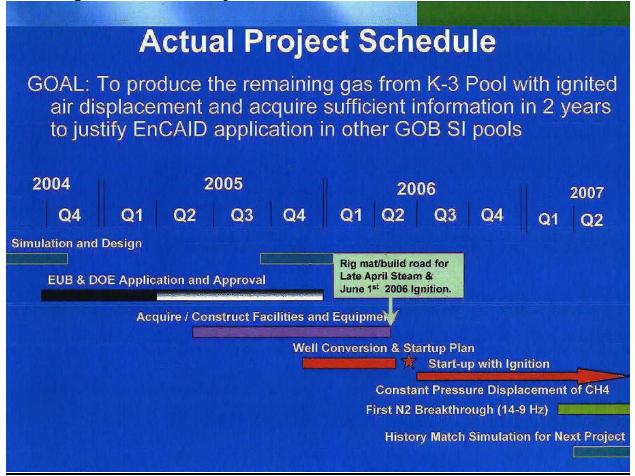



Figure 9.1.2 Actual Project Schedule

9.2 Changes in Pilot Operation, Planned vs Actual

Listed below are the main design variations from the original IETP & AEUB Applications. These changes came about through a combination of engineering design enhancement, technical review of the process & simulation and regulatory approval requirements.

Timeline Delay from original mid January Ignition to May 31st, 2006: The original timeline on the March 2005 IETP Application & May 2005 AEUB Application described an intended ignition of EnCAID by mid January 2006. Due to the need to perform well work in a winter access only area, general industry equipment delays and the delay of the formal AEUB Approval to December 22nd, 2005 (due to Phase 3 GOB SI Hearings), the actual ignition sequence for EnCAID did not start until May 31st, 2006 with the addition of the volatile oil. Prior to this date, about 20+ days of steaming took place to preheat the formation

Addition of an Observation Well at 102/5-10-73-6W4M: During the AEUB Approval process, a minority bitumen owner, Petro-Canada (Suncor), disagreed with Cenovus's contention that there would be minimal effects on the underlying bitumen resource. To address this concern, Petro-Canada & Cenovus drilled a 50/50 observation well at 102/5-10-73-6W4 which is 30 meters to the west of the 100/5-10-73-6W4 injection well. The wellbore was equipped to measure 10 temperature points from above the Wabiskaw zone through the gas interval to 15 meters into the bitumen leg while also capturing 3 pressure points with piezometers from above the zone, in the gas & in the bitumen.

Alteration of Injector Design for Temperature Measurement: As a follow-up to Petro-Canada's question on the combustion process effects on the bitumen, Cenovus decided to install a thermocouple string in the injection well to "mirror" the depths on the observation well from above the Wabiskaw zone to 15 meters into the bitumen. In order to eliminate any concerns on having any bitumen or ignitable products pooling in the injection well and causing a safety problem, the thermocouple string was cemented in place over the bitumen interval with only the gas perforations open to flow in the well. Subsequently, a mechanical problem with packer seals during the initial steaming phase caused a "catastrophic" failure of this thermocouple string over the bitumen zone. To address this loss, the remaining thermocouple string was salvaged and redesigned to supply temperatures above and across the Wabiskaw Gas zone. This injector thermocouple string did not observe any high temperatures at ignition above the existing steam temperatures and is now showing bottomhole air injection temperatures between 20 to 25 deg C.

Conversion of 6-10-73-6W4 Colony Producer into a Wabiskaw Gas & Bitumen Observation & Production Well: Again, with the AEUB's questions on the combustion process effects on the bitumen, Cenovus decided to abandon the 6-10-73-6W4 Colony zone and convert this well, that is 460 meters from the 5-10 injector, into a Wabiskaw Gas producer and Wabiskaw Bitumen Pressure & Temperature observation well. The conversion of this well as an eastern boundary of the pool producer was approved in the AEUB Project Approval 10440. Upon completion of the wellbore & after attempting two perforating runs, it appears that the well is barely in contact with the Wabiskaw pool and will not flow against a low line pressure of about 100 kPag.

Refinement of the Start-Up Strategy to Encompass Steaming, Volatile Oil Addition, N2 Injection & Air Injection: The original IETP & AEUB Applications described the concept of burning the 20 to 30% residual oil saturation in the Wabiskaw Gas zone to strip out oxygen and allow the combustion gases to displace formation gas at a 1.1 In: 1.0 Out ratio however it didn't really supply details on the start-up mechanics. The eventual plan arrived at for the EnCAID Project was to inject steam at about 100 m3 CWE/D (Cold Water Equivalent) with 3% KCl for compatibility for about 3 weeks to 1 month to bring up the formation temperature to 150+ deg C and also displace any formation oil away from the injection wellbore. The second step was to add an 11.9 m3 slug of a specific volatile oil mixture (Raw Linseed Oil blend designed through testing at the University of Calgary) then displace it out of the wellbore area with 1 day of steam injection & 1 day of 95% Nitrogen injection. The Ignition sequence was then safely completed with introduction of continuous air injection to form the ongoing displacement medium.

Downsize of Reciprocating Compression to 3.8 MMSCFD from 5 MMSCFD: The original IETP and AEUB Applications planned to deliver 5.0 MMSCFD up to 500 psig (3,500 kPag) of air from 2 reciprocating compressors (740 HP on 4 stages). The eventual design involved two 5 stage 600 HP reciprocating compressors to deliver the 3.8 MMSCFD (107 e3m3/day). Alterations occurred in the design in an attempt to match a more conventional compressor frame design to achieve reasonable delivery times since the initial compressor size looked like a 48 week delivery.

N2 Positive Flow System to Replace Water Kill System: Many of the original documents contemplated having a "water kill" system to avoid "burnback" on the injector and to quench temperatures if it was detected that the combustion front was coming back to the injection wellbore. Following design investigations by the third party engineering firm, it was decided that the technical challenges of delivering a sufficient volume of water to quench and the concern about pressures from steam flashing eliminated the water kill system idea. In place of the water kill, a nitrogen positive flow system was installed with two banks of ten nitrogen cylinders each. If failure of both of the air compressors is detected, the nitrogen system ESD is triggered allowing nitrogen from the first bank of gas cylinders to continue to provide a positive flow & pressure to the well in addition to creating a non-combustible environment within the wellbore.

On-line Analyzers for H2S & BTU in Addition to N2 & O2: The original documents identified the levels of Nitrogen & Oxygen as being critical control variables with Oxygen levels being key for safety and a general level of 20% Nitrogen used as a cut-off for shutting in production wells. Further technical discussions identified that it was worthwhile to measure the actual BTU level of the production gas and then combine this with the Nitrogen level to make a conscious decision on production well shut-in. In some cases, depending upon the Nitrogen levels of a combination of wellbores and the BTU levels, production from EnCAID gas wells could be stretched slightly beyond the 20% Nitrogen limit. In the final installation of the EnCAID facility, an available fuel gas line with dehydrated sales gas was tied-in so the onsite air compressors are not dependent upon the nitrogen content of the EnCAID production wells, potentially allowing a higher Nitrogen concentration threshold to be used in the shut-in decision. The H2S analyzers were added to the Primrose North Gas Plant inlet and several selected producers closest to the combustion front to do research to see if any sour gas is detected in the displaced gas due to the combustion process.

Core Analysis in the Gas & Bitumen Zone at the Observation Well 102/5-10-73-6W4: Once the AEUB Approval required the drilling of an observation well, Petro-Canada & Cenovus decided to recover a core sample across the entire gas & bitumen zone to perform current tests on the insitu properties. The initial Petrophysical data for the EnCAID pool for gas zone permeability & porosity as well as bitumen pay thickness was used in the simulation work but additional information on the fluid & rock properties was deemed to be helpful. Core & extracted fluid analysis took place in the first half of 2006 to better refine the zone properties and to verify assumptions in the simulation.

Refinement of the Petrophysics & 3D Reservoir Simulation for Combustion Frontal Position & Impact on the Bitumen Zone: With the introduction of the 102/5-10-73-6W4 Observation Well just 30 meters from the 100/5-10-73-6W4 EnCAID Injector, a requirement for a more detailed 3D simulation of the 500 meter region around the injector was needed to fully understand the observed data & timing for responses.

Extra Pressure Surveys for EnCAID: In the AEUB Approval 10440, the AEUB has requested a slightly more intense pressure survey schedule with semi annual measurements at wellbores within the EnCAID Wabiskaw pool combined with annual surveys on several wellbores outside of the EnCana identified K-3 Pool.

Background Corrosion & Gas Migration Work on Selected Wells: In conjunction with discussions with AEUB Bonnyville Field staff, some background wellbore corrosion monitoring and some gas migration work was committed to as a prudent plan. Five wellbores in the region of the 100/5-10 injector have been surveyed for any existing gas migration in order to determine any differences after the onset of combustion. Follow-up surveys did not detect any changes beyond observations of "swamp gas", even with development of the sites with roads & facilities.

Improvement of 5-10-73-6W4 Lease Access with a Permanent Road: In assessing Cenovus's needs for reliable access to the 5-10 air compressors and lease, the original plan for temporary rig mat access to the location was replaced with a \$460,000 Road & Lease upgrade. This road & lease construction has been invaluable in allowing the successful execution of this EnCAID Project by allowing continued operations through break-up in a heavy muskeg area and providing support for continuous air injection through ongoing compression operations.

9.3 Optimization Strategies

Additional high heat value gas available to blend the high N2 produced gas will allow better ultimate recovery.

Wider VRR flexibility somewhere between the minimum to maintain combustion and not exceeding original pool pressure would make it easier to optimize air injection strategy.

For new applications, screw type compressors would allow more flexibility in air injection rates.

10. Interpretations and Conclusions

10.1 Assessment of the Overall Performance of the Pilot

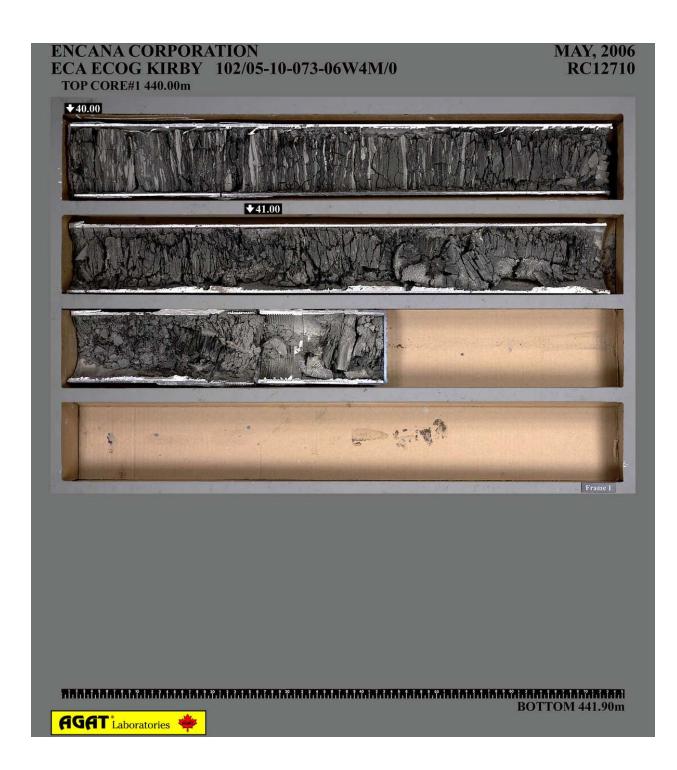
10.1.1 Lessons learned

Cenovus continues to demonstrate a successful GOB Technical solution with the EnCAID project. The overall project has been shown to be successful through accomplishment of the following goals:

1) Successful Ignition of EnCAID Process: Temperatures at the observation well have suggested heat generation beyond the initial preheat steaming energy input. The combustion front is moving along well but slightly behind the original simulation timing. Knowledge and understanding of the process will continue to increase as the abundance of technical results are integrated into a detailed thermal simulator model.

2) Safe Operation of the EnCAID Process: The EnCAID process continues to safely produce formation gas from the Wabiskaw reservoir with continuous monitoring of the produced gas. Minimal problems have occurred during the injection of over 4.3 BCF of air and have been readily addressed by the field operations staff and facilities groups.

3) Efficient Delivery of Pressure Support: The Wabiskaw region where injection and production has taken place has increased in pressure by over 200 kPaa since the start of injection while the West shut-in side of the pool has increased by about 170 kPaa.

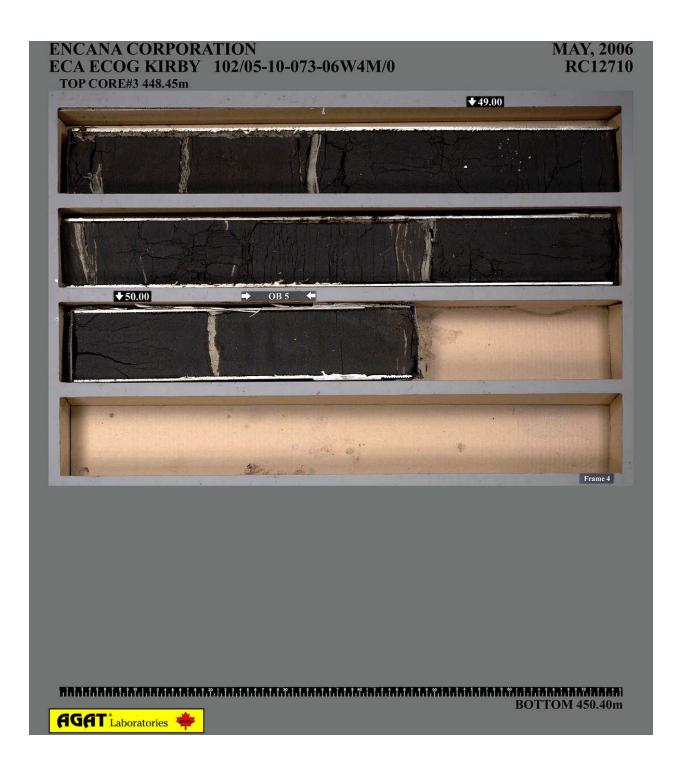

4) Steady and Continuous Air Injection: Average air injection rate for the project is approximately 45 e3m3/d (1.6 Mmcf/d) delivered with just 3.5 days of mechanical down time in over 1,700 days, the process performance ranks as top quartile performer. This strong operational work has resulted in the EnCAID Project solidly delivering the cumulative injection to production ratio of 1.22 : 1.00 and injecting over 121 e6m3 (4.3 BCF) of air. Concerns continue to exist with regard to the continuing low air injection rate that was experienced. It is anticipated that with the information gathered from the pressure fall off tests in December 2010 Cenovus will be able to gain better understanding of the compressor oil carryover issue and design a successful workover program to restore injectivity. In order to assess the level of near-wellbore damage (skin), the fall-off test data was analyzed which indicated a skin factor of approximately +85. The pressure transient analytical methods are based on assuming constant temperature in the reservoir, and does not account for the combustion products present, fire front, and potential "oil bank" near the combustion front. However, the method should be appropriate for analysis of near-wellbore damage as these variables should have little influence in this region.

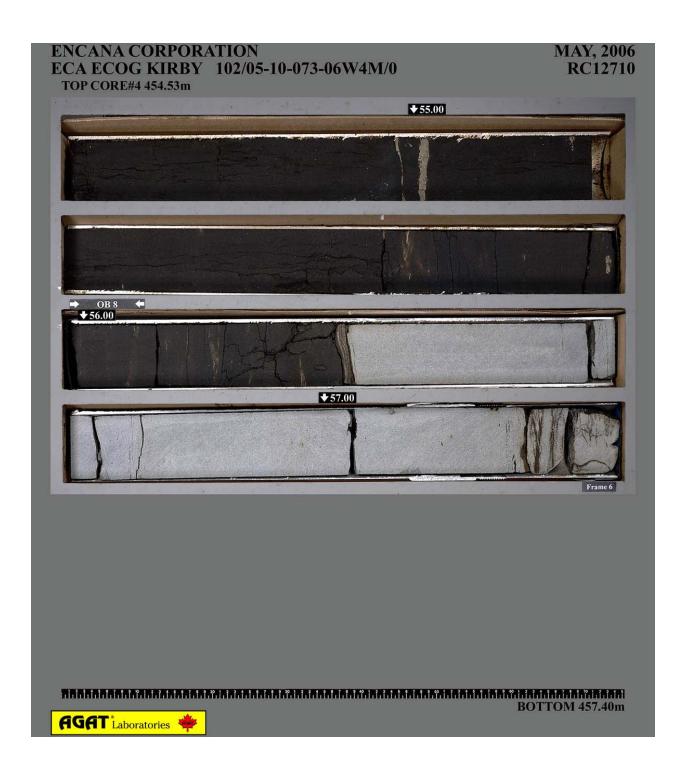
5) Proven value of temperature, pressure and gas analysis data: All of the information from the observation well, six producing wells and five shut-in wells have been integrated into the detailed three dimensional reservoir simulation model for improved interpretation of the process. Any opportunity to acquire additional field data on fluid flow is recognized as a very valuable exercise so Cenovus has gone to great lengths to keep wells producing even at high nitrogen levels (like well 14-9) and to acquire many more gas analysis samples than required in the Approval. Continuing the 14-9 sampling after the well was shut-in has allowed Cenovus to acquire extremely useful gas displacement information such as the delay in carbon dioxide response by about 9 to 12 months. During the reporting period we have only observed H2S levels in the range of 0.5 to 3 ppm on the EnCAID producers with nitrogen response, but will continue to do intermittent trace sulphur analysis to understand all of the components that might be created in the process.

10.1.2 Technical and Economic Viability

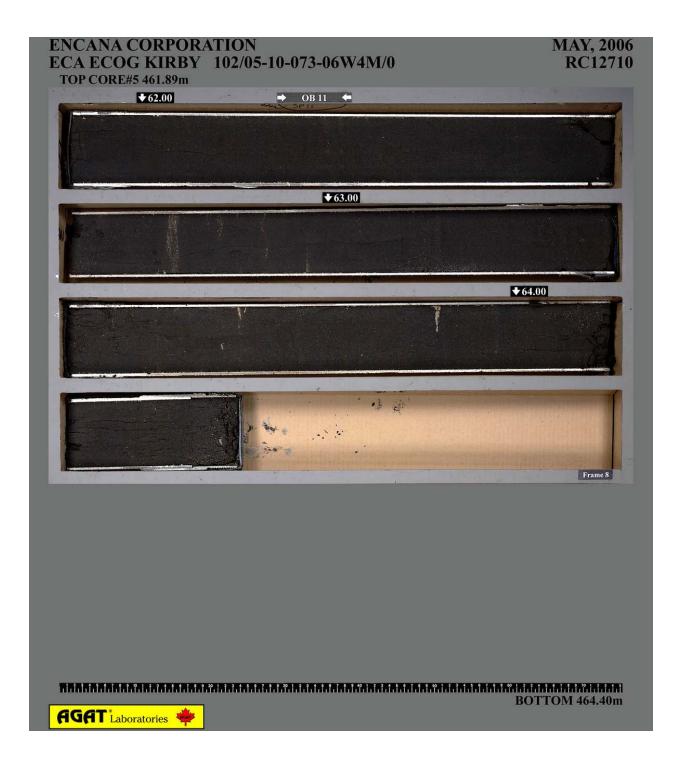
In summary, the project has demonstrated that the EnCAID process is a technically sound method of recovering GOB gas. The drastic decline in natural gas prices over the project period has significantly impacted project economics. At the end of 2010 Cenovus was working on obtaining the necessary regulatory and partner approval to bring on 4 additional producers at the far west end of the pool. Due to the low gas price environment, there are currently no other plans for expansion at this time.

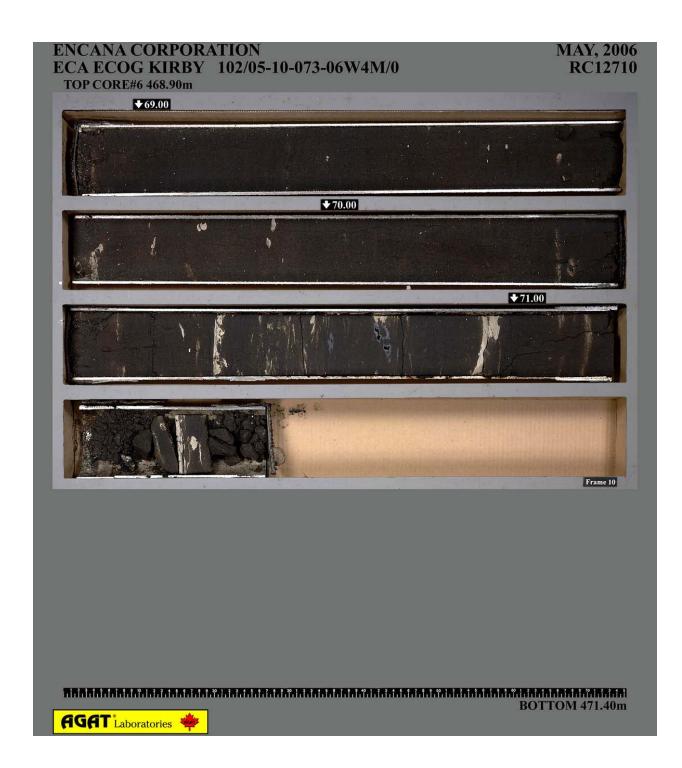
Appendix A: 102/5-10-73-6W4 Observation Well Core Photos

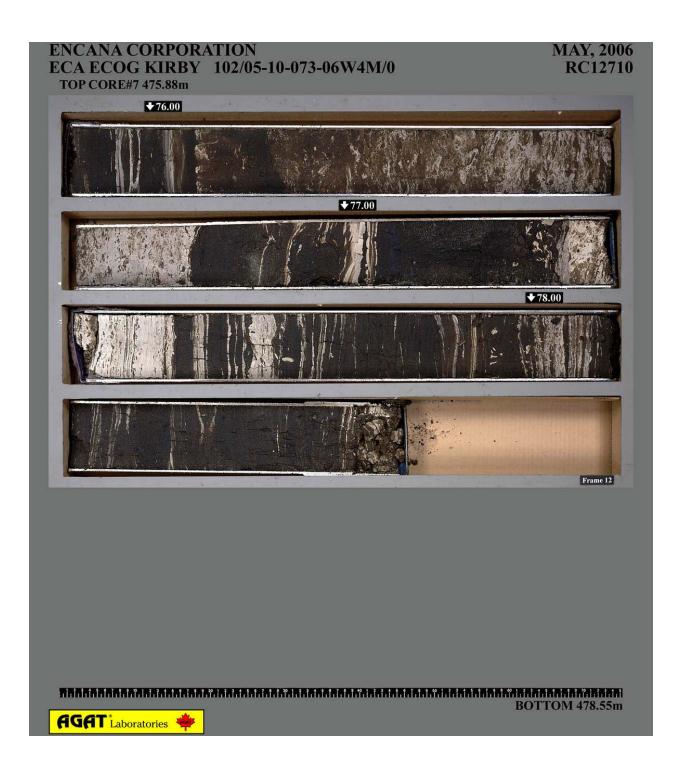



ENCANA CORPORATION ECA ECOG KIRBY 102/05-10-073-06W4M/0 TOP CORE#3 444.00m

MAY, 2006 RC12710

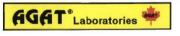






Appendix B: 102/5-10-73-6W4 Observation Well Core and Sieve Analysis

0


: ENCANA CORPORATION : 102/05-10-073-06W4M/0 : WABISKAW : ECA ECOG KIRBY : WATER BASE MUD

HEAVY OIL SANDS ANALYSIS

PAGE : 1 DATE : 28-Apr-2006 W/O No : RC12710

Oil Density @ 1.000 g/cc Grain Density @ 2.65 g/cc OverBurden Pressure @ 1000 psi

							i sta				0			-	
						n - Stark Ana					Smail Plu				
		erval	Rep		Mass)			ration	Perme			Grain	(Pore V		
	(1	m)	Thick	Oil	Water	Calc.	Oil	Water	KMax	Kv	Helium	Density	Oil	Water	
Sample	Тор	Base	(m)	frac	frac	Porosity	frac	frac	(mD)	(mD)	Porosity	(Kg/m³)	frac	frac	Remarks
						CORE NO	14	40.00 -	442.40	(CUI	RECEIVED	5 = 2.40	/ 1.90 m	101/	AL BOXES = 2
NA	440.00	441.90	1.90	-			-		-			-	-	-	sh:ss
LC	441.90	442.40	0.50			-	-				-	-	-	-	Lost Core
						CORE NO	2 4	42.40 -	444.00	(CUT	RECEIVED	0 = 1.60	/ 1.20 m	TOT	AL BOXES = 1
NA	442.40	443.60	1.20				-			-	2	2			sh:ss
LC	443.60	444.00	0.40						-	-	-				Lost Core
						CORE NO	3 4	44.00 -	450.40	(CUT	RECEIVED	0 = 6.40	/ 6.40 m	тот	AL BOXES = 5
OB001	444.00	446.15	2.15	0.059	0.099	0.332			2620.	2140	0.355	2620	0 0.33	4 0.55	57 ss:vf-fgr:arg
OB002	446.15	446.87	0.72	0.068	0.093	0.337	-	<u></u>	3020.	2270					
OB003	446.87	447.77	0.90	0.054	0.099	0.322	-	-	2120.	1930.					
OB004	447.77	448.80	1.03	0.098	0.053	0.319	-		2120.	1260	0.354	2610		2 0.29	
OB005	448.80	450.40	1.60	0.106	0.051	0.330			1910.	1570	0.344	2600	0 0.62	2 0.30	03 ss:vf-fgr:arg
						CORE NO	4 4	50.40 -	457.40	(CUT	RECEIVED	0 = 7.00	/ 7.00 m	TOT	AL BOXES = 5
OB006	450.40	453.05	2.65	0.105	0.068	0.356	-	-	1500.	1200					
OB007	453.05	455.65	2.60	0.109	0.058	0.345	-		2030.	1260	0.351	2600			
OB008	455.65	456.35	0.70	0.099	0.043	0.305	-	*	847.	786.	0.309	2620	0 0.67	9 0.29	
NA	456.35	457.40	1.05	•	-	-			-		-	-	-	-	55
						CORE NO	5 4	57.40 -	464.40	(CUT	RECEIVED	0 = 7.00	/ 7.00 m	TOT	AL BOXES = 5
NA	457.40	457.88	0.48				-	-			2				\$\$

ENCANA CORPORATION 102/05-10-073-06W4M/0 WABISKAW ECA ECOG KIRBY WATER BASE MUD

PAGE : 2 DATE : 28-Apr-2006 W/O No : RC12710

Oil Density @ 1.000 g/cc Grain Density @ 2.65 g/cc OverBurden Pressure @ 1000 psi

HEAVY OIL SANDS ANALYSIS

					Dear	- Stark Ana	alysis		1		Small Plu	g Analysis	5		
	Inte	erval	Rep	(Bulk	Mass)		Sati	uration	Perme	ability		Grain	(Pore V	(olume)	
1	(1	n)	Thick	Oil	Water	Calc.	Oil	Water	KMax	Kv	Helium	Density	Oil	Water	
Sample	Тор	Base	(m)	frac	frac	Porosity	frac	frac	(mD)	(mD)	Porosity	(Kg/m³)	frac	frac	Remarks
09	457.88	460.51	2.63	0.100	0.068	0.348	2	8	1040.	854.	0.366	2620	0.54	7 0.37	3 ss:vf-fgr:arg:carbptg
A	460.51	460.67	0.16	-		-	-								SS
B010	460.67	461.89	1.22	0.102	0.049	0.319	-	-	1190.	696.	0.334	2610	0.62	0.29	
B011	461.89	464.40	2.51	0.108	0.070	0.363	-	-	723.	700.	0.385	2610	0.54	7 0.35	3 ss:vf-fgr:arg:carbptg
						CORE NO	. 6 4	64.40 -	471.40	(CUT	/ RECEIVED	0 = 7.00	/ 7.00 m	TOT	AL BOXES = 5)
1A	464.40	465.28	0.88	0.099	0.043	0.305	-		847.	786.	0.309	2620	0.67	9 0.29	6 ss:vf-fgr:arg ASTOB008
B012	465.28	470.58	5.30	0.100	0.076	0.360		-	1270.	484.	0.378	2620	0.52		
12A	470.58	471.40	0.82	0.099	0.043	0.305	-	-	847.	786.	0.309	2620	0.67	9 0.29	6 ss:vf-fgr:arg ASTOB008
						CORE NO	. 7 4	71.40 -	478.55	(CUT	/ RECEIVED	D = 7.15	/ 7.15 m	TOT	AL BOXES = 5)
B013	471.40	474.49	3.09	0.096	0.051	0.313		-	621.	441.	0.320	2650	0.63	4 0.33	6 ss:vf-fgr:arg
NA	474.49	478.55	4.06	-				-		-		-	-	-	ss:sh

OMPAN OCATIC ORMAT VELL NA RILLING	ION	ENCAI 102/05 WABIS ECA E WATE	-10-073 SKAW COG K	3-06W	4M/0											I V	PAGE DATE W/O No	1 28-Apr-2006 RC12710A
							HE	AVY C	DIL S	SAND	SAN	AL	<u>(SIS</u>			Oil Gra Ov	Density @ 1 ain Density (erBurden Pr	1.000 g/cc @ 2.65 g/cc essure @ 1000 psi
							- Stark	Analysis					Small F	lug Analysi				
-	Inte (n	nval	Rep Thick	Oil	(Bulk Water	Mass) Solids	Sum	Calc.	Oil	ration Water	Perme KMax	ability Kv	Helium	Grain Density	(Pore) Oil	Volume) Water		
Sample	Тор	Base	(m)	frac	frac	frac	oun	Porosity	frac	frac	(mD)	(mD)	Porosity	(Kg/m ³)	frac	frac	Remarks	
NA .C	440.00 441.90	441.90 442.40	1.90 0.50	:	:	CORE	NO. 1 -	440.00 - 4 - -	42.40 - -	(CUT	RECEN	/ED =	2.40 / 1.9	0 m TOT	AL BOX	ES = 2)		
						CORE	NO. 2	442.40 - 4	44.00	(CUT	RECEN	/ED =	1.60 / 1.2	m TOT	AL BOX	ES = 1)	l]	
NA _C	442.40 443.60	443.60 444.00	1.20 0.40	:	1	:	5	:	÷	:			:	: :	:			
						CORE	NO. 3	444.00 - 4	50.40	(CUT	/ RECEN	/ED =	6.40/6.4	m TOT	AL BOX	ES = 5)	E.	

0.671 0.700 0.665 0.620 0.634

0.654 0.680 0.563 0.500 0.514

0.385

.

• • • • • • • • •

.

0

.

. . . .

-

0

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

-

0.833 0.832 0.831 0.836 0.830

0.832 0.831 0.840 0.829 0.831

0.831

1.000 0.347 1.000 0.349 1.000 0.351 1.000 0.343 1.000 0.352

1.000 0.349 1.000 0.351 1.000 0.336 1.000 0.354 1.000 0.350

1.000 0.350

-

0.329 0.300 0.335 0.380 0.366

0.346 0.320 0.437 0.500 0.486

0.615

0

NA

DS1 DS2 DS3 DS4 DS5

DS6 DS7 DS8 DS9 DS10

DS11

444.00

445.46 445.76 446.07 446.36 446.68

446.96 447.26 447.55 447.85 448.16

448.45

445.46

445.76 446.07 446.36 446.68 446.96

447.26 447.55 447.85 448.16 448.45

448.75

1.46 -

0.30 0.31 0.29 0.32 0.28 0.055 0.050 0.057 0.062 0.062 0.112 0.118 0.113 0.102 0.108

0.30 0.29 0.30 0.31 0.29 0.058 0.054 0.070 0.086 0.082 0.110 0.115 0.090 0.085 0.087

0.30 0.104 0.065

COMPAN LOCATIC FORMAT WELL NA DRILLING		ENCAI 102/05 WABIS ECA E WATE	-10-07 KAW COG K	3-06W4												ĺ.	PAGE DATE W/O No	: 2 : 28-Apr-2006 : RC12710A	
DRILLING	STEOID	. WATE	N DAGI				<u>HE</u>	AVY	DIL S	SAND	S AI	NAL	(SIS			Gra	Density @ ain Density (erBurden Pr	1.000 g/cc @ 2.65 g/cc ressure @ 1000 ps	si
						Dean	- Stark A	nalysis					Small P	lug Analysis					
	Inte	rval	Rep		(Bulk	Mass)			Satu	ration	Perme	ability		Grain	(Pore \	(olume)	1		
	(1	n)	Thick	Oil	Water	Solids	Sum	Calc.	Oil	Water	KMax	Kv	Helium	Density	Oil	Water			
Sample	Тор	Base	(m)	frac	frac	frac		Porosity	frac	frac	(mD)	(mD)	Porosity	(Kg/m³)	frac	frac	Remarks		
	Cash of Second	5 m 6 6 8 m m			80.00 000-00-	the second second			STATE OF STREET								, 		
DS12	448.75	449.05	0.30	0.108	0.059	0.833	1.000		0.648	0.352		-		• •					
DS13 DS14	449.05 449.34	449.34 449.64	0.29	0.106	0.059	0.835	1.000		0.642	0.358		-			-				
DS14	449.64	449.95	0.31	0.102	0.062	0.830	1.000		0.636	0.364		-	2						
DS16	449.95	450.40	0.45	0.107	0.065	0.828	1.000		0.621	0.379									
						CORE N	NO 4 4	50.40 - 4	57 40	(CUT)	RECE	VED =	7.00 / 7.00	m TOTA	L BOXE	ES = 5)	1		
										1									
DS17	450.40	450.70	0.30	0.101	0.068	0.832		0.349	0.597	0.403		-	*		-				
DS18	450.70	451.01 451.25	0.31	0.104	0.069	0.826	0.999		0.601	0.399		-	÷.						
DS19	451.01	451.25	0.24	0.111	0.064	0.825	1.000	0.360	0.632	0.368	9 - T	-			-				
DS20	451.25	451.56	0.31	0.112	0.064	0.824	1.000	0.362	0.635	0.365	6 6	-	2						
DS21	451.56	451.79	0.23	0.102	0.072	0.827		0.357	0.586	0.414		-	-						
DS22	451.79	452.10	0.31	0.103	0.070	0.827		0.357	0.594	0.406		-			-				
DS23	452.10	452.40	0.30	0.109	0.064	0.827	1.000		0.628	0.372		-	-		-				
DS24	452.40	452.70	0.30	0.100	0.065	0.835	1.000	0.343	0.606	0.394	e : :	-							
DS25	452.70	453.00	0.30	0.099	0.077	0.824	1.000	0.361	0.563	0.437		- 1			-				
DS26	453.00	453.30	0.30	0.103	0.073	0.825	1.000		0.586	0.414		-	-		-				
DS27	453.30	453.60	0.30	0.098	0.076	0.826	1.000		0.565	0.435		-			-				
DS28	453.60	453.88	0.28	0.100	0.076	0.824	1.000		0.568	0.432		-	1	1 31					
DS29	453.88	454.19	0.31	0.099	0.070	0.831	1.000	0.349	0.587	0.413	8 - S	-	-		-				

454.19 454.49 0.30 0.104 0.064 0.832 1.000 0.348 0.617 0.383

0

0

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

0

DS30

COMPAN LOCATIC FORMAT WELL NA DRILLING		ENCAL 102/05 WABIS ECA E WATE	-10-07 KAW COG K	3-06W4	4M/0											ļ	PAGE DATE W/O No	: 3 28-Apr-2006 RC12710A
							HE	AVY	DIL S	SAND	S AI	NAL	(SIS			Gra	Density @ ain Density erBurden P	@ 2.65 g/cc ressure @ 1000 psi
						Dean	- Stark	Analysis					Small PI	ug Analysis	5			
		rval	Rep			Mass)	122140-011			ration	Perme			Grain		Volume)	1	
	(1	n)	Thick	Oil	Water	Solids	Sum	Calc.	Oil	Water	KMax	Kv	Helium	Density	Oil	Water		
Sample	Тор	Base	(m)	frac	frac	frac		Porosity	frac	frac	(mD)	(mD)	Porosity	(Kg/m3)	frac	frac	Remarks	
DS31 DS32	454.49 454.80	454.80 455.10	0.31	0.102	0.071	0.826	0.99		0.590	0.410		2						
DS32	455.10	455.36	0.26	0.100	0.005	0.825	1.00		0.572	0.428		-						
DS34	455.36	455.67	0.31	0.094	0.080	0.826	1.00		0.542	0.458					1			
DS35	455.67	455,97	0.30	0.085	0.041	0.874	1.00		0.671	0.329		-						

.

.

-

0.331

0.400 CORE NO. 6 464.40 - 471.40 (CUT/RECEIVED = 7.00/7.00 m

0.412

-

-

CORE NO. 7 471.40 - 478.55 (CUT / RECEIVED = 7.15 / 7.15 m TOTAL BOXES = 5)

.

1 1 1 1 1 (CUT / RECEIVED = 7.00 / 7.00 m TOTAL BOXES = 5)

:

. . . .

TOTAL BOXES = 5)

...

-

0.092 0.078 0.830 1.000 0.352 0.543 0.457

.

0.108 0.053 0.839 1.000 0.337 0.669

0.101 0.071 0.828 1.000 0.356 0.588

CORE NO. 5 457.40 - 464.40

0.828 1.000 0.355 0.600

-

-. 0

AGAT [®] Laboratories

0

0

DS36 NA

NA

D\$37 NA D\$38 NA

NA DS39 NA

NA

455.97 456.35

457.40

458.88 459.18 461.89 462.19

464.40 465.90 466.20

456.35 457.40

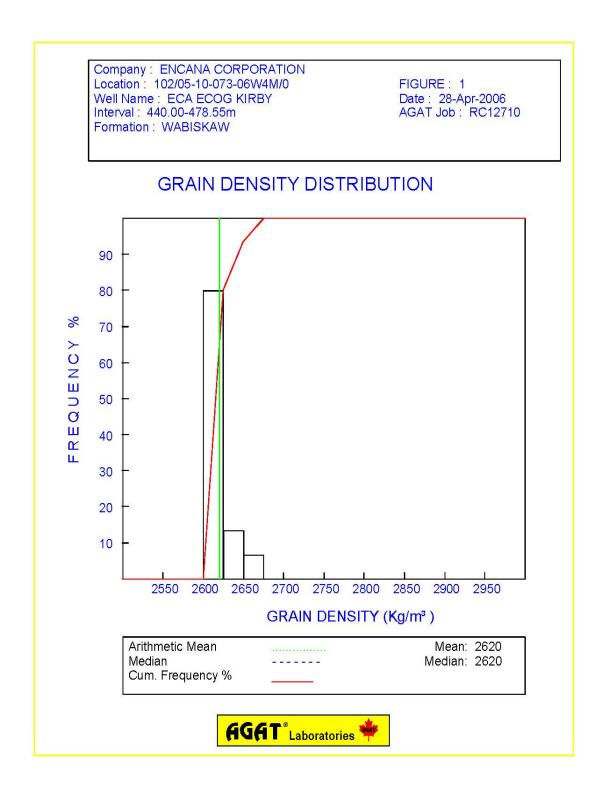
458.88

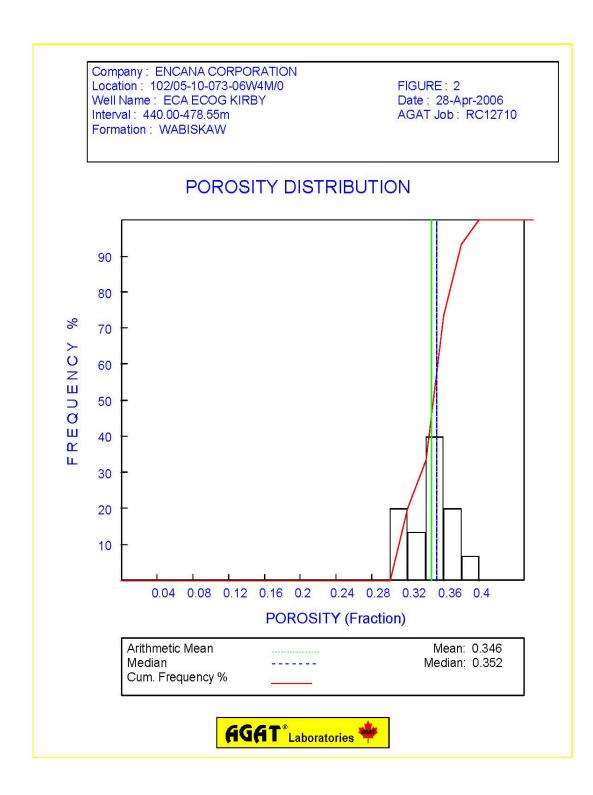
459.18 461.89 462.19 464.40

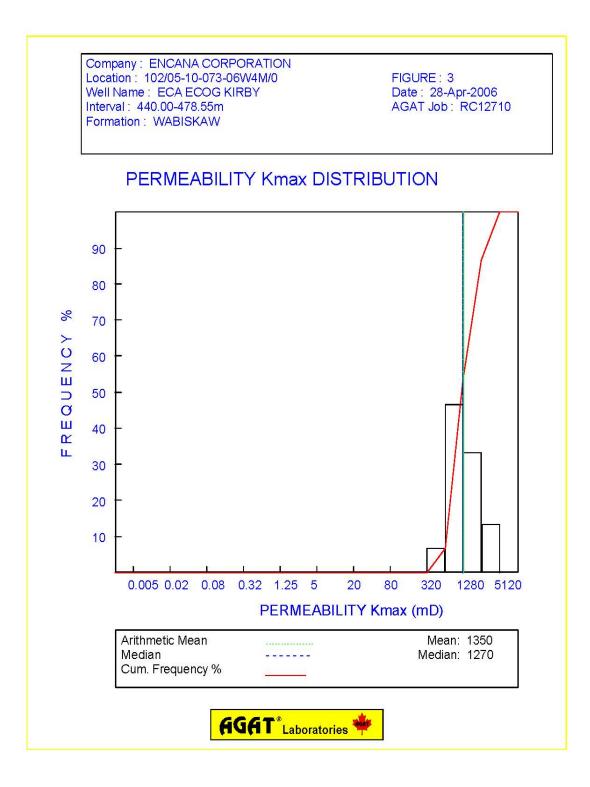
465.90 466.20 471.40

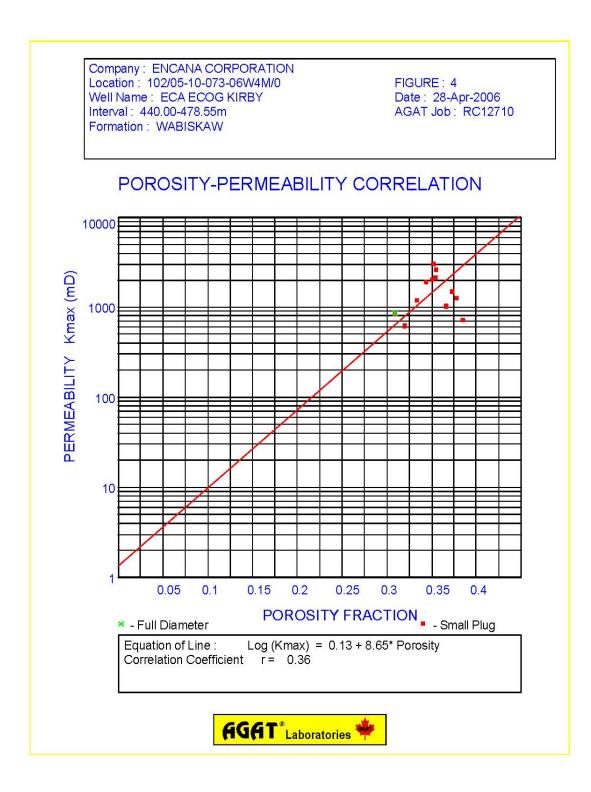
471.40 478.55 7.15

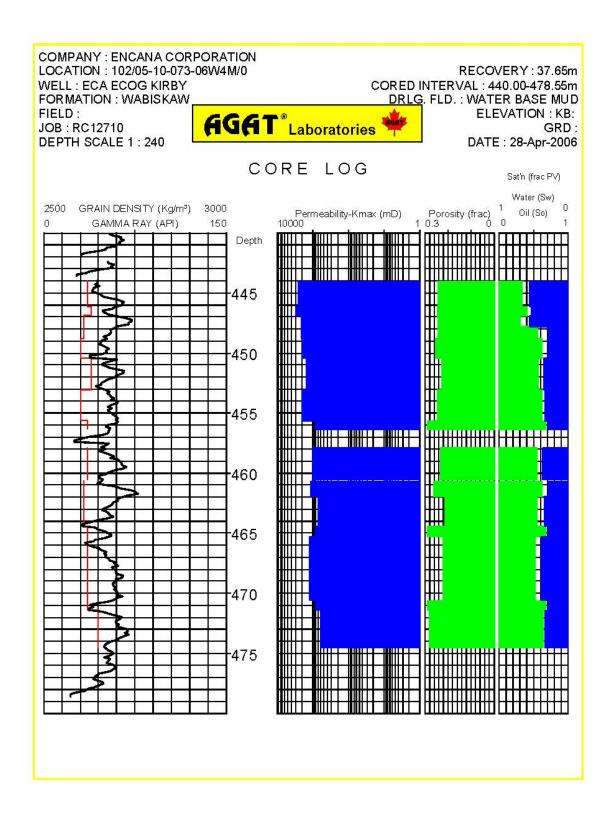
0.38

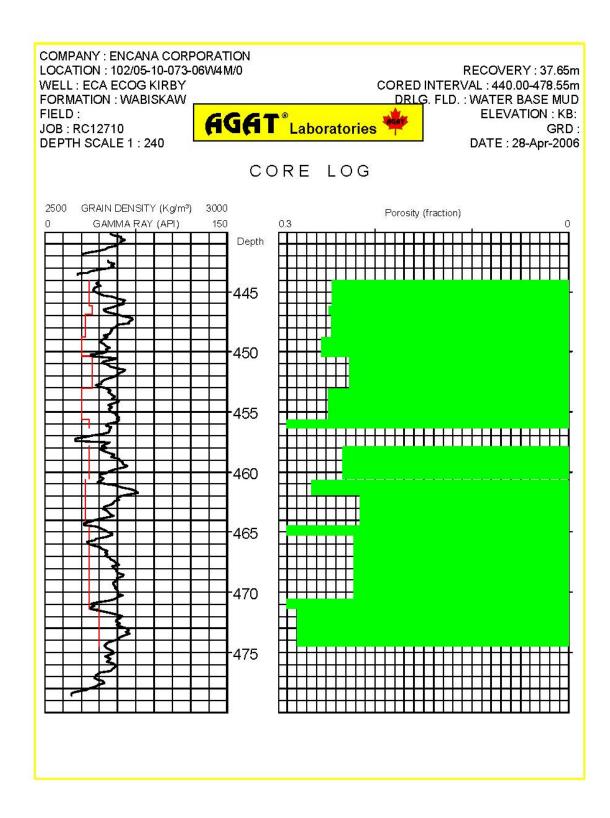

1.48

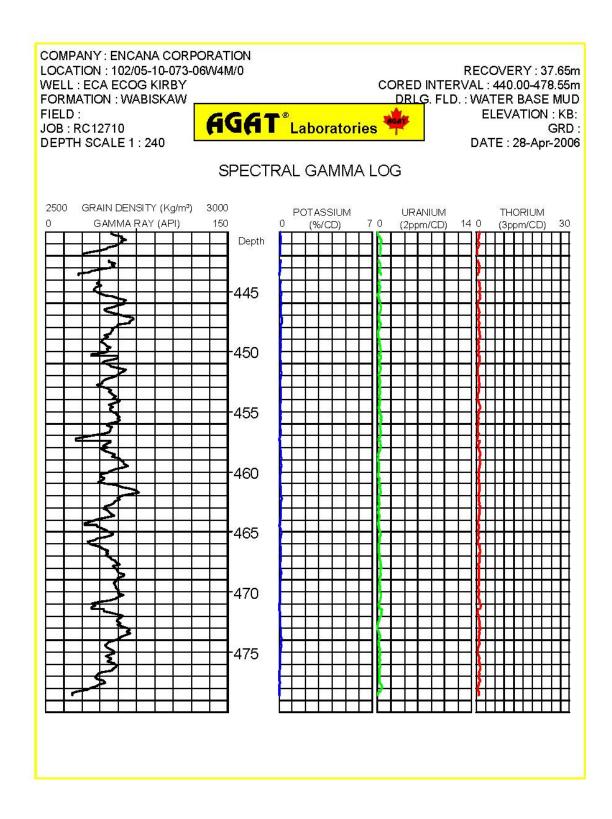

0.30 2.71 0.30 2.21


1.50 0.30 5.20


0.103 0.069


-





PARTICLE SIZE ANALYSIS OF TEN SOLID SAMPLES

For

CENOVUS ENERGY INC.

RC12710

December 17, 2009

AGAT Laboratories

3650 - 21 Street N.E. Calgary, Alberta T2E 6V6

PARTICLE SIZE ANALYSIS

Ten solid samples for CENOVUS ENERGY INC. have been analyzed by AGAT Laboratories Ltd. for particle size distribution. The samples were analyzed using a "Coulter LS" Laser Diffraction particle size analyzer.

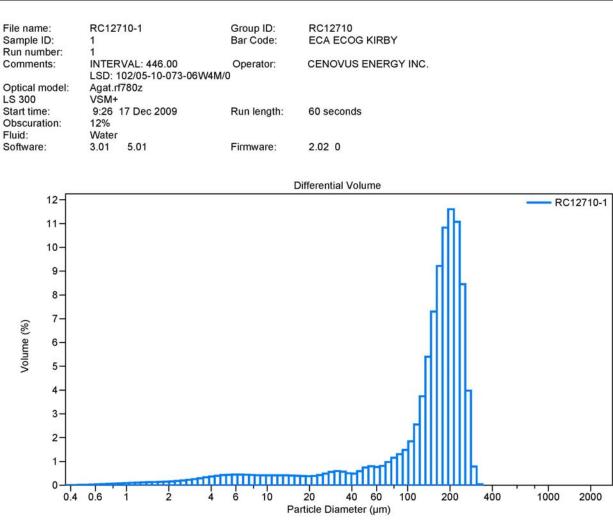
The results of the particle size analysis are summarized in the following table:

SAMPLE DESCRIPTION	D ₅₀ % [µm]	RANGE [µm]
Container ID: PSD 1	171.4	0.393 - 324.4
Type of the Sample: Solid		
LSD: 102/05-10-073-06W4M/0		
Well Name: ECA ECOG KIRBY		
Depth: 446.00m		
Other Information: CORE 3, BOX2		
Container ID: PSD 2	135.1	0.393 - 324.4
Type of the Sample: Solid		
LSD: 102/05-10-073-06W4M/0		
Well Name: ECA ECOG KIRBY		
Depth: 449.50m		
Other Information: CORE 3, BOX4		
Container ID: PSD 3	155.1	0.393 - 324.4
Type of the Sample: Solid		
LSD: 102/05-10-073-06W4M/0		
Well Name: ECA ECOG KIRBY		
Depth: 453.50m		
Other Information: CORE 4, BOX3		

CENOVUS ENERGY	INC.
Particle Size Analysis	

RC12710 December 17, 09

Container ID: PSD 4	156.0	0.393 - 295.5
Type of the Sample: Solid		
LSD: 102/05-10-073-06W4M/0		
Well Name: ECA ECOG KIRBY		
Depth: 455.00m		
Other Information: CORE 4, BOX4		
Container ID: PSD 5	165.9	0.393 - 356.1
Type of the Sample: Solid		
LSD: 102/05-10-073-06W4M/0		
Well Name: ECA ECOG KIRBY		
Depth: 459.00m		
Other Information: CORE 5, BOX2		
Container ID: PSD 6	155.9	0.393 - 324.4
Type of the Sample: Solid		
LSD: 102/05-10-073-06W4M/0		
Well Name: ECA ECOG KIRBY		
Depth: 462.00m		
Other Information: CORE 5, BOX4		
Container ID: PSD 7	131.6	0.393 - 356.1
Type of the Sample: Solid		
LSD: 102/05-10-073-06W4M/0		
Well Name: ECA ECOG KIRBY		
Depth: 465.00m		
Other Information: CORE 6, BOX1		
Container ID: PSD 8	151.1	0.393 - 295.5
Type of the Sample: Solid		
LSD: 102/05-10-073-06W4M/0		
Well Name: ECA ECOG KIRBY		
Depth: 469.50m		


CENOVUS ENERGY INC. Particle Size Analysis

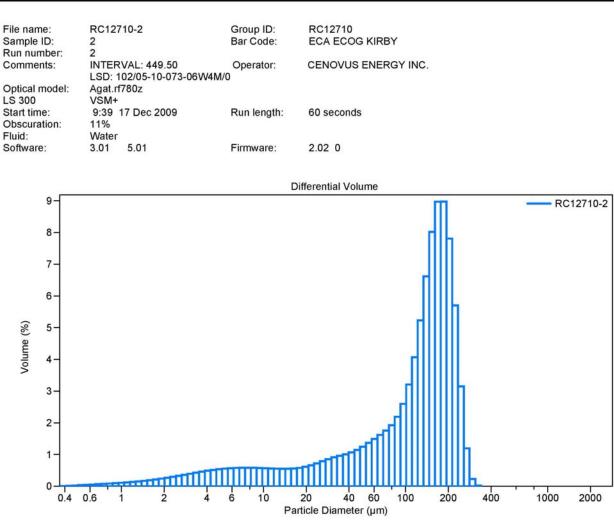
RC12710 December 17, 09

Other Information: CORE 6, BOX4		
Container ID: PSD 9	145.5	0.393 - 390.9
Type of the Sample: Solid		
LSD: 102/05-10-073-06W4M/0		
Well Name: ECA ECOG KIRBY		
Depth: 474.00m		
Other Information: CORE 7, BOX2		
Container ID: PSD 10	152.7	0.393 - 390.9
Type of the Sample: Solid		
LSD: 102/05-10-073-06W4M/0		
Well Name: ECA ECOG KIRBY		
Depth: 475.40m		
Other Information: CORE 7, BOX3		

The results are also presented in histogram and tabular format following the text.

,

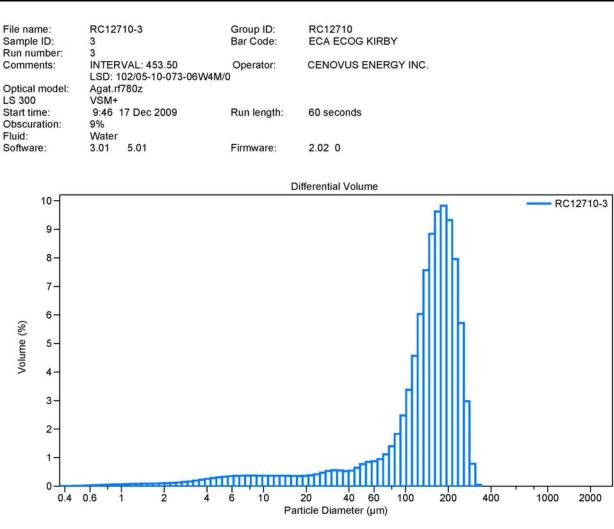
RC12710-1


Calculations from 0.375 µm to 2,000 µm

1000/

Valuma

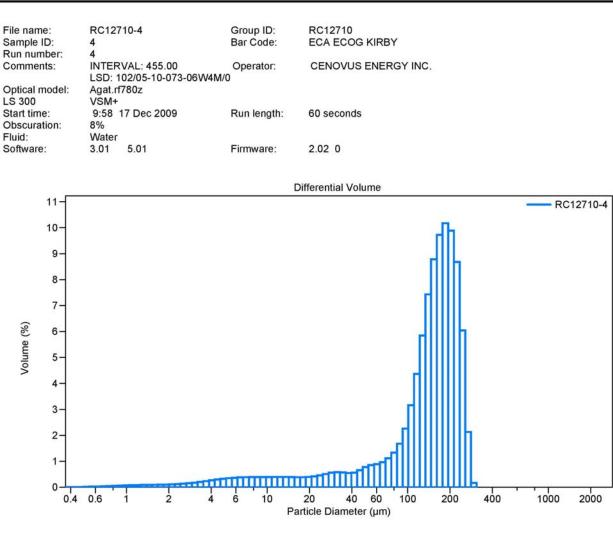
volume:	100%		
Mean:	154.8 µm	S.D.:	76.85 µm
Median:	171.4 µm	C.V.:	49.7%
Mode:	203.5 µm	Skewness:	-0.597 Left skewed
d ₁₀ :	18.40 µm	Kurtosis:	-0.618 Platykurtic
d50:	171.4 µm		
d ₉₀ :	242.9 µm		



RC12710-2

Calculations from 0.375 µm to 2,000 µm

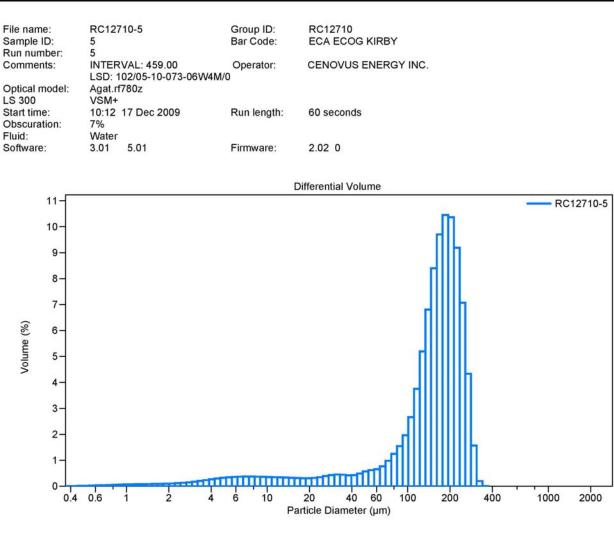
Volume:	100%		
Mean:	123.0 µm	S.D.:	73.98 µm
Median:	135.1 µm	C.V.:	60.2%
Mode:	185.4 µm	Skewness:	-0.157 Left skewed
d10:	9.899 µm	Kurtosis:	-1.055 Platykurtic
d50:	135.1 µm		•
d90:	214.3 µm		



tic) RC12710-3

Calculations from 0.375 µm to 2,000 µm

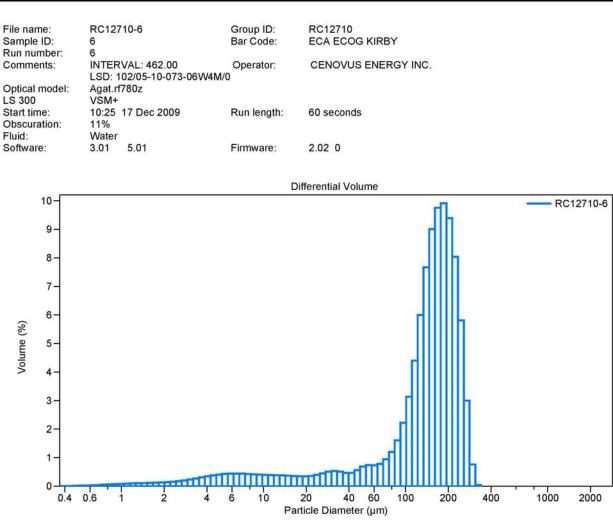
Volume:	100%		
Mean:	146.8 µm	S.D.:	70.81 µm
Median:	155.1 µm	C.V.:	48.2%
Mode:	185.4 µm	Skewness:	-0.391 Left skewed
d10:	29.03 µm	Kurtosis:	-0.505 Platykurtic
d50:	155.1 µm		•
d90:	232.8 µm		


RC12710-4

Volume Statistics (Arithmetic)

Calculations from 0.375 µm to 2,000 µm

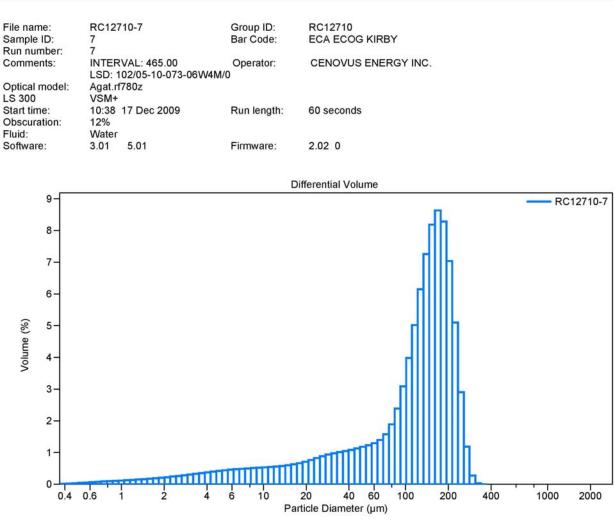
Volume:	100%		
Mean:	145.6 µm	S.D.:	70.18 µm
Median:	156.0 µm	C.V.:	48.2%
Mode:	185.4 µm	Skewness:	-0.484 Left skewed
d10:	26.29 µm	Kurtosis:	-0.567 Platykurtic
d50:	156.0 µm		•
d90:	230.1 µm		



RC12710-5

Calculations from 0.375 µm to 2,000 µm

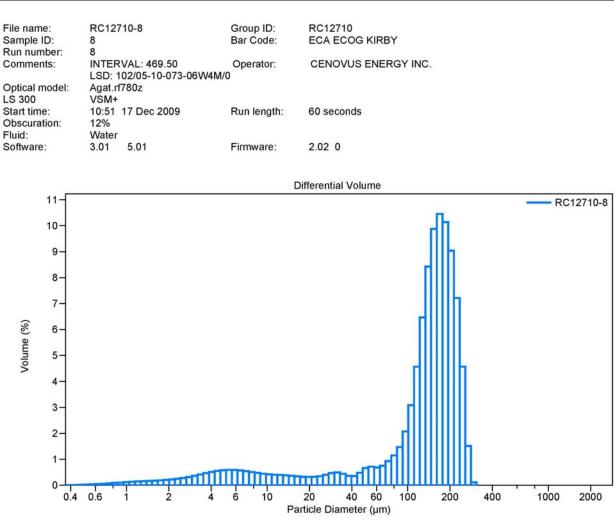
Volume:	100%		
Mean:	156.4 µm	S.D.:	72.90 µm
Median:	165.9 µm	C.V.:	46.6%
Mode:	185.4 µm	Skewness:	-0.481 Left skewed
d10:	32.23 µm	Kurtosis:	-0.365 Platykurtic
d50:	165.9 µm		•
d90:	244.3 µm		



etic) RC12710-6

Calculations from 0.375 µm to 2,000 µm

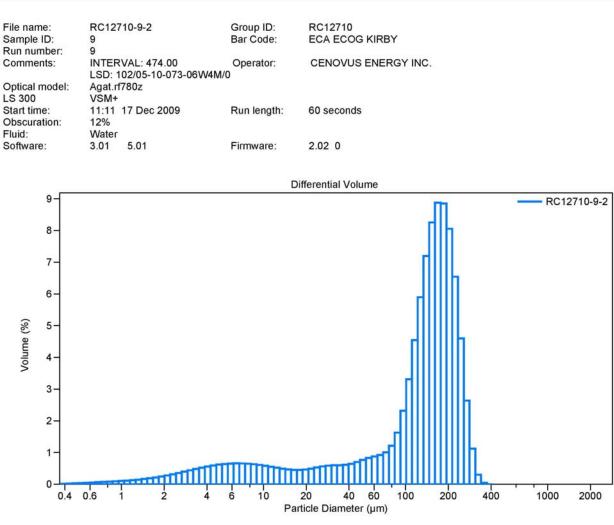
Volume:	100%		
Mean:	146.5 µm	S.D.:	72.12 µm
Median:	155.9 µm	C.V.:	49.2%
Mode:	185.4 µm	Skewness:	-0.439 Left skewed
d10:	21.52 µm	Kurtosis:	-0.504 Platykurtic
d50:	155.9 µm		· · ·
d90:	233.1 µm		


Volume Statistics (Arithmetic)

RC12710-7

Calculations from 0.375 µm to 2,000 µm

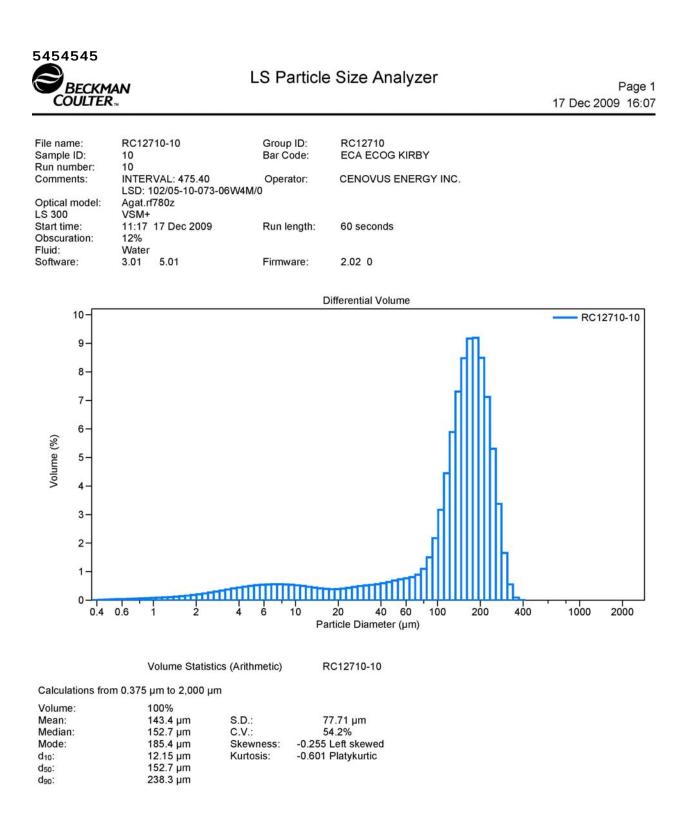
Volume:	100%		
Mean:	122.2 µm	S.D.:	71.83 µm
Median:	131.6 µm	C.V.:	58.8%
Mode:	168.9 µm	Skewness:	-0.126 Left skewed
d10:	12.83 µm	Kurtosis:	-0.940 Platykurtic
d50:	131.6 µm		•
d90:	211.8 µm		


Volume Statistics (Arithmetic)

RC12710-8

Calculations from 0.375 µm to 2,000 µm

Volume:	100%		
Mean:	139.0 µm	S.D.:	70.81 µm
Median:	151.1 µm	C.V.:	50.9%
Mode:	168.9 µm	Skewness:	-0.519 Left skewed
d10:	11.14 µm	Kurtosis:	-0.561 Platykurtic
d50:	151.1 µm		•
d90:	223.1 µm		



Volume Statistics (Arithmetic)

RC12710-9-2

Calculations from 0.375 µm to 2,000 µm

Volume:	100%		
Mean:	134.5 µm	S.D.:	77.96 µm
Median:	145.5 µm	C.V.:	57.9%
Mode:	168.9 µm	Skewness:	-0.213 Left skewed
d10:	8.607 µm	Kurtosis:	-0.793 Platykurtic
d50:	145.5 µm		· .
d90:	229.9 µm		

Appendix C: 102/5-10-73-6W4 Observation Well Fluid Analysis

OIL CHARACTERIZATION ECA ECOG KIRBY 102/05-10-073-06W4 WABISKAW

Prepared for:

ENCANA CORPORATION

2900 421-7th Avenue S.W. Calgary, Alberta, Canada T2P 4K9

Prepared by:

AGAT Laboratories

3700 - 21st Street N.E. Calgary, AB T2E 6V6

Telephone: (403) 299-2000

Work Order No: 06RE2384 Date: May 2006

TABLE OF CONTENTS

1. LIST OF TABLES AND FIGURES	3
2. OBJECTIVE	4
3. EXPERIMENTAL PROCEDURE & DISCUSIÓN	4
4. COMMENTS	5

Work Order: 06RE 2384

1. List of Tables and figures

Table 1: Viscosity at different pressure and temperature	7
Table 2: Density, at different pressure	12
Table 3: Summary of SARA Analysis Data Core 3	16
Table 4: Summary of SARA Analysis Data Core 4	17
Table 5: Summary of SARA Analysis Data Core 5	18
Table 6: Fluid's Composition Core 3	19
Table 7: Fluid's Composition Core 4	21
Table 8: Fluid's Composition Core 5	23
Figure 1: Fluid Viscosity mPa.s at Ambient pressure	8
Figure 0. Eluid Viscosity mDs a at 200 knog	-
Figure 2: Fluid Viscosity mPa.s at 800 kpag	
Figure 3: Fluid Viscosity mPa.s at 2500 kpag	10
Figure 3: Fluid Viscosity mPa.s at 2500 kpag Figure 4: Fluid Viscosity at different pressure	10 11
Figure 3: Fluid Viscosity mPa.s at 2500 kpag	10 11
Figure 3: Fluid Viscosity mPa.s at 2500 kpag Figure 4: Fluid Viscosity at different pressure	10 11 13
Figure 3: Fluid Viscosity mPa.s at 2500 kpag Figure 4: Fluid Viscosity at different pressure Figure 5: Density at 800 kpag	10 11 13 14
Figure 3: Fluid Viscosity mPa.s at 2500 kpag Figure 4: Fluid Viscosity at different pressure Figure 5: Density at 800 kpag Figure 6: Density at 2500 kpag Figure 7: Density at different pressure Figure 8: SARA Analysis Core 3	
Figure 3: Fluid Viscosity mPa.s at 2500 kpag Figure 4: Fluid Viscosity at different pressure Figure 5: Density at 800 kpag Figure 6: Density at 2500 kpag Figure 7: Density at different pressure	

2. OBJECTIVE

Oil sand sample from core # 4 of well ECA ECOG KIRBY 102/05-10-073-06W4 was selected for oil extraction to determine density and viscosity at different temperature (13 C, 75 C and 150 C) and different pressure (800 kpag and 2500 kpag). Oil sand section was chosen from the depth intervals 450.40 m to 453.05 m of core # 4 below gas zone and above the largest CaCO3 tight streak. The samples were received in AGAT laboratory on April 26, 2006. Fluid characterization has been performed on the extracted oil according to client's specification and requirement.

And also three sections from core 3, 4 and 5 (core 4 below gas zone and above the largest CaCO3 tight streak, core 5 below the largest CaCO3 tight streak, and the Gas Zone to the Gas/Bitumen interface were selected for compositional analysis up to C30+ by using FID and SARA analysis to split the asphaltenes and maltenes.

3. EXPERIMENTAL PROCEDURE & DISCUSIÓN

The density of the oil is determined by displacing a known volume of the sample into a stainless steel pressure cylinder. The cylinder volume and weight are precisely measured prior to sampling. Without altering the pressure, the sample cylinder is filled with a measured volume of reservoir fluid. The sample cylinder is re-weighed on a scale accurate to 0.001 g and the density of the fluid is determined. The oil density results are presented in table 2 and figures 5-7.

The oil viscosity is determined using a calibrated magnetic viscometer (Cambridge 440). The magnetic viscometer is mounted within a temperaturecontrolled oven to maintain the desired thermal conditions. The temperature is

controlled using a solid-state temperature controller accurate to $\pm 0.5^{\circ}$ C. An internally mounted thermometer is used to provide an exact reading of the system temperature. Circulating fans in the oven ensure a uniform temperature distribution in the system.

Also the oil viscosity was confirmed by cross arm viscometer under Oil Bath at different temperature and ambient pressure. All the experimental data and calculated results are presented in table 1 and figures 1 through 4.

The fluid was compositionally analyzed to C30+ by Flame Ionization Detection (Atmospheric And Pressurized Sample) is based on GPA 2186-02, GPA 2286-95, ASTM D 2597-94 and ASTM D 5307-97. This method is applicable to the determination of hydrocarbons in crude oils and gas condensates over a wide range of concentrations from C1 to C30. Hydrocarbon concentrations are reported in units of mole fraction. The compositions of the fluids are given in Tables 6-8.

SARA analysis was conducted on the extracted oil samples to split into Asphaltenes and Maltenes. The Asphaltenes was determined by ASTM D-4055-87 (Pentane Insoluble) from SARA analysis and shown as 16.31%Wt in core 3, 17.12%Wt in core 4 and 19.96%Wt in core 5. The SARA analysis was conducted using ASTM D2007-03 and the data was reported in both graphical and tabular format in Table 3-5 & Figures. 8-10 respectively.

4. COMMENTS

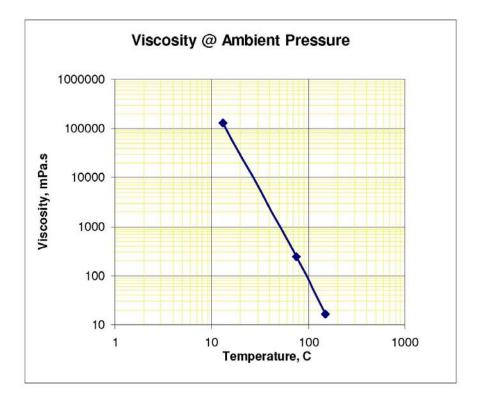
Table –1 presents the oil viscosity at ambient pressure, 800kpag and 2500kpag at different temperature. Figures 1–3 are depicted oil viscosity measured at ambient pressure, 800kpag and 2500 kPag. Figure 4 presents composite of oil viscosity at different pressure.

As can be seen in figure 4 there were no significant variations in oil viscosity on log – log scale.

Table -2 presents the density at 800kpag and 2500 kpag at different temperature. Figures 5-6 show density at 800 and 2500 kpag. Figure -7 shows composite density at different pressure

From graph in (Figure 7), by increasing the pressure (Ambient, 800 kpag to 2500kpag) at different temperature, the increase in density was insignificant.

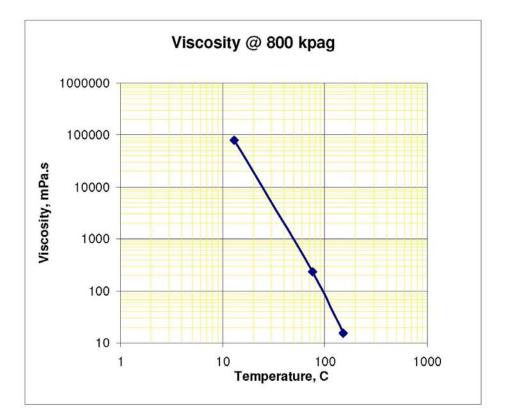
Based on the data presented in the graph (Figure 7) density measured at 13 C and ambient pressure was 0.9965 g/cc.


Table 1: Viscosity at different pressure and temperature

Temp C ^o	Viscosity at Ambient pressure	Viscosity at 800 kpag	Viscosity at 2500 kpag
13	128000	80000	90000
75	239.00	233.00	260.00
150	16.22	15.17	16.00

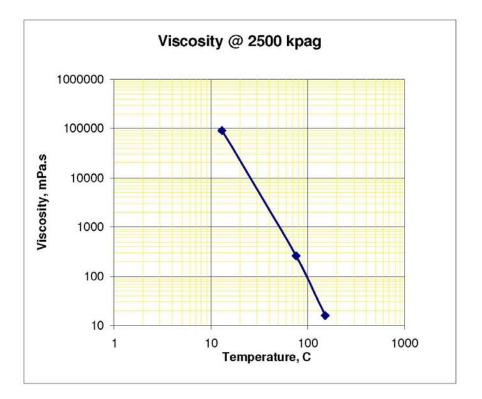
AGAT

Work Order No: 06RE2384 Page 8



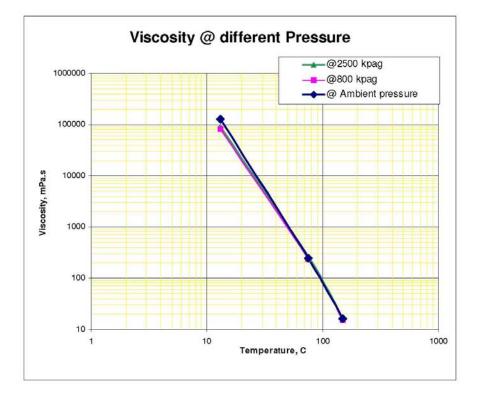
AGAT

Work Order No: 06RE2384 Page 9



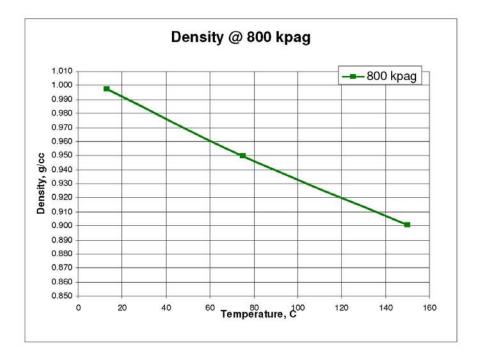
AGAT

Work Order No: 06RE2384 Page 10

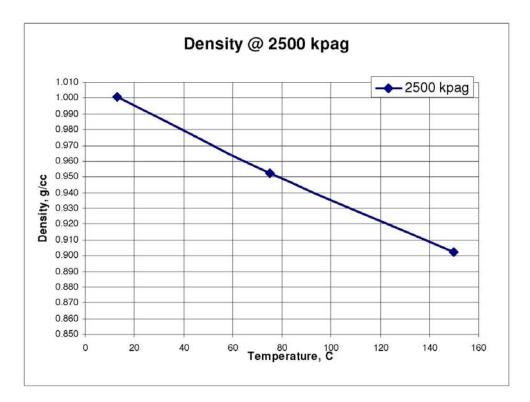


AGAT

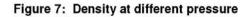
Work Order No: 06RE2384 Page 11



AGAT


Table 2: Density, at different pressure

Temp C ^o	Density g/cc @ Ambient pressure	Density g/cc @ 800 kpag	Density g/cc @ 2500 kpag
13	0.9956	0.9973	1.0008
75		0.9496	0.9524
150		0.9007	0.9025


Figure 5: Density at 800 kpag

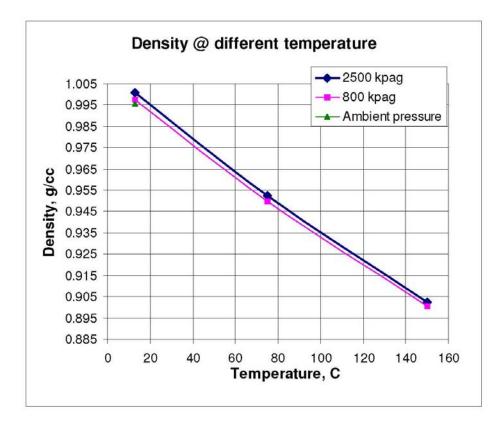
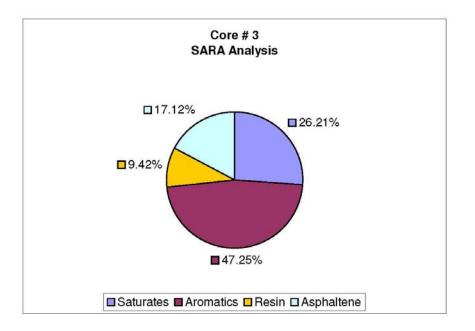

AGAT

Figure 6: Density at 2500 kpag

AGAT

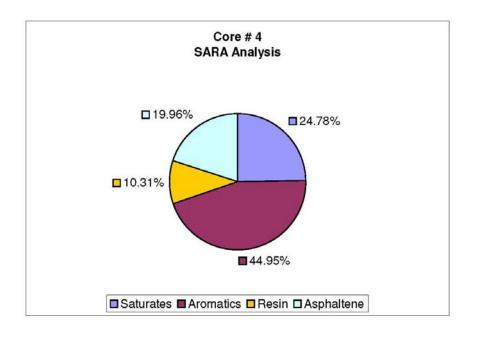

AGAT

Work Order No: 06RE2384 Page 16

Table 3: Summary of SARA Analysis Data Core 3 (By ASTM D2007-03)

SARA	Mass %	
Saturates	26.21	
Aromatic	47.25	
Resin	9.42	
Ashphaltene	17.12	

Figure 8: SARA Analysis Core 3

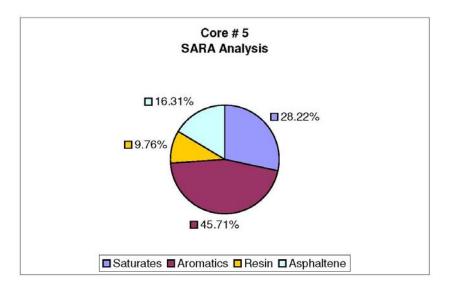

AGAT

Work Order No: 06RE2384 Page 17

Table 4: Summary of SARA Analysis Data Core 4 (By ASTM D2007-03)

SARA	Mass %
Saturates	24.78
Aromatic	44.95
Resin	10.31
Ashphaltene	19.96

Figure 9: SARA Analysis Core 4


AGAT

Work Order No: 06RE2384 Page 18

Table 5: Summary of SARA Analysis Data Core 5 (By ASTM D2007-03)

SARA	Mass %
Saturates	28.22
Aromatic	45.71
Resin	9.76
Ashphaltene	16.31

Figure 10: SARA Analysis Core 5

AGAT

Table 6: Fluid's Composition Core 3

3	Container Ide	entification							
	BAC	91							
		Operator N	ame	1			La	boratory N	umber
		ENCANA CORF	PORATION				(06C16692	0A
Unique	Well Identifie	r	Well	Name		T		Elevation	
102/05-	10-073-06W4	C	ECA ECOG KIRE	Y 05-10-073-06W	/4		KB m	GRD	m
F	ield or Area		Pool or Zone Sampl		ler's Company				
	KIRBY		NOT AVAILABLE		SAME				
Test Type	Test No.		Test Red	covery			1	Name of Sa	mpler
			CORE 3	BOX 3					
Te	st Interval or	Perfs	Sampling Point		Separator	Reservoir	Source	Sampled	Received
448.00-44	8.10			Pressure (kPa)					
mKB				Temperature					*.
Well License Date Sampl		Date Sampled	Date Received	Date Reported		Entered By		Certifie	ed By
			Apr 26, 2006	May 19, 2006		CP & CT	80	CF	2
-	2. 2		Other I	nformation	- 21 - 113		874		-
			RE#06	3RE2384					

Note: Sampling Point, Unique Well Identifier and/or Pool or Zone information was unavailable at time of reporting. This information is integral to AGAT's WebFLUIDs, a comparison, history and trending analysis system.

COMP.	MOLE FRACTION	MASS FRACTION	VOLUME FRACTION
N2	0.0000	0.0000	0.0000
CO2	0.0000	0.0000	0.0000
H2S	0.0000	0.0000	0.0000
C1	0.0000	0.0000	0.0000
C2	0.0000	0.0000	0.0000
C3	0.0000	0.0000	0.0000
IC4	0.0000	0.0000	0.0000
NC4	0.0000	0.0000	0.0000
IC5	0.0000	0.0000	0.0000
NC5	0.0000	0.0000	0.0000
C6	0.0000	0.0000	0.0000
C7+	1.0000	1.0000	1.0000
TOTAL	1.0000	1.0000	1.0000

Exceeds normal limits: C7+

Observed Properties of C7+ Residue (15/15° C)

Calculated Properties of Total Sample (15/15° C)

Density	Relative Density	API @ 15°
995.0 kg/m³	0.9959	10.6
Deletion Malanda	- 	s Equivalency
Relative Molecula	Gd Gd	s Equivalency

Calculations for C6 and C7 are based on Boiling Point Grouping. If Carbon Number Grouping had been done, the mole fractions would be (C6: 0.0000) (C7+:1.0000)

Calgary AB, Ph: (403) 299-2000. Edmonton AB, Ph: (780) 469-0106. Grand Prairie AB, Ph: (780) 539-6500. Red Deer AB, Ph: (403) 346-6645. Fort St. John BC, Ph: (250) 785-5500. Prince George BC, Ph: (250) 563-6011. Terrace BC, Ph: (250) 615-9288. Mississauga ON, Ph: (905) 501-9998.

AGAT

File No.	Company			UWI / LSD	
06C166920A	ENCANA CORPORAT	ION		102/05-10-073-06W	
Boiling Point Range (C)	COMPONENT		MOLE FRACTION	MASS FRACTION	VOLUME FRACTIO
6.1 - 68.9	HEXANES		0.0000	0.0000	0.0000
8.9 - 98.3	HEPTANES		0.0000	0.0000	0.0000
8.3 - 125.6	OCTANES	C8	0.0000	0.0000	0.0000
5.6 - 150.6	NONANES	C9	0.0000	0.0000	0.0000
0.6 - 173.9	DECANES	C10	0.0024	0.0013	0.0014
3.9 - 196.1	UNDECANES	C11	0.0128	0.0078	0.0083
6.1 - 215.0	DODECANES	C12	0.0122	0.0081	0.0085
5.0 - 235.0	TRIDECANES	C13	0.0425	0.0305	0.0316
5.0 - 252.2	TETRADECANES	C14	0.0711	0.0549	0.0564
2.2 - 270.6	PENTADECANES.		0.0899	0.0744	0.0758
0.6 - 287.8	HEXADECANES		0.1039	0.0916	0.0927
7.8 - 302.8	HEPTADECANES		0.1337	0.1252	0.1256
2.8 - 317.2	OCTADECANES.		0.0881	0.0873	0.0874
7.2 - 330.0	NONADECANES		0.1111	0.1161	0.0074
7.2 - 330.0 0.0 - 344.4					
	EICOSANES	Line and the second	0.0859	0.0945	0.0938
	HENEICOSANES		0.0830	0.0958	0.0947
7.2 - 369.4	DOCOSANES.		0.0560	0.0677	0.0667
9.4 - 380.0	TRICOSANES		0.0480	0.0607	0.0595
0.0 - 391.1	TETRACOSANES		0.0239	0.0315	0.0308
91.1 - 401.7	PENTACOSANES		0.0031	0.0043	0.0042
01.7 - 412.2	HEXACOSANES		0.0056	0.0080	0.0078
2.2 - 422.2	HEPTACOSANES	C27	0.0060	0.0088	0.0086
2.2 - 431.7	OCTACOSANES	C28	0.0044	0.0068	0.0066
31.7 - 441.1	NONACOSANES	C29	0.0038	0.0061	0.0059
1.1 - PLUS	TRIACONTANES	C30+	0.0108	0.0178	0.0172
Soiling Point Range (C)	Aromatics		MOLE FRACTION	MASS FRACTION	VOLUM
80.0	BENZENE	C6	0.0000	0.0000	0.0000
110.6	TOLUENE		0.0000	0.0000	0.0000
136.2	ETHYLBENZENE		0.0005	0.0002	0.0002
84 - 1444	XYLENES		0.0007	0.0003	0.0002
168.9	1,2,4 TRIMETHYLBENZENE	C9	0.0006	0.0003	0.0003
100.0		00	0.0000	0.0000	0.0000
Boiling Point Range (C)	Naphthenes		MOLE FRACTION	MASS FRACTION	VOLUM FRACTIC
48.9	CYCLOPENTANE	CC5	0.0000	0.0000	0.0000
TU.U			0.0000	0.0000	0.0000
72 2					
72.2 81.1	METHYLCYCLOPENTANE CYCLOHEXANE		0.0000	0.0000	0.0000

The above hexanes plus values are based upon a measured mass fraction and a calculated mole fraction, and assume a total hydrocarbon recovery from the chromatographic system.

Calgary AB, Ph; (403) 299-2000. Edmonton AB, Ph; (780) 469-0106. Grand Prairie AB, Ph; (780) 539-6500. Red Deer AB, Ph; (403) 346-6645. Fort St. John BC, Ph; (250) 785-5500. Prince George BC, Ph; (250) 563-6011. Terrace BC, Ph; (250) 615-9288. Mississauga ON, Ph; (905) 501-9998.

AGAT

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

Where we want

Table 7: Fluid's Composition Core 4

	Container Ide	entification	Ť.						
	BAG	3 2							
		Operator N	ame				La	aboratory N	umber
		ENCANA CORF	PORATION					06C16692	0B
Unique	Well Identifie	r	Wel	Name			~	Elevation	
102/05-10-073-06W4			ECA ECOG KIRE	3Y 05-10-073-06W	4		KB m	GRD	m
F	ield or Area		Pool or Zone		Sampler's Company				
	KIRBY		NOT AVAILAB	LE		SAME			
Fest Type	Test No.	820.	Test Re	covery	Name of Samp			mpler	
			CORE 4	BOX 2					
Te	st Interval or	Perfs	Sampling Point	1	Separator	Reservoir	Source	Sampled	Receive
452.30-45	2.40			Pressure (kPa)				0	
mKB	2			Temperature					
Well License		Date Sampled	Date Received	Date Reported		Entered By		Certifi	ed By
			Apr 26, 2006	May 19, 2006		CP & CT		C	D

Note: Sampling Point, Unique Well Identifier and/or Pool or Zone information was unavailable at time of reporting. This information is integral to AGAT's WebFLUIDs, a comparison, history and trending analysis system.

COMP.	MOLE FRACTION	MASS FRACTION	VOLUME FRACTION	
N2	0.0000	0.0000	0.0000	
CO2	0.0000	0.0000	0.0000	
H2S	0.0000	0.0000	0.0000	
C1	0.0000	0.0000	0.0000	
C2	0.0000	0.0000	0.0000	
C3	C3 0.0000	0.0000	0.0000	
IC4	0.0000	0.0000	0.0000	
NC4	0.0000	0.0000	0.0000	
IC5	0.0000	0.0000	0.0000	
NC5	0.0000	0.0000 0	0.0000	
C6	0.0000	.0000 0.0000 0.0		
C7+	1.0000	1.0000	1.0000	
TOTAL	1.0000	1.0000	1.0000	

Exceeds normal limits: C7+

Observed Properties of C7+ Residue (15/15° C)

Calculated Properties of Total Sample (15/15° C)

Density	Relative Density	API @ 15
993.4 kg/m³	0.9943	10.8
Relative Molecular	r Mass Ga	s Equivalency

Calculations for C6 and C7 are based on Boiling Point Grouping. If Carbon Number Grouping had been done, the mole fractions would be (C6: 0.0000) (C7+:1.0000)

Calgary AB, Ph: (403) 299-2000. Edmonton AB, Ph: (780) 469-0106. Grand Prairie AB, Ph: (780) 539-6500. Red Deer AB, Ph: (403) 346-6645. Fort St. John BC, Ph: (250) 785-5500. Prince George BC, Ph: (250) 563-6011. Terrace BC, Ph: (250) 615-9288. Mississauga ON, Ph: (905) 501-9988.

AGAT "

sil.

File No.	Company ENCANA CORPORATION		UWI / L		
06C166920B	ENCANA CORPORAT	ON		102/05-10-0	73-06774
Diling Point Range (C)	COMPONENT		MOLE FRACTION	MASS FRACTION	VOLUME FRACTION
.1 - 68.9	HEXANES	0.000	0.0000	0.0000	0.0000
.9 - 98.3	HEPTANES	10000	0.0000	0.0000	0.0000
.3 - 125.6	OCTANES		0.0002	0.0001	0.0001
5.6 - 150.6	NONANES		0.0006	0.0003	0.0003
).6 - 173.9	DECANES	C10	0.0061	0.0032	0.0034
8.9 - 196.1	UNDECANES	C11	0.0140	0.0081	0.0086
6.1 - 215.0	DODECANES	C12	0.0212	0.0134	0.0141
5.0 - 235.0	TRIDECANES	C13	0.0541	0.0371	0.0386
5.0 - 252.2	TETRADECANES	C14	0.0734	0.0542	0.0558
2.2 - 270.6	PENTADECANES	C15	0.0819	0.0647	0.0661
6 - 287.8	HEXADECANES		0.0866	0.0729	0.0741
.8 - 302.8	HEPTADECANES		0.1008	0.0904	0.0914
8 - 317.2	OCTADECANES.		0.0636	0.0602	0.0605
.2 - 330.0	NONADECANES		0.0784	0.0782	0.0782
0.0 - 344.4	EICOSANES		0.0612	0.0643	0.0640
4 - 357.2	HENEICOSANES		0.0671	0.0740	0.0734
.2 - 369.4	DOCOSANES		0.0497	0.0574	0.0567
.2 - 389.4	TRICOSANES		0.0609	0.0735	0.0367
0.0 - 391.1	TETRACOSANES		0.0311	0.0392	0.0724
	PENTACOSANES		0.0366	0.0479	0.0470
	HEXACOSANES		0.0349	0.0476	0.0466
2.2 - 422.2	HEPTACOSANES		0.0248	0.0351	0.0343
2.2 - 431.7	OCTACOSANES		0.0214	0.0314	0.0306
.7 - 441.1	NONACOSANES		0.0176	0.0268	0.0260
.1 - PLUS	TRIACONTANES	C30+	0.0123	0.0193	0.0187
Diling Point Range (C)	Aromatics		MOLE FRACTION	MASS FRACTION	VOLUME FRACTIO
80.0	BENZENE	C6	0.0000	0.0000	0.0000
110.6	TOLUENE	C7	0.0001	0.0001	0.0000
136.2	ETHYLBENZENE		0.0002	0.0001	0.0001
3.4 - 144.4	XYLENES.		0.0005	0.0002	0.0002
168.9	1,2,4 TRIMETHYLBENZENE	C9	0.0007	0.0003	0.0003
Diling Point Range (C)	Naphthenes		MOLE FRACTION	MASS FRACTION	VOLUME FRACTIO
48.9	CYCLOPENTANE	CC5	0.0000	0.0000	0.0000
72.2	METHYLCYCLOPENTANE		0.0000	0.0000	0.0000
12.2					
81.1	CYCLOHEXANE	CCG	0.0000	0.0000	0.0000

The above hexanes plus values are based upon a measured mass fraction and a calculated mole fraction, and assume a total hydrocarbon recovery from the chromatographic system.

Calgary AB, Ph: (403) 299-2000. Edmonton AB, Ph: (780) 469-0106. Grand Prairie AB, Ph: (780) 539-6500. Red Deer AB, Ph: (403) 346-6645. Fort St. John BC, Ph: (250) 785-5500. Prince George BC, Ph: (250) 563-6011. Terrace BC, Ph: (250) 615-9288. Mississauga CN, Ph: (905) 501-9998.

- 🐗

AGAT

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

Nº4

Work Order No: 06RE2384 Page 23

Table 8: Fluid's Composition Core 5

® Laboratories ard a HYDROCARBON LIQUID ANALYSIS Container Identification BAG3 Operator Name Laboratory Number ENCANA CORPORATION 06C166920C Unique Well Identifie Well Nam Elevation 102/05-10-073-06W4 ECA ECOG KIRBY 05-10-073-06W4 GRD m KB m Field or Area Pool or Zone Sampler's Company KIRBY NOT AVAILABLE SAME Test Type Test No. Test Recovery Name of Sampler CORE 5 EOX 2 Test Interval or Perfs Sampling Point Separator Reservoir Source Sampled Received 458.98-459.06 Pressure (kPa mKB Temperature Well License Date Received Date Sampled Date Reported Entered By Certified By Apr 26, 2006 May 19, 2006 CP &CT CP Other Information RE#06RE2384

Note: Sampling Point, Unique Well Identifier and/or Pool or Zone information was unavailable at time of reporting. This information is integral to AGAT's WebFLUIDs, a comparison, history and trending analysis system.

COMP.	MOLE FRACTION	MASS FRACTION	VOLUME FRACTION		
N2	0.0000	0.0000	0.0000		
CO2	0.0000	0.0000	0.0000		
H2S	0.0000	0.0000	0.0000		
C1	0.0000	0.0000	0.0000		
C2	0.0000	0.0000	0.0000		
C3	C3 0.0000	0.0000			
IC4	0.0000	0.0000	0.0000		
NC4	0.0000	0.0000	0.0000		
IC5	0.0000	0.0000	0.0000		
NC5	0.0000			0.0000 0.0000	0.0000
C6	0.0000				
C7+	1.0000	1.0000	1.0000		
TOTAL	1.0000	1.0000	1.0000		

Exceeds normal limits: C7+

Observed Properties of C7+ Residue (15/15° C)

Calculated Properties of Total Sample (15/15° C)

Calculations for C6 and C7 are based on Boiling Point Grouping. If Carbon Number Grouping had been done, the mole fractions would be (C6: 0.0000) (C7+:1.0000)

Calgary AB, Ph: (403) 299-2000. Edmonton AB, Ph: (780) 469-0106. Grand Prairie AB, Ph: (780) 539-6500. Red Deer AB, Ph: (403) 346-6645. Fort St. John BC, Ph: (250) 785-5500. Prince George BC, Ph: (250) 563-6011. Terrace BC, Ph: (250) 615-9288. Mississauga ON, Ph: (905) 501-9998

-

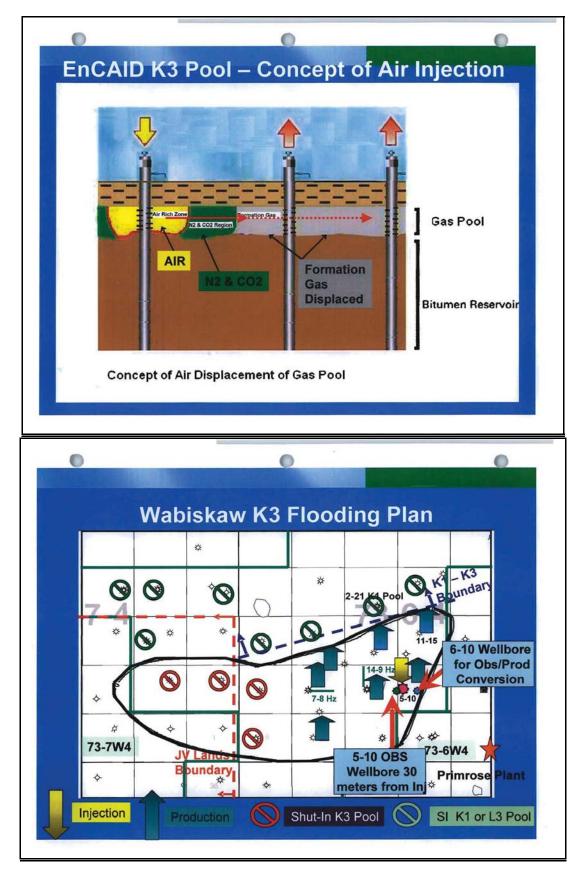
AGAT .

AAA	B	with
ACA	Laboratories	egar -

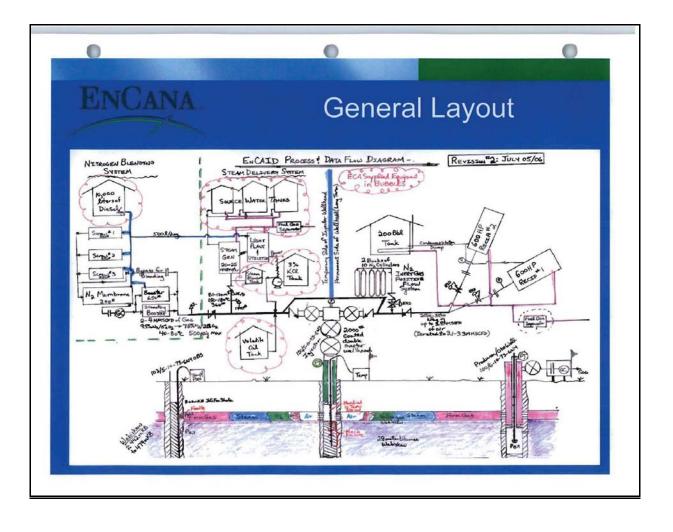
PROPERTIES OF C6+ FRACTION

File N	0.	Company			UWI / L	SD
06C1669	20C	ENCANA CORPORA	TION		102/05-10-0	73-06W4
Boiling P Range (COMPONENT		MOLE FRACTION	MASS FRACTION	VOLUME FRACTIO
36.1 -	68.9	HEXANES	C6	0.0000	0.0000	0.0000
	98.3	HEPTANES.		0.0000	0.0000	0.0000
	25.6	OCTANES		0.0002	0.0001	0.0001
	50.6	NONANES.	C9	0,0004	0.0002	0.0002
	73.9	DECANES		0.0065	0.0035	0.0038
	96.1	UNDECANES		0.0158	0.0093	0.0099
	215.0	DODECANES		0.0231	0.0148	0.0155
	235.0	TRIDECANES		0.0552	0.0384	0.0399
	252.2	TETRADECANES		0.0770	0.0577	0.0593
	270.6	PENTADECANES.		0.0874	0.0701	0.0716
Description of the second s	87.8	HEXADECANES		0.0915	0.0782	0.0794
	302.8	HEPTADECANES		0.1051	0.0957	0.0962
	317.2	OCTADECANES		0.0669	0.0643	0.0645
	330.0	NONADECANES		0.0692	0.0702	0.0043
	344.4	EICOSANES		0.0662	0.0706	0.0703
	357.2	HENEICOSANES		0.0681	0.0763	0.0705
	69.4	DOCOSANES		0.0513		0.0756
20/070			1.		0.0602	
	880.0	TRICOSANES		0.0519	0.0636	0.0625
	891.1	TETRACOSANES		0.0383	0.0490	0.0481
	01.7	PENTACOSANES		0.0355	0.0473	0.0464
	12.2	HEXACOSANES.		0.0299	0.0414	0.0405
10000000000000000000000000000000000000	22.2	HEPTACOSANES	100000000	0.0216	0.0311	0.0303
	31.7	OCTACOSANES		0.0147	0.0220	0.0214
	41.1	NONACOSANES		0.0075	0.0116	0.0113
41.1 - F	LUS	TRIACONTANES	C30+	0.0147	0.0235	0.0228
Boiling P Range (Aromatics		MOLE FRACTION	MASS FRACTION	VOLUMI FRACTIC
80.0		BENZENE	C6	0.0000	0.0000	0.0000
110.6		TOLUENE	C7	0.0002	0.0001	0.0001
136.2		ETHYLBENZENE	. C8	0.0002	0.0001	0.0001
38.4 - 1	44.4	XYLENES	. C8	0.0005	0.0002	0.0002
168.9		1,2,4 TRIMETHYLBENZENE	C9	0.0009	0.0004	0.0004
Boiling P Range (Naphthenes		MOLE FRACTION	MASS FRACTION	VOLUM FRACTIC
48.9		CYCLOPENTANE	. CC5	0.0000	0.0000	0.0000
72.2		METHYLCYCLOPENTANE	MCC5	0.0000	0.0000	0.0000
81.1		CYCLOHEXANE	CC6	0.0000	0.0000	0.0000
101.1		METHYLCYCLOHEXANE	MCC6	0.0002	0.0001	0.0001

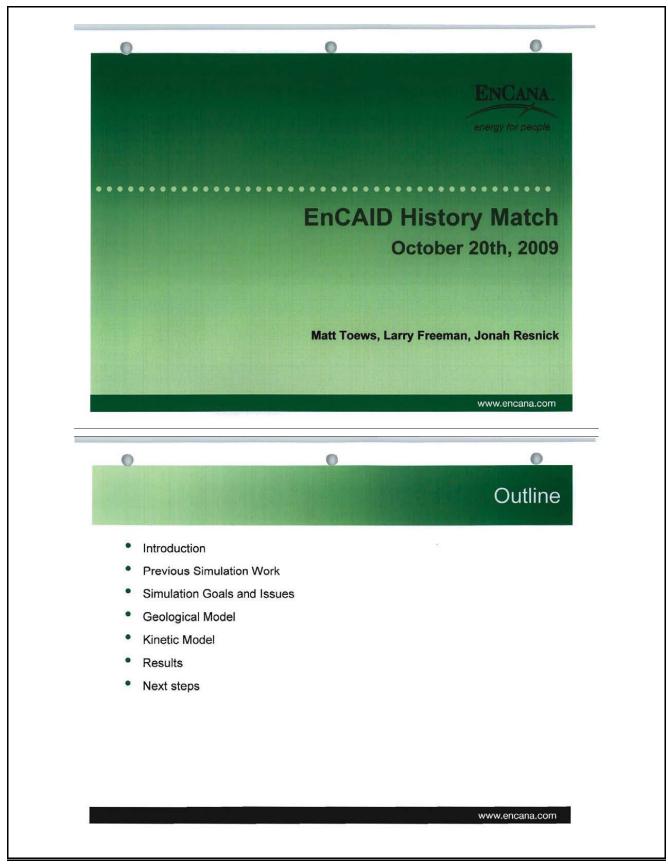
The above hexanes plus values are based upon a measured mass fraction and a calculated mole fraction, and assume a total hydrocarbon recovery from the chromatographic system.

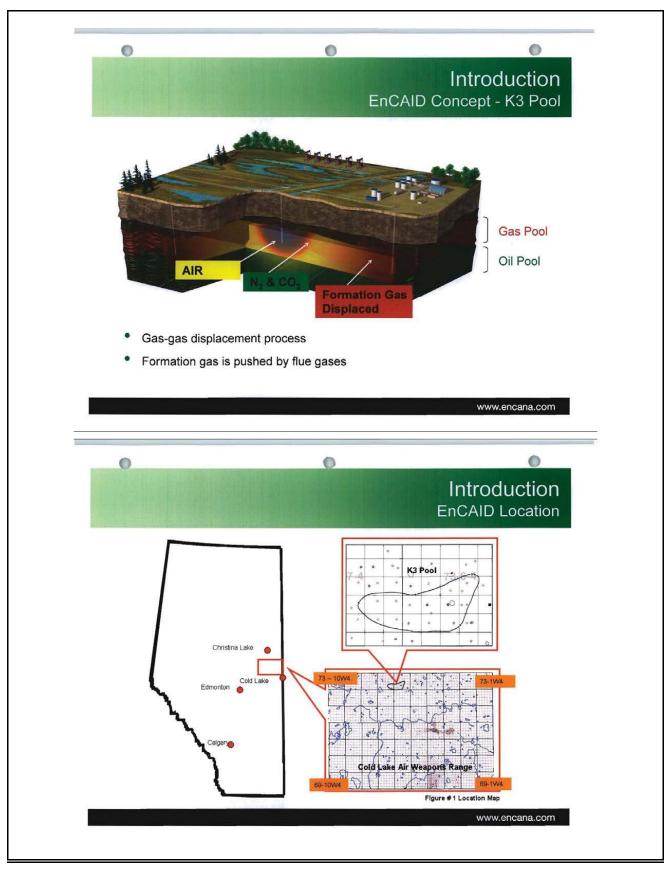

Calgary AB, Ph: (403) 299-2000. Edmonton AB, Ph: (780) 469-0106. Grand Prairie AB, Ph: (780) 539-8600. Red Deer AB, Ph: (403) 346-8645. Fort St. John BC, Ph: (250) 785-5500. Prince George BC, Ph: (250) 563-6011. Terrace BC, Ph: (250) 615-9288. Mississauga ON, Ph: (905) 501-9998.

AGAT "

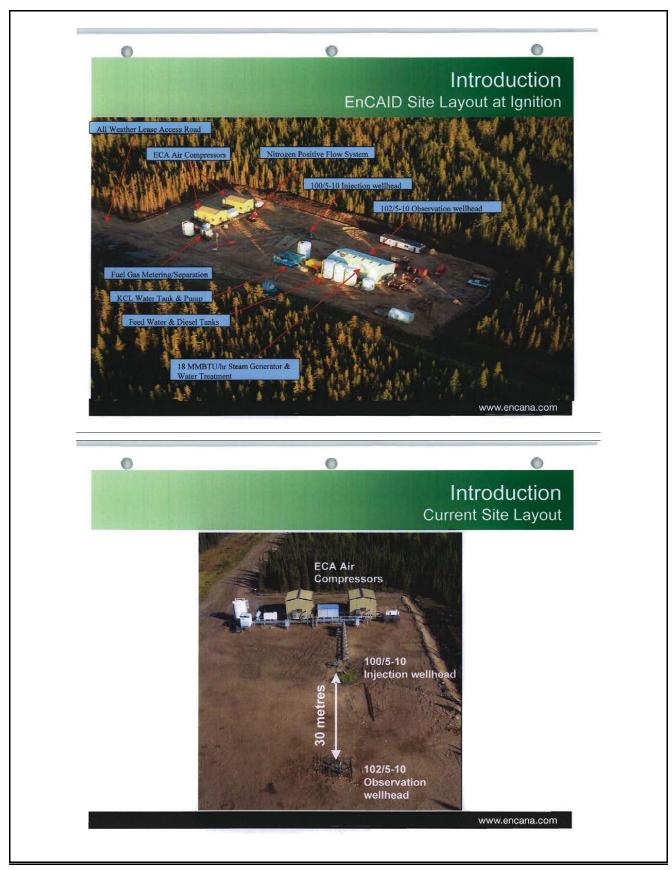

-

N's

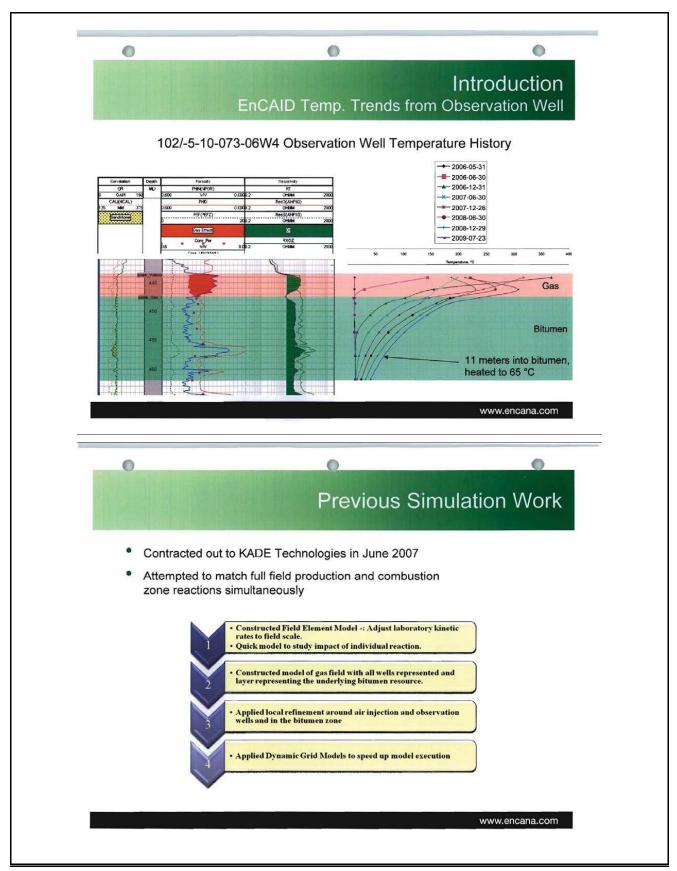

Appendix D: Simulation Summary

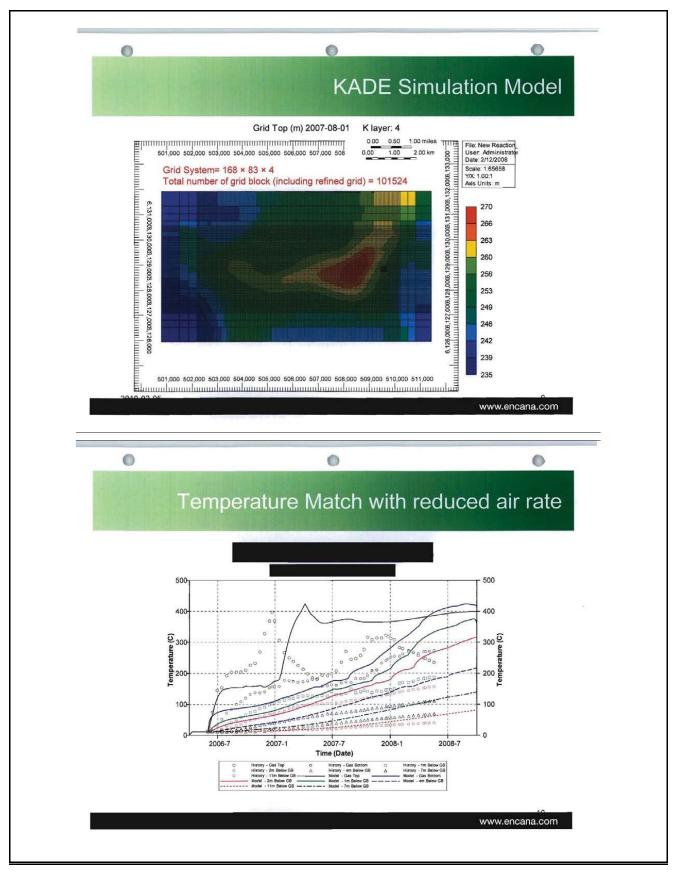


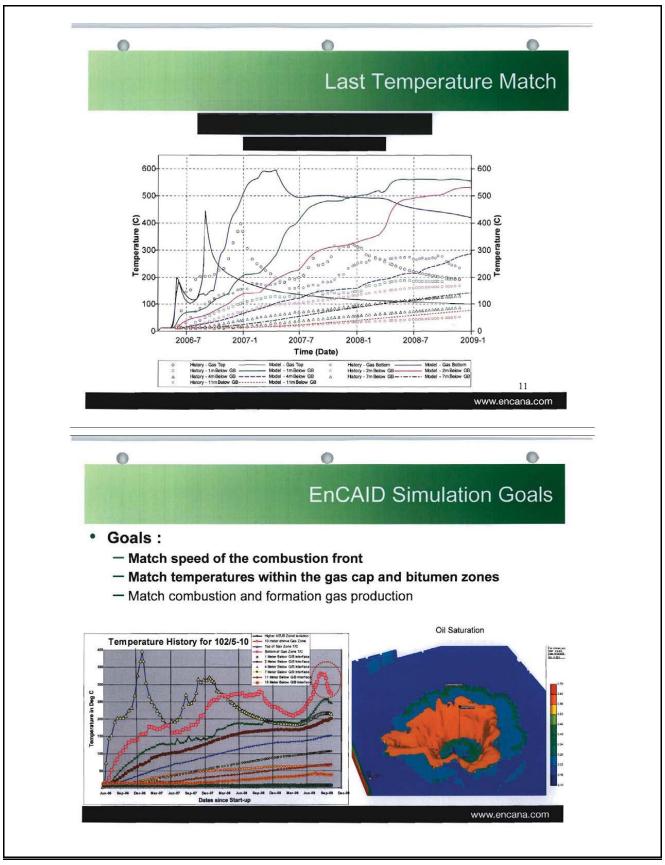
Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

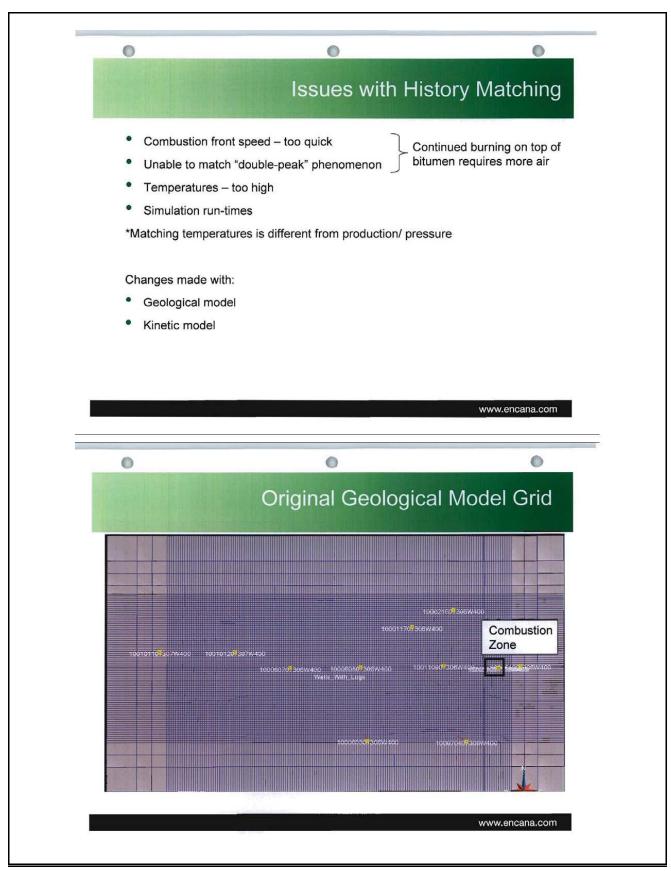


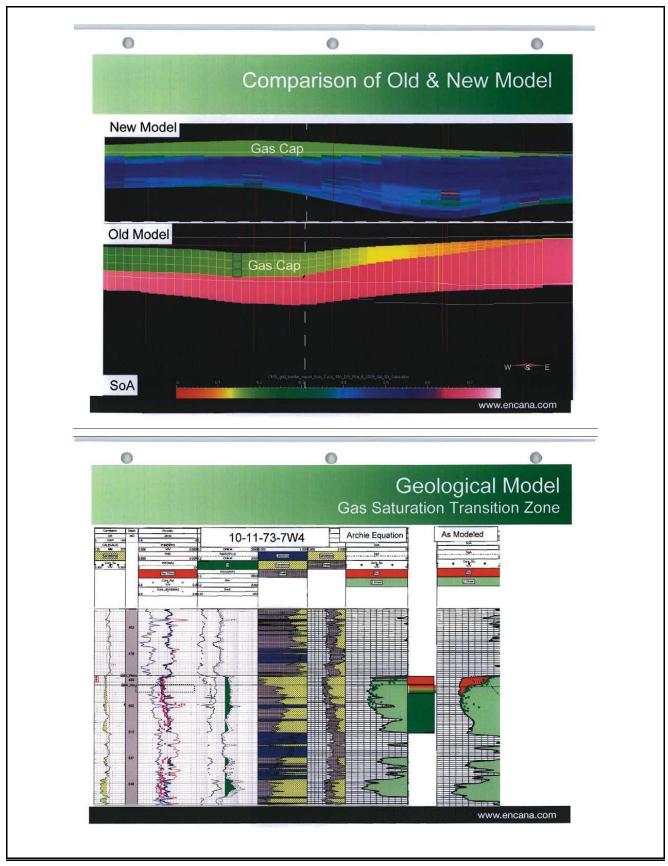
Appendix D: 3D History Match Work

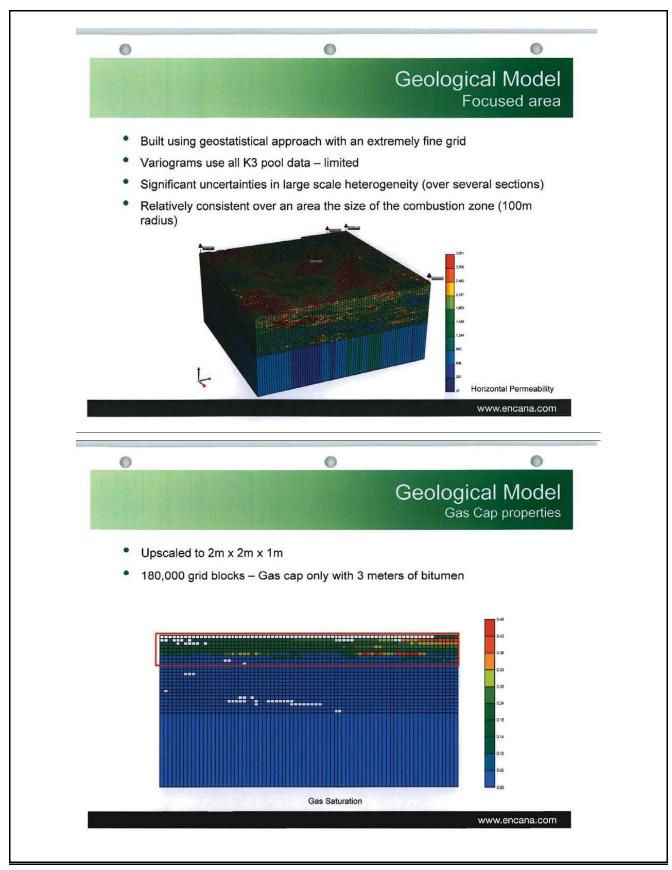


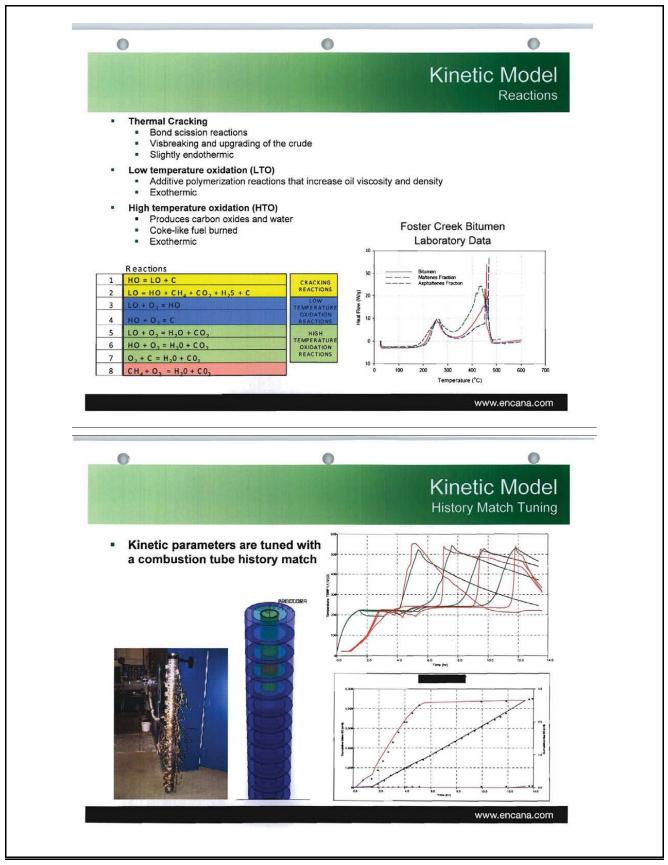

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

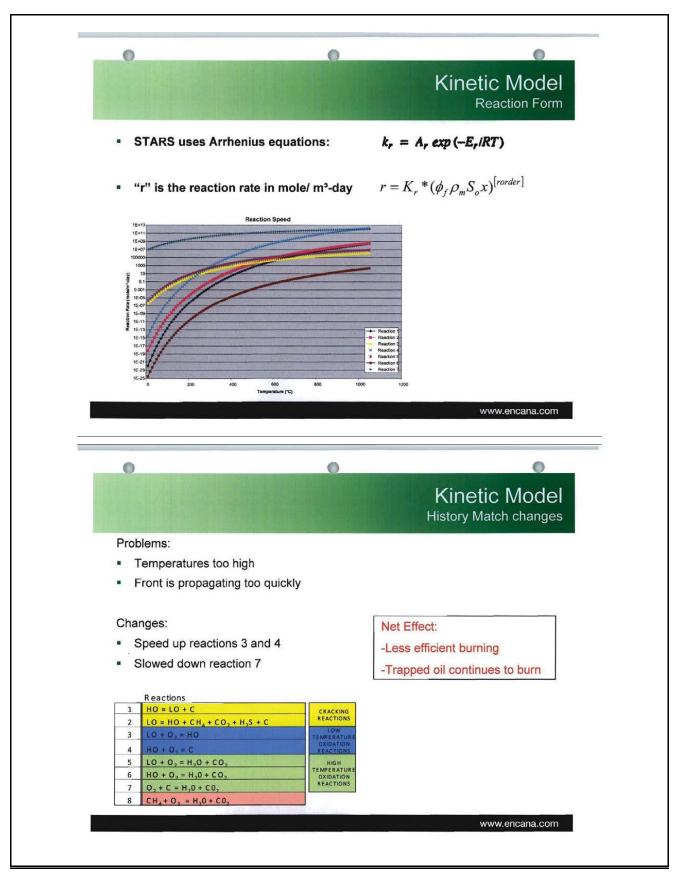

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

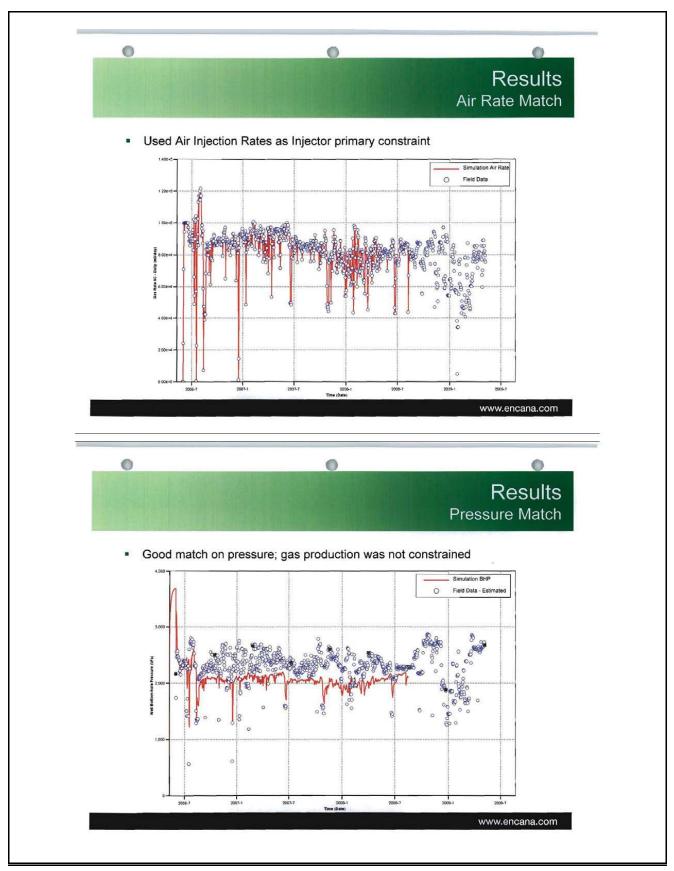

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report


Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

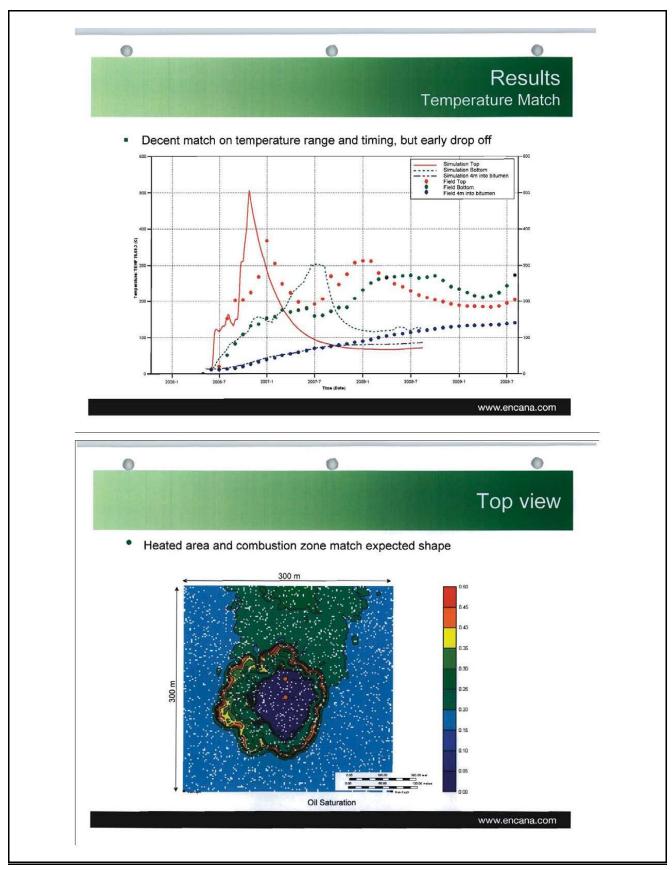

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report


Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

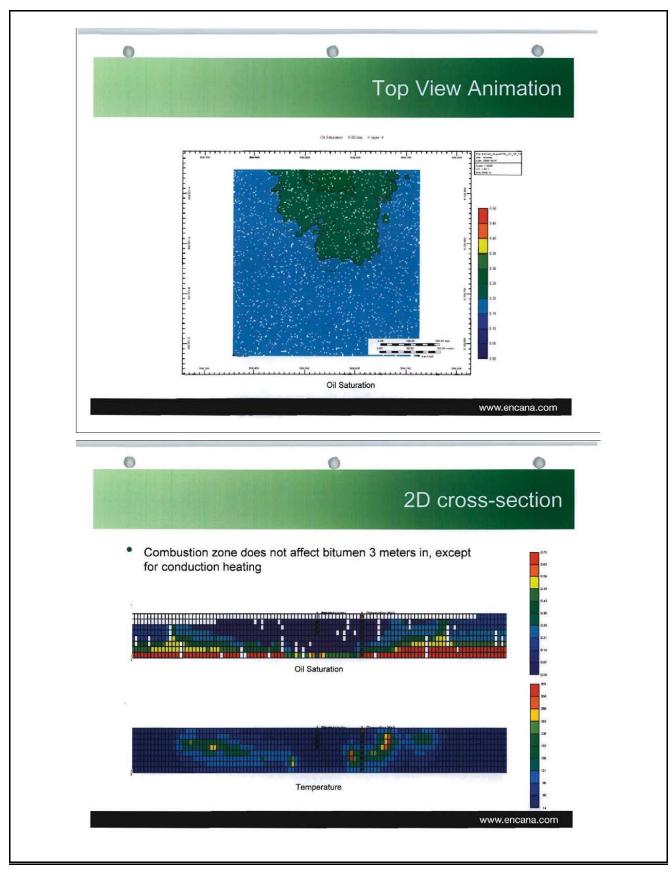

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

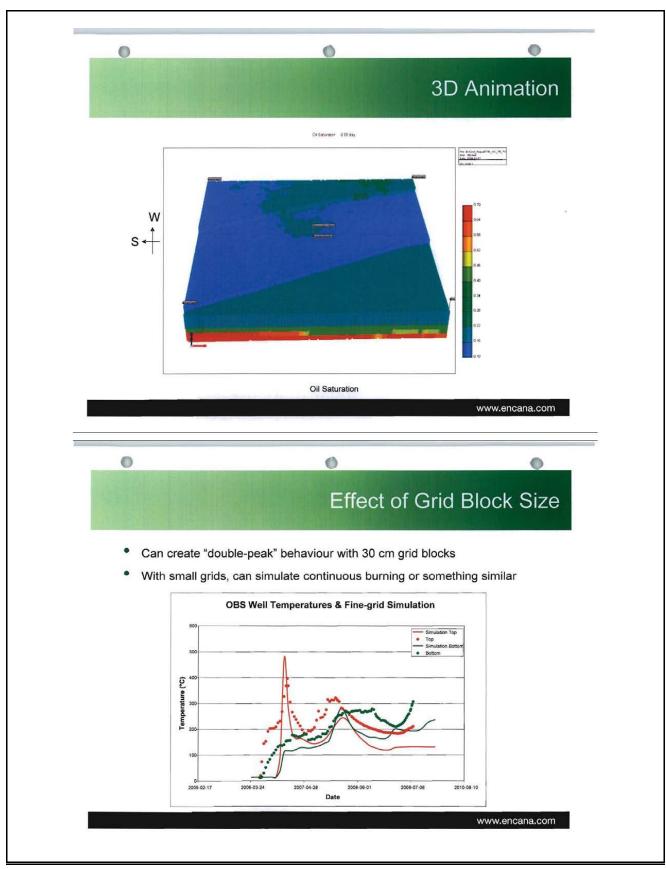


Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

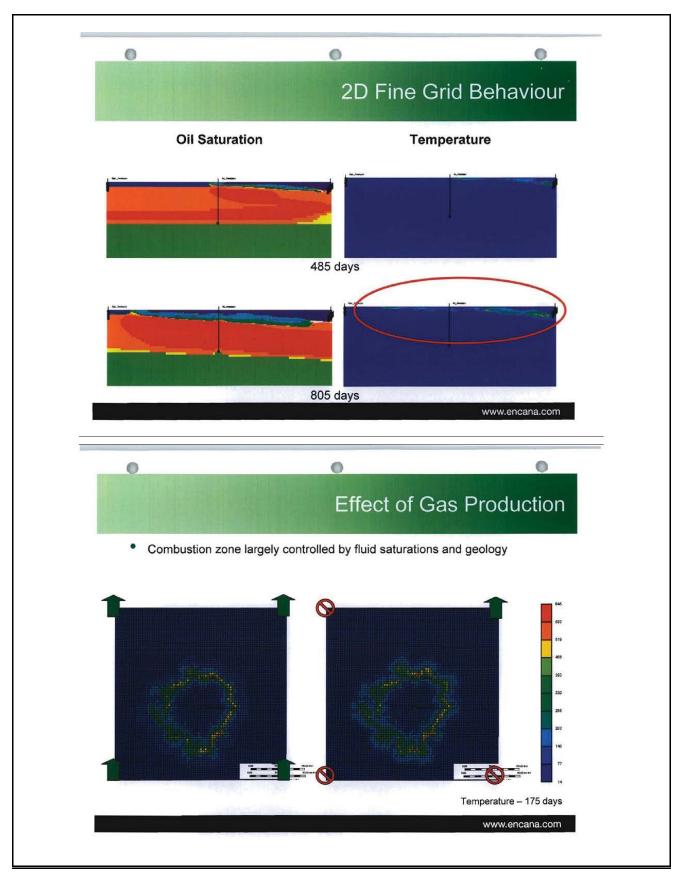


Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

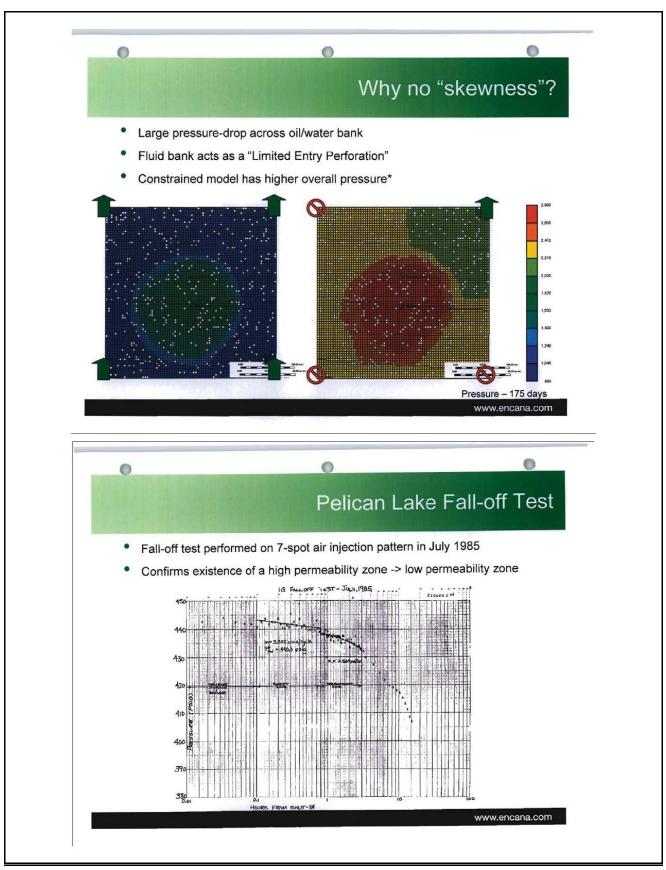


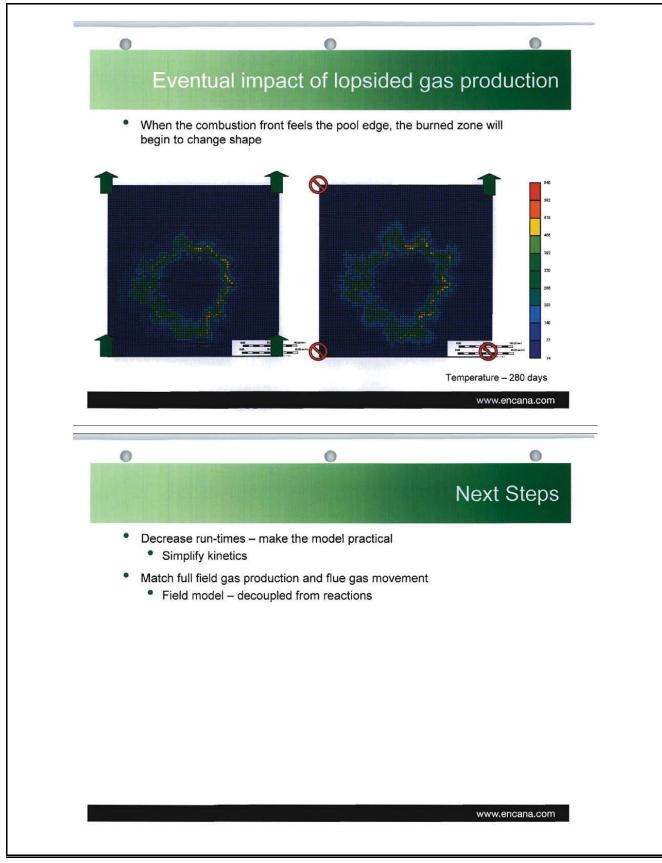


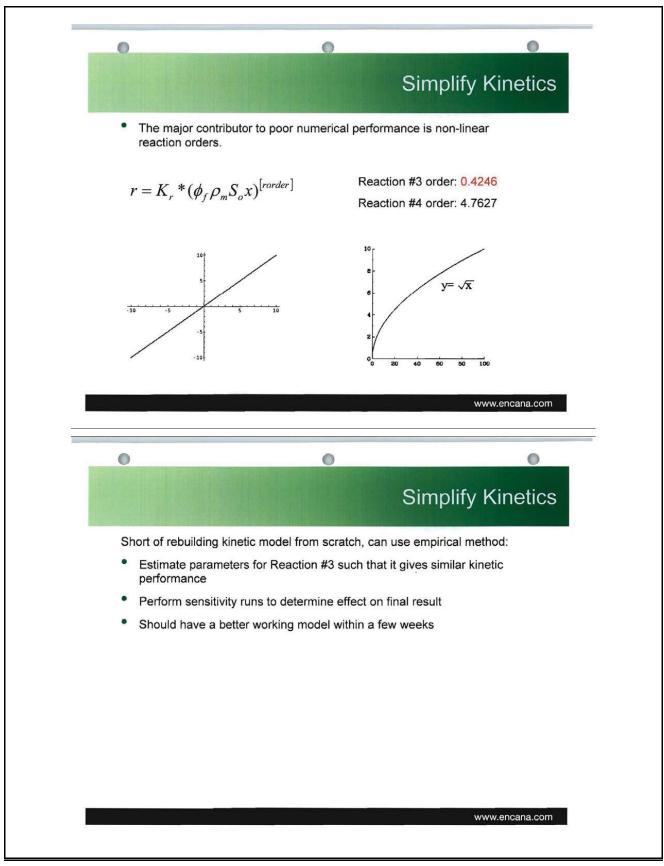
Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

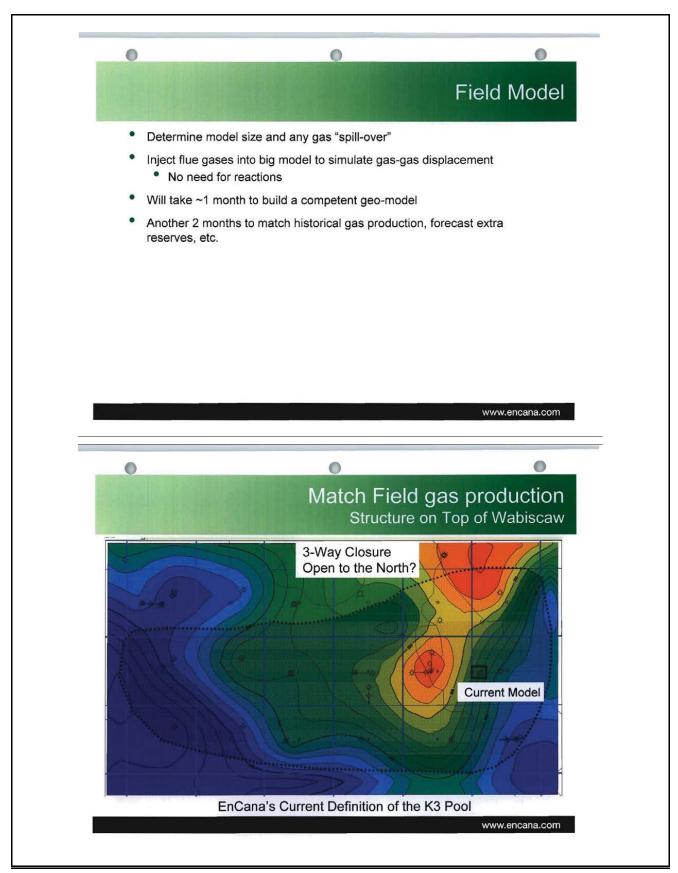


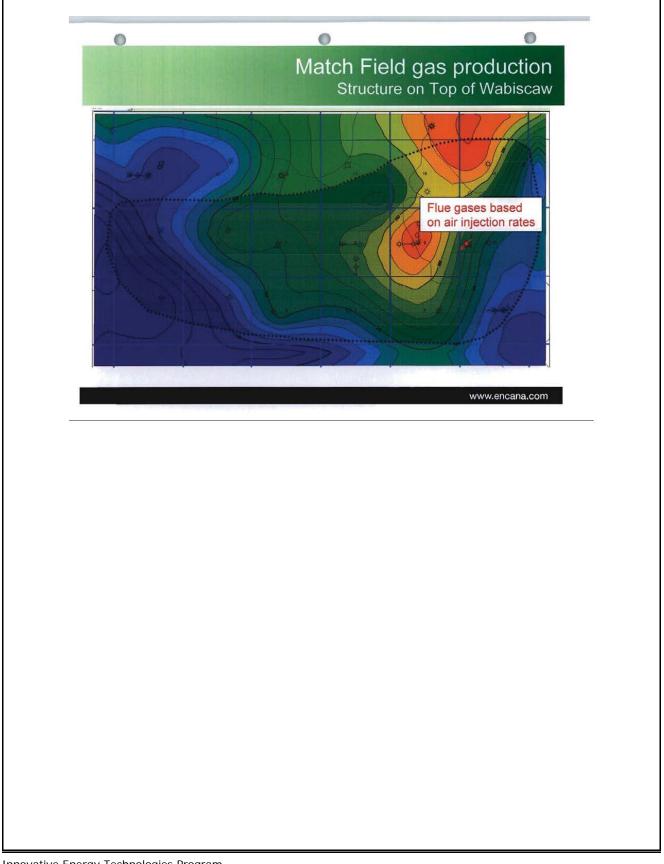
Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

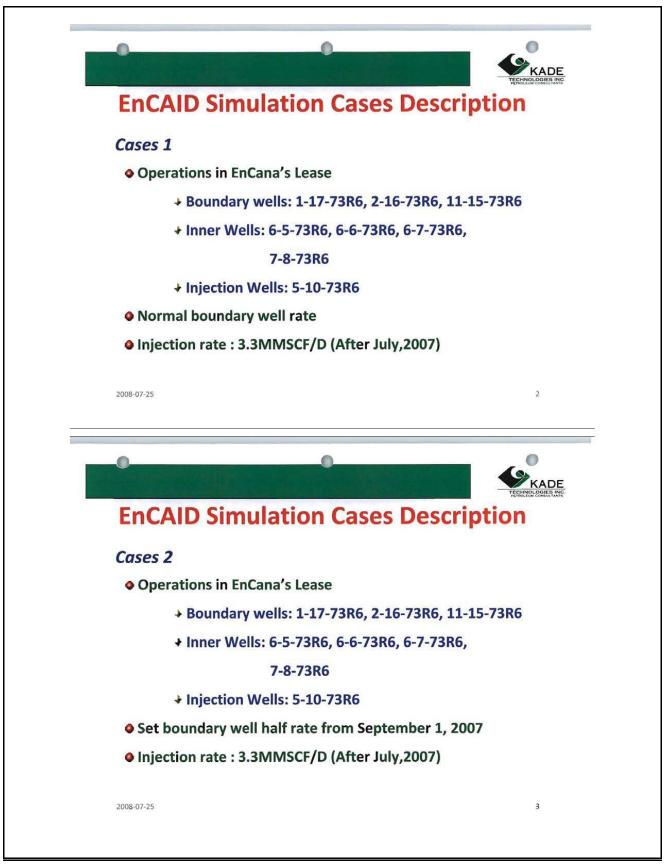



Innovative Energy Technologies Program Project Approval No. 01-003 Final Report




Innovative Energy Technologies Program Project Approval No. 01-003 Final Report


Innovative Energy Technologies Program Project Approval No. 01-003 Final Report



Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

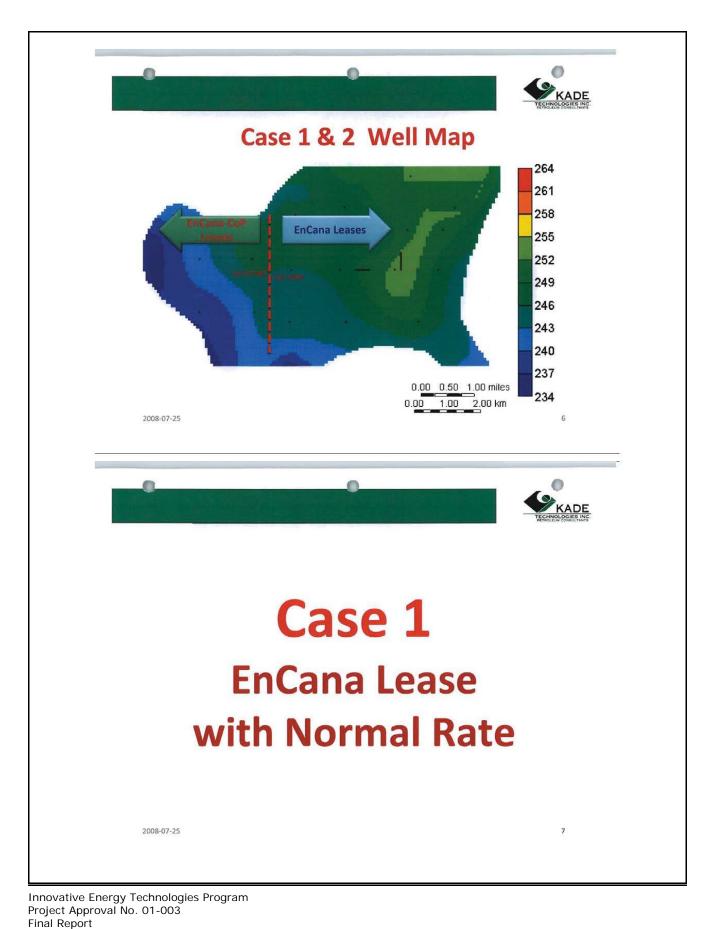
Appendix D: Gas Sweep

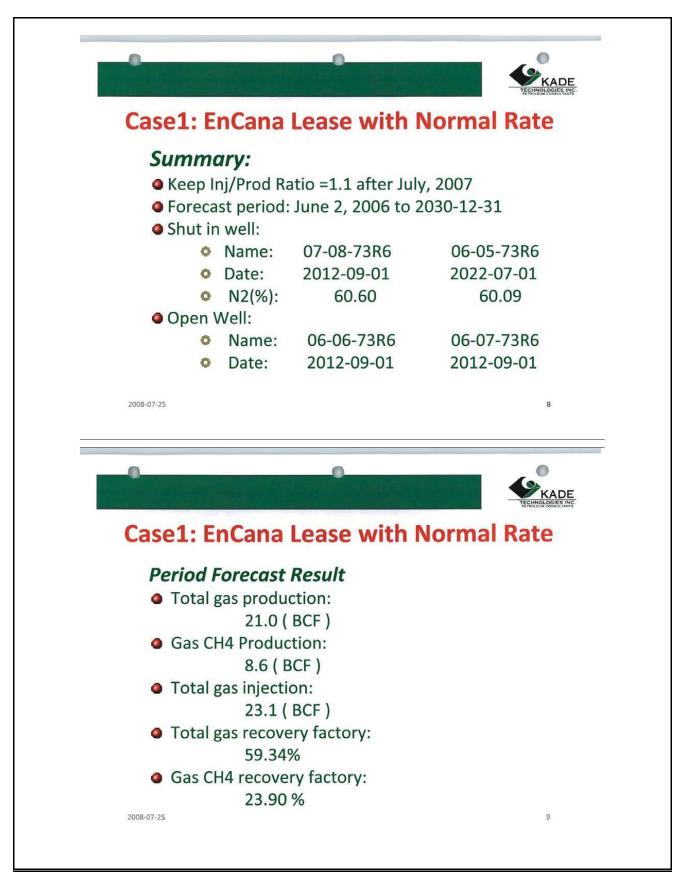
EnCAID Simulation Results Summary

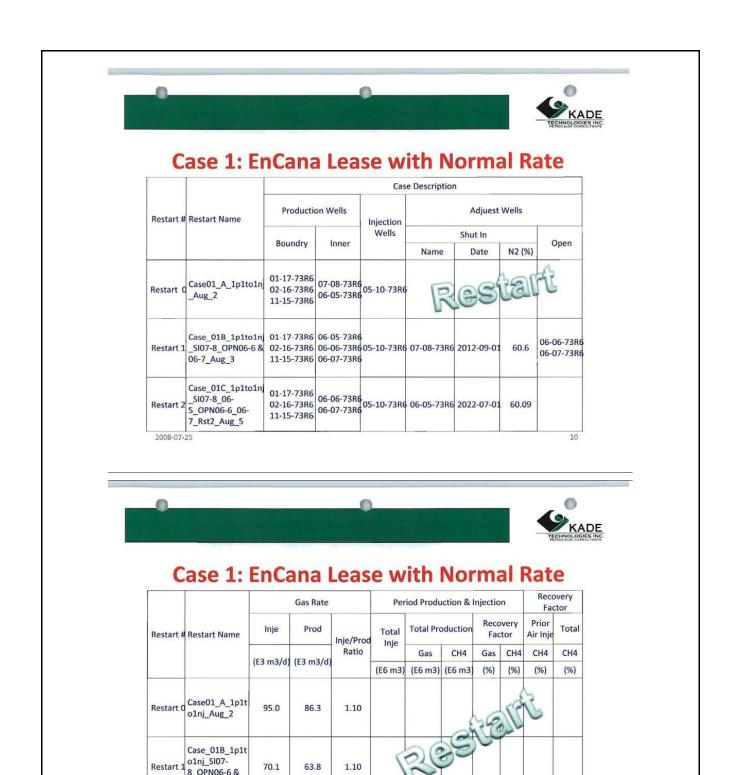
Case #	Forecast Period	Simulation Results								
		Period Cumulative			Recovery Factor					
		Inje (E6 m3)	Prod		Period Air Inje		Prior-air Inje	Total		
			Total Gas	CH ₄	Total Gas	CH ₄	CH ₄	CH ₄		
			(E6 m3)	(E6 m3)	%	%	%	%		
Case 1	Jun,2006Dec,2030	653.5	594.8	239.5	59.34	23.90	76.94	101.84		
Case 2	Jun,2006Dec,2030	455.5	414.9	226.1	41.39	22.56	76.94	99.50		

2008-07-25

0


5


4


EnCAID Simulation Results Summary

case #	Forecast Period	Simulation Results							
		Peri	od Cumulati	ve	Recovery Factor				
		Inje BCF	Production		Period Air Inje		Prior-air Inje	Total	
			Total Gas	CH4	Total Gas	CH4	CH4	CH₄	
			BCF	BCF	%	%	%	%	
Case 1	Jun,2006Dec,2030	23.1	21.0	8.6	59.34	23.90	76.94	101.84	
Case 2	Jun,2006Dec,2030	16.1	14.7	8.0	41.39	22.56	76.94	99.50	

2008-07-25

Case 01B 1p1t

8 OPN06-6 & 06-7_Aug_3 Case_01C_1p1t o1nj_SI07-8_06-

5_OPN06-6_06-7_Rst2_Aug_5

70.1

59.2

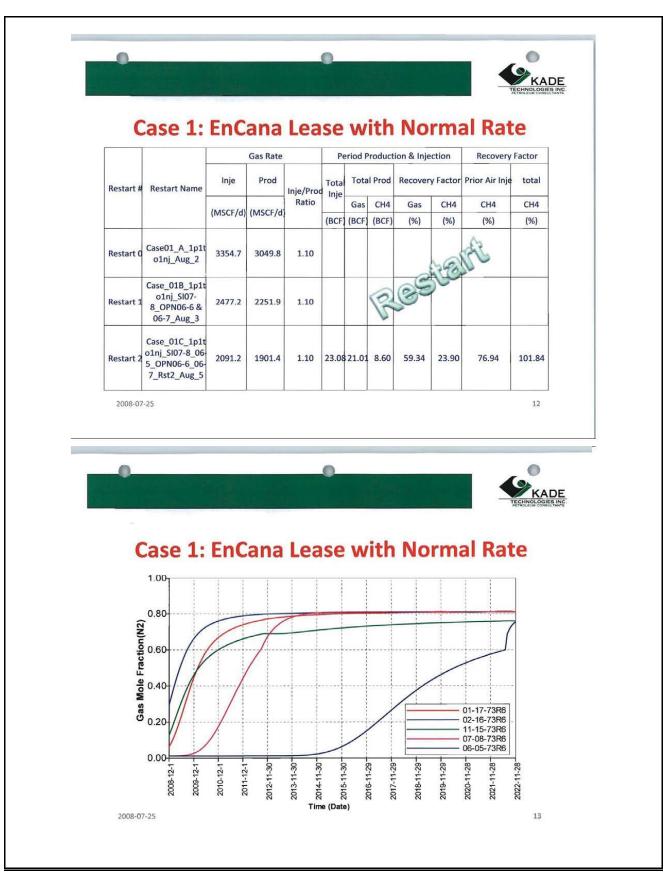
63.8

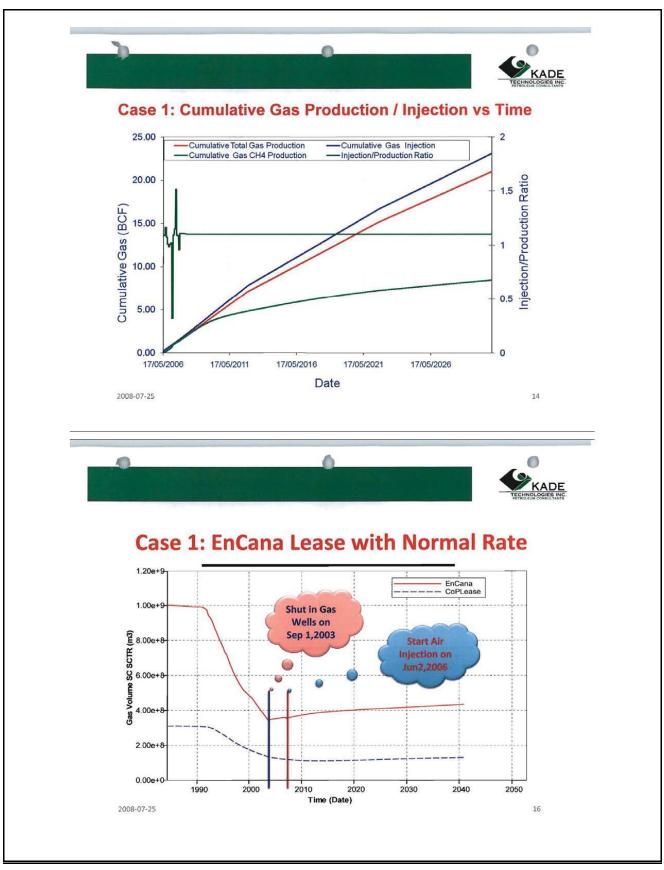
53.8

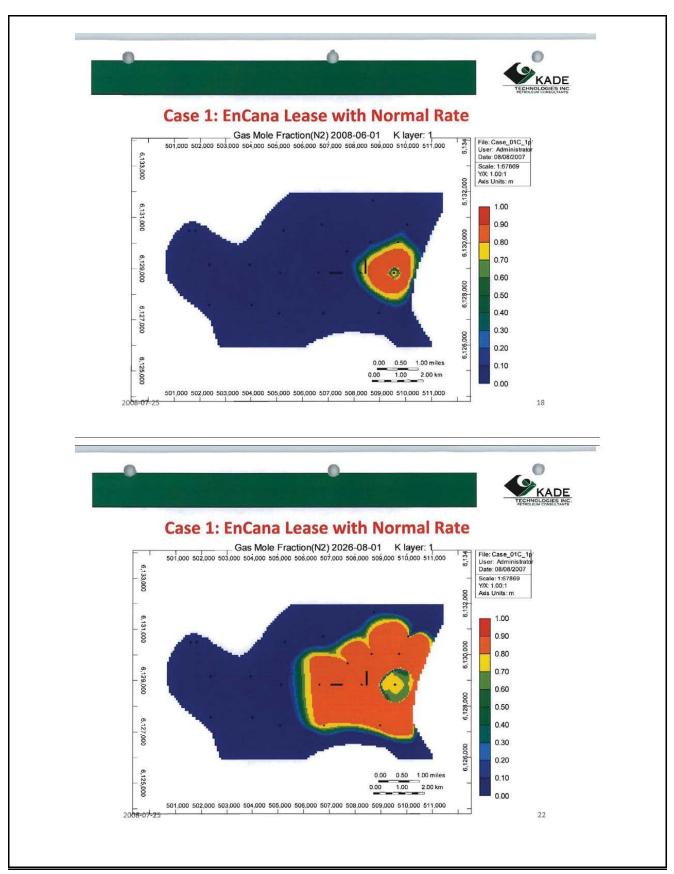
Restart 1 01nj_SI07-

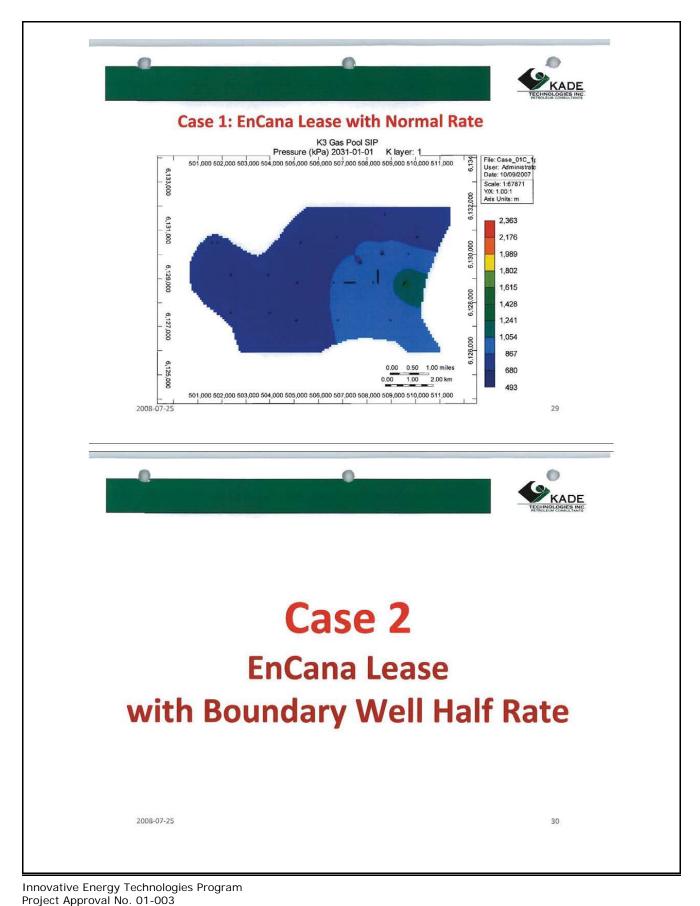
Restart 2

2008-07-20

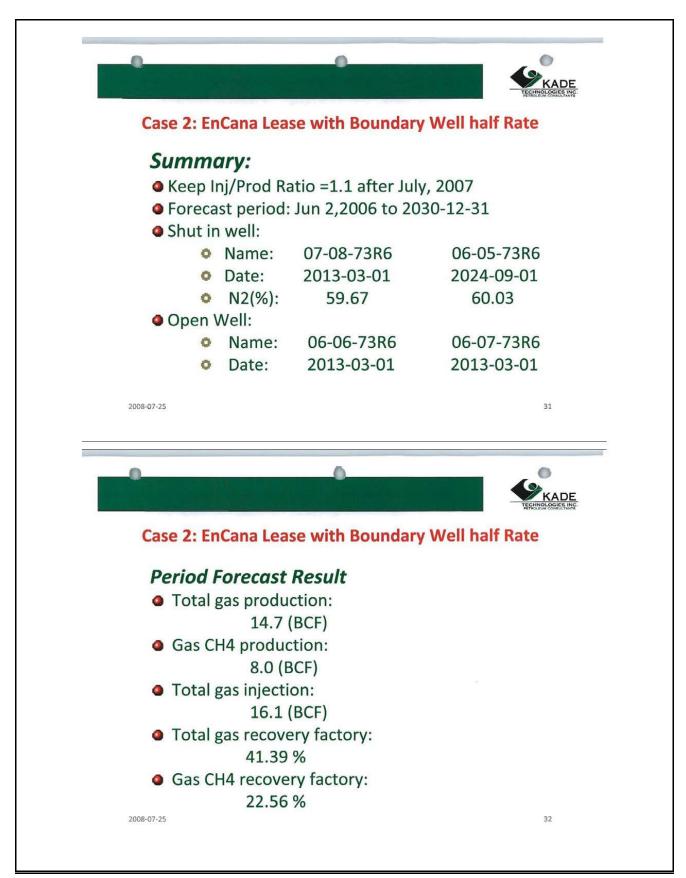

1.10

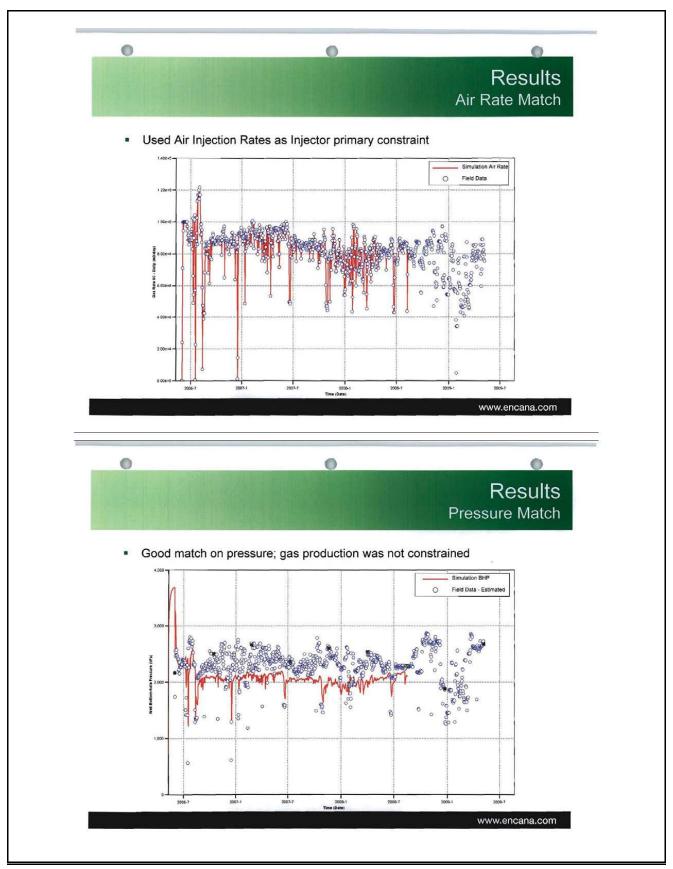

1.10

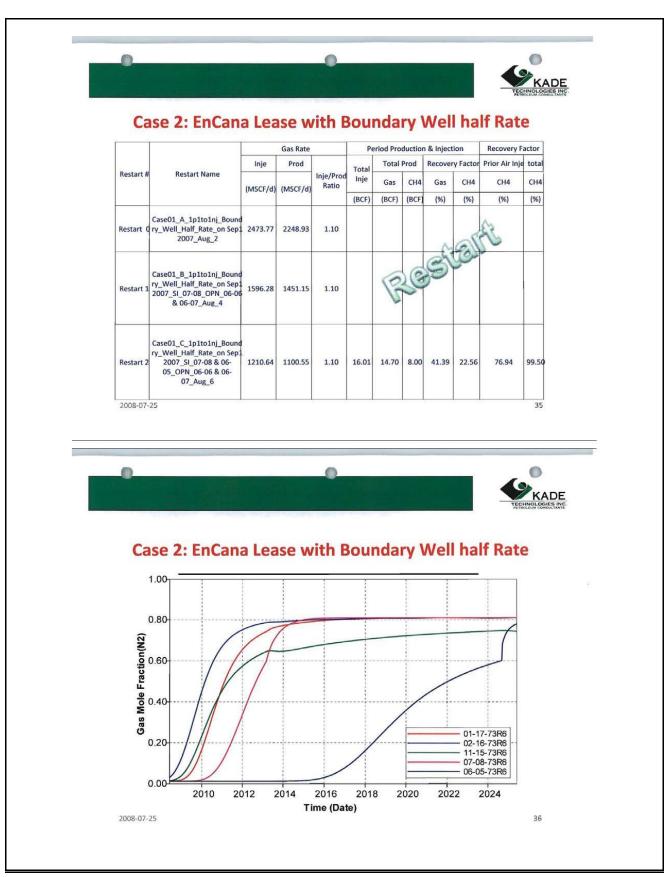

653.5

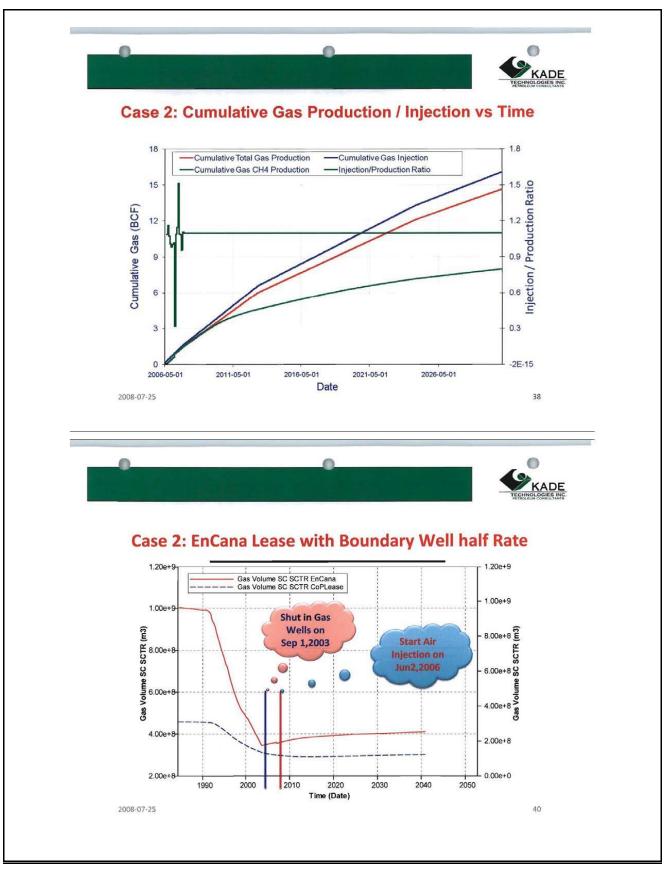

594.8

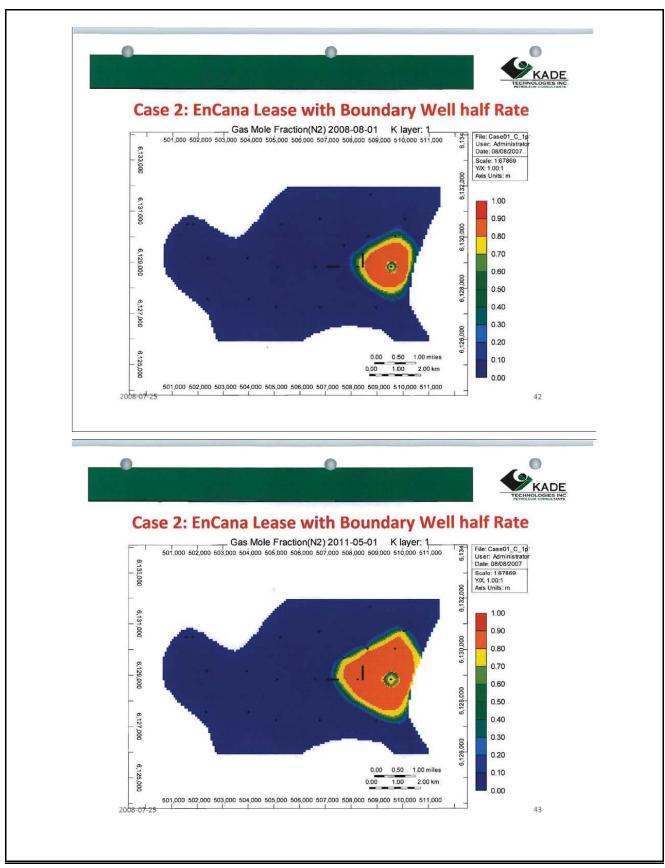
239.5 59.34 23.90 76.94 101.84

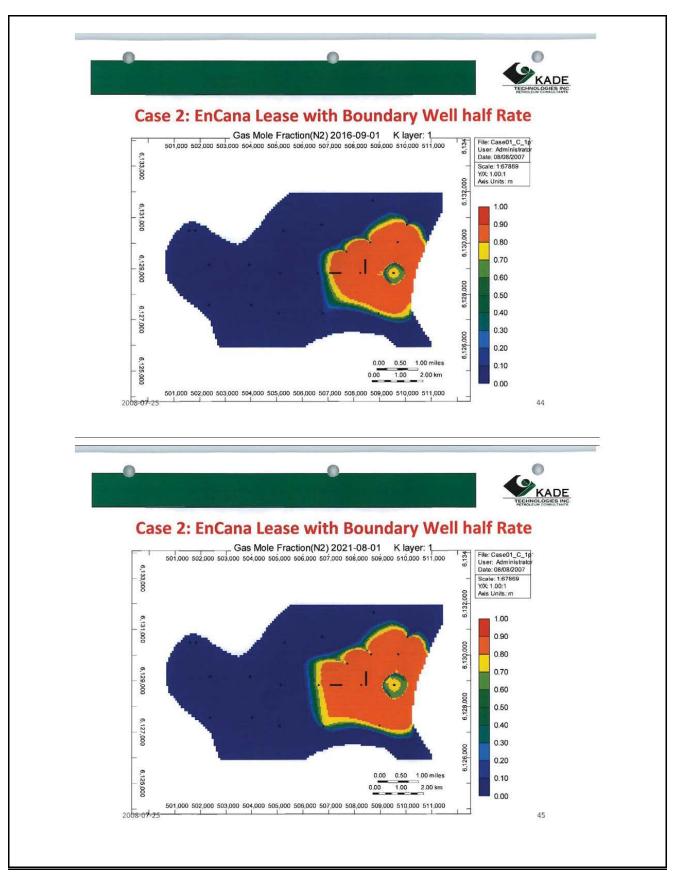


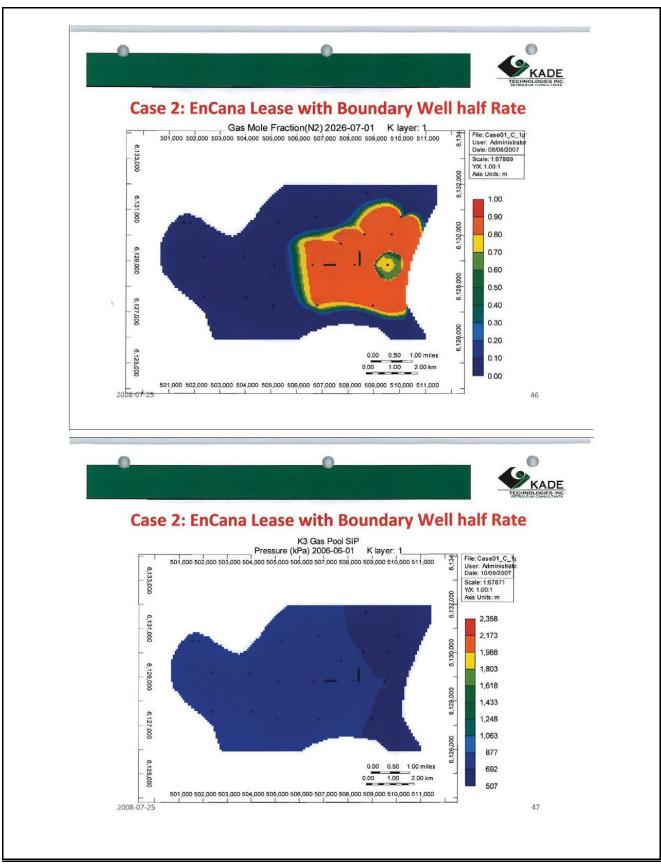


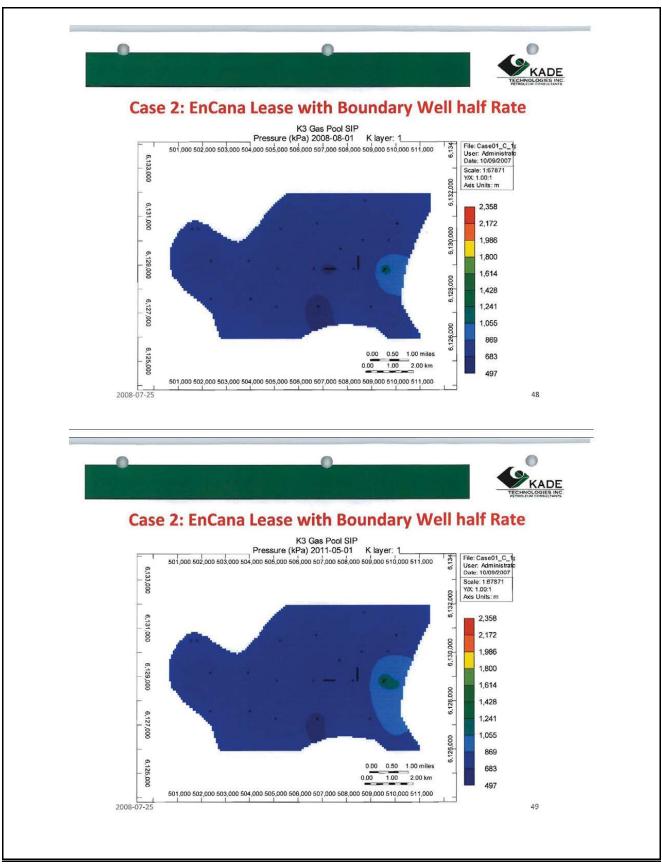

173

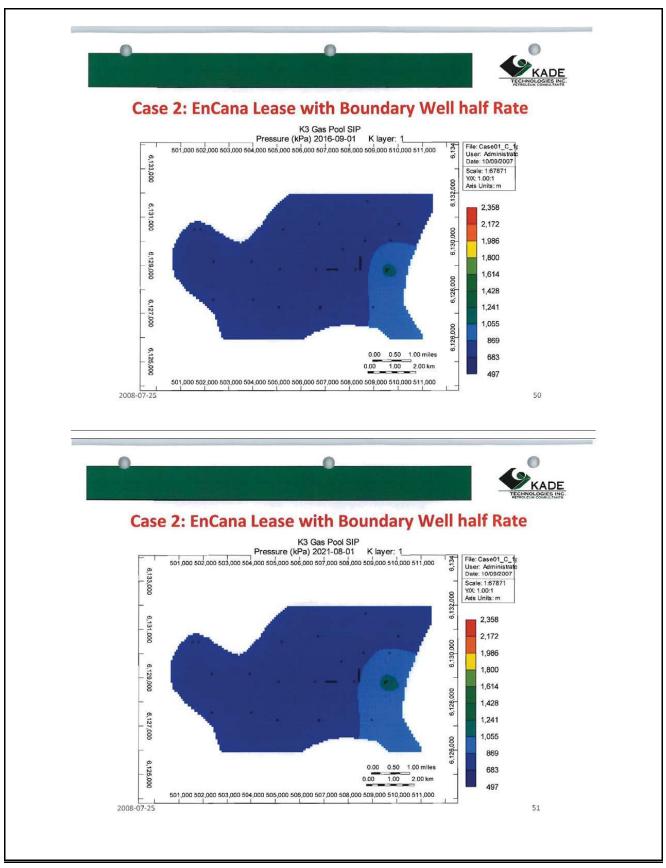

Final Report

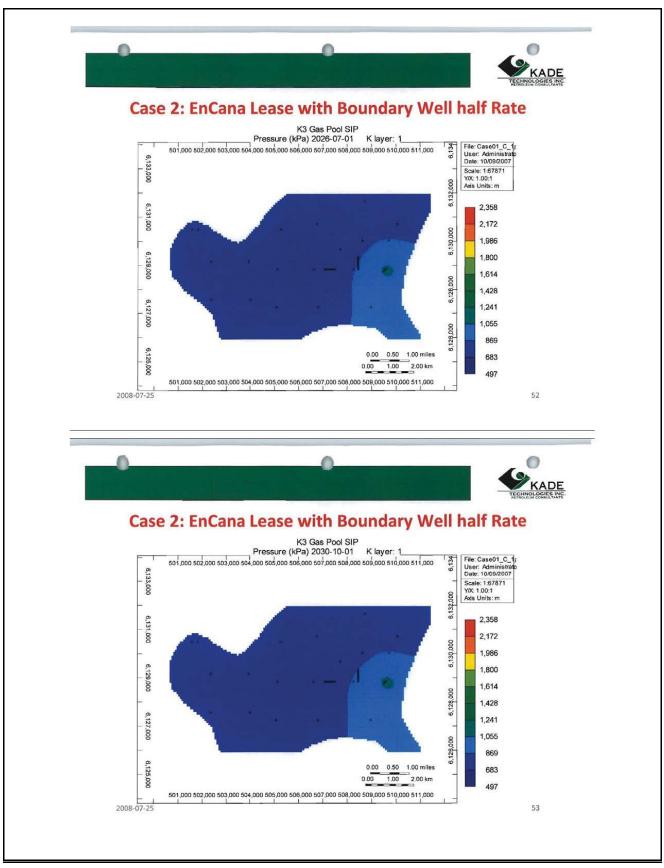


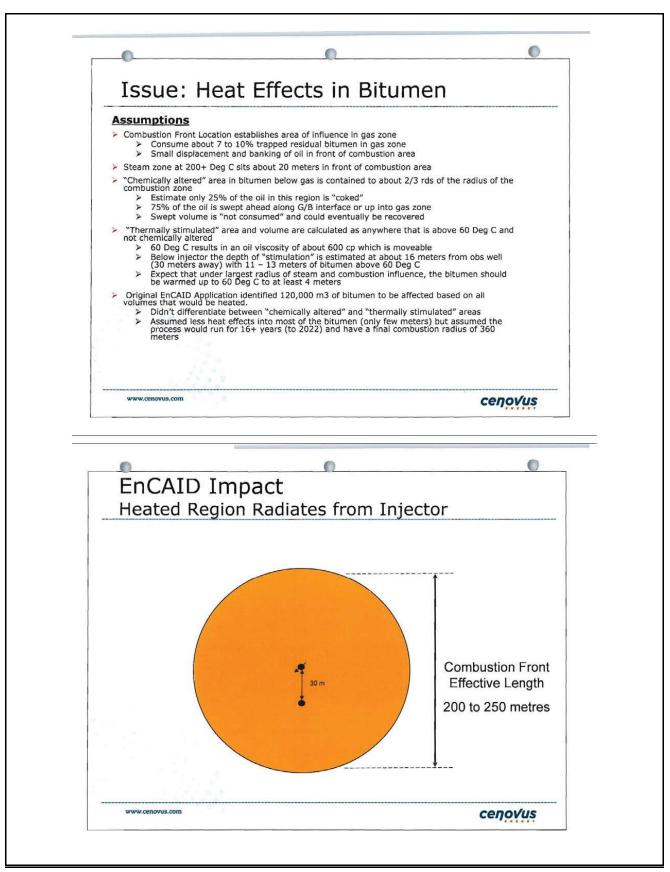


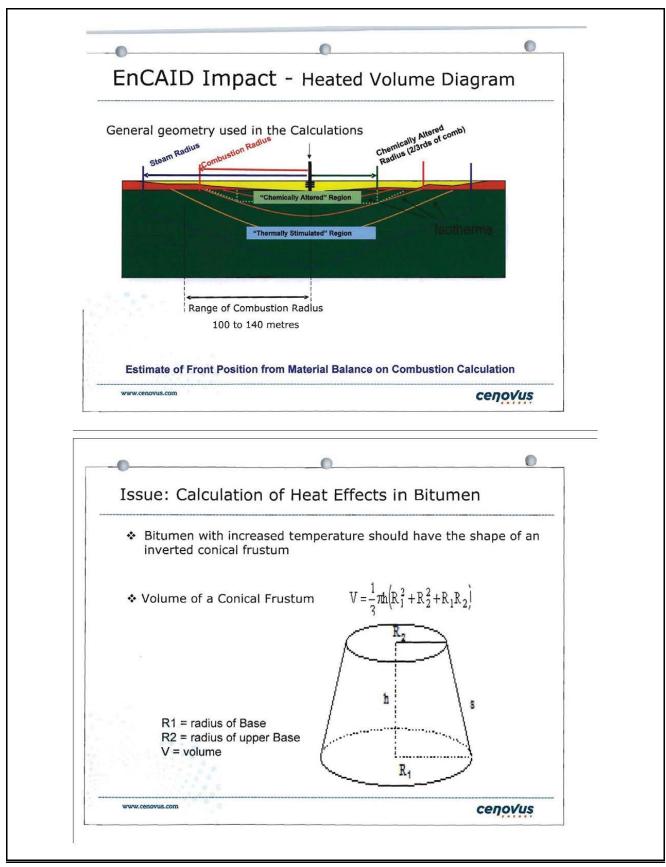

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

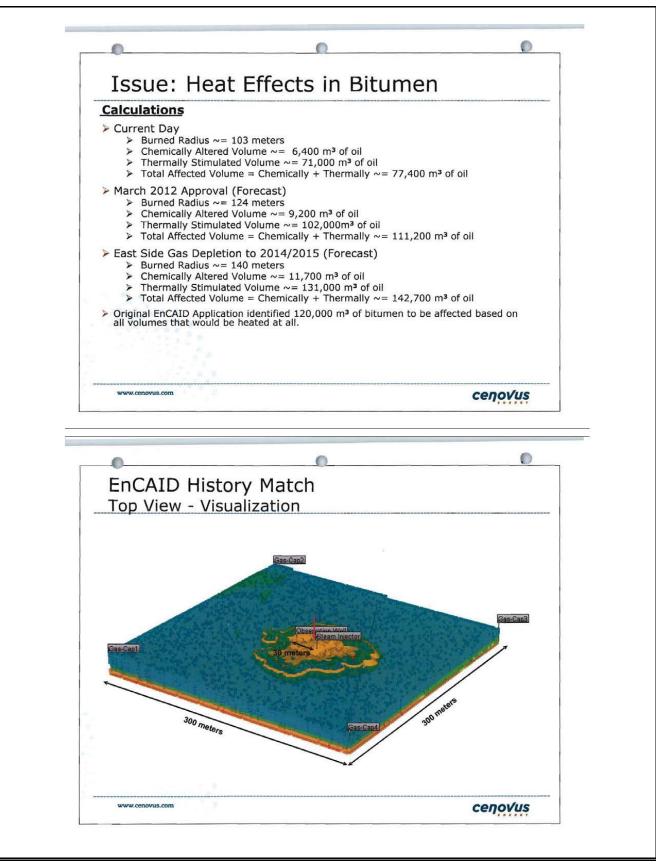


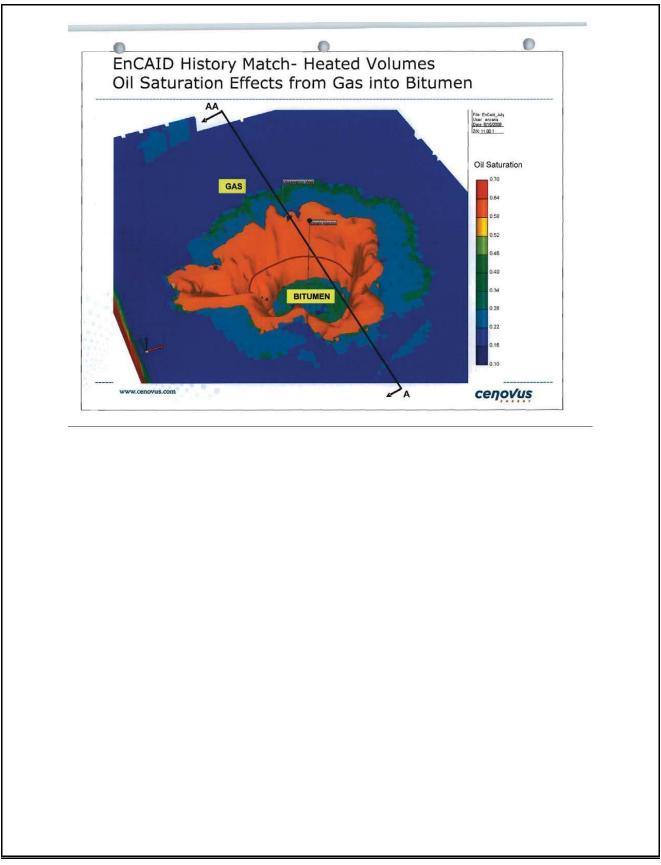




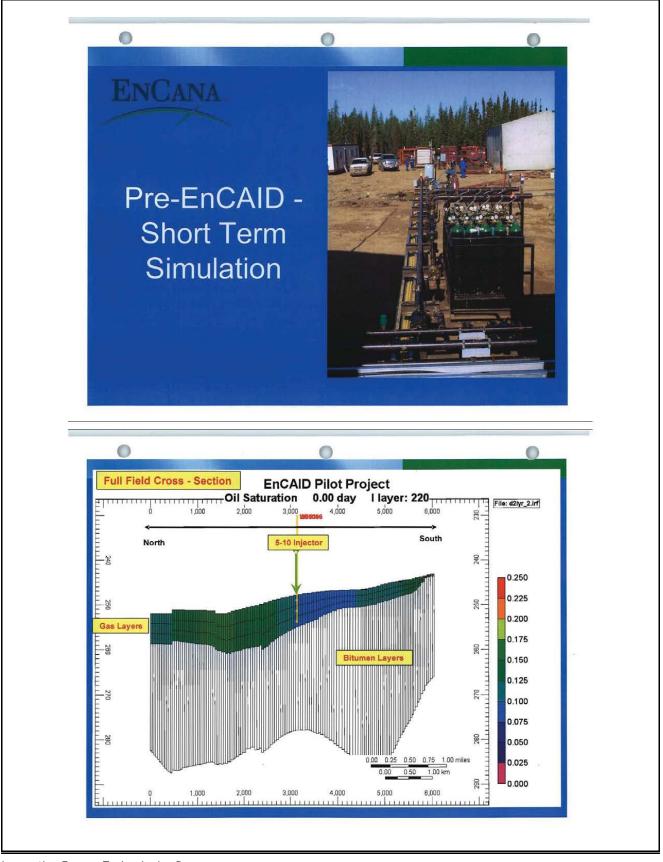


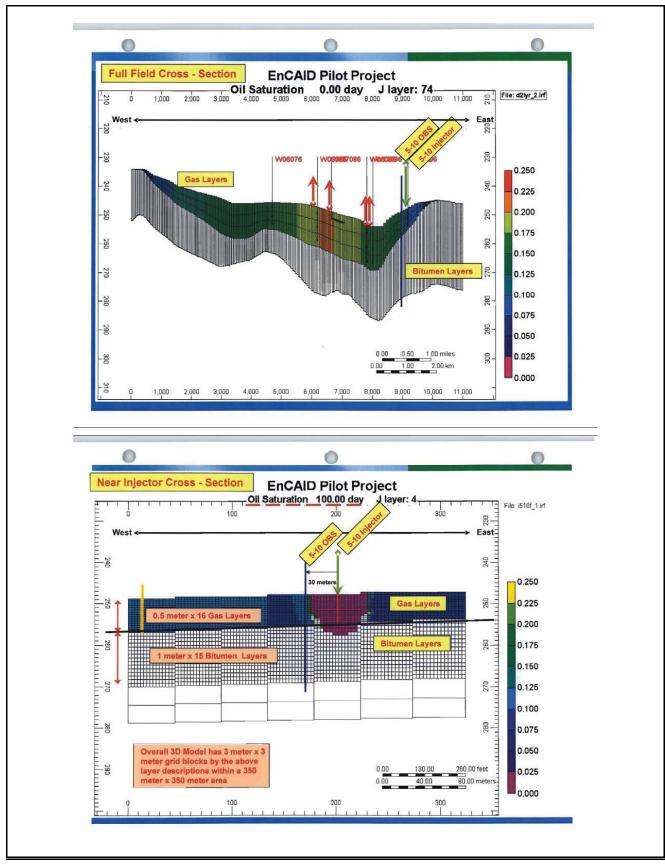


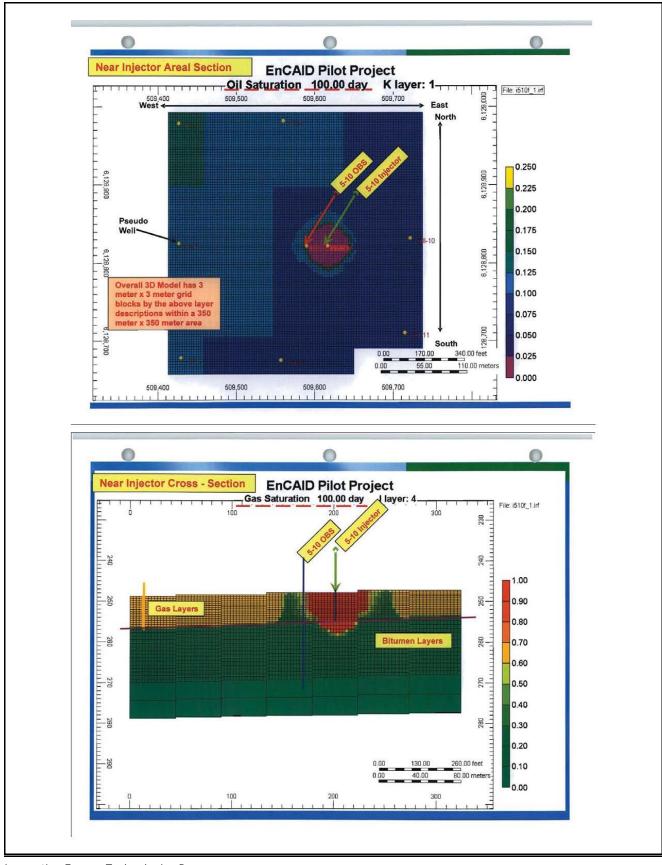


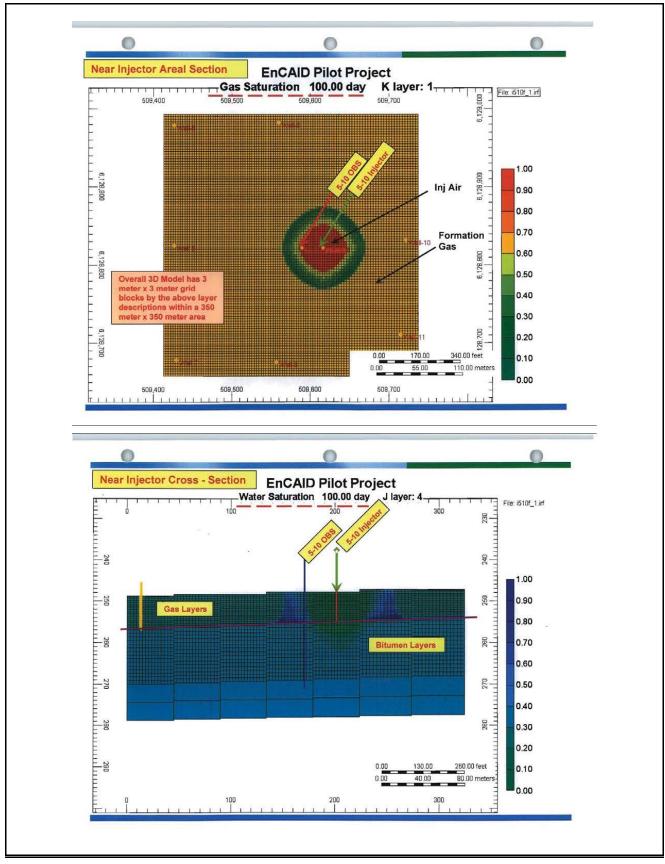


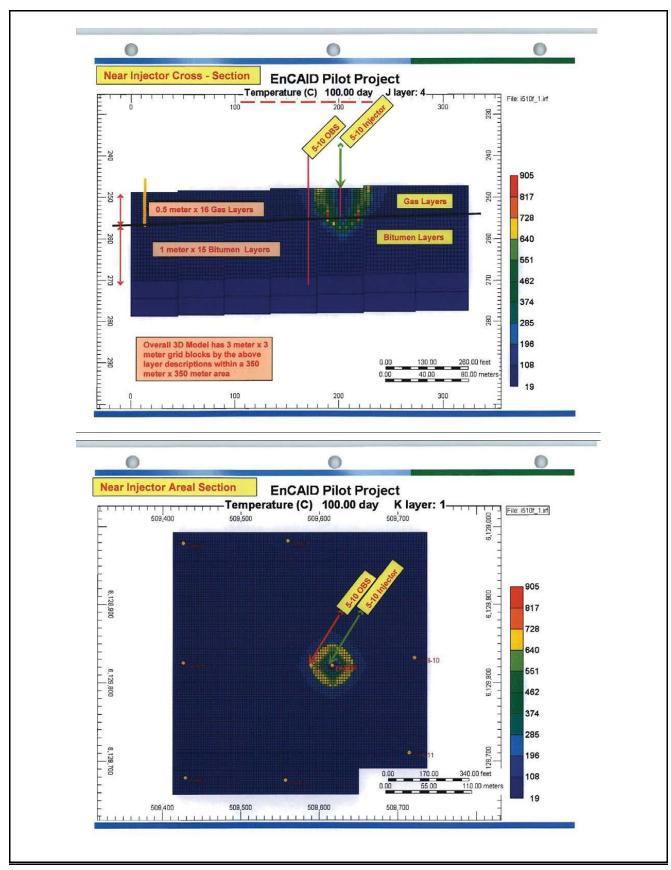
Appendix D: Estimate of Bitumen Impact



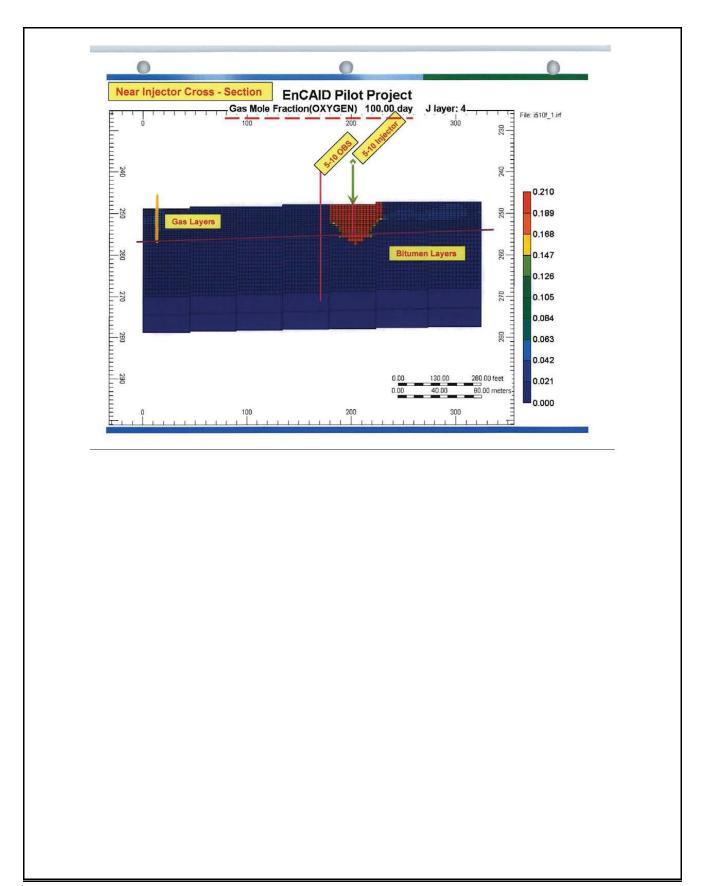


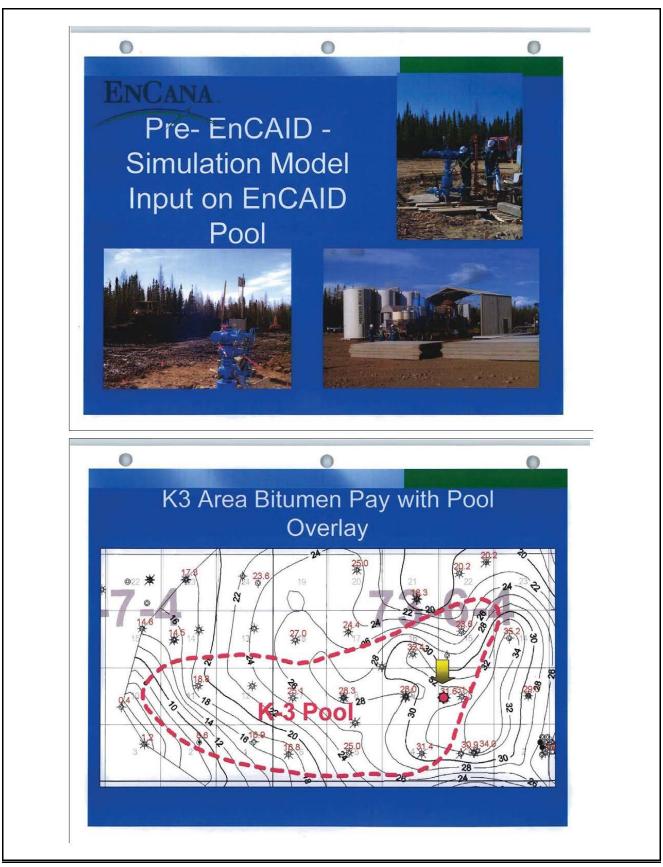


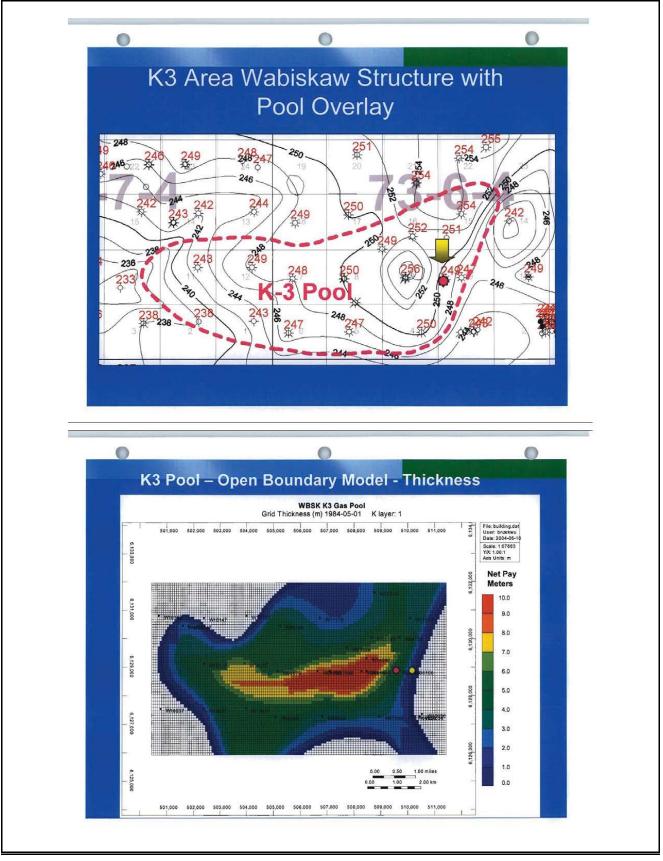

Appendix D: Short Term Simulation



Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

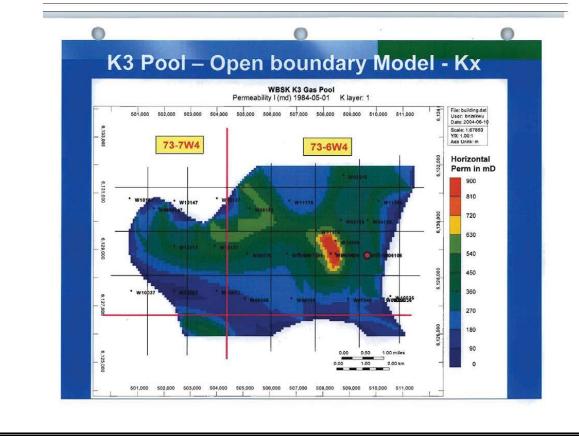



Innovative Energy Technologies Program Project Approval No. 01-003 Final Report


Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

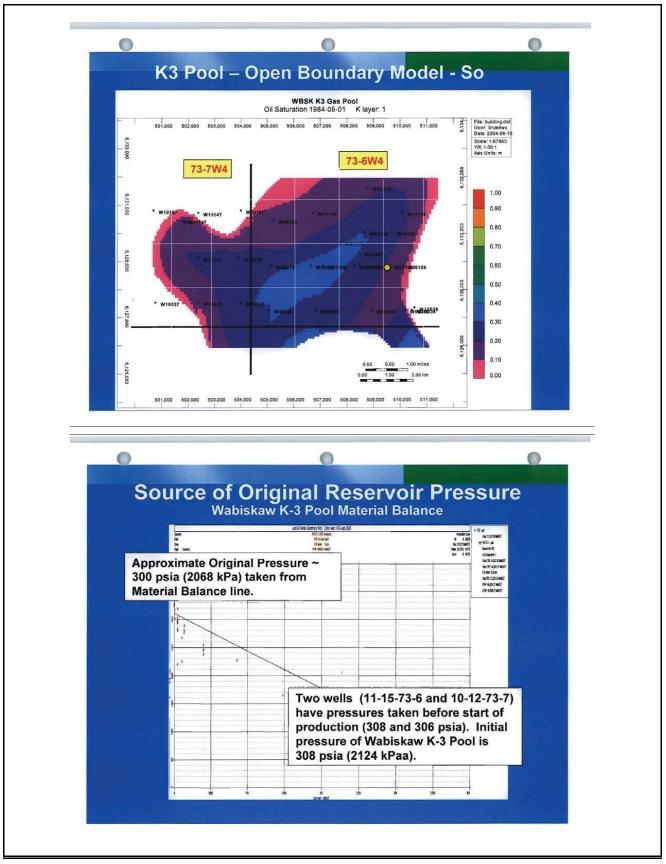
Appendix D: Simulation Model Input

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

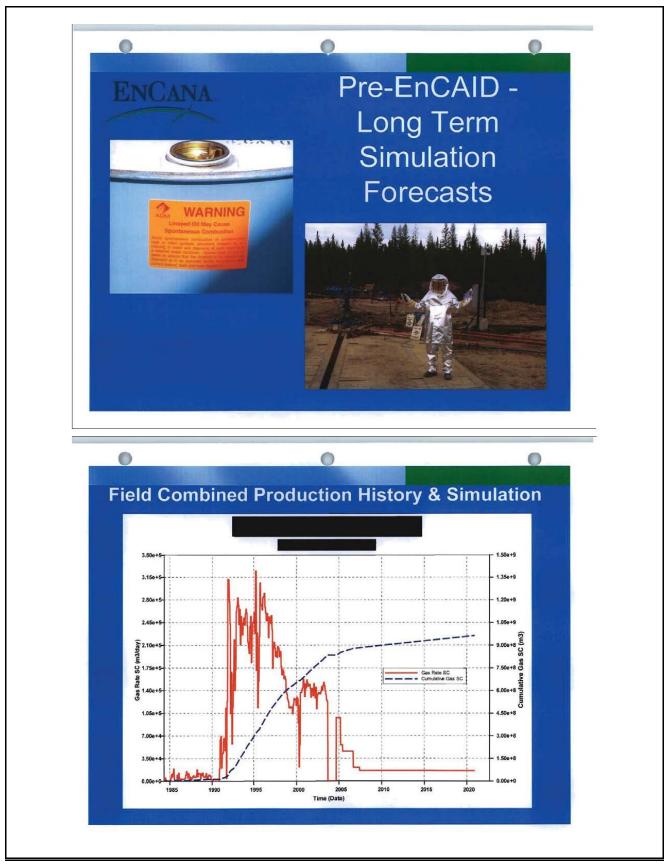

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

Basic Reservoir Input Parameters

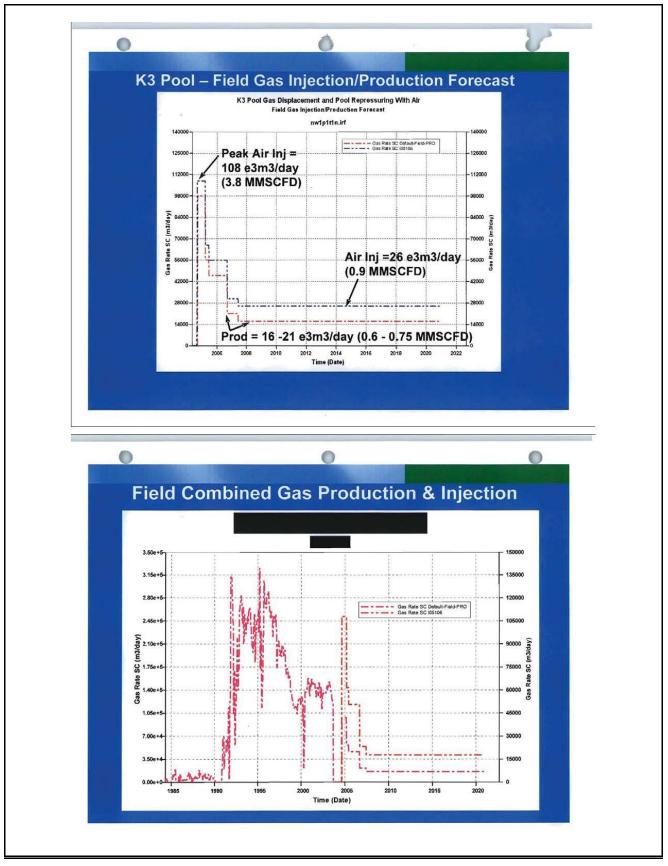
0


0

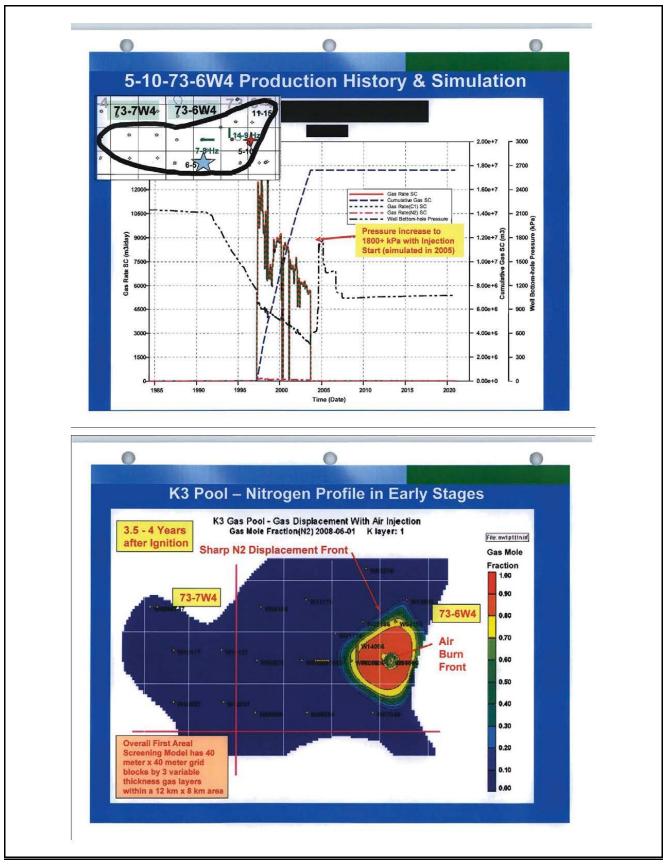
Simulator	CMG STARS
Components	Water, Bitumen, CO ₂ , CH ₄ , CO/N ₂ , Oxygen and Coke
Grid size	40 m x 40 m x 3 Layers (variable thicknesses)
Wells	Wabiskaw K3 Pool plus properties up to K1 Pool
Heterogeneity	Homogeneous
Permeability	0.2 to 0.9 D (horizontal); 0.45D (vert)
Porosity	23 to 32% 26+% heart of pool
Fluid Saturations	Maps from Petrophysical Work
Oil	20 to 40%
Gas	40 to 60%
Water	20 to 40%
Temperature	12 to 15 °C
Gas Analysis	N ₂ (0.44%); CO ₂ (0.57%); CH ₄ (98.98%)
Initial	2050 kPa
Reservoir Pressure	
Injected air temp	177°C

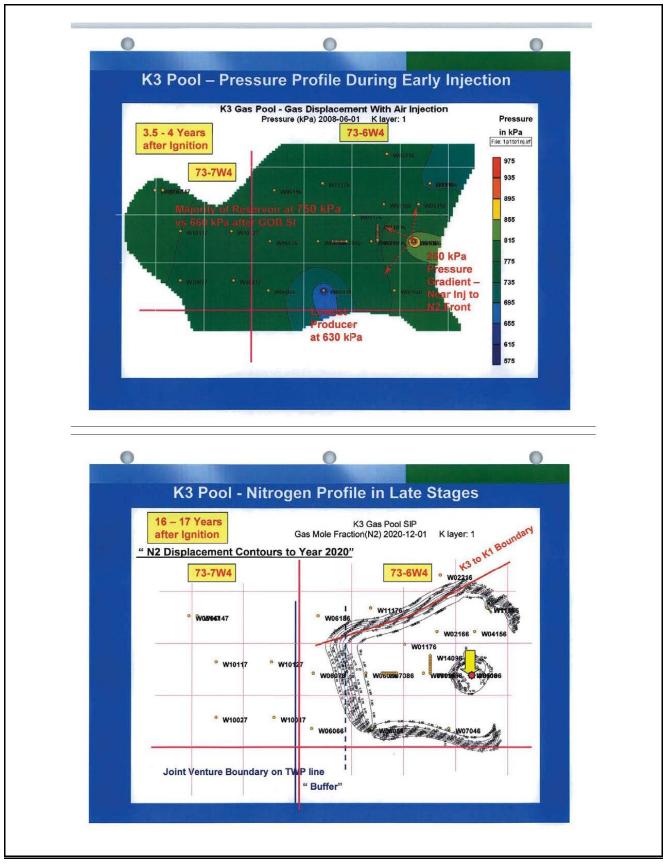

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

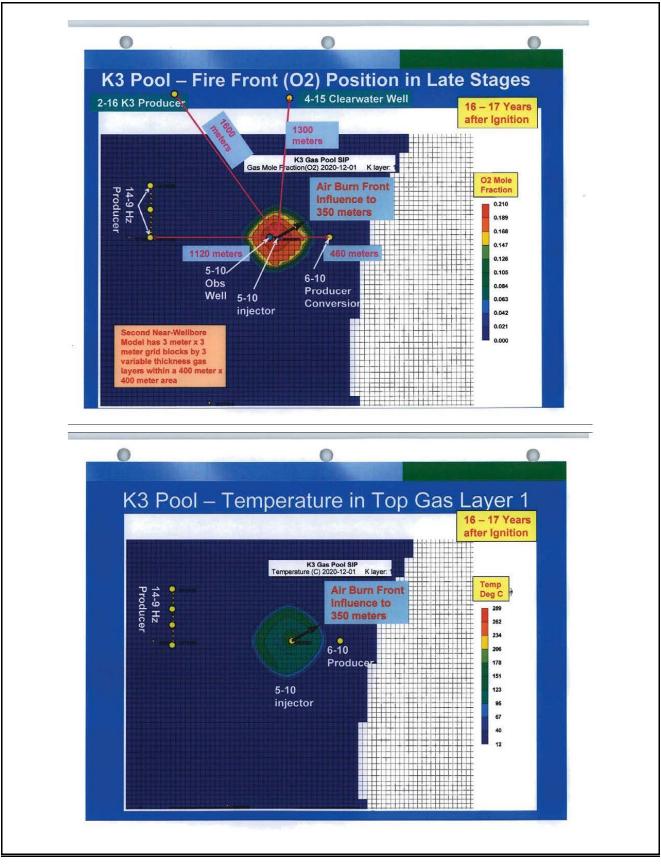
0

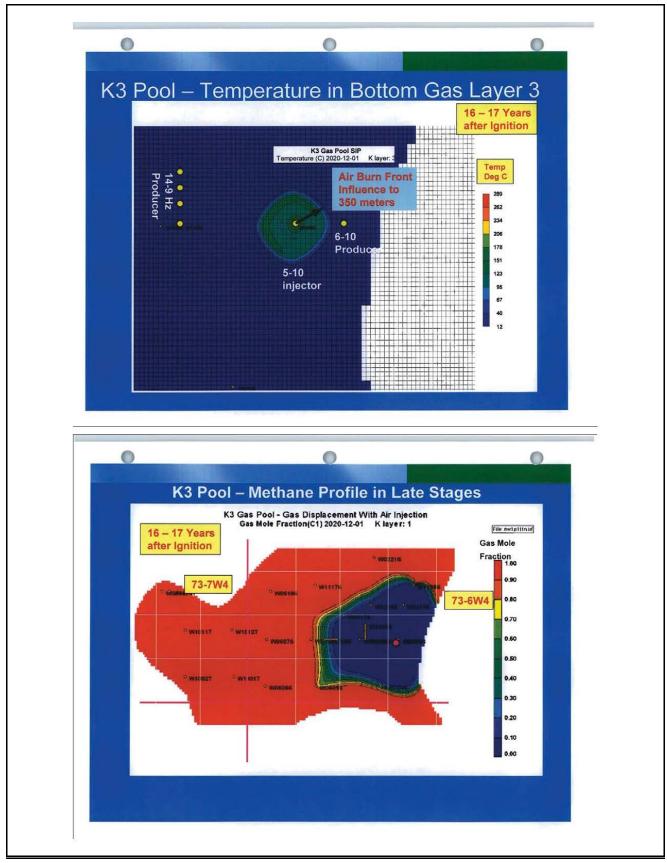


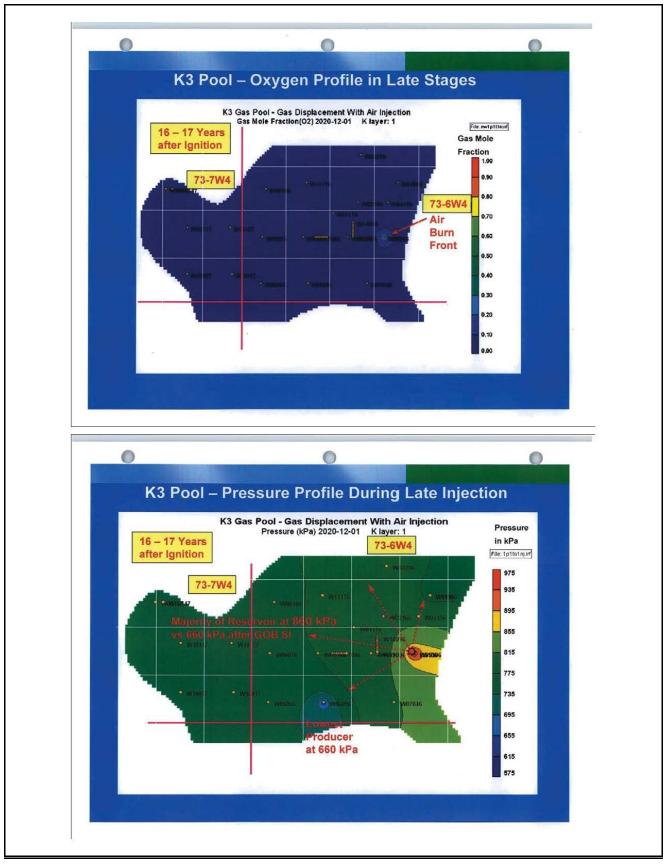
Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

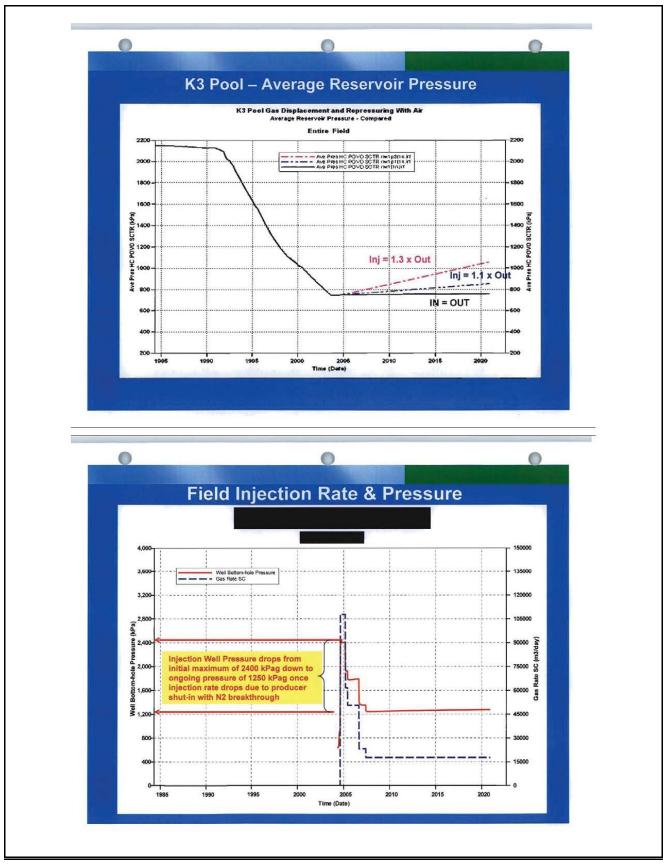

Appendix D: Long Term Simulation

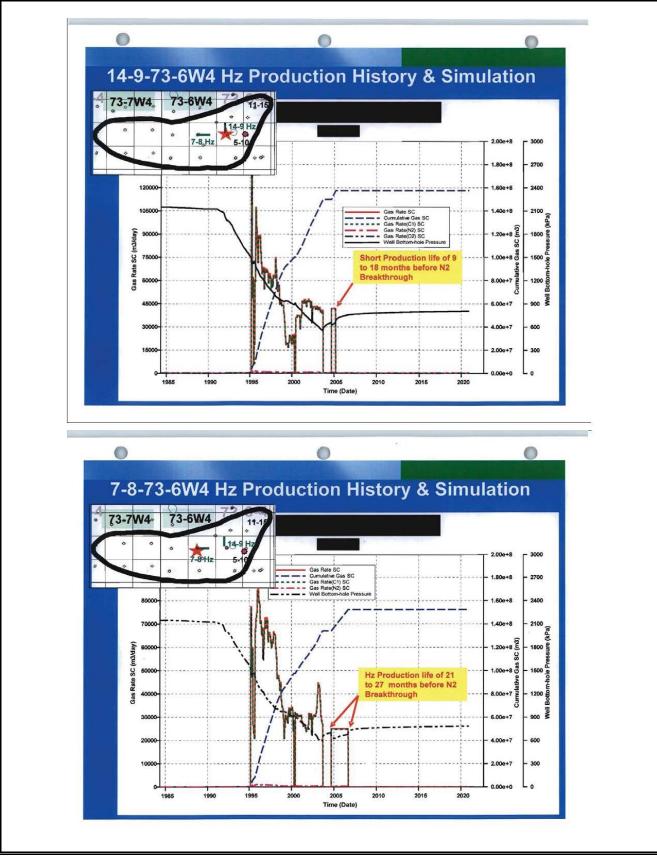

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

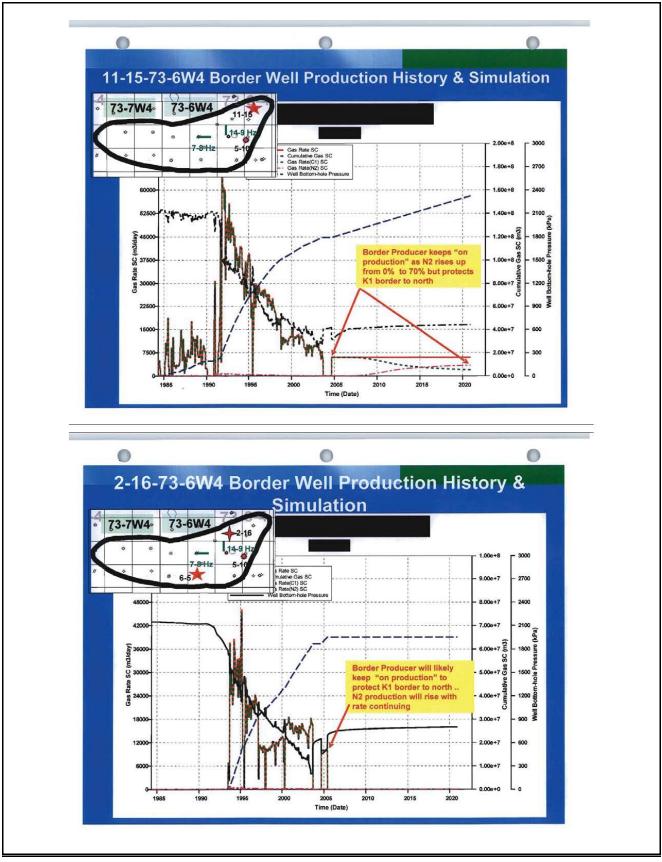

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

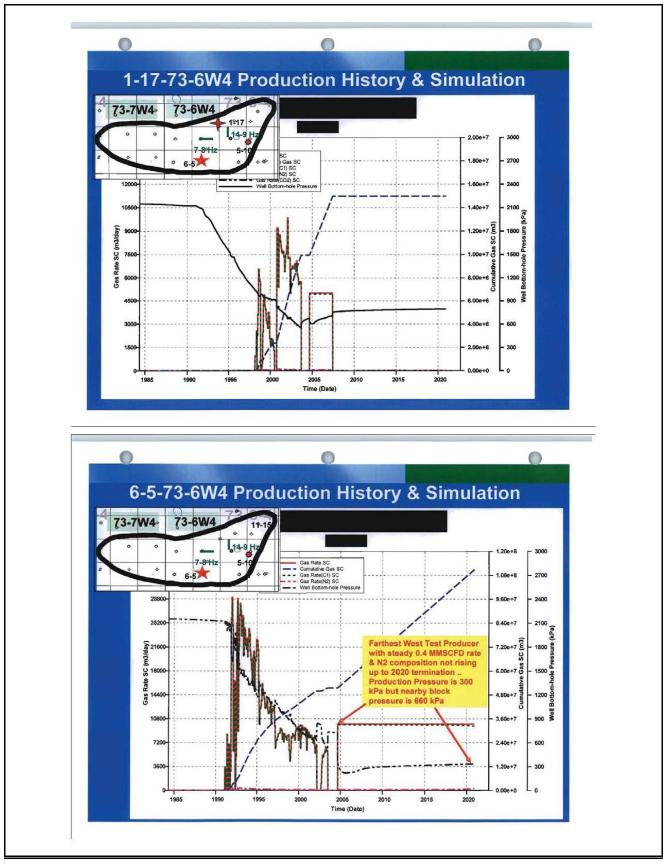

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

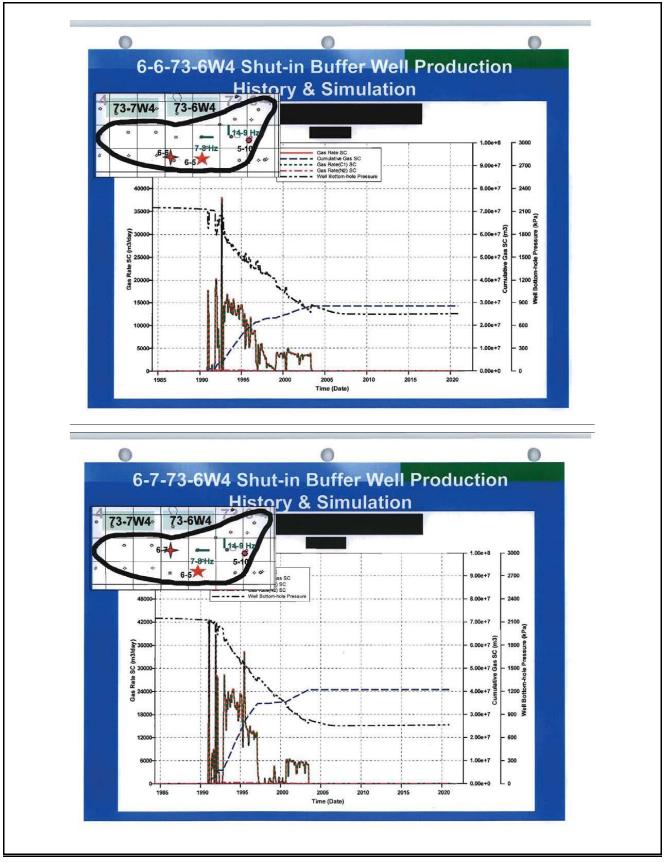

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

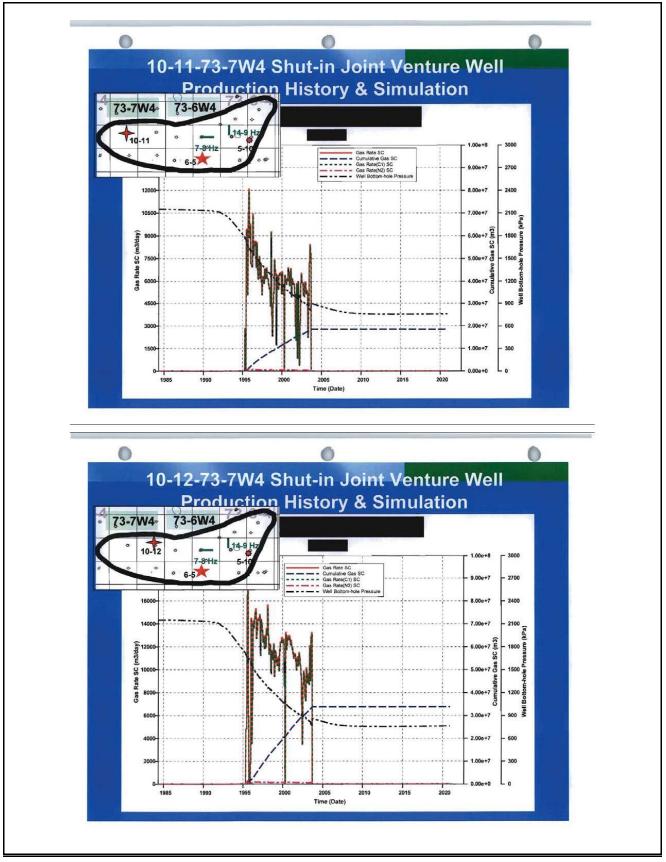

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

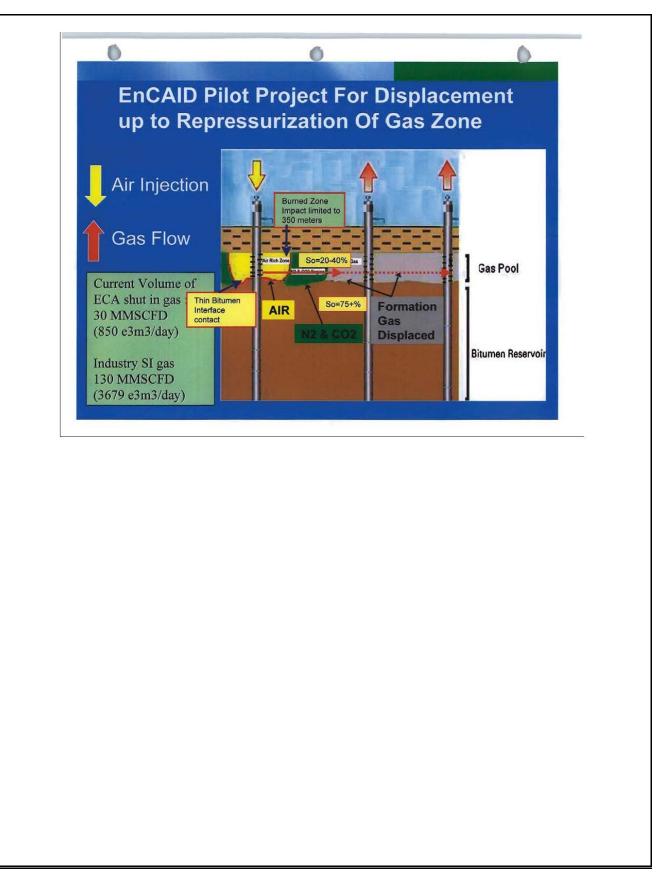

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report


Innovative Energy Technologies Program Project Approval No. 01-003 Final Report


Innovative Energy Technologies Program Project Approval No. 01-003 Final Report


Innovative Energy Technologies Program Project Approval No. 01-003 Final Report


Innovative Energy Technologies Program Project Approval No. 01-003 Final Report


Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

Innovative Energy Technologies Program Project Approval No. 01-003 Final Report

