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Foreword 
Since February 2012, the governments of Alberta and Canada have worked in partnership 

to implement an environmental monitoring program for the oil sands region. In December 

2017 both governments renewed their commitment to working together with Indigenous 

communities in the region by the signing the Alberta-Canada Memorandum of Understanding 

(MOU) Respecting Environmental Monitoring in the Oil Sands Region. The MOU establishes the 

foundation for an adaptive and inclusive approach to program implementation ensuring that 

the program is responsive to emerging priorities, information, knowledge, and input from key 

stakeholders and Indigenous peoples in the region. 

 

The Oil Sands Monitoring Program is designed to enhance the understanding of the state of 

the environment and cumulate environmental effects as a result of oil sands development in the 

region though monitoring and publically reporting on the status and trends of air, water, land and 

biodiversity. Its vision is to integrate Indigenous knowledge and wisdom with western science to 

design, interpret, assess, report and govern the program. 

 

Canada and Alberta have provided leadership to strengthen program delivery, and ensure that 

necessary monitoring and scientific activities meet program commitments and objectives. The 

oil sands industry provides funding support for the program under the Oil Sands Environmental 

Regulation (Alberta Regulation 226/2013). Key findings and results from the program inform 

regional resource management decisions and importantly, are considered as an objective source 

of scientific interpretation of credible environmental data. 

 

A mandated cornerstone of the program is the public reporting of data, status and trends 

of environmental impacts caused by development of oil sands resources. The Oil Sands 

Monitoring Program Technical Report Series provides an objective, and timely, evaluation and 

interpretation of monitoring data and information collected across environmental media of the 

program. This includes reporting and evaluation of emission/release sources, fate, effects and 

transport of contaminants, landscape disturbance and responses across theme areas including 

atmospheric, aquatic, biotic, wetlands, and community based monitoring. 
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Executive Summary 
The work described herein was carried out under the Network Optimization project of the Oil Sands 

Monitoring (OSM) program. Network Optimization is the process of examining monitoring data using 

mathematical analysis techniques, with the purpose of providing information on the data collected at 

monitoring stations, and on their geographical location.  

The driver for the Network Optimization project was the Workshop on Long-Term Air Monitoring Network 

Optimization, hosted by Alberta Environment and Parks (AEP) in Edmonton, Alberta, in January 2015. 

The main recommendation resulting from that multi-stakeholder meeting included assessment of potential 

redundancies in densely clustered areas of ambient air monitoring for both the continuous and passive 

measurement networks. It was envisioned that the methodology emerging from this assessment could 

provide scientific advice for optimizing existing monitoring networks, and for designing new networks.  

Under the Network Optimization Project, Environment and Climate Change Canada (ECCC) carried out a 

type of associativity analysis, based on Kolmogorov-Zurbenko (KZ) filtering of the monitoring data and 

subsequent hierarchical clustering to determine the level of similarity between station records, to provide 

guidance and advice for the optimization of Alberta monitoring networks. A parallel project is being carried 

out by AEP, using an additional methodology, removal bias, and will be reported elsewhere. 

The purpose of this report is to provide a summary of the ECCC network optimization methodology, and 

guidance on how its application here to ambient air quality monitoring networks in Alberta may provide 

insight to aid in air quality network optimization. The scientific advice provided in this report is intended as 

only one of many inputs to monitoring network optimization. 

The report focuses on all the ambient air monitoring networks in Alberta and on two specific oil sands 

areas: Athabasca and Cold Lake. Alberta’s monitoring networks are operated by Airsheds, organizations 

that monitor and provide public information on air quality, and are identified in the map below (Figure E1). 

The Airsheds operating in Athabasca and Cold Lake oil sands areas are Wood Buffalo Environmental 

Association (WBEA) and Lakeland Industrial Community Association (LICA), respectively.  

The associativity analysis determines the level of similarity between stations’ data records based on 

specific metrics. The analysis is predicated on the concept that stations with highly similar data records 

over time are potentially redundant (e.g., the most extreme case would be two stations reporting identical 

data). Here, hierarchical clustering was carried out using two metrics: 1-R, where R is the Pearson’s 

correlation coefficient, and the Euclidean distance. The first metric assessed the similarity in the variation 

over time of observed concentrations, while the second assessed the similarity in concentration 

magnitudes. One of the main outcomes of the analysis is an ordering or ranking of stations, according to 

the degree of similarity of their observation records. Absolute thresholds for redundancy cannot be 

generated, since the relative rankings depend on the available observation data (number of stations and 

chemical species observed). The analysis thus does not identify stations which are “redundant” or “not 

redundant”, but rather provides a relative ranking of monitoring record similarity, which can in turn be 

used as one of the inputs for network optimization decision making.  
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  

Figure E 1 Air quality monitoring network in the Province of Alberta 

 

The analysis showed that this relative ranking of monitoring station similarity will vary, depending on the 

chemical, and which of the two metrics was used in the similarity analysis. The information provided by 

the analysis is thus nuanced. Station records for a given chemical, which are highly similar1 for both 

metrics, have a greater degree of relative redundancy than station records which are highly similar for a 

single metric. Monitoring station locations which are highly similar across both metrics, and across 

multiple chemicals, have a greater degree of potential redundancy than station locations which are highly 

similar only for a single chemical. The relative rankings provided in the tables and figures of the report 

which follows may thus be used in a number of ways, depending on the information considered to be the 

most important for monitoring network optimization.  

As part of the analysis, the records of hourly observations of a suite of chemicals were pre-filtered prior to 

clustering analysis using an iterative moving average approach (KZ filtering). This additional step was 

taken to investigate the extent to which the similarity between the station observations was strengthened 

or weakened as shorter time scales (i.e., high-frequency variation) were removed from the original time 

                                                      
1 “Highly similar” in this context is with reference to the relative dissimilarity rankings in the tables and figures in 

the report: i.e. highly similar station records are those which are the most similar to those of another station record or 

cluster. 
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series. This analysis, and a second analysis in which hourly observations were time averaged to monthly 

values prior to clustering, showed that much of the similarities between station records were controlled by 

short term events (concentration changes occurring over hourly or daily time scales) – as opposed to 

more gradual changes in concentrations. This in turn suggests that observations which consist of long-

term averages may be less useful for identifying the unique impact of local emissions sources on a 

monitoring site compared to hourly observations.  

The data from all Alberta Airsheds were collected and quality-control/assured by AEP, then provided to 

ECCC for subsequent analysis. However, the analysis methodology requires complete station records 

with relatively few data gaps – some station records could not be analyzed for similarities due to 

incomplete or missing records, and these stations were identified and the causes of the data gaps 

discussed.  

The analysis methodology was used to provide relative rankings of the continuous (hourly) Alberta 

monitoring data for the period August 1, 2013 through July 31, 2014, for ozone (O3), nitrogen monoxide 

(NO), nitrogen dioxide (NO2), oxides of nitrogen (NOX), particulate matter less than 2.5 micrometers in 

diameter (PM2.5), sulphur dioxide (SO2), non-methane hydrocarbons (NMHC), total hydrocarbons (THC), 

total reduced sulphur (TRS), and methane (CH4). KZ-filtering was applied to the hourly data to obtain data 

series representing daily, weekly and monthly time scales, and all four time scales were analyzed.  

The relative rankings of the four most similar and four least similar continuous stations, by station name 

and chemical, are provided in Table 4.14 and Table 4.15, using the correlation and Euclidean distance 

metrics respectively. The rankings of all stations analyzed appears in panel (a) of Figures 3.14 to 3.34 

(the most similar stations appear at the bottom of these lists). These tables and figures provide guidance 

on the relative levels of redundancy of the continuous station records, with respect to the two similarity 

metrics examined here.  

These rankings showed a significant variation on the ranking of stations by chemical. For all the chemical 

species, however, the station records were shown to be more similar for both metrics as shorter time 

scales were filtered out. This indicates that higher frequency (e.g. hourly) variations in concentration drive 

most of the differences between the observation data records. This analysis can also be used to show the 

relative impact of seasonality on station record similarities.  

The analysis also showed that hierarchical clustering applied to time-averaged continuous observation 

records as opposed to time-filtered observation records results in different clusters, and the two 

operations (time-averaging versus time-filtering) should not be considered as equivalent.  

One of the benefits of the analysis approach is its ability to objectively assess the extent of similarities or 

differences in the records collected via different monitoring methodologies. For this reason, network 

optimization analysis of the passive monitoring network was carried out using bimonthly passive 

monitoring data for SO2 and NO2, as well as continuous monitoring data for the same chemicals - both 

passive and continuous data were time-averaged to the same bimonthly level. This examination 

encompassed the period from February 2009 to December 2015. 



 

Hierarchical Clustering Network Analysis of Ambient Air Monitoring in Alberta: Phases 1 and 2 | No. 4.0  5 

This combined analysis identified that the numbers reported from these two sampling methodologies 

were not similar, at specific levels of the correlation metric, despite similarities in the location, or even 

collocation, of passive and continuous monitors. Two examples are shown below in Figure E 2.  

 

 

Figure E 2 Clustering of NO2 monitoring stations for correlation level (left) WBEA monitoring stations, 1-R 

= 0.25 (R = 0.75), and (right) all Alberta monitoring stations, 1-R = 0.45 (R = 0.55). Clusters are colour-
coded within each panel, continuous monitors are shown as inverted triangles and continuous monitoring 
stations are shown as circles. 

 

In the left panel, continuous NO2 monitoring stations operated by WBEA are shown as inverted triangles, 

passive stations as circles, and the colour of the symbols show how different station records were 

combined by associative analysis into different clusters (each cluster has a different colour). The 

continuous monitors are all coloured black – that is, they all form a single cluster separate from the 

surrounding and sometimes collocated passive monitors, at a correlation coefficient of R = 0.75 (1-

R=0.25). The right panel shows a similar result for all of the passive and continuous monitors analyzed 

together in Alberta, at a correlation coefficient level of R=0.55 (1-R =0.45). Collocated passive and 

continuous monitors once again are not part of common clusters (e.g., at LICA and Palliser Airshed 

Society (PAS) stations; overlapping black triangles and red dots). The difference in similarity level 

indicates a larger degree of disparity between the observations reported using the two methodologies at 

LICA compared to WBEA stations, but both examples show that the passive and continuous 

methodologies are providing dissimilar observations. 

WBEA

LICA,

FAP

PAS,

AEP
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Table 4.1 (NO2) and Table 4.4 (SO2) provide both metrics’ similarity rankings for bimonthly averaged data 

for passive and continuous monitors within the WBEA Airshed. Table 4.5 and Table 4.8 are the 

corresponding tables for the LICA Airshed, and Table 4.11 and Table 4.12 provide the corresponding 

information for Alberta as a whole. The analysis was shown to be potentially capable of identifying 

differences in station records associated with type of emissions (stack emissions versus surface sources), 

with NO2 showing more disagreement in the order of ranking between the two metrics than SO2, with the 

latter having highly correlating stations tending to have a greater discrepancy in their Euclidean distance. 

The SO2 analysis of passive monitors also showed a lower degree of similarity (more clusters) between 

stations at a given level of the similarity metric than the corresponding NO2 analysis. These findings, and 

related analyses using the continuous monitoring station records, suggest that the methodology is 

capable of identifying differences in concentration records relating to the emissions source type, for 

reasons described in detail in the report. 

Section 4 also describes a process by which the results of both metrics may be combined to identify 

stations with the greatest degree of similarity across both metrics (see the discussion surrounding Table 

4.13). The members of each cluster of stations which have been ranked as having relatively high 

similarity according to correlation may be assessed for the maximum and minimum values of the 

Euclidean distance. Groups of stations which are relatively highly correlated and have relatively low 

Euclidean distances may thus be identified; these stations have the greatest degree of potential 

redundancy from the standpoint of both metrics.  

The clustering methodology was found to be sensitive to the precision of the recorded data through three 

different avenues of investigation. The clustering analysis of SO2 in particular was found to be strongly 

impacted by random noise, due to the large number of low concentration data close to the detection limit. 

O3 was less impacted, as measured concentrations of O3 tend to be on the tens of ppbv. 

We identified caveats on the accuracy of the observation data, and give recommendations on how the 

data may be used as an aid in assessing station redundancy in Section 5. Generally we note the 

following: 

(A)  The analysis groups stations according to the degree of similarity between stations’ data records, but 

not the cause of that degree of similarity. For example, data records from stations which are separated by 

large distances, yet are located near emissions sources that happen to have a similar time variation in 

emissions levels, will be identified as highly similar with respect to the correlation metric. The analysis 

results should therefore be interpreted with knowledge of local conditions.  

(B)  There are other constraints associated with monitoring network design, for example geographical 

factors such as the availability of electrical power and roads, the spatial proximity to highly populated 

locations or sensitive ecosystems, and the intended purpose of the stations, which are outside of the 

scope of the current work, yet which are acknowledged here as being important parts of the decision 

making process.  

(C)  While passive and continuous monitors were time-averaged to a common bimonthly interval for the 

purposes of assessing the degree of similarity between the two measurement methodologies, that part of 

the analysis (Sections 3.1, 3.2, 3.3, 4.1.1, 4.1.2, 4.1.3) was not intended as an assessment of potential 
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relative redundancies for the continuous monitors—for the latter, the separate analysis of continuous 

monitoring data (Sections 3.4, 4.1.4) should be examined. 

(D)  An analysis of the impacts of averaging time on clustering results suggests that the use of 

observations which comprise long-term averages will reduce the information needed to be able to 

distinguish records from monitors within an Airshed as being uniquely impacted by sources within that 

Airshed. Airshed-specific events usually happen on time-scales shorter than monthly averages, for 

example. The methodology will still correctly identify the relative levels of similarity between monthly data, 

but the extent to which these similarities are meaningful may be reduced, due to the averaging time 

associated with the observations. The methodology has the maximum benefit in assessing redundancies 

when the maximum amount of information is available (i.e., hourly data). 

(E)  The analysis is limited to the available stations which meet the data completeness criteria and the 

time period of the data used for analysis. Some stations have been excluded due to the data being 

insufficiently complete for analysis, and the analysis may be limited by the accuracy (precision) of the 

methodologies being used for data collection. Stations which were rejected from the analysis due to 

incomplete data are described in Table 2.2, Table 2.3, Table 2.4, and Table 2.5. We note that the lack of 

useable data may also be a potential consideration for network optimization. 

Despite these caveats, the clustering methodology using hourly data was able to identify groups of 

stations influenced by common emissions sources (e.g. stations which are influenced by oil sands 

emissions as opposed to stations located elsewhere), observation records generated using different 

monitoring methodologies, as well as monitoring station records which were markedly different from all 

others in the data. The latter may indicate unique recorded events or data inaccuracy; the methodology 

thus identifies which station records might be worthy of follow-up examination. 

Based on the above analyses, we recommend that the assessment of potential redundancies using the 

tables and figures in this report should be carried out on a “per chemical”, rather than “per station” basis, 

for stations where more than one chemical species is observed. The clustering analysis of hourly 

continuous data showed that different chemical species cluster differently, that is, the most similar 

“stations” for one chemical species may be less similar for other chemical species.  

The two metrics may be used separately or together, though we recommend the use of both metrics for 

assessing potential redundancy whenever possible. The metric chosen for determining redundancies may 

depend on whether variation in concentration over time or concentration magnitude is considered to be 

more important with regards to the intent of the monitoring network. However, combinations of the metrics 

are recommended in assessing potential data record and station redundancies.  

Follow-up work to that reported here is taking place at ECCC, and will be reported on at a later date. This 

work centers on combining output from the air-quality forecast model Global Environmental Multi-scale – 

Modelling Air-quality and CHemistry (GEM-MACH) with hierarchical clustering, to design air quality 

monitoring networks which are optimized to reduce similarities between station records. The clusters 

resulting from the analysis of model-predicted air pollutant time series at observation station locations are 

being compared to the clusters from the observation data in order to evaluate the model’s ability to mimic 

observed similarities. The key analysis of this work will be the treatment of all model grid-cells as potential 
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observation station locations, with the key outcome being maps of optimized monitoring networks to aid in 

the placement of future air quality monitoring stations. These maps may be combined with other 

georeferenced data to assist in monitoring network design.  
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1 Introduction  

1.1 Background  

The work described herein originated in response to the Workshop on Long-Term Air Monitoring Network 

Optimization in January 2015. Recommendations for short term (high priority) resulting from that multi-

stakeholder meeting included assessing redundancies in the densely clustered areas of monitoring using 

a combination of correlation analysis and/or removal bias with the area served and emissions served 

information for the continuous measurement network data for SO2, NO2, H2S, THC, and TRS (especially 

along the Athabasca River Valley and Conklin) and for the passive measurement network data, including 

industrial sites (this applies to the entire Oil Sands domain). Other actions may be required to address the 

location of stations. For short to long term actions it was recommended to assess acid deposition and 

nitrogen deposition monitoring stations and re-design the acid deposition monitoring network, if 

necessary. There has also been interest expressed by Environment and Climate Change Canada 

(ECCC) and Alberta Environment and Parks (AEP) towards the development of methodologies which 

could aid in determining the best possible locations for monitoring network stations.  

 

1.2 Scope  

This report will focus on the ECCC project: the use of associativity analysis, specifically hierarchical 

clustering using metrics of 1-R (correlation analysis), and the Euclidean distance, to analyze station data, 

suggest possible redundancies, and suggest potential “best” locations for future monitoring network 

stations. The analysis methodology is described in detail in the sections which follow and the Appendix 

for this report. 

The ECCC work has four stages: 

(1) Numerical testing of the time-filtering and clustering methodology. 

(2) Application of the methodology to AEP monitoring network data. 

(3) Application of the methodology to output from the ECCC Global Environmental Multiscale – 

Modelling Air-quality and CHemistry (GEM-MACH) model, at monitoring network locations. 

(4) Application of the methodology to GEM-MACH gridded output. 

This report describes the results of the first and second stages of the project – at the time of writing, the 

third and fourth stages are still underway, and will be the subject of later reporting. This report will include 

relative rankings of stations based on the degree of similarity of their reported data, as one method of 

assessing potential redundancies of the existing continuous and passive monitoring network stations, 

along with caveats regarding the limitations of the analysis, and reporting on issues worth noting which 

arose during the analysis.  
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This work is intended to provide scientific advice and analysis to aid in network optimization, but is not 

intended to be the only means by which network optimization decisions are made. There are other 

constraints associated with monitoring network design, which are outside of the scope of the current 

work, yet which are acknowledged here as being part of the decision-making process. These include 

geographical factors such as the availability of, for example, electrical power and roads, which may limit 

station locations to sites where these accessibility factors are readily available. Also outside the scope of 

the present work is the intended purpose of the stations. For example, stations may be required to be 

placed within a certain distance of emitting facilities due to emissions compliance regulations, as opposed 

to the extent to which the collected data may be more or less similar to data collected by other monitoring 

stations already in operation.  

 

1.3 Region of Study  

Figure 1.1 below shows the region examined, along with all of the monitoring sites in Alberta considered 

under this work. Passive monitoring stations locations are shown as open circles, continuous monitoring 

stations as inverted open triangles, and the different Airsheds are indicated by the different colours of the 

station symbols. The Wood Buffalo Environmental Association (WBEA) and Lakeland Industrial 

Community Association (LICA) sites are shown in more detail later in this report (Figure 3.1 and Figure 

3.6).  

 

Figure 1.1 Air quality monitoring stations network in the province of Alberta 
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2 Methodology  

2.1 Overview  

There are three main components to the work reported here. The first of these was the collection, and 

quality control and assurance, of the available monitoring network data. The second and third stages 

relate to the analysis of that data; the use of Kolmogorov-Zurbenko (KZ) filtering of the data and 

subsequent hierarchical clustering to determine the level of similarity between stations. Note that the 

2015 Workshop recommendations driving this work considered only one metric of station-to-station 

similarity (i.e., correlation, specifically the Pearson’s correlation coefficient), though many other metrics 

may be used, and we have extended the analysis to also include the Euclidean norm.  

We describe next the monitoring data and the procedures used for quality assurance and quality control, 

followed by an overview of the mathematical basis for the methodology (a more detailed description of the 

methodology appears in the Appendix). 

 

2.2 Monitoring Data  

2.2.1 Monitoring Network   

Both continuous and passive samplers are used for assessing ambient air quality in the study region. 

Continuous sampling is carried out for regulatory compliance, and this requires high-temporal resolution 

in order to monitor short-term exceedances in highly variable concentrations of pollutants in ambient air. 

Passive sampling is carried out in order to determine monthly average ambient air concentrations of 

atmospheric compounds to determine long-term trends, assess potential exposure risks to ecological and 

understand spatial distribution of the measured pollutant. 

The details of continuous monitoring methodologies for Ozone (O3), Carbon Monoxide (CO), Nitric Oxide 

(NO), Nitrogen Dioxide (NO2), Oxides of Nitrogen (NOX), Particulate Matter with particle radius below 2.5 

µm (PM2.5), Sulphur Dioxide (SO2), Non-Methane Hydrocarbons (NMHC), Total Hydrocarbon (THC), Total 

Reduced Sulfur (TRS) and Methane (CH4) for Alberta monitoring networks are described elsewhere 

(AESRD, 2014); here we provide an overview via the minimum performance characteristics presented in 

Table 2.1. The majority of the Alberta passive monitors for NO2 and SO2 were developed by Maxxam 

Analytics Inc. (Tang et al., 1997; Tang et al., 1999; Tang, 2001), with exception of those employed by the 

Palliser Airshed Society (PAS), where the sampling program made use of a Multi-Gas Passive Sampler 

until May 2014, when it was replaced with the Radiello sampler tube (PAS, 2016). The underlying 

operating principle of these types of passive sampler is the collection of gas molecules by diffusion onto a 

collection medium coated with a chemical having specific affinity to the atmospheric compound of 

interest. The diffusion rate is controlled by pore size of the diffusion barrier, relative humidity, wind speed, 

and temperature. After collection, the exposed collection media are analyzed in the laboratory: SO2 is 

analyzed via ion chromatography, and spectrophotometric and continuous flow analysis methods are 

used to estimate the cumulative NO2. The time-weighted averaged concentration is calculated based on 



 

12 Hierarchical Clustering Network Analysis of Ambient Air Monitoring in Alberta: Phases 1 and 2 | No. 4.0 

the sampling period, the sampling rate and the collected cumulative mass for the sampling period. For a 

30-day exposure period the detection limit for NO2 and SO2 samplers is 0.1 ppb. Material describing the 

validation of passive NO2 and SO2 samplers in air monitoring stations in Alberta may be found in Tang et 

al. (1997), Tang (1998), ARC (1998), Tang et al. (1999), and Brassard (2001). 

Table 2.1 Minimum performance specifications and operating principles for continuous ambient air 

analyzers (AEP, 2016) 

Criteria O3 
NOx 

 
Routine       Trace Level 

PM2.5 and PM10 

Operating Range 
(full scale) 

0.5 or 1 ppm 
0.5 or 1 ppm  0.2, 0.5 or 

 1 ppm 
500 or 1000 µg/m3 

Lower Detection Limit 1.0 ppb 0.5 ppb               0.05 ppb 4.8 µg/m3 

Precision 1.0 ppb 0.5 ppb               0.05 ppb 2.0 µg/m3 

Operating Principle(s) 
Ultraviolet 

Photometry, 
Chemiluminescence 

Chemiluminescence 
USEPA Equivalent 

method 

Criteria 
SO2 

Routine 
THC/CH4/NMHC 

Trace Level 
H2S and TRS 

Operating Range 
(full scale) 

0.5 or 1 ppm 0.1, 0.5 or 1 ppm 10, 20, 50 ppm 

Lower Detection Limit 2.0 ppb 0.2 ppb 60 ppb 

Precision 1.0 ppb1 0.2 ppb3 1% full scale 

Operating Principle(s) 
Ultraviolet pulsed 

fluorescence 

Flame Ionization Detector 
(FID), Gas 

Chromatography/ FID, 
Oxidizer/FID 

Ultraviolet pulsed 
fluorescence 

1 or 1% of reading, 2 or 0.5% of reading, 3 or 2% of reading 

 

2.2.2 Monitoring Data Used for Analysis, Data Procedures 

Continuous monitoring network data for the period from July 2013 through September 2014 for the 

species O3, NO, NO2, NOx, PM2.5, SO2, NMHC, THC, TRS and CH4 were extracted from AEP archives, 

subjected to quality assurance and control procedures as defined below, and transferred to ECCC for 

analysis. The period was chosen in order to overlap with ECCC air quality model simulations covering the 

same time period, for cross-comparison under Stage 3 of the overall research project.  
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In order to examine the passive and continuous stations together, a further delivery of almost five years of 

monthly and bimonthly passive monitoring data for SO2 and NO2 were obtained from AEP records 

submitted by the operating Airsheds, as well as the corresponding five years of continuous monitoring 

data, for the period from February 2009 to December 2015. The Airsheds in Alberta are the organizations 

responsible for monitoring and reporting air quality to the public.  

The first phase of the analysis of the one-year record of multi-species continuous monitoring data was 

carried out jointly in consultation between AEP and ECCC and focused on procedures to deal with gaps 

in the data. The analysis methodologies employed here require continuous data records (i.e. no gaps in 

the time series of observations used for analysis). The observing network data may have gaps (missing 

data), entries which indicate numbers below the detection limit of the observing samplers, and stations 

may have come on or off-line during the time interval selected. Following published recommendations for 

data analyzed with the methodology used here (Solazzo and Galmarini, 2015), stations were rejected 

from the analysis if their hourly data records for the period selected had more than 10% of the total data 

for the year missing or any data gaps which were more than 168 consecutive hours in length. This 

resulted in a number of stations being rejected from the analysis. The lack of delivery of useable data for 

analysis may in itself be a potential consideration for network optimization. Consultation with AEP was 

carried out to determine and tabulate the reasons for data rejection as these are summarized in Table 2.2 

and Table 2.3 below. 

As can be seen from Table 2.3, most of the stations were rejected on the basis of incomplete records for 

the period studied, but a few stations’ records for specific chemicals were rejected since they did not 

observe the given chemical, were new stations, or were offline during part of the period selected. For the 

stations rejected on the basis of incomplete information, the analysis cannot be carried out; hence, no 

conclusions are possible for these stations aside from their low level of useable data during the period 

studied.  

For those continuous monitoring stations which were not rejected due to missing data, shorter gaps in the 

data records still needed to be filled. The methodology to fill-in the gaps of the observational data follows 

Solazzo and Galmarini (2015): (1) For data gaps of 1 to 6 hours duration, the nearest flanking valid data 

on either side of the gap along with linear interpolation was used for gap-filling; (2) For data gaps of 

longer duration (but less than the 168 hour consecutive limit for data record rejection discussed above), 

the annual average of the non-gap data were used to fill the remaining gaps.  

As a test of the second stage of this procedure on the clustering results, a variation was carried out 

wherein the longer gaps were filled using the average of the same amount of missing days both before 

and after the gap. No substantial difference was found between the resulting clusters in the subsequent 

analysis. 
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Table 2.2  Stations rejected from the continuous monitoring analysis (hourly values), grouped by chemical 

species, and the criteria which resulted in rejection (more than 168 hours missing, or more than 10% total 

data missing (90 percentile)) 

Parameter NOx NOx O3 O3 SO2 SO2 PM2.5 PM2.5 

Criteria 168 

hours 

90P 168 

hours 

90P 168 

hours 

90P 168 

hours 

90P 

Station ID 1063 1056 1250 1056 1036 1056 1225 1168 

Station ID 1029 1488 1071 1488 1071 1488 2000 1172 

Station ID 1071 1495  1495  1495 1171 1224 

Station ID  1476  1476  1479  1036 

Station ID  1174  1174  1164  1476 

Station ID      1476  1250 

Station ID      1174  1488 

Station ID      1068  1174 

Parameter TRS TRS CH4 CH4 THC THC NMHC NMHC 

Criteria 168 

hours 

90P 168 

hours 

90P 168 

hours 

90P 168 

hours 

90P 

Station ID  1476 2001 1495 2001 1068 2001 1495 

Station ID  1174 1049 1476 1049 1476 1049  

Station ID     1172 1052   

Station ID      1488   

Station ID      1174   

Station ID      1495   
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Table 2.3 Continuous monitoring station notes, detailing the cause for station rejection from the analysis. 

Station Notes 

1029 NOx data missing for 268 hours 

1036 SO2 data missing for 323 hours, PM2.5 data completeness 88% 

1049 THC data missing 257 and 113 hours affecting CH4 and NMHC as well  

1052 THC data completeness 59% 

1056 Hinton NOx, SO2 and O3 completeness 67-69% 

1063 NOx data missing for 414 hours 

1068 SO2 data completeness 85% 

1071 O3, SO2 and NO2 data missing for 169 hours 

1164 SO2 data completeness 56% 

1168 PM2.5 data completeness 87% 

1171 PM2.5 data missing for 169 hours 

1172 PM2.5 data completeness 83%, 

1174 THC data missing for 204 hours 

1224 McIntyre building not an ambient station 

1225 PM2.5 data missing for 193 hours 

1250 PM2.5 data completeness 84%, ozone data missing for 416 hours 

1476 Lancaster is a new station 

1479 PM2.5 data completeness 32%, 

1488 Wapasu is a new station 

1495 Calgary Southeast offline for much of the study period was being relocated 

2000 PM2.5 data missing 212 hours 

2001 THC data missing for 505 hours (affects NMHC and CH4) 
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For the comparison between passive and continuous SO2 and NO2 observations, similar quality 

assurance and control procedures were applied. The hourly continuous station data records were subject 

to the same station rejection criteria and gap-filling procedures as for the August 2013 through July 2014 

continuous dataset described above. Passive monitors nominally record either one-month or two-month 

averages, depending on location. One-month data were averaged to bimonthly data in order to have a 

consistent time interval for the dataset (a requirement for the analysis). If one of the two-monthly values 

being averaged was missing from the original data, that bimonthly average was also treated as missing 

data. The resulting set of bimonthly data for all passive stations was then examined for completeness 

where stations which had greater than 25% missing data over the five year period were rejected from the 

subsequent analysis. This rejection criterion is less stringent than that applied to continuous data but it 

was set to achieve a balance between including monitoring sites with most complete data and attaining 

good spatial coverage. For example, an inclusion criterion of less than 10% of the data missing would 

have reduced the number of SO2 passive sites included in the analysis from 52 sites to 18 sites and NO2 

passive sites from 39 sites to 18 sites. Table 2.4 and Table 2.5 summarize which continuous stations 

measuring NO2 and SO2, respectively, were rejected from the analysis and the cause for the rejection; 

Table 2.6 and Table 2.7 summarize which continuous stations measuring NO2 and SO2, respectively, 

were rejected from the analysis. The missing data were gap-filled using the averages for the given station 

for the remainder of the 5 year time period, in order to provide a contiguous time record for these stations 

(a requirement of the analysis). The gap-filled continuous data for the 5 year period were then averaged 

to the same bimonthly intervals. The averaging to a common bimonthly interval was done in order to allow 

the passive and continuous monitors to be analyzed together as a group, as will be described in more 

detail later in this report. 

Table 2.4 Stations rejected from the NO2 continuous monitoring analysis (bimonthly averages), data 

completeness (more than 7 months missing, or more than 25% total data missing (75 percentile)), and 

detailing the cause for station rejection from the analysis. 

Station Data completeness (%) Note  

Albian Mine Site 1 Discontinued February 2009 

Calgary Central-Inglewood 10 Data available from April 2015 

Calgary East 33 Discontinued April 2011 

Calgary Southeast 23 Data available from Nov 2015 

Edson 55 Data available from Dec 2011 

Firebag 14 Data available January 2015 

Hightower 44 Discontinued July 2012 

Hinton 25 Data available from Nov 2013 

Lancaster 28 Data available from Nov 2012 

Station 401 17 Discontinued March 2010 

Stony Mountain 5 Data available from August 2015 
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Wagner 1 Discontinued January 2009 

Wapasu 28 Data available from Dec 2013 

Woodcroft 35 Data available from June 2013 

 

Table 2.5 Stations rejected from the SO2 continuous monitoring analysis (bimonthly averages), data 
completeness (more than 7 months missing, or more than 25% total data missing (75 percentile)), and 
detailing the cause for station rejection from the analysis. 

Station Data completeness (%) Note  

Albian Mine Site 1 Discontinued February 2009 

Calgary East 33 Discontinued April 2011 

Calgary Southeast 23 Data available from November 2015 

Falher 23 Data available from May 2014 

Firebag 14 Data available January 2015 

Hightower Ridge 44 Discontinued July 2012 

Hinton 25 Data available from Nov 2013 

Lancaster 29 Data available from Nov 2012 

Scotford 2 71 Discontinued April 2014 

Stony Mountain 6 Data available from August 2015 

Wagner 1 Discontinued January 2009 

Wapasu 28 Data available from December 2013 

Woodcroft 35 Data available from June 2013 

 

Table 2.6 Stations rejected from the NO2 passive monitoring analysis (bimonthly averages), and data 
completeness (25% total data missing (75 percentile) over the five year period). 

Station Data completeness (%) 

192/22X 45 

Airdrie 45 

Arrowwood 45 

Banff 45 

Bay Tree 67 

Bear Lake 69 

Boone Creek 64 
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Bragg Creek 43 

Calgary Applewood 40 

Calgary East Village 40 

Calgary Elbow Wetlands 43 

Calgary Fish Creek 43 

Calgary Metis Trail 43 

Calgary Nose Hill 43 

Calgary Pumphouse 43 

Calgary Shepherd 40 

Canmore 26 

Clairmont Lake 67 

Claresholm 43 

Clouston Creek 64 

Cochrane 26 

Connemara 43 

Crooked Creek 62 

Crowfoot Crossing 43 

Crowsnest Pass - Allison Creek Road 2 

Crowsnest Pass - Bellevue 2 

Crowsnest Pass - Blairmore Ranger Stn 2 

Crowsnest Pass - Coleman North 2 

Crowsnest Pass - Coleman Valley Floor 2 

Crowsnest Pass - Crowsnest 2 

Crowsnest Pass - Frank Slide 2 

Crowsnest Pass - Lundbreck 2 

Crowsnest Pass - Macload St.Kettle Creek 2 

Crowsnest Pass - Pincher Creek Airport 2 

Deer Mountain 60 

Delacour 26 

Eaglesham 60 

East Prairie 26 

FAP-01 48 
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FAP-02 48 

FAP-03 48 

FAP-04 48 

FAP-05 43 

FAP-06 43 

FAP-07 48 

FAP-08 48 

FAP-09 45 

FAP-10 40 

FAP-21 29 

FAP-33 45 

FAP-34 48 

FAP-35 48 

FAP-36 48 

FAP-38 48 

FAP-39 48 

FAP-40 45 

FAP-41 48 

FAP-47 45 

FAP-51 48 

FAP-53 48 

FAP-58 36 

FAP-59 10 

FAP-60 26 

FAP-62 26 

Fitzsimmons 62 

Flyingshot 67 

Foster Creek 71 

Fourth Creek 57 

Frog Lake 76 

Gift Lake 55 

Gleichen 43 
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Gordondale 67 

Grand Prairie I 67 

Granum 24 

Guy 64 

High Prairie 67 

Highwood Inn 40 

Hythe 69 

Jean Cote 62 

Jumping Pound 26 

Kananaskis Village 38 

Karr Creek 57 

Kinuso 52 

Lake Louise 43 

Langdon2 17 

Langdon 24 

Little Smoky 64 

Lomond 36 

Lyalta 43 

McDougall Church 43 

McLellan 62 

Medley-Martineau 64 

Mossleigh 43 

Namaka 26 

NW Border 24 

Okotoks 43 

Peacock 24 

Peavine 52 

Pinto Creek 67 

Poplar 64 

Portable Passive sample 19 

Primrose 81 

Puskwaskau 52 
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Rosebud 40 

Saddle Hills 67 

Sand River 45 

Shaftesbury 52 

Silver Valley 57 

Spirit River 64 

Stavely 36 

 

Table 2.7 Passive monitoring station notes: causes for station rejection from the analysis Stations 

rejected from the NO2 continuous monitoring analysis (bimonthly averages), and which criteria resulted in 
rejection (more than 1 months missing, or more than 25% total data missing (75 percentile)). 

Station Data completeness (%) 

Bay Tree  69 

Bear Lake 67 

Boone Creek 67 

Burnt Lake 71 

Clairmont Lake 69 

Clouston Creek 67 

Crooked Creek 57 

Deer Mountain 52 

Eaglesham 64 

FAP-01 71 

FAP-04 71 

FAP-07 74 

FAP-08 74 

FAP-10 71 

FAP-11 71 

FAP-12 64 

FAP-18 74 

FAP-23 71 

FAP-24 67 

FAP-26 74 



 

22 Hierarchical Clustering Network Analysis of Ambient Air Monitoring in Alberta: Phases 1 and 2 | No. 4.0 

FAP-27 74 

FAP-29 74 

FAP-30 69 

FAP-31 67 

FAP-32 69 

FAP-33 69 

FAP-37 74 

FAP-38 71 

FAP-39 71 

FAP-42 74 

FAP-43 71 

FAP-45 74 

FAP-48 74 

FAP-49 74 

FAP-51 71 

FAP-52 74 

FAP-53 74 

FAP-54 69 

FAP-57 67 

Fishing Lake 69 

Fitzsimmons 64 

Flyingshot 67 

Foster Creek 69 

Fourth Creek 69 

Gift Lake 52 

Gordondale 71 

Grand Prairie I 64 

Guy 67 

High Prairie 62 

Hythe 69 

Jean Cote 64 

Karr Creek 43 
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Kinuso 57 

Little Smoky 64 

McLellan 62 

Medley-Martineau 62 

Muriel-Kehiwin 71 

Peavine 71 

Pinto Creek 52 

Poplar 64 

Puskwaskau 45 

Saddle Hills 71 

Shaftesbury 62 

Silver Valley 69 

Spirit River 64 

Steeprock Creek 64 

Sunset House 69 

Sylvester 43 

Valleyview 67 

Wanham 69 

Wapiti 62 

Webber Creek 71 

Wembley 55 

Woking 69 

Wolf Lake 55 

 

 

2.3 Methodology for Station Data Analysis: Associativity 
Analysis  

The Workshop on Long-Term Air Monitoring Network Optimization discussed in section 1.1 made 

reference to “Correlation analysis”, the methodology used here is more broadly known as “Associativity 

Analysis” or “Dissimilarity Analysis”, of the sub-type known as “Hierarchical Clustering” with metrics of 

evaluation being (a) 1-R where R is the Pearson correlation coefficient, and (b) the Euclidean distance. 

The methodology is based on prior work by Solazzo and Galmarini (2015) and others referenced therein.  
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For the analysis of multi-species continuous monitoring data, the (quality assured and controlled, gap-

filled) hourly data were time-filtered to remove short-time-scale variations, using a moving average 

approach known as the KZ filter (Zurbenko, 1986). This resulted in four sets of observation-based time 

series for subsequent analysis; the original QA/QC gap-filled hourly datasets, and three additional 

datasets, which have had time variations less than a day, a week, and a month, removed. The 

subsequent analysis examined may thus examine the effect of each of these different time scales, to 

determine the extent to which patterns in the relationships between the stations are strengthened or 

weakened when shorter duration variation in the signal is removed.  

In the second stage of the work, common for both the multi-species continuous and the bimonthly 

continuous + passive analyses, the associativity analysis known as hierarchical clustering was applied to 

the datasets for the stations, using two metrics for the degree of station associativity; correlation and the 

Euclidean distance (described in more detail below). The continuous stations with multispecies data were 

analyzed at the different time scales using this approach, for each of the four sets of filtered data. The 

combined five year record of passive and continuous bimonthly data were also analyzed using 

hierarchical clustering, without the a priori KZ filtering step (since the data themselves were already long-

term averages).  

The mathematical basis of both KZ filtering and hierarchical clustering are described in detail in Appendix 

1. Here, we give a summary overview of the main points of the analysis. The KZ filter is a means for 

removing smaller time scales from a time series, based on an iterative moving average over a specific 

time window. The removal of high frequency variations of the data shows the relative influence of each of 

those time scales on the data. For example, data may have a large degree of variation every hour, but an 

underlying daily or weekly variation which may be of interest in analyzing the observations. The filtering 

allows these different time scales to be isolated and analyzed separately, hence gaining more information 

about the time variation of the data in a given analysis. The combination of the number of times the 

moving average is applied, and the duration of the averaging window, determines the time scales which 

are removed from the time series. Different combinations were used to filter out time scales: in this study, 

time scales smaller than daily, weekly, and monthly were removed from an initial time series of hourly 

data. The station data resulting from each level of filtering may then be cross-compared using hierarchical 

clustering, described below. We note here that we use the KZ filter in its original configuration, as a “low-

pass” filter rather than as a “band-pass” filter. A “band-pass” filter is the difference between two low pass 

filters. The latter methodology was examined in Solazzo and Galmarini (2015); we found that the band-

pass configuration performed poorly for distinguishing shorter time scales in numerical tests (described in 

more detail in Appendix 1, which also contains the mathematical details of KZ filtering).  

It should be noted that time-filtering and averaging do not provide the same information. In the case of 

low-pass time-filtering, the higher frequency variation above some frequency is removed from the time 

series, while in the case of averaging, that information is added to the average. For example, if a plume 

with very high concentrations lasts three hours, then the daily average of the hours for the day containing 

that data will still be affected by that “spike”. Filtering of the data to remove the time scales of less than a 

day means that the effects of such spikes will be removed from the resulting time series. The average of 

the concentrations for a month with a few such events will include the effects of the events in the average, 
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while the time filtered data will have them removed. The methodology used here looks at those underlying 

time scales by filtering them out in successive stages, hence providing information on the time scales at 

which most of the variation occurs. In a correlation analysis, for example, station records which correlate 

with unfiltered data yet do not correlate when all time scales less than a month are removed, show that 

the variation resides within the time scales of less than a month.  

Hierarchical clustering is a well-established method to determine the inherent or natural groupings of 

datasets, and/or to provide a summarization of data into groups. The grouping is done on basis of 

similarities or dissimilarities. Here, we will discuss the data in terms of their dissimilarity. The first step for 

hierarchal clustering is to choose a metric to describe how different (how dissimilar) a pair of data records 

(time series) are from each other, and calculate that metric for all possible pairs of the time series. After 

the level of dissimilarity has been calculated for each station with respect to every other station, the 

resulting dissimilarities are compared to each other and combined in the following procedure: 

a) The two station records with the lowest level of dissimilarity are identified (i.e., the station records 

which are most “like” each other with respect to the metric of dissimilarity being used). This 

combination of stations becomes the first “cluster” of the analysis (i.e., clusters are groups of stations 

identified as being the most similar based on the dissimilarity metric). 

b) The dissimilarities between this new cluster of two station records, and the remaining station records 

of the dataset, are then calculated. Here, the averages of the dissimilarity metric values between the 

two station records making up the new cluster, and each remaining station records, were calculated 

to describe these dissimilarities. This approach is known as the “general averaging method”.  

c) The dissimilarity values of the remaining station records, along with that of the new cluster, are 

examined again, and the most similar combination is identified. This combination may be between as 

of yet un-clustered station records, or between a station record and the new cluster. Once again, the 

general averaging method is used to combine the two.  

d) The process of adding station records to existing clusters and/or combining clusters is repeated until 

all the station records have been clustered. The values of the metric used for dissimilarity as each 

new cluster is formed, along with the order in which the station records and clusters combine at each 

stage, are tracked.  

e) Once all of the station records have joined a cluster, the tracked information (the order in which the 

station records combined with others and with clusters, and the level of the metric at which they 

combined) are used to generate diagrams called “dendrograms” which show the dissimilarity 

relationships between the stations. The relative ranking of the station records according to the 

dissimilarity level at which they join clusters show the relative dissimilarity (and hence similarity) 

between station records.  

The analysis thus results in two main products: dendrograms showing the similarity relationships in detail, 

and tables of relative rankings of the (dis)similarity between station records. The data with the most 

similar records are potentially the most redundant, identical records being the extreme case. 

The choice of a metric to describe the degree of dissimilarity between two stations is a crucial one, thus 

calculated similarities are only with respect to that specific metric. Different metrics may result in different 

rankings of stations on the degree of dissimilarity – hence the inferred level of potential redundancy also 

depends on the metric employed. Here, we have examined the dissimilarities resulting from two different 

metrics, and contrast their results in our analysis. The first of these metrics is “1-R”, that is unity minus the 

Pearson correlation coefficient, the latter being the correlation coefficient between the two time series 
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being compared. This metric has been used in the past in dissimilarity analyses of air pollution 

observations (Solazzo and Galmarini, 2015; Yan and Wu, 2016). The second of these metrics is the 

Euclidean “distance”, the square root of the sum of the squares of the differences between the two time 

series at every value of the time series. The magnitude of the Euclidean distance, being a summation, will 

thus depend on the number of entries in the time series. Both of these metrics are used extensively within 

hierarchical clustering algorithms, and appear in texts on the methodology (e.g. Johnson and Wichern, 

2007; Hastie et al., 2009; Næs et al., 2010). Appendix 2 contains a more detailed description of the 

hierarchical clustering methodology employed in this work, and the mathematical details of the metrics 

chosen for computing the dissimilarity between the time series.  

Our reasoning in making use of the two dissimilarity metrics rather than 1-R alone is as follows, using a 

few examples. In many air pollution applications, one might expect pairs of stations to be aligned at 

different distances downwind from emission sources – the stations may thus be highly correlated, despite 

the increased dilution which might be expected with further distance from the source. High correlation 

alone may thus be an insufficient means by which to judge redundancy of station data, since the 

decrease in concentration with the distance from the sources will not feature into the analysis. However, 

the time series of two stations may also be very similar in magnitude but may be poorly or even anti-

correlated due to being impacted by sources with emissions which vary differently over time. We therefore 

use both metrics in our analyses, noting that station time series pairs are the most similar, and hence 

potentially the most redundant, when both their 1-R and the Euclidean distance rankings for the stations 

are relatively low. 

2.3.1 Dendrograms 

As noted above, the results of hierarchical clustering may be displayed using specialized diagrams called 

“dendrograms”. Dendrograms show the pattern of linkages between the data series while clustering 

occurs, as well as their level of dissimilarity. Dendrograms thus resemble the root system of a tree, with 

the most similar stations forming the lowest level of the smallest roots, and the two least similar clusters 

being linked at the top of the diagram as the trunk of the tree. Vertical lines on the dendrogram represent 

the difference in the level of dissimilarity between consecutive stages of clustering; the horizontal lines 

show which time series or clusters of time series have been linked at a given level of the dissimilarity 

metric. A simple example of the construction of a dendrogram follows, in order to allow the reader to 

better interpret the subsequent results.  

In this example, data for three different hypothetical stations are collected, and to measure their level of 

dissimilarity, the values of 1-R are calculated between each of the pairs of station records (Figure 2.1; the 

supporting tables give the values of the dissimilarity metric, 1-R). The data from stations 1 and 2 have a 

1-R value of 0.5, stations 1 and 3 have a 1-R value of 0.4, and stations 2 and 3 have a 1-R value of 0.1. 

The lowest level of dissimilarity is thus between stations 2 and 3, and they are combined to become the 

first cluster, at a 1-R level of 0.1 (stations 2 and 3 are joined by a horizontal line in the dendrogram of 

Figure 2.1). The averages of 1-R between this cluster and the other stations are then calculated; in this 

case (0.5 + 0.4)/2 = 0.45, second table of Figure 2.1. Stations 2 and 3 thus cluster at 1 – R of 0.1, and the 

remaining station, 1, clusters at 1-R of 0.45. The second horizontal line of the diagram portion of Figure 
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2.1 shows the connection between the initial cluster between stations 2 and 3 and the final cluster with 

station 1. The result is a 3 station dendrogram (Figure 2.1). 

 

Figure 2.1. Example clustering of three stations: supporting tables to establish the dissimilarity between 

the stations (left); a) dendogram and b) map of spatial distribution of clusters. 

 

Dendrograms for the Euclidean distance are similar in appearance to those for 1-R, the vertical axis of the 

dendrogram becoming the “distance” in concentration between the station records of the records being 

clustered.  

If then we would assume a level of dissimilarity of 1-R = 0.2 (i.e. a correlation level 0.8) and draw a line 

over the dendogram at such level (red line, Figure 2.1), the clusters which fall below that line have a 

greater degree of similarity than the clusters or station records which join above that line. The locations of 

the stations that are included within clusters for a given level of dissimilarity may be then displayed on a 

map; the stations may be colour-coded according to their cluster of which they are a part. The resulting 

maps (e.g., Figure 2.1(b)) show the spatial relationships between station records which have a given level 

of dissimilarity. In the above example at correlation level 0.8 (1-R = 0.2) there are two sets of clusters: 

one comprised station 1, and the other comprised stations 2 and 3. 

Stations may be ranked according to their degree of dissimilarity based on the level at which they join a 

cluster. In the above example, stations 2 and 3 join at the 1-R level of 0.1, and station 1 joins at the 1-R 

level of 0.45, and this may be displayed in Table 2.8 as follows: 

Table 2.8 Relative ranking of stations 1, 2 and 3 based on the dissimilarity metric 1-R. 

Station 1-R 

1 0.45 

2 0.10 

3 0.10 

 

 

Station 

1-R 

1 2 3 

1 0 0.5 0.4 

2 0.5 0 0.1 

3 0.4 0.1 0 

 

 

Station 

1-R 

1 2,3 

1 0 0.45 

2,3 0.45 0 

 

a) b)

b) 
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The tables of relative dissimilarity place the most similar stations at the bottom of the table – Table 2.8, 

above, shows that the data records of stations 2 and 3 are the most similar. Also note that the two 

stations at the bottom of the table are linked to each other – the dendrogram must be used to determine 

which stations link with which clusters, in more complicated cases with more stations. 

 

2.4 Choice of Stations to Cluster – Comparison of 
Networks versus Comparison Within Networks  

The data analyzed here were collected by the Airsheds in Alberta (Figure 1.1). The data may be analyzed 

on a provincial basis, regardless of the source of information: as noted by Solazzo and Galmarini (2015), 

this may highlight useful information, such as clusters which may represent a lack of uniformity in 

measurement procedures across different jurisdictions. At the same time, conclusions of this nature must 

be drawn with care, since a common set of clusters within a given reporting jurisdiction may also 

represent sources that are unique to that region. Clusters of stations across geographically diverse 

locations may represent similar emitting processes occurring in those locations, while not necessarily 

indicating a physical link between the stations. These analyses are however useful, simply from the 

standpoint of identifying those similar processes occurring in the data. Redundancies, however, must be 

identified with these limitations in mind. 

Clustering may also be carried out solely with records originating within a given Airshed (see Figure 3.2 

and Figure 3.7 for examples) – these allow more specific estimation of potential redundancy, in the 

context of the expectation that the given stations are intended to measure primary and secondary 

pollutants originating from a physically nearby source or collection of sources, and hence the reasons for 

similarities across their data records may be less ambiguous.  

 

 

2.5 Methodology Summary 

Our analysis thus had the following steps:  

 Following QA/QC procedures and for the data, KZ filtering was used on the continuous hourly 

datasets for the one-year period to remove variation corresponding to periods less than one day, one 

week, and one month.  

 Time averaging of five years of hourly continuous data and monthly to bimonthly passive data for 

NO2 and SO2 were used to create bimonthly five year records for these two species. 

 Hierarchical clustering was carried out: 

- For the passive and continuous bimonthly five year records, for the WBEA stations, the LICA 

stations, and the entire province of Alberta. 

- For the continuous data, for the entire province of Alberta 

- Using two different dissimilarity metrics, 1-R and the Euclidean norm, for each of these 

datasets. 
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 Dendrograms were generated and clustering results were tabulated to show the relative ranking of 

similarity for each of these analyses and for each metric examined. 

 

 

3 Applications of the Methodology 

3.1 Associativity Analysis for WBEA: Five-year Combined 
Continuous and Passive Observations  

The WBEA stations for which bimonthly NO2 and SO2 data were analyzed are shown in detail in Figure 

3.1 for both the entire set of WBEA stations and for a zoomed-in view close to the main oil sands facilities 

in the Athabasca valley. Station Identification (ID) numbers in Figure 3.1 ending with a “P” or “C” letter 

suffix refer to passive and continuous monitors, respectively. 

Stations were also grouped by AEP according to the dominant land-use around the station and/or the 

type of emissions sources nearby (Traffic, Point Source, Traffic and Point, Agriculture, Broadleaf Forests, 

Coniferous Forest, Grassland, Shrubland, Developed and Non-Specific) – these designations were 

initially used to colour-code station names in the resulting dendrogram analysis – however, no 

discernable pattern between the designations and the clustering could be observed, so that colour coding 

has not been retained here. 
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Figure 3. 1 Wood Buffalo Environmental Association’s (WBEA) monitoring stations, located in the 

Athabasca oil sands region (bottom map: zoom over the blue box on upper map). Continuous stations are 
shown as inverted triangle, passive stations as circles. 
 

3.1.1 NO2 Dissimilarity Analysis, WBEA Stations  

The NO2 dendrograms resulting from the use of 1-R as the dissimilarity metric is depicted in Figure 3.2, 

for the WBEA Athabasca oil sands region. Figure 3.2 (a) shows that the 1-R clustering follows two broad 

groups in the first branching of the dendrogram, taking place at correlation level of 0.41 (1-R = 0.59): on 

the right, a cluster composed of a set of passive monitoring stations (JP213/9913P, BM10/9903P, 

BM11/9904P, BM7/9905P, NE7/9916P, R2/9920P, JP212/9912P, JP205/9910P, JP107/9909P, 

NE11/9915P, NE10/9914P, SM7/9921P) and on the left, the remaining passive monitoring stations 

(AH8/9902P, JP102/9907P, JP104/9908P, Fort Mckay-Bertha Ganter/1032P, JP101/9906P, AH3/9901P, 

JP210/9911P, and AH7/9919P) clustered together with the continuous monitors. For this left branch, the 

continuous monitor at Fort Chipewyan/1071C separates out, followed by the remaining continuous 
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monitors cluster separating from the passive monitors at a correlation level of 0.68 (1-R=0.32). Fort 

Chipewyan/1071C is located far to the north of the other continuous monitors (see Figure 3.1, circled 

station), and far from the sources of emissions around which the other monitors are located. Thus, the 

NO2 concentration record at Fort Chipewyan/1071C might be expected to be different the remaining 

continuous monitoring sites, all of which are in closer physical proximity to each other, and this explains 

the separation of Fort Chipewyan/1071C from the rest of the continuous stations early in the clustering. 

However, the separation of all of the continuous monitors from the passive monitors within the first three 

branches of the dendrogram reflects a systematic difference between the measurement methodologies 

employed in each case – that is, the performance of the two types of monitors is sufficiently different that 

they form different clusters. It should also be noted that while some of the passive monitors in this left 

branch (the ones most closely linked to the continuous monitors) are in close physical proximity to the 

continuous monitors (specifically, JP104/9908P, JP102/9907P, AH3/9901P, AH8/9902P, AH7/9919P), 

two others are more distant (JP210/9911P and JP101/9906P). The larger distance implies similar local 

source types, or high degree of uncertainty in the observations. Passive stations JP212/9912P and 

WF4/9918P meanwhile are relatively close to the group of continuous monitors, but do not cluster closely 

with them. These two passive stations are on the opposite side of the river valley from the continuous 

sites (hence local topographical features may modify the meteorological flow, isolating the stations from 

each other, and thus may play a role in the lack of clustering with nearby sites at this correlation level), 

but JP212/9912P clusters most closely with the group including JP205/9910P, JP107/9909P, 

NE11/9915P, NE10/9914P, which are considerably more distant from the sources. These groupings do 

not seem to follow proximity to the sources, and may indicate other processes aside from emissions 

proximity dominating the local concentrations at these sites, and/or low precision in the observations. The 

clusters at a given correlation level may be mapped to show their spatial distribution and gain further 

insight in the analysis. Figure 3.2(b) shows the clusters at a correlation coefficient of 0.75 (1-R=0.25), 

each cluster present at this level having been assigned a different colour. The clusters at this level are: 

Fort Chipewyan/1071C (a single member cluster), the remaining continuous monitors, and six clusters of 

passive monitors: a first group comprised of AH8/9902P, JP102/9907P, JP104/9908P, Fort Mckay-Bertha 

Ganter/1032P, JP101/9906P, AH3/9901P, JP210/9911P, and AH7/9919P, JP213/9913P as a single 

member cluster, a cluster between BM10/9903P, BM11/9904P, BM7/9905P, a cluster between 

NE7/9916P, R2/9920P; JP212/9912P as a single-member cluster; and a final group of passive monitors 

(JP205/9910P, JP107/9909P, NE11/9915P, NE10/9914P, SM7/9921P). This division between the sites at 

R=0.75 might indicate that the stations are monitoring very different sources, or air masses, since they 

cluster at a relatively high correlation level.  
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Figure 3. 2 (a) Dendrogram for passive and continuous bimonthly NO2 averages considering 1-R as the 
dissimilarity matrix, for Wood Buffalo Environmental Association (WBEA). (b) Clustering of stations for 1-
R=0.25 
 

The dendrogram considering Euclidean distance as a metric to compute the dissimilarities (Figure 3.3 (a)) 

shows a very different pattern from the correlation analysis. For example, three of the continuous stations 

(Millennium Mine/1075C, Fort McMurray-Athabasca Valley/1064C, and Shell Muskeg River/1244C) are 

located to the north, directly within, and to the south of all of main NO2 emitting region - and hence might 

be expected to have the greatest difference in their Euclidean distances. Figure 3.3 (b) shows the clusters 

which result at a Euclidean distance 25% of the maximum distance shown in the dendrogram (i.e. a 

Euclidean distance of 6 ppb): sixteen stations form a single cluster at this level, though their wide 

distribution of spatial locations both close to and far from the main emission region suggests imprecision 

in the observations, a similar low “background” level being observed at all stations, and/or very local 

conditions may play a role in the clustering for the passive stations. For example, passive station 

JP102/9907P clusters with continuous station Anzac/1225C at a Euclidean distance of 5.1 ppb, but not 

with continuous stations Patricia McInnes/1070C, or Athabasca Valley/1064C, which are located between 

JP102/9907P and Anzac/1225C. There may also be similar issues with the data from the continuous 

stations. For example, CNRL Horizon/1226C, Fort McKay-Bertha Ganter/1032C, Fort McKay-

South/1076C and Fort McMurray-Patricia McInnes/1070C all cluster for Euclidean distances less than 7 

ppbv – the first three stations are in relatively close proximity, and hence might be expected to cluster 

together, but the last is located on the far (south) side of the main emissions region from the first three. 

Also, despite being the close proximity between Fort McMurray-Patricia McInnes/1070C and Fort 

McMurray – Athabasca Valley/1064C, these stations do not cluster closely using the Euclidean distance 

metric, suggesting other factors at play in setting concentrations at these sites. 

(a) (b)
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Figure 3. 3 (a) Dendrogram for passive and continuous bimonthly NO2 averages considering Euclidean distance as 

the dissimilarity matrix, for Wood Buffalo Environmental Association (WBEA). (b) Stations colour coded for clusters 
with a Euclidean norm of 6 ppbv. 

 

3.1.2 SO2 Dissimilarity Analysis, WBEA Stations  

The clustering results using the metric 1-R for SO2 are not as clear as for NO2; Figure 3.4(a) shows that 

the station data form clusters at higher dissimilarity values (lower correlation coefficients) for SO2 than for 

NO2 (compare to Figure 3.2(a)). Figure 3.4 (b),(c) show the spatial distribution of stations at 1-R values of 

0.8, 0.5, and 0.3 (R=0.2, 0.5 and 0.7, respectively). The higher dissimilarity values in Figure 3.4(a) reflect 

the nature of the SO2 sources; unlike NO2 (a large component of the emissions of which come from 

surface-based area sources such as the “heavy hauler” trucks at the mine sites), the SO2 emissions are 

almost entirely from stacks (aka “point sources”). The low correlations may thus reflect the more time 

dependent nature of SO2 emissions, as well as the dependence of the resulting downwind concentrations 

on meteorological variables throughout the atmospheric column, such as the atmospheric stability at the 

point of emissions (controlling plume rise), and the wind at different levels (controlling the downwind 

dispersion direction of the plumes). It is also worth noting that for stations rarely impacted by high 

concentration plumes, the background SO2 may close to or below the detection limit of the sampler, 

reducing correlations. 

As was seen NO2, the first branching clearly separates two set of stations, this time, though, there is less 

of a clear distinction between passive and continuous monitors in the clustering, though many of the 

continuous monitors are part of a single cluster for 1-R < 0.57, and a subgroup of continuous and passive 

stations (Fort McKay-Bertha Ganter/1032P,1032C; Fort McKay-South/1076C; JP102/9907P; 

Mannix/1069C; and CNRL Horizon/1226C) are part of a single cluster for 1-R< 0.54. There is some 

degree of consistency with location; for example, Mannix and JP102 or continuous stations in Fort 

Mackay (1032C, 1076C, 1032C) are relatively close to each other spatially, and cluster with a higher 

(a) (b)
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correlation coefficient (R =0.7 and 0.837), Shell Muskeg River/1244C is at times directly downwind of 

NE11/9915P (R = 0.68), as are Mildred Lake/1066C and passives JP104/9908P and JP212/9912P. 

The SO2 dendrogram for Euclidean distance is shown in Figure 3.5 (a), and the clusters for Euclidean 

distances of 5.0, 4.0, and 3.0 ppbv are shown Figure 3.5 (b), (c),(d), respectively. The dendrogram for 

SO2 Euclidean distance (Figure 3.5 (a)) shows clustering taking place at smaller Euclidean distances 

compared to its NO2 counterpart (see Figure 3.3), indicating a lesser degree of dissimilarity between SO2 

stations than NO2 stations. The SO2 nodes also have a smaller dynamic range from maximum to 

minimum Euclidean distance. However, some stations tend to cluster more closely than others – for 

example, Fort Chipewyan/1071C, NE10/9914P, BM7/9905P, and SM8/9917P all cluster together for a 

Euclidean distance of 3.33 ppbv (cluster 3 in Figure 3.5 (c)) , clustering further with stations such as 

Anzac /1225C, JP210/9911P, JP213/9913P at 4.7 ppbv (cluster 1 in Figure 3.5 (b)). All these stations 

have the common feature of being located a significant distance from the main emissions sites varying 

from 75 to 188 km from the Syncrude main stack. Figure 3.5 (b), (c) shows how the stations cluster 

regarding the distance to the main sources in the area. The analysis thus suggests that for SO2, the 

Euclidean distances become more similar with increasing distance from the sources. This “makes sense” 

on an intuitive level, in that close to the emission sources, the plumes from the large stacks will be very 

distinct and very dependent on the local meteorological conditions – while further downwind, the plumes 

will be more dispersed, and have a greater chance of being sampled at more than one downwind site at 

the same time, with similar concentrations.  
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Figure 3. 4 (a) Dendrogram for passive and continuous bimonthly SO2 averages using 1-R as as the 

metric to compute the dissimilarity matrix, for Wood Buffalo Environmental Association (WBEA). (b),(c),(d) 
Station clusters for 1-R of 0.8, 0.5 and 0.3, respectively. 

(a)

(b) (c) (d)
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Figure 3. 5 (a) Dendrogram for passive and continuous bimonthly SO2 averages using Euclidean 

distance as the metric to compute the dissimilarities, for Wood Buffalo Environmental Association 
(WBEA). (b), (c), (d) Stations colour-coded for Euclidean distances of 5.0 ppbv, 4.0 ppbv and 3.0 ppbv, 
respectively. 

 

 

 

 

(a)

(b) (c) (d)
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3.2 Associativity Analysis for LICA: Five-year Combined 
Continuous and Passive Observations  

The station names and identification numbers for continuous and passive data operated by LICA are 

shown in Figure 3.6, below. One noticeable difference from the WBEA stations is the predominance of 

passive monitoring stations, with only three sites (Cold Lake South/1174C, Maskwa/1248C and St. 

Lina/1250C) having continuous monitors.  

 

Figure 3.6 Stations in Lakeland Industrial Community Association’s oil sands region, located near Cold 

Lake, Alberta. 

 

3.2.1 NO2 Dissimilarity Analysis, LICA stations 

The LICA NO2 dendrogram using 1-R as a dissimilarity metric Figure 3.7(a) shows the first and second 

branching occur at correlation level 0.03 and 0.56 (1-R = 0.97 and 0.44), corresponding to passive 

stations Primrose/1186P and St. Lina/1252P, respectively. Additionally, the analysis shows that the 

passive and continuous monitors have sufficiently dissimilar time series that collocated monitors of each 

respective type do not fall within the same cluster. For example, the passive and continuous pair located 

at St Lina (1250C and 1252P) are collocated on the map scale used in Figure 3.7 (a), but do not cluster 

closely despite this co-location (we note also that previous work (Bari et al, 2014) suggested that passive 

NO2 monitors tend to be biased low relative to collocated continuous monitors). These examples may 

also indicate the level of error in the observations, and/or specific events recorded at one station and not 

another. With regards to potential sources of error, we note that the time series for Primrose/1186P 

showed that it included a single isolated high concentration data point which does not appear in the data 

for the surrounding stations. However, St. Lina was chosen as an upwind site from the sources in the 

Station ID Station Name 

1174C Cold Lake South 

1248C Maskwa 

1250C ST.LINA 

1176P Therien 

1177P Flat Lake 

1178P Lake Eliza 

1179P Telegraph Creek 

1181P Muriel-Kehiwin 

1182P Dupre 

1183P La Corey 

1184P Wolf Lake 

1185P Foster Creek 

1186P Primrose 

1187P Maskwa 

1189P Frog Lake 

1190P Clear Range 

1191P Fishing Lake 

1192P Beaverdam 

1193P Cold Lake South Passive 

1194P Medley 

1195P Fort George 

1196P Burnt Lake 

1197P Mahihkan 

1198P Hilda Lake 

1199P Town of Bonnyville 

1227P Cold Lake South Passive 2 

1252P St. Lina 
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LICA Airshed – so its tendency not to cluster with other stations may be related to its location. The 

methodology has identified the time series for these stations as being dissimilar from the others (and 

hence helps suggest potential QA/QC methodologies which could be used in the future). The underlying 

causes for that dissimilarity must be based on examining the time series and using local knowledge of 

sources and conditions. 

 

Figure 3.7 (a) Dendrogram for passive and continuous bimonthly NO2 averages using 1-R as the 

dissimilarity matrix, for Lakeland Industrial Community Association (LICA). (b) Stations colour-coded by 
cluster for 1-R =0.1 (R=0.9). Stations with continuous monitors end in a “(C)”, and stations with passive 
monitors in a “(P)”. 

 

Returning to Figure 3.7 (a), at the third branching, at correlation level 0.79 (1-R=0.21), the stations split, 

with the continuous monitors clustering on the left and the remaining passive monitors on the right. Within 

the cluster of three continuous monitors, correlations are very high; all are greater than 0.9 (1-R<0.10) 

and monitors Maskwa/1248C and St Lina/1250C correlate at above the 0.9. It is important to note that all 

three continuous monitors correlate highly despite their separation in space and in comparison to the 

proximity between the St. Lina passive and continuous monitors. The analysis thus suggests that 

continuous and passive monitors within this region are differing in the degree of similarity – the former 

being highly similar with respect to each other, the later having a lower degree of similarity with both the 

continuous monitors and other passive monitors. The larger “passive” cluster to the right of Figure 3.7 (a) 

comprises stations such as Beaverdam/1192P, Frog Lake/1189P, and Town of Bonneyville/1199P. These 

have very different land-use types according to records provided by AEP (“broadleaf forest”, “shrub-land” 

and “developed”, respectively), suggesting that for these locations, the land-use designations have little 

impact on correlation. There are two clusters of passive stations with a correlation level of over 0.9 (1-

R=0.1): one comprised of Fishing Lake/1191P, Fort George/1195P and La Corey/1183P and the other 

including the remaining passive stations (Cold Lake South Passive/1193P, Cold Lake South 

Passive2/1227P, Lake Eliza/1178P, Maskwa/1187P, Flat Lake/1177P, Clear Range/1190P, 

(a) (b)
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Dupre/1182P, Muriel-Kehiwhin/1181P, and Therien/1176P). Figure 3.7(b) shows the stations mapped 

with common colours within clusters for R=0.9, showing the locations of these highly correlated groups. 

The NO2 dendrogram using Euclidean distance as the dissimilarity metric (Figure 3.8(a)), shows passives 

Primrose/1186P and Town of Bonnyville/1199P forming the first two branches of the dendrogram at 15.6 

and 10.4 ppb, respectively, followed by the continuous monitor at Cold Lake South at level 10.1 ppb. 

Unlike the 1-R metric, the Euclidean distance does not have the continuous monitors clustering closely, 

as was noted for the WBEA stations. The continuous stations for NO2 in both WBEA and LICA cluster 

closely for 1-R, but poorly for Euclidean distance. This suggests that NO2 observed at these stations co-

vary but differ in magnitude, the former possibly indicating a similar time dependence for the NO2 sources 

and/or meteorology, and the latter indicating influence by similar sources, but differences in downwind 

magnitudes due to dispersion, transformation or deposition of NO2. The remaining monitors start 

branching out in the dendrogram at a level of 6.5 ppb. A few passive monitors form a single cluster at 

levels lower than 2 ppb: Flat Lake/1177P, Fishing Lake/1191P, Lake Eliza/1178P and Muriel-

Kehiwin/1181P. Figure 3.8(b), (c) show the stations colour-coded by clusters at Euclidean distances of 5 

ppbv and 2.5 ppbv, respectively. As discussed in more detail later in this report, clustering of stations may 

sometimes result from being located where there is little influence from sources – this may be the case 

here; all four passives appear to be located in a similar (remote) environment. 
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Figure 3.8 (a) Dendogram for passive and continuous bimonthly NO2 averages using Euclidean distance 

as the dissimilarity matrix, for Lakeland Industrial Community Association (LICA). (b),(c) Stations colour-
coded according to Euclidean distances of 5 and 2.5 ppbv, respectively. Stations with continuous 
monitors end in a “(C)”, and stations with passive monitors in a “(P)”. 

 

3.2.2 SO2 Dissimilarity Analysis, Cold Lake region 

The SO2 dendrograms resulting from the use of 1-R as the dissimilarity metric (Figure 3.9(a)) show a 

different pattern from those for NO2, as all three continuous stations do not cluster together at as high 

levels of correlation as for NO2. Town of Bonnyville/1199P branches out as a single cluster at correlation 

level 0.02 (1-R = 0.98) followed by the continuous station Cold Lake/1174P at correlation level 0.32 (1-R 

(a)

(b) (c)
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= 0.68). The third bifurcation forms a cluster between Maskwa/1248C and St. Lina/1250C at a correlation 

level 0.41 (compared to R=0.90 for NO2). The fourth bifurcation, at correlation level 0.51 (1-R = 0.49), 

divides passives Hilda Lake/1198P and Telegraph Creek/1179P from the remaining passives, followed by 

Maskwa/1187P and Primrose/1186P clustering at correlation level 0.79 (1-R = 0.21). Figure 3.9(b), 

presenting the stations colour-coded by cluster for R values of 0.7, shows Maskwa and Primrose cluster 

as cluster 6 and the remaining passives (aside from Town of Bonnyville/1199P) being represented as 

cluster 4. Figure 3.9 (c) shows some tendency of stations to cluster according to distance from the 

sources to the north-east of Cold Lake, with many stations further from these sources falling within a 

common cluster (cluster 4; Therien/1176P, Flat Lake/1177, Lake Eliza/1178P, Clear Range/1190P, 

Beaverdam/1192P and Fort George/1195P)). There are passives samplers clustering in two different 

clusters at correlation level 0.90 (from left to right): Fort George/1195P and Flat Lake/1177P; and Cold 

Lake South Passives 1 and 2 (1193P and 1227P, respectively). This analysis also shows that collocated 

passive and continuous monitors poorly correlate (Maskwa (1187P/1248C), Cold Lake South 

(1193P/1227P/1174C) and St. Lina (1252P/1250C)). 

The SO2 dendrograms which use the Euclidean distance as the dissimilarity metric (Figure 3.10(a)) show 

smaller magnitude differences between the stations, compared to NO2 (compare vertical axes of Figure 

3.8(a) and Figure 3.10(a)). The detection limit of SO2 in the continuous monitors used here is 0.5 ppbv, 

while the passive detection limit is 1 ppbv – many of the stations are thus reporting values close to the 

detection limit, increasing their similarity for the Euclidean distance metric. Almost all the stations cluster 

at Euclidean distances of less than 2.5 ppbv distance, with exception of the continuous monitor St 

Lina/1250C and Cold Lake South/1147C, forming a single cluster at 3.9 ppbv and 3.4 ppbv, respectively. 

Passives Hilda Lake/1198P and Maskwa/1187P cluster together at 2.1 ppbv but are the first clusters 

branching out of the dendogram at a distance level of 5.3 ppbv. The collocated passive and continuous 

pair at St Lina (1252P/1250C), Maskwa (1248C/1187P) and Cold Lake South (1174C/1193P, 1227P) do 

not cluster with each other, again suggesting that the passive and continuous observations are not 

equivalent. Figure 3.10(b) shows the clusters resulting for a Euclidean distance of 1.0 ppb. Two different 

clusters of passive stations have a Euclidean distance within 1 ppb, one comprising of Cold Lake South 

Passives 1 and 2/1193P/1227P, La Corey/1183P, Beaverdam/1192P, Dupre/1182P, Fort George/1195P 

and Therien/1176P (cluster 4), and the other of Flat Lake/1177P, Clear Range/1190P and Lake 

Eliza/1178P (cluster 5). 
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Figure 3.9 (a) Dendogram for passive and continuous bimonthly SO2 averages using 1-R as the 

dissimilarity metric, for Lakeland Industrial Community Association (LICA). (b) Station locations colour-
coded by R value for R=0.7 and R=0.8, respectively. Stations with continuous monitors end in a “(C)”, and 
stations with passive monitors in a “(P)”. 

(a)

(b) (c)
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Figure 3.10 (a) Dendogram for passive and continuous bimonthly SO2 averages using Euclidean distance 
as the dissimilarity metric, for Lakeland Industrial Community Association (LICA). (b) Stations colour-
coded by cluster for a Euclidean distance of 1 ppb. Stations with continuous monitors end in a “(C)”, and 
stations with passive monitors in a “(P)”. 

 

3.3 Associativity Analysis for Alberta: Passive and 
Continuous Bimonthly Observations 

The same procedures for data selection and hierarchical clustering described above were applied to the 

five year record of bimonthly NO2 and SO2 observations for the entire province of Alberta. As before, 

station ID’s contain a “P” or “C” letter, referring to passive and continuous monitors, respectively. 

The NO2 1-R metric dendrogram for the five year dataset, with station names colour-coded by the 

Airsheds, is shown in Figure 3.11. A prominent feature of this dendrogram is that clustering largely by 

Airshed can be seen for stations within the four Airsheds with the largest numbers of stations (PAS, 

Parkland Airshed Monitoring Zone (PAMZ), LICA, and WBEA (the latter is broken into subgroups, though 

large numbers of stations nevertheless cluster together). This clustering might be expected for stations 

with internally similar measurement procedures and similar sources internal to the Airshed which differ 

from those elsewhere, and shows that the methodology employed here is capable of identifying these 

differences. The clusters are more distributed across Airsheds for the remaining 5 Airsheds (West Central 

Airshed Society (WCAS), Fort Air Partnership (FAP), Calgary Regional Airshed Zone (CRAZ), Alberta 

Capital Airshed Alliance (ACAA), and Peace Airshed Zone Association (PAZA)), though the pattern 

sometimes identifies commonalities of types of emissions and physical proximity between Airsheds. For 

example, the continuous monitors at Edmonton Central, Fort Saskatchewan, Edmonton East, Calgary 

Northwest, Edmonton South, and Red Deer Riverside, and Ross Creek all cluster at 1-R = 0.07 (R=0.93). 

While these stations are separated greatly in space, they are all located in urban, small town, or mixed 

urban/industrial settings. The time series of the ambient NO2 at these locations, and hence their 

(b)(a)
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correlations, will likely reflect urban emissions as a dominant local source of NOx. The 1-R analysis thus is 

identifying similar source types separated by large distances, for this cluster.  

Referring to Figure 3.11, the first branching shows LICA passive monitor, Primrose, anti-correlating with 

all the other stations (1-R =1.03), implying that this station may be located in a relatively unique setting 

(e.g. at a site with a unique set of conditions or sources). Examination of the data shows that Primrose’ 

time series has a large outlier concentration for one of its bimonthly values; the analysis has thus 

identified Primrose as unique; one of the benefits of this analysis is that such issues are flagged as part of 

the analysis, and subsequent decisions on data quality assurance and control can be made. All of the 

PAS passive stations form a separate cluster at a relatively low correlation (R=0.08; 1-R = 0.92). 

However, PAS’s single continuous monitor (Crescent Heights) clusters more closely with other continuous 

monitors, again suggesting that differences in sampling methodology between the continuous and 

passive samples. PAMZ’s Baseline Mountain passive site correlates poorly with the other stations due to 

its mountaintop location (R=0.13; 1-R=0.87). 

The third main branching at correlation level 0.30 (1-R = 0.70) shows three WBEA passive monitors 

clustering with PAMZ’s Parker Ridge passive monitor – probably a reflection that all four stations have 

relatively low concentrations and higher signal to noise ratio at such concentrations. Except for St. Lina, 

all LICA passive monitors cluster together at correlation level 0.83 (1-R = 0.17) and WBEA passive 

monitors split into two clusters: at correlation level 0.44 (1-R = 0.66) a set of passive monitors are 

clustering with LICA passive monitors and only at correlation level 0.72 (1-R = 0.27). WBEA passive 

monitors (R2/9920P, JP205/9910P, JP107/9909P, NE11/9915P, NE10/9914P, SM7/9921P, SM8/9917P, 

BM10/9903P, and WF4/9918P) form a cluster of their own with JP212/9912P, NE7/9916P, JP213/9913P, 

BM7/9905P and BM11/9904P falling out as individual clusters when correlation level increases (1-R 

decreases). The fourth main bifurcation occurs at correlation level 0.65 (1-R = 0.55), where PAMZ 

passive monitors cluster together at correlation level 0.43 (1-R = 0.57). Also located at PAMZ, passive 

monitors that stand out of as behaving differently than their pairs: Baseline Mountain, forming a single 

cluster at correlation level 0.03 (1-R =0.97), Parker Ridge at correlation 0.66 (1-R = 0.34) and Bow 

Summit at correlation level 0.43 (1-R =0.57). The large cluster resulting from the bifurcation at correlation 

level 0.68, shows high correlation (0.72) between St Lina, and WCAS continuous monitors: Sleeper and 

Power; at correlation at level 0.62 (1-R = 0.38), two sets of stations cluster: a smaller cluster comprising 

of three WBEA continuous stations, Shell Muskeg River/1244C, Fort McMurray-Athabasca Valley/1064C, 

Millennium Mine/1075C, and a AEP continuous monitoring station (Lethbridge/1049C). The larger cluster 

first drops at correlation level 0.66 (1-R = 0.34) Fort Chipewyan//1071C and is a cluster of its own and at 

correlation level 0.79 (1-R = 0.29), WBEA passives (AH7/9919P, AH8/9902P, JP101/9906P, 

JP102/9907P, AH3/9901P, JP210/9911P, Fort McKay-Bertha Ganter/1032P) and PAMZ 

(Sunchild/9941P) cluster. PAMZ, CRAZ, WCAS and Alberta Capital Airshed Alliance (ACAA) monitors 

seem to cluster all together, not finding a specific pattern for these Airsheds but all are continuous 

monitors with exception of Red Deer Riverside located at PAS. We note that the passive and NO2 monitor 

at Fort McKay-Bertha Ganter clusters more closely with other passive monitors both in WBEA and other 

Airsheds than with the collocated Fort McKay-Bertha Ganter continuous NO2 monitor. 

The NO2 dendrogram using Euclidean distance as the dissimilarity metric (Figure 3.12) shows that almost 

all the continuous stations, except Anzac and Fort Chipewyan, separate out from the other stations in the 
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dendrogram at higher levels of dissimilarity. Single stations are dropping from the dendrogram as single 

clusters in the first four bifurcations and creating a cluster at a level of 16.9 ppb. At lower levels of 

Euclidean distance, stations from the same Airshed and the same type of monitor tend to cluster. LICA, 

PAMZ and WBEA passive monitors are clustering at lower levels of Euclidean distance, with several 

stations from WBEA and PAMZ that cluster within the same Airshed at very low levels (< 2ppb). The 

clustering using the 1-R metric (Figure 3.11) shows several groups of stations within Airsheds clustering 

together (similar colours of station names in the figure being part of the same Airshed), while the 

clustering using the Euclidean metric (Figure 3.12) does not follow Airsheds to the same extent. Given 

that the 1-R metric analyzes the data by the shape of the time series, while the Euclidean distance 

analyzes the data according to the magnitudes of the concentrations, the analysis thus suggests that 

there is a greater degree of similarity with time series shape, than with the magnitude of reported 

concentrations, within a given Airshed. The data thus suggest that the time variation of concentration 

within an Airshed is sufficiently unique that the 1-R metric can identify Airsheds based on that time 

variation, while the typical magnitude of the concentrations differences between stations is a less unique 

identifier of an Airshed. 

The 1-R metric dendrogram for passive and continuous SO2 observations (Figure 3.13) shows that 

correlation between stations is lower than for NO2 (compare Figure 3.11 and Figure 3.13), although some 

clustering between groups of stations within Airsheds occurs to a certain level, is mostly seen for WBEA, 

FAP and LICA stations. These differences may be explained by the differing nature of the types of 

emitting sources for the two chemicals. SO2 emissions are dominated by industrial stacks (aka “point 

sources”), while NO2 emissions are dominated by surface (also known as “area”) sources. Following 

emission from an industrial point source, the emitted chemicals will rapidly rise to some height above the 

source, depending on temperature of the emitted gas, the flow rate of the emissions, the gradient of the 

temperature, and other meteorological factors in the atmosphere directly above the industrial point 

source. The direction and speed of the wind may also change significantly at different heights above the 

industrial point source. The direction of and extent of dispersion of pollutants such as SO2, emitted from 

industrial point sources, will thus depend critically on the local meteorological conditions, not just at the 

surface, but in the region above each industrial point source, up to the height where the rising plume has 

reached neutral buoyancy and stops rising. In contrast, the dispersion of pollutants such as NO2, largely 

emitted from surface sources, will depend less on the changes in meteorology in the region above the 

source. These additional meteorological factors will tend to make the downwind concentrations of SO2 

from major point sources more variable in time than downwind concentrations of NO2 from surface area 

sources. Thus, the type of source, the proximity of a monitoring site to the source, the magnitude of the 

source as well as meteorological conditions, all influence ambient concentration measured at a site. 

Hence a greater degree of variability (hence lower R values) in the clustering of monitoring sites is 

expected for SO2 than for NO2. The first branching of the dendrogram shown in Figure 3.13 is an example 

of the variability expected, dividing two large sets of stations that are anti-correlating (R= - 0.11, 1-R = 

1.11), with majority of LICA and PAS stations clustering in one side and WBEA stations in another.  

The colour-coding of the stations according to Airshed in Figure 3.13 shows that some clusters occur 

within airsheds, at relatively low values of 1-R (highly correlated records); examples are identified by 

enclosed boxes in the figure. Fort Air Partnership (FAP, green) stations 15, 22, 28, 03, 40 and 46 are all 

within one cluster with a 1-R value of 0.25 (R=0.75), FAP stations 02, 20, 21, and 47 cluster for 1-R of 0.2 
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(R=0.8), and thirteen LICA stations (black) cluster at 1-R of 0.25. There are several clusters of WBEA 

stations at lower levels of correlation (e.g. five stations at the far right of Figure 3.13 clustering at 1-R of 

0.37, next five WBEA stations from the right cluster at 1-R of 0.6, WBEA stations SM8, Fort Chipewyan, 

BM7, NE10, and AH3 cluster at 1-R=0.8. Much of the remaining clustering shows 1-R similarities which 

sometimes link stations that are widely separated in space, such as WBEA station Fort McMurray-Patricia 

McInnes clustering at 1-R of 0.80 with stations such as Tomahawk and Violet Grove in the WCAS 

airshed. 

The SO2 dendrogram using the Euclidean distance metric is shown in Figure 3.14. Clusters for some 

monitoring sites within an Airshed occurs, leading to the possibility that some groups of stations may be 

associated with clusters which have high correlations and low Euclidean distances, hence may be more 

redundant from the standpoint of both metrics. This will be examined in more detail in Section 4. The 

magnitudes of the Euclidean distances are uniformly small for much of Figure 3.14, indicating the 

presence of a large number of stations with similar concentration records; these may represent the 

influence low concentration values (~1 ppb). This is noticeable in particular for some of the FAP stations 

mentioned in the context of the previous figure, many of which are clustered at Euclidean distances of 1 

to 3 ppbv. 
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Figure 3.11 Dendrogram analysis for passive and continuous bimonthly NO2 averages considering 1-R as the metric to compute the dissimilarity matrix, for West Central Airshed 

Society (WCAS), Wood Buffalo Environmental Association (WBEA), Fort Air Partnership (FAP), Alberta Capital Airshed Alliance (ACAA), Calgary Regional Airshed Zone (CRAZ), 
Peace Airshed Zone Association (PAZA), Palliser Airshed Society (PAS), Parkland Airshed Management Zone (PAMZ) and Lakeland Industrial Community Association (LICA). 
Stations are colour-codded according to Airshed. Station names which are continuous end in a “(C)”, and stations which are passive end in a “(P)”. 
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Figure 3.12 Dendrogram analysis for passive and continuous bimonthly NO2 averages considering Euclidean distance (ppb) as the metric to compute the dissimilarity matrix, for 

West Central Airshed Society (WCAS), Wood Buffalo Environmental Association (WBEA), Fort Air Partnership (FAP), Alberta Capital Airshed Alliance (ACAA), Calgary Regional 
Airshed Zone (CRAZ), Peace Airshed Zone Association (PAZA), Palliser Airshed Society (PAS), Parkland Airshed Management Zone (PAMZ) and Lakeland Industrial Community 

Association (LICA). Stations are colour-codded according to Airshed. Station names which are continuous end in a “(C)”, and stations which are passive end in a “(P)”. 
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Figure 3.13 Dendrogram analysis for passive and continuous bimonthly SO2 averages using 1-R as the metric to compute the dissimilarity matrix, for West Central Airshed Society 

(WCAS), Wood Buffalo Environmental Association (WBEA), Fort Air Partnership (FAP), Alberta Capital Airshed Alliance (ACAA), Calgary Regional Airshed Zone (CRAZ), Peace 
Airshed Zone Association (PAZA), Palliser Airshed Society (PAS), Parkland Airshed Management Zone (PAMZ) and Lakeland Industrial Community Association (LICA). Stations 
are colour-codded according to Airshed. Station names which are continuous end in a “(C)”, and stations which are passive end in a “(P)”. The back boxes identify stations 
clustering within the same Airshed at low dissimilarity levels. 

 

 

 



 

50 Hierarchical Clustering Network Analysis of Ambient Air Monitoring in Alberta: Phases 1 and 2 | No. 4.0 

 

Figure 3.14 Dendrogram analysis for passive and continuous bimonthly SO2 averages considering Euclidean distance (ppb) as the metric to compute the dissimilarity matrix for 

West Central Airshed Society (WCAS), Wood Buffalo Environmental Association (WBEA), Fort Air Partnership (FAP), Alberta Capital Airshed Alliance (ACAA), Calgary Regional 
Airshed Zone (CRAZ), Peace Airshed Zone Association (PAZA), Palliser Airshed Society (PAS), Parkland Airshed Management Zone (PAMZ) and Lakeland Industrial Community 
Association (LICA). Stations are colour-coded according to Airshed. Station names which are continuous end in a “(C)”, and stations which are passive end in a “(P)”. 
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3.4 Associativity Analysis for Alberta Province: Continuous 
Hourly Observations 

The hierarchal clustering method as described in Section 2 was applied to analyze hourly observations 

for O3, NO, NO2, NOx, PM2.5, SO2, NMHC, THC, TRS and CH4 for a period between August 1, 2013 and 

July 31, 2014 with overlaps before and after this period to accommodate the KZ filtering of the central 

period of one year. Data selection and QA/QC is described in Section 2.2.2. The time interval was chosen 

for two main reasons:  

(1) The first two months of this period correspond to the time interval during which a joint ECCC/AEP 

monitoring intensive took place in the oil sands region, allowing for possible comparisons with monitoring 

intensive instrumentation in other studies.  

(2) The period corresponds to a full year simulation carried out by the ECCC air pollution model GEM-

MACH (Makar et al, 2015(a,b), Makar et al 2017, Moran et al, 2010) – this simulation will be used in later 

phases of the network analysis project, and has been used here (see Section 4.3) to examine the issue of 

sampling errors on clustering and redundancy calculations.  

For each of the chemical species, continuous hourly data was filtered to remove the time scales smaller 

than a day, a week, and a month, applying the KZ-filtering, as described in Section 1.2. The results of 

subsequent clustering analyses using the 1-R and Euclidean distance metrics are shown in pairs of 

figures which follow; the 1-R figure first, followed by the Euclidean distance figure. As before, the station 

names are colour-coded by the respective Airshed. 

Our analysis begins with O3 (Figure 3.15 and Figure 3.16). Figure 3.15 (1-R dissimilarities) show that the 

stations cluster largely according to Airshed, with the exceptions of WCAS’ Steeper/1055 and 

Genesse/1057 stations, and PAMZ’s two stations at Red Deer-Riverside/1142 and Caroline/1092. 

Steeper station is located at relatively higher elevation (1400m asl) and thus samples air more influenced 

by the middle to upper Troposphere than the other stations within the WCAS, while Genesse is relatively 

close to a coal-fired power-plant and thus may be expected to be more impacted by NOx fumigation and 

ozone titration events from powerplant plumes than other stations in the WCAS region. We note that Red-

Deer-Riverside samples urban air while Caroline is located in a rural location in the foothills at 1100m 

above sea level altitude, hence may be expected to cluster more closely with the relatively alpine Steeper 

station than Red-Deer-Riverside – as was seen in the analysis. The WBEA continuous O3 stations, as 

well as the remaining stations in WCAS, PAZA, CRAZ, FAP, and ACAA tend to cluster within Airsheds 

rather than across Airsheds for the analyses with hourly, daily, and most of the weekly and shorter 

periods removed dendrograms (Figure 3.15 (a),(b),(c), respectively). This shows that the time variation of 

ozone is more affected by local, rather than regional influences, at time scales of less than a month. 

When time scales less than one month are removed (Figure 3.15 (d)), this within-airshed clustering starts 

to be lost, with the stations clustering across Airsheds to a greater degree. For example, at time scales of 

greater than one day, the Lethbridge and Medicine Hat stations form a cluster, and remain clustered 

thereafter – these stations are both in Southern Alberta, downwind of the Rockies, and might be expected 

to cluster on regional transport time scales. On timescales longer than monthly, the larger urban stations 

form a high correlation cluster (Figure 3.15 (d), right-hand side), indicating that the ozone in these 
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locations even at long time scales is affected more by local conditions and a common pattern of urban 

emissions than regional influences. Four WBEA stations remain clustered throughout the period, 

indicating that their ozone levels are affected by common sources (Fort Mckay-Bertha Ganter/1032, Fort 

McMurray-Particia McInnes/1070, Fort McKay South/1076, and Fort McMurray-Athabasca Valley/1064. 

The NO2 dendrograms considering 1-R as a metric to compute the dissimilarity matrix (Figure 3.15) 

generally shows clustering between stations within the same Airshed. An increase in the clustering of 

stations between different Airsheds can be seen as the shorter time scales are progressively removed, 

but the clustering within some Airsheds (WBEA and FAP) seems less affected by the filtering of shorter 

time variability, suggesting that the observations at these stations within these Airsheds are more similar 

across multiple time scales than they are to the observations at other airsheds. Correlation levels 

between stations improve as KZ filtering is applied and shorter time variabilities are removed  

The NO2 1-R dendrogram (Figure 3.17) shows 1-R clustering by Airshed for WBEA, FAP, ACAA and 

PAZA Airsheds for hourly data. Like O3, clustering by Airshed becomes less prominent as shorter time 

scales are removed, indicating that much of the short term variation in NO2 is due to local sources. The 

exceptions are stations within WBEA, which remain clustered even at monthly and greater timescales 

(Figure 3.17 (d)). This indicates NO2 concentrations measured at WBEA stations have notably different 

temporal variability from stations located elsewhere, and thus are dissimilar to all other stations in the 

dataset, even at timescales of greater than a month. An alternative way of putting this: the time series of 

concentrations observed at these stations are highly similar within the airshed, and highly dissimilar to 

stations outside of the airshed, at all time scales, for the metrics used here. This in turn suggests that 

there are aspects of the combination of local emissions and meteorology that ensures that the WBEA 

stations are “unique”, i.e. more similar within the airshed than to stations outside of the airshed. At the 

same time, the Euclidean distance magnitudes observed at the WBEA stations vary with timescale 

(Figure 3.18), with the Fort McKay-Bertha Ganter/1032C, Fort McMurray Patricia McInnes/1070C, Fort 

McKay South/1076C and CNRL Horizon/1226C stations forming one cluster, and Shell Muskeg 

River/1244C , Millennium Mine/1075C, and Fort McMurray-Athabasca Valley/1064C stations forming 

another cluster at time scales greater than one week, and greater than one month (Figure 3.18(c,d)). As 

with O3, the NO2 dendrograms show increasing correlation levels (1-R, Figure 3.17), and Euclidean 

distances decrease (Figure 3.18), as progressively larger timescales are filtered from the data, indicating 

a tendency for concentrations with smaller time scale variability removed to be very similar, and much of 

the short term variability in measured concentrations to be likely due to local sources.  

NO dendrograms for the two metrics, 1-R and Euclidean distance, are shown in Figure 3.19 and Figure 

3.20, respectively. There are some interesting differences between the NO dendrograms and the NO2 

dendrograms described above, probably driven by NO being a better indicator of very fresh emissions of 

NOx, and NO2 being a better indicator of transport and downwind chemistry. As before, 1-R dendrograms 

tend to cluster by Airshed when shorter timescales variability in the data are retained (Figure 3.19 (a), and 

only the WBEA stations remain clustered largely as a group at timescales longer than a month (Figure 

3.19 (d)). However, for those longer timescales, NO is also seen to be 1-R clustering by source type and 

location, with many of the urban stations forming a single cluster to the right of Figure 3.19(d)). Figure 

3.19 also shows clustering of similar stations influenced by source types at varying levels of correlation – 

e.g. Genesee and Wagner2 stations, both influenced by coal-fired power plants, remain clustered at all 
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time-filtering levels in Figure 3.19. In contrast to NO2, Euclidean distances for NO (Figure 3.20) tend to be 

less associated with specific Airsheds, and more with specific sources, and relatively little information for 

clustering is sometimes left once monthly and shorter timescales have been removed (that is, clustering 

between different Airsheds occurs). Stations which are disconnected in terms of sources are seen to 

Euclidean distance cluster even at hourly time scales (Figure 3.20 (a), e.g. St. Lina and Steeper stations 

both have a relatively low Euclidean distance). This is more a measure of both stations having sufficiently 

low concentrations that they are rated as highly similar using a Euclidean distance metric, than an 

association based on the influence of local sources. This issue will be discussed further in Section 4.5. 

Concentrations of NOx, and consequently the clustering for the 1-R and Euclidean metrics (Figure 3.21 

and Figure 3.22)) are dominated by the NO2 component, hence tend to follow the NO2 behaviour more 

closely than NO (e.g. WBEA stations remain in 1-R clusters at all time scales, a general tendency to lose 

within-Airshed 1-R clustering outside of WBEA as successively longer timescales are removed, and 

substantial decreases in 1-R and Euclidean distance as longer timescales are removed, with the latter 

indicating most of the signal resides in the shorter time scales. The NOx values remain tightly clustered for 

WBEA at time scales longer than monthly (Figure 3.21 (d)) suggesting significant local source signal 

influence remains even at monthly time scales for this region, while the other monitoring association 

Airsheds show broader scale (or low concentration) influences at the longer time scales.  

The SO2 dendrograms for 1-R differ from the other species examined thus far in terms of the lower level 

of R values (Figure 3.23); a greater degree of dissimilarity for SO2 may be seen than for NOX or O3 for this 

metric. This is due to the nature of the sources of SO2, which are almost exclusively from industrial point 

sources. The direction and concentration of the plumes is thus highly variable in time, and concentrations 

from the same source may not correlate as well between two downwind stations, if they are not directly in 

line downwind. Despite this, the SO2 1-R dendrograms show the WBEA stations as a single albeit low R 

level cluster for the first two time levels (Figure 3.23 (a, b)), and most WBEA stations fall into a single 

cluster even at timescales of greater than one week (Figure 3.23 (c)), with clustering within smaller sets of 

WBEA stations thereafter. The 1-R dendrograms for concentrations with shorter timescale variability 

removed are clearly showing clusters forming between widely separated locations. More than many of the 

other species considered in this report, SO2 concentrations contain spike-like short time-scale variations, 

and the removal of the short time scales results in notably lowering of the residual concentrations (an 

observation also noted to a lesser degree for NOx). 1-R clustering for monthly and longer timescales 

(Figure 3.23 (d)) probably reflects the extent to which the filtered time series are all close to zero, as 

opposed to true relationships across different locations, for SO2. Euclidean distances also show clustering 

by Airshed being maintained to timescales of greater than a day, but as successively longer timescales 

are removed, the clusters tend to be across Airsheds (with the exception of some subgroups of WBEA 

stations). This also is an indication that most of the concentration magnitude signal resides in the shorter 

time scales. 

PM2.5 dendrograms for 1-R and Euclidean distances (Figure 3.24 and Figure 3.25) maintain the WBEA 

and WCAS stations (aside from the Steeper, located on a ridge-top at roughly 1410m elevation and 

further into the foothills compared to the other WCAS stations) as being independent clusters at all time 

scales examined. Both the shape of the time series and the concentration magnitudes are thus 

dominated by short term variability likely due to local sources and conditions within these Airsheds. For 
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the WBEA stations, a significant source of local PM2.5 is likely the fugitive dust from the oil sands open pit 

facilities and processing, which has been found to contain a relatively small fraction of secondary species 

in surface-based observations (Wang et al, 2015). The WCAS stations aside from Steeper are located in 

a region influenced by open-pit mining of coal (a primary particulate source) and coal-fired power-plants 

(potentially a source of secondary PM). Which of these two sources dominates the signal observed in the 

analysis can’t be determined in the absence of speciation information, though the similarity across 

stations within each Airshed shows that they are being influenced by similar sources, suggesting that 

within these Airsheds there are relatively unique processes determining the average concentration of 

PM2.5. The Euclidean distances also cluster for 4 of the WCAS stations beyond filtering times of 1 month 

(Figure 3.25 (d)), indicating a single regional source for PM2.5 at longer time scales. At shorter timescales, 

the Euclidean distance (Figure 3.25 (a), b) clusters almost exclusively by Airshed (exceptions Steeper 

station and Hinton Station), suggesting within-Airshed emissions and atmospheric control the origin of 

PM2.5 at these timescales. 

CH4 dendrograms show 1-R clustering for most Airsheds represented at hourly timescales (Figure 

3.27(a)), for WBEA stations up to timescales greater than 1 day (Figure 3.27 (b)), and all Airshed-related 

clustering is removed once monthly and longer timescales are removed (Figure 3.27 (d)). A similar 

pattern can be seen with the Euclidean distances (Figure 3.28), with within-Airshed clustering being 

retained for some pairs when weekly and shorter timescales are removed (Figure 3.28(c)) except for one 

WBEA pair which still clusters for timescales longer than monthly (Figure 3.28 (d))). The implication is that 

on an hourly basis, methane concentration time series shape and magnitude are being controlled by local 

sources, but on longer timescales, the regional background levels start to dominate, with the exception of 

Fort McKay-Bertha Ganter and Fort McMurray-Athabasca Valley in the WBEA region. These sites are 

likely impacted by notable local sources. 

THC dendrograms have relatively low initial correlations (Figure 3.29(a)), indicating greater variability 

between sources. 1-R clustering within Airsheds is maintained up to timescales greater than daily (Figure 

3.29(b)) and then begins to break down, though sub-groups of WBEA stations remain clustered with each 

other up to timescales greater than monthly (Figure 3.29(d)). THC Euclidean distances, however, do not 

follow Airsheds even at hourly timescales (Figure 3.30). The magnitude of THC concentrations measured 

at monitoring stations is thus more dissimilar despite similarities in the variation of concentration over 

time. One possible reason for the high within-Airshed correlation similarities and lower similarities based 

on Euclidean distance may be proximity from the sources: two stations along the direction of the 

prevailing wind from an upwind emissions source will be highly correlated, but their Euclidean distances 

may also be high due to the additional dispersion between the two stations. Euclidean distance may 

therefore sometimes cluster more highly across Airsheds than within a given airshed. 

NMHC dendrograms have very low hourly correlations, though they follow Airsheds up to timescales of 

greater than daily (Figure 3.31(b)), and some two-member clusters within Airsheds are maintained to 

monthly and greater timescales (Figure 3.31(d)). Euclidean distance clustering even at hourly scales 

(Figure 3.32) fails to follow Airsheds, with a similar explanation for these results as for THC. 

TRS observations are only available from three Airsheds (PAMZ, one station; PAZA, 4 stations; WBEA, 8 

stations). The WBEA and PAZA stations maintain 1-R clustering up to timescales greater than daily being 

removed (Figure 3.33(a),(b)), with separate clusters forming at longer timescales (and curiously reforming 
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as a single cluster for monthly and longer timescales for all WBEA stations aside from Millennium Mine, 

see Figure 3.33(d)). Both 1-R and Euclidean distances (Figure 3.34) show Hinton station as being very 

different from the other stations, probably due to the relatively unique sources of TRS (in type, magnitude 

and frequency of events) near Hinton (for example, the local pulp and paper mill, as opposed to the oil 

and gas industry sources at the other sites). The lack of within-Airshed Euclidean distance clustering at 

even hourly timescales for TRS, similar to THC, NMHC, and to a lesser extent CH4, again suggests a 

rapid drop in co-varying concentrations with distance from sources. 

 

Figure 3.15 Continuous O3 1-R dendrogram analysis, (a) hourly and filtered ((b) daily, (c) weekly and (d) 

monthly scales removed). Airshed names: WCAS: West Central Airshed Society, WBEA: Wood Buffalo 
Environmental Association, FAP: Fort Air Partnership, ACAA: Alberta Capital Airshed Alliance, CRAZ: 
Calgary Regional Airshed Zone, PAZA: Peace Airshed Zone Association, PAS: Palliser Airshed Society, 
PAMZ: Parkland Airshed Management Zone, LICA: Lakeland Industrial Community Association (LICA). 
Stations are colour-coded according to Airshed. 

(c) (d)

(a) (b)
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Figure 3.16 Continuous O3 Euclidean distance dendrogram analysis. Panel ordering, Airshed names and 

colour-coding as in Figure 3.15. 
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Figure 3.17 Continuous NO2 1-R dendrogram analysis. Panel ordering, Airshed names and colour-coding 

as in Figure 3.15.   

(c) (d)
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Figure 3.18 Continuous NO2 Euclidean distance dendrogram analysis. Panel ordering, Airshed names 

and colour-coding as in Figure 3.15. 
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Figure 3.19 Continuous NO 1-R dendrogram analysis. Panel ordering, Airshed names and colour-coding 

as in Figure 3.15. 

(c) (d)

(a) (b)



 

60 Hierarchical Clustering Network Analysis of Ambient Air Monitoring in Alberta: Phases 1 and 2 | No. 4.0 

 

Figure 3.20 Continuous NO Euclidean distance dendrogram analysis. Panel ordering, Airshed names 

and colour-coding as in Figure 3.15. 

(c) (d)

(a) (b)
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Figure 3.21 Continuous NOx 1-R dendrogram analysis. Panel ordering, Airshed names and colour-coding 

as in Figure 3.15. 

 

(c) (d)

(a) (b)
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Figure 3.22 Continuous NOx Euclidean distance dendrogram analysis. Panel ordering, Airshed names 

and colour-coding as in Figure 3.15. 

 

(c) (d)

(a) (b)
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Figure 3.23 Continuous SO2 1-R dendrogram analysis. Panel ordering, Airshed names and colour-coding 

as in Figure 3.15. 

(c) (d)

(a) (b)
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Figure 3.24 Continuous SO2 Euclidean distance dendrogram analysis. Panel ordering, Airshed names 

and colour-coding as in Figure 3.15. Note that the vertical scale changes between the panels of this 
figure. 

(c) (d)

(a) (b)
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Figure 3.25 Continuous PM2.5 1-R dendrogram analysis. Panel ordering, Airshed names and colour-

coding as in Figure 3.15. 

(c) (d)

(a) (b)
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Figure 3.26 Continuous PM2.5 Euclidean distance dendrogram analysis. Panel ordering, Airshed names 

and colour-coding as in Figure 3.15. 

(c) (d)

(a) (b)
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Figure 3.27 Continuous CH4 1-R dendrogram analysis. Panel ordering, Airshed names and colour-coding 

as in Figure 3.15. 
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Figure 3.28 Continuous CH4 Euclidean distance dendrogram analysis. Panel ordering, Airshed names 

and colour-coding as in Figure 3.15. 
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Figure 3.29 Continuous THC 1-R dendrogram analysis. Panel ordering, Airshed names and colour-

coding as in Figure 3.15. 

(c) (d)

(a) (b)
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Figure 3.30 Continuous THC Euclidean distance dendrogram analysis. Panel ordering, Airshed names 

and colour-coding as in Figure 3.15. 

(c) (d)

(a) (b)
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Figure 3.31 Continuous NMHC 1-R dendrogram analysis. Panel ordering, Airshed names and colour-

coding as in Figure 3.15. 

 

(c) (d)

(a) (b)
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Figure 3.32 Continuous NMHC Euclidean distance dendrogram analysis. Panel ordering, Airshed names 

and colour-coding as in Figure 3.15. 

(c) (d)

(a) (b)
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Figure 3.33 Continuous TRS 1-R dendrogram analysis. Panel ordering, Airshed names and colour-

coding as in Figure 3.15. 

(c) (d)

(a) (b)
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Figure 3.34 Continuous TRS Euclidean distance dendrogram analysis. Panel ordering, Airshed names 

and colour-coding as in Figure 3.15. 

  

(c) (d)

(a) (b)
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4 Discussion 

4.1 Assessing Redundancy 

4.1.1 WBEA: Passive and Continuous Monitors 

The NO2 dendrograms depicted in Figure 3.2 clearly separate the continuous monitors from the passives 

on the basis of correlation. In past uses of hierarchical clustering for air pollution network analysis 

(Solazzo and Galmarini, 2015), correlation differences such as those displayed in Figure 3.2 were 

assumed to represent differences in monitoring network methodology. However, the analysis suggests 

that the reported continuous and passive monitor bimonthly averages are sufficiently different that they do 

not correlation cluster according to location, but rather cluster according to measurement technology. 

Collocated sites such as the continuous and passive monitors at Fort McKay-Bertha Ganter (1032C, 

1032P) cluster more closely with other continuous or passive monitors than with each other, further 

demonstrating that the two technologies are not providing equivalent observations. The differences may 

relate to the precision of the instrumentation and the frequency of low concentration observations – this 

possibility is examined in Section 4.3, where air quality model output is used as a surrogate to examine 

the potential issues related to random error in the sampling methodology (precision). 

The continuous and passive monitors Euclidean distance dendrogram (Figure 3.3) shows a large degree 

of spatial variability in concentrations measured, with clustering for three continuous stations splitting at 

the 24 ppbv level, and the remaining continuous monitors splitting from the rest at the 14 ppbv level. 

Meanwhile, the corresponding 1-R dendrogram (Figure 3.2) shows a relatively high correlation between 

Shell Muskeg River/1244C, Fort McMurray Athabasca Valley/1064C and Millennium Mine/1075C. This 

pattern of high correlations versus high Euclidean distances for the different continuous monitors is 

explained based on physical proximity between these monitors and the local emissions sources; for 

example, Fort Chipewyan/1071C differs from the other stations significantly for both metrics, and this 

would be expected, since that station is far (~ 200 km) from the main emissions region of the Athabasca 

oil sands. The relatively high correlation between Shell Muskeg River/1244C, Fort McMurray Athabasca 

Valley/1064C and Millennium Mine/1075C may represent times when the sources at the centre of the 

emissions region (1075C) are being transported northwards (1244C) or southwards (1064C) along the 

river valley at low levels (possibly with inversions, given the difference in Euclidean distances between 

valley-bottom 1064C and adjacent but elevated 1070C). The high values of the Euclidean norm for these 

three stations would thus represent the specific high concentration transport events from the central 

emissions region to the periphery. Passive monitors show, in general, smaller magnitudes for the 

Euclidean distance than the continuous monitors. This results from the passive sampler’s inability to 

resolve short-term concentration peaks (see Section 2.2.1, and references quoted therein).  

The above observation and results provided in Section 3.1 suggest that the relationship between the 

clustering metrics and the pollutant being studied may be complex, and may depend on several factors. 

Factors could include, for example, whether the pollutant sources are broadly distributed over a large 

surface area or concentrated in a stack emission, the extent to which emissions have become dispersed  
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downwind, and the relative rate of uptake of the emitted pollutants or their products by deposition. One 

may nevertheless use the clustering to rank stations based on their degree of similarity. Stations which 

join clusters at low levels of dissimilarity (i.e., high levels of similarity, or high correlation coefficients and 

low Euclidean distances) are potentially more redundant than stations with higher levels of dissimilarity. 

Figures 3.2(a) and 3.3(a) include a ranking on the right side of each panel of these figures, and the 

resulting numbers are also included in Table 4.1. For each metric and species, the data from stations 

appearing at the bottom of the table are the most similar, and hence one measure of their level of 

redundancy, with regards to that specific metric and species examined, and not taking into account other 

factors as outlined in section 1.2 of this report. We note that the long-term averaging employed here 

should not be used to determine relative levels of redundancy with regards to continuous stations due to 

their ability to provide information at other time scales, and the reader is directed to Section 4.1.4 for the 

companion analysis of continuous data for an analysis at multiple time scales. 

Table 4.1 WBEA Bimonthly NO2 Similarity Ranking. Note that stations at the bottom of the two columns 

are the most similar (hence one measure of their level of redundancy) with respect to each metric of 
dissimilarity. 

R station ID station name EuN station ID station name 

0.55 9913P JP213 21.74 1075C Millennium Mine 

0.68 1071C Fort Chipewyan 15.45 1244C Shell Muskeg River 

0.74 9912P JP212 15.45 1064C 
Fort McMurray-

Athabasca 

0.78 9910P JP205 10.60 9912P JP212 

0.79 9919P AH7 9.48 9920P R2 

0.82 9903P BM10 9.12 9908P JP104 

0.86 9914P NE10 9.12 1032P 
Fort McKay-Bertha 

Ganter 

0.86 9921P SM7 6.74 1226C CNRL Horizon 
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0.86 9902P AH8 6.10 1070C 
Fort McMurray-Patricia 

McInnes 

0.86 9907P JP102 5.76 1032C 
Fort McKay-Bertha 

Ganter 

0.87 9916P NE7 5.76 1076C 
Fort McKay South 

(Syncrude) 

0.87 9920P R2 5.38 9907P JP102 

0.88 9904P BM11 5.38 1225C Anzac 

0.88 9905P BM7 4.78 9909P JP107 

0.89 9908P JP104 4.30 9916P NE7 

0.89 9909P JP107 4.24 9919P AH7 

0.89 9915P NE11 3.61 9915P NE11 

0.89 1075C Millennium Mine 3.57 1071C Fort Chipewyan 

0.91 1032P 
Fort McKay-Bertha 

Ganter 
3.25 9901P AH3 

0.92 9906P JP101 3.09 9902P AH8 

0.93 1064C 
Fort McMurray-

Athabasca 
1.96 9911P JP210 

0.93 1244C Shell Muskeg River 1.96 9906P JP101 

0.95 1226C CNRL Horizon 1.88 9910P JP205 
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0.96 9901P AH3 1.41 9921P SM7 

0.96 9911P JP210 1.21 9913P JP213 

0.97 1225C Anzac 1.18 9914P NE10 

0.98 1070C 
Fort McMurray-Patricia 

McInnes 
1.12 9903P BM10 

0.99 1032C 
Fort McKay-Bertha 

Ganter 
1.10 9905P BM7 

0.99 1076C 
Fort McKay South 

(Syncrude) 
1.10 9904P BM11 

 

It can be seen from Table 4.1 that the choice of the most relevant metric for the monitoring network may 

have a key role in determining which stations may be considered potentially redundant2 ; the ranking in 

this particular case differs (and is almost reversed) depending on whether 1-R or Euclidean distance is 

used to rank stations. Stations which have relatively high correlation (low 1-R) values may have relatively 

high Euclidean distances, and stations which have relatively low correlations (high 1-R) may have 

relatively low Euclidean distances.  

The metrics measure the similarity of different aspects of the data records. The 1-R metric assesses 

similarity on the basis of the variation in concentration over time, while the Euclidean distance metric 

assesses similarity on the basis of differences in concentration magnitude. If the former quality is more 

important with regards to the intended purpose of the monitoring, then the left (1-R) column of Table 4.1 

takes precedence, and stations with the higher R values (bottom of the left column) would be considered 

more redundant. If on the other hand, the stations with the most similar concentrations being reported are 

considered the most redundant, then the right-hand column of Table 4.1 takes precedence, and stations 

with the smaller Euclidean distances should be considered to be the most redundant. We note that only 

data from two stations in Table 4.1 both fall within list of ten lowest 1-R and Euclidean metric values (that 

is, might be considered redundant for both 1-R and Euclidean distances); NO2 bimonthly concentrations 

from passive stations JP101/9906P and JP210/9911P. 

                                                      
2 We note again that the passive and continuous monitoring records were binned to the same bimonthly interval to 

determine the level of comparability between the two different types of instrumentation and methodology. The 

relative similarity levels and redundancies for Table 4.1 are with respect to the two month averaging time. The 

continuous monitors provide information down to hourly time-scales. Table 2.1 only assesses their potential relative 

redundancy for two month averaging - the analyses appearing in sections 3.4 and 4.1.4 should have precedence in 

assessing relative redundancy for continuous monitors. 
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This dichotomy between the two metrics is illustrated further in Table 4.2, where the clusters with the 

highest correlation coefficients are compared to the Euclidean distances between the members of 1-R 

clusters. Figure 3.2 shows that at correlation level R = 0.9 (1-R = 0.1), three clusters of more than one 

station are formed, two of which cluster continuous stations and one cluster of passive monitors. From left 

to right: the first R = 0.9 cluster consists of Shell Muskeg River/1244C and Fort McMurray-Athabasca 

Valley/1064C continuous monitors; the second of Anzac/1225C, Fort McMurray-Patricia McInnes/1070C, 

Fort McKay South/1076C, Fort McKay-Bertha Ganter/1032C, and CNRL Horizon/1226C continuous 

monitors; and the third of Fort McKay-Bertha Ganter/1032P, JP101/9906P, AH3/9901P and JP210/9911P 

passive monitors. The Euclidean distance between each of the members of these R=0.9 clusters are 

given in Table 4.2 (the values in the table were obtained via tracing the Euclidean distance dendrogram to 

find the Euclidean distance levels where these stations connect). The physical distances between the 

stations are given in Table 4.3 for reference. 

Table 4.2 Euclidean distance (ppb) for NO2 clusters at dissimilarity level 1-R = 0.1: Fort McMurray-

Athabasca Valley (1064C), Shell Muskeg River (1244C), Fort McKay-Bertha Ganter (1032C), Fort 

McMurray-Patricia McInnes (1070C), Fort McKay South (1076C), Anzac (1225C), and CNRL Horizon 

(1226C), Forth McKay-Bertha Ganter (1032P), JP101 (9906P), AH3 (9901P) and JP210 (9911P). 

cluster station ID 1064C 1244C    

1 
1064C 

1244C 

0 

15.5 

15.5 

0 
   

cluster station ID 1032C 1070C 1076C 1225C 1226C 

 

 

2 

1032C 

1070C 

1076C 

1225C 

1226C 

0 

6.1 

5.8 

6.7 

14.4 

14.4 

0 

6.1 

14.4 

6.7 

14.4 

6.1 

0 

14.4 

6.7 

6.7 

14.4 

14.4 

0 

14.4 

14.4 

6.7 

6.7 

14.4 

0 

cluster station ID 1032P 9901P 9906P 9911P 9911P 

 

3 

1032P 

9901P 

9906P 

9911P 

0 

10.7 

10.7 

10.7 

10.7 

0 

3.2 

3.2 

10.7 

0 

3.2 

3,2 

10.7 

3.2 

0 

2.0 

10.7 

3.2 

2.0 

0 
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Table 4.3 Distance (km) for NO2 clusters at dissimilarity level 1-R = 0.1: Fort McMurray –Athabasca 

Valley (1064C), Shell Muskeg River (1244C), Forth McKay-Bertha Ganter (1032C), Fort McMurray-

Patricia McInnes (1070C), Forth McKay South (1076C), Anzac (1225C), and CNRL Horizon (1226C), 

Forth McKay-Bertha Ganter (1032P), JP101 (9906P), AH3 (9901P) and JP210 (9911P). 

cluster station ID 1064C 1244C    

 

1 

1064C 

1244C 

0 

58 

58 

0 
   

cluster station ID 1032C 1070C 1076C 1225C 1226C 

 

 

2 

1032C 

1070C 

1076C 

1225C 

1226C 

0 

50 

4 

90 

14 

50 

0 

45 

43 

64 

4 

45 

0 

86 

18 

90 

43 

86 

0 

104 

14 

64 

18 

104 

0 

cluster station ID 1032P 9901P 9906P 9911P  

 

 

3 

1032P 

9901P 

9906P 

9911P 

0 

63 

82 

125 

63 

0 

73 

63 

82 

73 

0 

117 

125 

63 

117 

0 

 

 

The members of the first highly correlated cluster listed in Table 4.2 have Euclidean distances as high as 

15.5 ppbv; despite the monitors having a similar shape of their time series, the difference in their 

magnitudes is considerable.  

For the second cluster, the Euclidean distance dendrogram shows that Anzac/1225C is clearly different 

from the other stations, with a value of 14.2 ppb, while the remaining stations have lower values of 

between 5.8 and 6.7 ppb. Fort McKay South/1076C and Fort McKay-Bertha Ganter/1032C are separated 

by ~4 km, and are highly correlated, but their Euclidean norms are separated by 14.4 ppbv in Figure 3.3, 

indicating a large difference in the magnitudes between these two stations. Fort McMurray-Patricia 

McInnes/1070C is located at distances over 40km from the other stations in cluster 2, has a high 

correlation level, but has Euclidean distances of 14.4 ppbv with 1032C to the north, and 6.1 to 6.7 with 

the stations to the south.  

For the third cluster, the Euclidean distance dendrogram shows the Forth McKay-Bertha Ganter/1032P 

station departs from the other stations at a level of 10.7 ppb; the remaining stations are closer to each 

other in terms of Euclidean distance but none of these stations are physically close to each other (see 

Figure 3.1, Figure 3.6 and Table 4.3). This suggests a lack of precision in the passive monitors, 

particularly given the lack of correlation between collocated continuous and passive monitors 1032C and 

1032P; 1032P correlates more highly with other passive monitors that are between 63 and 125 km 
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distant, than with the collocated continuous monitor 1032C. The Euclidean distance between collocated 

1032C and 1032P is 14.4 ppb, while the Euclidean distances between 1032P and the more distant 

stations making up cluster 3 in Table 4.2 are smaller; 10.7, 3.2 and 2.0 ppb. For both 1-R and Euclidean 

distance metrics, station 1032P is more “like” distant passive stations than an adjacent continuous 

station. 

Monitors that are located at the same site such as Fort McKay-Bertha Ganter passive and continuous 

monitors (1032C, P) would be expected to give similar results but they are not correlating significantly, 

nor show smaller levels of Euclidean distance. In contrast with this situation, Fort McKay South/1076C, at 

a distance of about 4 km from the latter stations, shows high level of correlation to 1032C, as might be 

expected. Publication such as Bari et al (2015) and EPCM (2000) report that Fort McKay-Bertha Ganter 

and Fort McMurray (passive not included in this analysis due to data limitation) passive monitors report 

errors up to 15%, with a tendency to underestimate concentration, when compared to continuous 

monitors. 

The dendrograms for SO2 do not distinguish between continuous and passive monitors to the same 

extent as for NO2. However, the resulting SO2 clusters do not always follow spatial location groupings. 

There may be some loss of information in the observations associated with the averaging time and the 

precision of the original observations; this will be discussed later in this chapter of the report. In previous 

examinations of SO2 in this region, Bari et al (2015) and EPCM (2000) reported that Fort McKay and Fort 

McMurray passive monitors (data from the Fort McMurray station was not included in the current analysis 

due to limited available data) report errors up to 34%, with a tendency to overestimate concentration, 

when compared to continuous monitors. Here, despite similar magnitudes (Euclidean distance metric), 

the collocated passive and continuous monitors at Fort McKay-Bertha Ganter are clearly not correlating at 

high level (1-R=0.54) 

Figure 3.4(a) and Figure 3.5 (a) include a ranking on the right side of each panel of these figures, and the 

resulting numbers are also included in. The dichotomy of rankings between the two different metrics is 

less than noted for NO2; some SO2 monitors fall near the bottom of Table 4.4 for both 1-R and Euclidean 

distance metrics, indicating a greater degree of potential redundancy for SO2 for both metrics than for 

NO2. 
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Table 4.4 WBEA Bimonthly SO2 Similarity Ranking. Note that stations at the bottom of the two columns 

are the most similar (hence one measure of their level of redundancy with respect to each metric of 

dissimilarity). 

R station ID station name EuN station ID station name 

0.35 9918P WF4 6.92 1066C Mildred Lake 

0.44 1066C Mildred lake 6.31 9918P WF4 

0.54 1032P 
Fort McKay-Bertha 

Ganter 
5.97 1069C Mannix 

0.58 9912P JP212 4.93 9908P JP104 

0.58 9908P JP104 4.18 9907P JP102 

0.58 9902P AH8 4.18 1074C Lower Camp 

0.62 9904P BM11 3.87 9906P JP101 

0.62 9903P BM10 3.77 9912P JP212 

0.62 1226C CNRL Horizon 3.42 1244C Shell Muskeg River 

0.67 1075C Millennium Mine 3.33 9917P SM8 

0.67 1068C Buffalo Viewpoint 3.24 1032P Fort McKay-Bertha Ganter 

0.67 1074C Lower Camp 3.13 9902P AH8 

0.67 1064C 
Fort McMurray-Athabasca 

Valley 
3.08 1226C CNRL Horizon 

0.68 9915P NE11 2.98 1075C Millennium Mine 

0.68 1244C Shell Muskeg River 2.98 1068C Buffalo Viewpoint 
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0.73 9909P JP107 2.95 9909P JP107 

0.77 9907P JP102 2.89 1064C 
Fort McMurray-Athabasca 

Valley 

0.77 1069C Mannix 2.79 9904P BM11 

0.80 9901P AH3 2.66 9916P NE7 

0.82 9913P JP213 2.66 9915P NE11 

0.83 1032C 
Fort McKay-Bertha 

Ganter 
2.56 9910P JP205 

0.83 1076C 
Fort McKay South 
(Syncrude UE1) 

2.37 1032C Fort McKay-Bertha Ganter 

0.85 1070C 
Fort McMurray-Patricia 

McInnes 
2.37 1076C 

Fort McKay South (Syncrude 
UE1) 

0.85 1225C Anzac 2.17 9901P AH3 

0.85 9911P JP210 2.17 1070C 
Fort McMurray-Patricia 

McInnes 

0.85 9906P JP101 2.12 9913P JP213 

0.86 9914P NE10 1.87 9903P BM10 

0.87 9916P NE7 1.73 9911P JP210 

0.87 9910P JP205 1.73 1225C Anzac 

0.89 9905P BM7 1.45 1071C Fort Chipewyan 

0.93 9917P SM8 1.28 9914P NE10 

0.93 1071C Fort Chipewyan 1.28 9905P BM7 
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4.1.2 LICA Passive and Continuous Monitors 

The summary table of 1-R and Euclidean distance rankings of the LICA stations for NO2 are shown in 

Table 4.5. Similar to the WBEA table (Table 4.1), the station rankings differ between the two metrics, 

though seven passive stations appear in both columns for the ten “most similar” stations: Fishing 

Lake/1191P, Dupre/1182P, Lake Eliza/1178P, Muriel-Kehiwin/1181P, Therien/1176P, Fort 

George/1195P, and La Corey/1183P. Comparing the Euclidean distances for LICA and WBEA stations 

however shows that the LICA stations tend to have larger Euclidean distances (minimum value LICA: 

1.76 vs WBEA 1.10); there is more variation in concentrations between the LICA stations compared to 

between WBEA stations. In both cases the rankings are relative to the other stations within the given 

Airshed – here we do not set a specific level for data similarity, but note that the relative rankings are 

Airshed-specific. 

The Cold Lake oil sands area has three stations continuously monitoring both NO2 and SO2. The NO2 

bimonthly dendrogram (Figure 3.7) shows that the continuous monitors cluster at a high correlation/low1-

R level of dissimilarity (R~ 0.9, 1-R=0.1) and the passives cluster together, with exception of 

Primrose/1186P and St. Lina/1252P, at a correlation level 0.79. As noted before, the collocated 

continuous and passive samplers at St. Lina (1250C, 1252P) and Cold Lake South (1174C, 1193P, 

1227P) and Maskwa (1248C, 1187P) do not cluster with each other between the two measurement 

technologies, indicating that the two methodologies are not providing comparable bimonthly average 

concentrations. Two of LICA’s passive NO2 monitors behave differently from the rest of the monitors 

(Primrose/1186P and St. Lina/1252P), with 1-R node separation from the rest of the stations at a 

correlation level of 0.03 and 0.56, respectively. As noted earlier, the time series of Primrose has a single 

isolated high value not recorded at the other stations, and St. Lina is located upwind of the other stations 

in the airshed, possibly explaining the lower levels of clustering for these stations. The metric values of 

LICA’s several collocated passive and continuous monitors vary in magnitude: e.g. St Lina’s link at 1-

R=0.56 and Euclidean distance 3.9 ppb; Maskwa’s at 1-R=0.78 and 6.5 ppb; and Cold Lake South’s at 1-

R=0.78 and 10.1 ppb. 
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Table 4.5 LICA Bimonthly NO2 Similarity Ranking. Note that stations at the bottom of the two columns are 

the most similar (hence one measure of their level of redundancy) with respect to each metric of 

dissimilarity. 

R station ID station name EuN station ID station name 

0.03 1186P Primrose 15.59 1186P Primrose 

0.56 1252P St. Lina 10.50 1199P Town of Bonnyville 

0.82 1192P Beaverdam 10.15 1174C Cold Lake South 

0.84 1199P Town of Bonnyville 5.66 1252P St. Lina 

0.88 9919P Frog Lake 5.31 1248C Maskwa 

0.90 1174C Cold Lake South 3.92 1250C ST.LINA 

0.91 1177P Flat Lake 3.90 1190P Clear Range 

0.92 1190P Clear Range 3.24 1227P Cold Lake South Passive 2 

0.93 1187P Maskwa 3.24 1193P Cold Lake South Passive 

0.93 1248C Maskwa 3.07 1189P Frog Lake 

0.93 1250C ST.LINA 2.53 1195P Fort George 

0.93 1191P Fishing Lake 2.53 1183P La Corey 

0.94 1182P Dupre 2.43 1187P Maskwa 

0.95 1178P Lake Eliza 2.41 1192P Beaverdam 

0.96 1193P Cold Lake South Passive 2.30 1182P Dupre 

0.96 1227P Cold Lake South Passive 2 2.30 1176P Therien 

0.96 1176P Therien 1.90 1177P Flat Lake 

0.96 1181P Muriel-Kehiwin 1.87 1191P Fishing Lake 

0.96 1183P La Corey 1.76 1181P Muriel-Kehiwin 

0.96 1195P Fort George 1.76 1178P Lake Eliza 
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The differences between 1-R and Euclidean distances are explored for the most highly correlated stations 

in Table 4.6 (1-R < 0.1; R> 0.9) matched with their Euclidean distance between the different stations 

belonging to a specific 1-R <0.1 cluster. Table 4.7 shows the corresponding physical distances between 

the stations. 

Table 4.6 Euclidian distance (ppb) for NO2 clusters at dissimilarity level 1-R = 0.1: Maskwa (1248C), St. 

Lina (1250C), Le Corey (1183P), Fishing Lake (1191P), Fort George (1195P), Therien (1176P), Lake 

Eliza (1178P), Maskwa (1187P), Cold Lake South Passive 1 and 2 (1193P, 1227P), Flat Lake (1177P), 

Muriel-Kehiwin (1181P), Dupre (1182P), and Clear Range (1190P). 

cluster station ID 1248C 1250C    

 

1 

1048C 

1250C 

0 

6.5 

6.5 

0 

   

cluster station ID 1183P 1191P 1195P   

 

2 

1183P 

1191P 

1195P 

0 

6.5 

2.5 

6.5 

0 

6.5 

2.5 

6.5 

0 

  

cluster station ID 1178P 1187P 1193P 1227P  

 

3 

1178P 

1187P 

1193P 

1227P 

0 

2.7 

3.8 

3.8 

2.7 

0 

3.8 

3.8 

3.8 

3.8 

0 

3.2 

3.8 

3.8 

3.2 

0 

 

cluster station ID 1176P 1177P 1181P 1182P 1190P 

 

 

4 

1176P 

1177P 

1181P 

1182P 

1190P 

0 

2.7 

2.7 

2.3 

3.9 

2.7 

9 

1.9 

2.7 

3.9 

2.7 

1.9 

0 

2.7 

3.9 

2.3 

2.7 

2.7 

0 

3.9 

3.9 

3.9 

3.9 

3.9 

0 
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Table 4.7 Distance between stations (km) for NO2 clusters at dissimilarity level 1-R = 0.1: Maskwa 

(1248C), St. Lina (1250C), Le Corey (1183P), Fishing Lake (1191P), Fort George (1195P), Therien 

(1176P), Lake Eliza (1178P), Maskwa (1187P), Cold Lake South Passive 1 and 2 (1193P, 1227P), Flat 

Lake (1177P), Muriel-Kehiwin (1181P), Dupre (1182P), and Clear Range (1190P). 

cluster station ID 1248C 1250C    

 

1 

1048C 

1250C 

0 

81 

81 

0 

   

cluster station ID 1183P 1191P 1195P   

 

2 

1183P 

1191P 

1195P 

0 

82 

69 

82 

0 

44 

69 

44 

0 

  

cluster station ID 1178P 1187P 1193P 1227P  

 

3 

1178P 

1187P 

1193P 

1227P 

0 

99 

90 

90 

99 

0 

26 

26 

90 

26 

0 

0 

90 

26 

0 

0 

 

cluster station ID 1176P 1177P 1181P 1182P 1190P 

 

 

4 

1176P 

1177P 

1181P 

1182P 

1190P 

0 

27 

40 

29 

110 

27 

0 

30 

40 

90 

40 

30 

0 

27 

71 

29 

40 

27 

0 

96 

110 

90 

71 

96 

0 

 

The cluster with continuous monitors shows the highest Euclidean and physical distance values between 

the stations. Bimonthly average NO2 concentrations from those continuous monitoring stations with high 

correlation levels (1-R<0.1) had relatively high Euclidean distances (different magnitudes), possibly 

indicating differences in downwind distance from similar sources, or other factors, such as large scale 

(both temporally and spatially) variation in the meteorological conditions, similar operating cycles for the 

different facilities monitored, etc. 

The summary of 1-R and Euclidean distance rankings for bimonthly SO2 are shown Table 4.8. Eight SO2 

stations Cold Lake South Passive/1193P, Cold Lake South Passive2/1227P, La Corey/1183P, 

Dupre/1182P, Fort George/1195P, Clear Range/1190P, Lake Eliza/1178P, and Flat Lake/1177P, are all 

within the ten lowest 1-R and Euclidean distances. Table 4.9 and Table 4.10 show the corresponding 

Euclidean distances, and the physical distance between the stations, for the clusters at dissimilarity level 

0.1. Unlike NO2, the magnitudes of the Euclidean distances (Table 4.9) for the lower scoring LICA 
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stations for this metric are lower than their WBEA counterparts; the LICA stations are more similar to each 

other in terms of Euclidean distance than for WBEA. 

Table 4.8 LICA Bimonthly SO2 Similarity Ranking. Note that stations at the bottom of the two columns are 

the most similar (hence one measure of their level of redundancy) with respect to each metric of 

dissimilarity. 

R station ID station name EuN station ID station name 

0.02 1199P Town of Bonnyville 3.89 1250C St. Lina 

0.32 1174C Cold Lake South 3.39 1174C Cold Lake South 

0.54 1179P Telegraph Creek 2.22 1248C Maskwa 

0.54 1198P Hilda Lake 2.16 1187P Maskwa 

0.60 1250C St. Lina 2.16 1198C Hilda Lake 

0.60 1248C Maskwa 2.05 1199P Town of Bonnyville 

0.81 1186P Primrose 1.57 1186P Primrose 

0.81 1187P Maskwa 1.56 1252P St. Lina 

0.85 1176P Therien 1.56 1197P Mahihkan 

0.85 1252P St. Lina 1.22 1179P Telegraph Creek 

0.86 1192P Beaverdam 1.02 1189P Frog Lake 

0.86 1191P Frog Lake 0.87 1176P Therien 

0.88 1197P Mahihkan 0.80 1177P Flat Lake 

0.88 1183P La Corey 0.79 1192P Beaverdam 

0.88 1182P Dupre 0.73 1178P Lake Eliza 

0.89 1178P Lake Eliza 0.73 1190P Clear Range 

0.91 1193P Cold Lake South Passive 0.61 1183P La Corey 

0.91 1195P Fort George 0.50 1227P Cold Lake South Passive 2 

0.91 1177P Flat Lake 0.50 1193P Cold Lake South Passive 
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Some of the LICA SO2 monitors show a substantially different behavior (high values of 1-R; low R values) 

compared to the other LICA stations (Figure 3.9): the passive Town of Bonnyville/1199P, and all three 

continuous monitors, have larger relative dissimilarity with respect to the remaining passive monitors, with 

correlation levels at or below R=0.6. There is a moderately dissimilar cluster of passive monitors located 

at Hilda Lake/1198P, Telegraph Creek/1179P linking at correlation level 0.54. Passive and continuous 

monitors located at the same sites link only at high levels of 1-R dissimilarity and have some of the 

highest Euclidean distances of the LICA SO2 analysis. The sites tend to correlate at levels lower than 0.5 

and for Euclidean distances, 1.5 ppbv for St Lina (1250C, 1252P), 5.2 ppbv for Maskwa (1248C/1187P), 

and 3.4 ppbv for Cold Lake South’s monitors (1174C, 1193P, 1227P). 

Table 4.9 and Table 4.10 show the Euclidean distance and the physical distance between stations 

clustering with a 1-R value of 0.10 (R=0.90). The Euclidean distances are often below 1 ppb, though the 

spatial separation between the stations is sometimes large between these passive stations. 

Table 4.9 Euclidean distance (ppb) for SO2 clusters at dissimilarity level 1-R = 0.1: Fort George (1195P) 

and Flat Lake (1177P), Cold Lake South Passive 1 and 2 (1193P, 1227P). 

cluster station ID 1195P 

1 1177P 1.5 

cluster station ID 1227P 

2 1193PC 0.5 

 

Table 4.10 Distance between stations (km) for SO2 clusters at dissimilarity level 1-R = 0.1: Dupre 

(1182P), Fort George (1195P), Flat Lake (1177P), Lake Eliza (1178P), Beaverdam and Frog Lake, Cold 

Lake South Passive 1 and 2 (1193P, 1227P). 

cluster station ID 1195P 

1 1177P 43 

cluster station ID 1227P 

2 1193PC 0 

 

4.1.3 All Alberta NO2 and SO2 Passive and Continuous Monitors 

Evaluation of redundancies on a provincial basis for the bimonthly passive and continuous monitors was 

carried out in order to assist in potential decision making across Airsheds on passive monitoring site 

redundancies. For example, stations managed by different Airsheds may be in sufficiently close proximity 

that they may be observing similar sources, and if sufficiently similar and in close proximity, could be 

considered redundant. Decisions on redundancies must be made carefully however, for several reasons. 
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First, continuous stations were included with passive stations in order to be able to determine the level of 

comparability (similarity) of the different methodologies for observations – but the higher time resolution of 

the continuous monitors allows them to be used for additional purposes besides long-term averaging and 

hence their level of similarity for bimonthly averages will be less relevant in determining the relative level 

of redundancy for these stations. Next, as noted earlier, station time series with very similar correlation 

coefficients may represent the impact of sources with a similar temporal emissions pattern across the 

province – the rush hour peaks of NO2 in the morning and afternoon, for urban to suburban regions where 

the dominant source of NO2 will be mobile emissions, will result in high levels of 1-R similarities between 

urban stations in different cities, despite being influenced by different local emission sources. A similar 

effect could be expected to occur for SO2 stations influenced by widely spatially separated coal-fired 

powerplants with the same daily and seasonal cycle of power output. Physical proximity between stations 

should thus be considered in assessing redundancies based on either the 1-R or Euclidean distance 

metrics. Station time series may be highly similar due to their close proximity for either metric (and hence 

greater likelihood of being influenced by the same sources at the same time), due to being far apart yet 

influenced by separate emissions sources which happen to have a similar temporal variation (1-R metric), 

or being located far apart and have sufficiently low concentrations that they have relatively high 

similarities (Euclidean distance metric) since they are sampling background air. For the Euclidean 

distance metric, physical proximity should also be considered – stations may be highly similar with this 

norm due to being (a) located close together and measuring concentrations of pollutants associated with 

the same sources, (b) located far apart, and measuring concentrations of pollutants associated with 

different sources which happen to have the same source strength, (c) located far apart, and near to no 

major sources, so that the Euclidean distances are uniformly low since the stations are all observing low 

concentration, “background”, air.  

Passives have been used as an alternative to continuous monitors for monitoring temporal trends of air 

pollutants in remote areas (Krupa and Legge, 2000; Cox, 2003; Seethapathy et al., 2008; Bytnerowicz et 

al., 2010) and evaluating air quality of large areas (Gerboles et al., 2006). However, passive sampling 

disadvantages compared to continuous are low sensitivity, inability to resolve concentrations peaks, and 

adverse effects of meteorological conditions (Tang et al. 1997, 1999; Krupa and Legge, 2000; Tang, 

2001; Kirby et al., 2001; Partyka et al., 2007; Fraczek et al., 2009; Salem et al., 2009; Zabiegala et al., 

2010). Moreover, monthly meteorological information needed to calculate the diffusion rate is obtained 

from the nearest site with meteorological observations, as most passive sampling sites do not have 

meteorological information. These constraining factors could influence the sampling and, therefore, the 

accuracy of the results, causing under- or overestimation of ambient gas concentrations in relation to 

continuous analyzers (Krupa and Legge, 2000). There have been several studies comparing passive and 

continuous analyzers in Alberta (WBK, 2007; Hsu et al., 2010; Pippus, 2012; Bari et al., 2015). Bari et al. 

(2015), the study with the highest number of samples compared, cautioned that direct comparisons 

between NO2 and SO2 continuous and passive samplers may be hampered by lower field accuracy in the 

latter. Several studies show that passive samplers overestimate SO2 ambient concentrations and 

underestimate NO2, in regard to continuous monitors. We note that these comparisons were done for 

urban sites only; the work which follows includes an objective comparison of passive and continuous 

monitors for rural, urban, and industrial sites outside of urban regions.  
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All issues described above must be considered when making use of the 1-R and Euclidean distance 

metrics rankings for the 126 bimonthly NO2 passive and continuous stations used in the following 

analysis, appearing below in Table 4.11. An important feature which may be seen from Table 4.11 is that 

the stations with the highest correlation coefficients (lowest values of the 1-R dissimilarity metric) are 

usually not the same stations as the ones with the lowest values of the Euclidean distance (see bottom of 

Table 4.11). The stations with the highest correlation coefficients are a mixture of passive and continuous 

monitors, while the stations with the lowest Euclidean distances tend to be passive monitors. For the 

latter, several are in higher elevation locations and/or appear to be sampling relatively low concentrations 

(close to zero), e.g. Limestone Mountain/9943P, Parker Ridge/9939P, Bow Summit/9938P. The lowest (< 

3 ppb) Euclidean distances may thus reflect stations which are sampling “background” air – the similarity 

with regards to this metric may be due to the stations having uniformly low concentrations, despite being 

located in different parts of the province. 

Table 4.11 Bimonthly NO2 Similarity Ranking. Note that stations at the bottom of the two columns are the 

most similar (hence one measure of their level of redundancy) with respect to each metric of dissimilarity. 

R station ID station name EuN station ID station name 

-0.04 1186P Primrose 27.7 1028C Edmonton Central 

0.12 9942P Baseline Mountain 20.7 1075C Millennium Mine 

0.35 9939P Parker Ridge 18.3 1156C Redwater Industrial 

0.38 9938P Bow Summit 17.5 1029C Edmonton East 

0.43 9933P PAS 15 15.5 1244C Shell Muskeg River 

0.46 9932P PAS 14 15.5 1064C 
Fort McMurray-Athabasca 

Valley 

0.47 9913P JP213 15.4 1186P Primrose 

0.55 1172P PAS 19 13.2 1142P Red Deer Riverside 

0.56 9940P Bighorn 11.8 1172P PAS 19 
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0.57 9934P PAS 16 11.4 2000C Bruderheim 

0.65 1071C Fort Chipewyan 11.2 1142C Red Deer-Riverside 

0.67 1049C Lethbridge 10.7 2001C 
Fort Saskatchewan-92St & 

96Ave 

0.69 9970P Panther River 10.7 1159C Ross Creek 

0.71 1156C Redwater Industrial 9.64 1049C Lethbridge 

0.72 1252P St. Lina 9.47 9920P R2 

0.73 9943P Limestone Mountain 9.12 1032P Fort McKay-Bertha Ganter 

0.74 9931P PAS 13 8.83 9936P PAS 18 

0.74 9912P JP212 8.83 9929P PAS 11 

0.74 1052C Violet Grove 8.74 1241C Wagner2 

0.76 9922P PAS 1 8.71 1161C Range Road 220 

0.76 9929P PAS 11 8.43 1172C Crescent Heights 

0.76 9941P Sunchild 8.43 1058C Meadows 

0.76 9925P PAS 4 8.15 1199P Town of Bonnyville 

0.76 9928P PAS 8 8.07 1039C Calgary Northwest 

0.77 9966P Ferrybank 8.07 1036C Edmonton South 
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0.77 2000C Bruderheim 7.91 1052C Violet Grove 

0.79 9927P PAS 7 7.91 9935P PAS 17 

0.79 9930P PAS 12 7.83 9912P JP212 

0.79 9954P Bottrel 7.77 1054C Carrot Creek 

0.80 9919P AH7 7.44 1059C Power 

0.80 9910P JP205 7.38 9908P JP104 

0.81 1055C Steeper 7.31 1162C Lamont County 

0.81 1059C Power 7.25 1053C Tomahawk 

0.81 1241C Wagner2 6.74 1226C CNRL Horizon 

0.82 9924P PAS 3 6.46 1174C Cold Lake South 

0.82 9935P PAS 17 6.36 9926P PAS 6 

0.83 1192P Beaverdam 6.35 9971P Markerville 

0.84 9923P PAS 2 6.10 1070C Fort McMurray-Patricia McInnes 

0.84 9926P PAS 6 6.06 1057C Genesee 

0.86 9902P AH8 5.97 9928P PAS 8 

0.86 9914P NE10 5.94 1157C Elk Island 
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0.86 1199P Town of Bonnyville 5.76 1076C 
Fort McKay South (Syncrude 

UE1) 

0.87 9953P South Elkton 5.76 1032C Fort McKay-Bertha Ganter 

0.87 9916P NE7 5.75 1168C Beaverlodge 

0.87 9920P R2 5.75 1063C Breton 

0.87 1189P Frog Lake 5.66 1252P St. Lina 

0.88 9907P JP102 5.38 9907P JP102 

0.88 9904P BM11 5.26 1248C Maskwa 

0.88 9905P BM7 5.26 1225C Anzac 

0.89 1057C Genesee 5.04 9924P PAS 3 

0.89 9903P BM10 5.00 1055C Steeper 

0.89 9918P WF4 4.80 9932P PAS 14 

0.89 9909P JP107 4.78 9909P JP107 

0.89 9915P NE11 4.61 9925P PAS 4 

0.89 1075C Millennium Mine 4.38 9934P PAS 16 

0.89 1092C Caroline 4.38 9933P PAS 15 

0.90 1248C Maskwa 4.33 9930P PAS 12 
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0.90 1162C Lamont County 4.33 9927P PAS 7 

0.90 9917P SM8 4.31 9955P Crossfield-Carstairs 

0.90 9921P SM7 4.31 9949P Rimbey 

0.91 1177P Flat Lake 4.21 9916P NE7 

0.91 1168C Beaverlodge 4.14 9922P PAS 1 

0.91 1032P 
Fort McKay-Bertha 

Ganter 
4.02 9919P AH7 

0.91 1092P Caroline 4.00 1092C Caroline 

0.91 9955P Crossfield-Carstairs 3.82 1250C ST.LINA 

0.91 1157C Elk Island 3.78 9959P Morningside 

0.92 1190P Clear Range 3.69 1190P Clear Range 

0.92 9906P JP101 3.61 9915P NE11 

0.93 1187P Maskwa 3.57 1071C Fort Chipewyan 

0.93 9971P Markerville 3.46 9948P Twin Lakes 

0.93 1064C 
Fort McMurray-

Athabasca Valley 
3.43 9962P Grainger 

0.93 1244C Shell Muskeg River 3.41 9942P Baseline Mountain 

0.93 1244C Shell Muskeg River 3.41 9942P Baseline Mountain 
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0.93 1159C Ross Creek 3.39 9931P PAS 13 

0.93 1191P Fishing Lake 3.39 9923P PAS 2 

0.93 1063C Breton 3.25 9901P AH3 

0.94 1142P Red Deer Riverside 3.24 9941P Sunchild 

0.94 9908P JP104 3.24 1227P Cold Lake South Passive 2 

0.94 1182P Dupre 3.24 1193P Cold Lake South Passive 

0.94 9961P Sunnyslope 3.22 9966P Ferrybank 

0.94 9968P Kersey 3.18 1189P Frog Lake 

0.94 1250C ST.LINA 2.67 9961P Sunnyslope 

0.94 1058C Meadows 2.63 9968P Kersey 

0.94 1161C Range Road 220 2.62 9960P Mayton 

0.94 9945P Fallen Timber 2.62 9956P Netook-Olds 

0.94 9946P Bearberry 2.61 9902P AH8 

0.94 9960P Mayton 2.60 9918P WF4 

0.94 9962P Grainger 2.59 1092P Caroline 

0.94 1054C Carrot Creek 2.53 1195P Fort George 
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0.94 1172C Crescent Heights 2.53 1183P La Corey 

0.94 1028C Edmonton Central 2.48 9958P Sylvan Lake 

0.94 2001C 
Fort Saskatchewan-92St 

& 96Ave 
2.43 1187P Maskwa 

0.94 1053C Tomahawk 2.41 1192P Beaverdam 

0.94 1165C 
Grande Prairie (Henry 

Pirker) 
2.40 9954P Bottrel 

0.95 1178P Lake Eliza 2.39 9963P Elnora 

0.95 9948P Twin Lakes 2.37 9952P Sundre 

0.95 9949P Rimbey 2.37 9951P Raven River 

0.95 1226C CNRL Horizon 2.33 9965P Samson 

0.95 9959P Morningside 2.30 1182P Dupre 

0.95 9963P Elnora 2.30 1176P Therien 

0.95 9964P Alix 2.21 9964P Alix 

0.95 9965P Samson 2.00 9967P Pakkwaw 

0.95 9951P Raven River 2.00 9950P Leslieville 

0.95 9958P Sylvan Lake 1.96 9906P JP101 

0.96 1193P 
Cold Lake South 

Passive 
1.92 9947P Ricinus 



 

98 Hierarchical Clustering Network Analysis of Ambient Air Monitoring in Alberta: Phases 1 and 2 | No. 4.0 

0.96 1227P 
Cold Lake South 

Passive 2 
1.90 1177P Flat Lake 

0.96 1029C Edmonton East 1.88 9910P JP205 

0.96 1176P Therien 1.87 1191P Fishing Lake 

0.96 1181P Muriel-Kehiwin 1.85 9911P JP210 

0.96 9901P AH3 1.76 1181P Muriel-Kehiwin 

0.96 9911P JP210 1.76 1178P Lake Eliza 

0.96 1142C Red Deer-Riverside 1.49 9953P South Elkton 

0.96 1174C Cold Lake South 1.49 9946P Bearberry 

0.96 1183P La Corey 1.21 9913P JP213 

0.96 1195P Fort George 1.19 9970P Panther River 

0.96 9947P Ricinus 1.19 9945P Fallen Timber 

0.96 9952P Sundre 1.18 9914P NE10 

0.96 9950P Leslieville 1.14 9938P Bow Summit 

0.97 1225C Anzac 1.12 9903P BM10 

0.97 1036C Edmonton South 1.10 9904P BM11 

0.97 1039C Calgary Northwest 1.08 9940P Bighorn 



 

Hierarchical Clustering Network Analysis of Ambient Air Monitoring in Alberta: Phases 1 and 2 | No. 4.0  99 

0.97 9956P Netook-Olds 1.03 9921P SM7 

0.97 9967P Pakkwaw 1.03 9917P SM8 

0.98 1070C 
Fort McMurray-Patricia 

McInnes 
0.90 9939P Parker Ridge 

0.99 1032C 
Fort McKay-Bertha 

Ganter 
0.89 9943P Limestone Mountain 

0.99 1076C 
Fort McKay South 

(Syncrude UE1) 
0.89 9905P BM7 

 

The spatial distribution of clusters generated at a specific level of the dissimilarity metric is another way 

hierarchical clustering may be used to examine the relationships between the stations. As noted earlier, 

this is equivalent to drawing a horizontal line across the dendrogram at a specific level of the dissimilarity 

metric, collecting the stations by cluster at that level, and plotting the stations on a map, colour-coded by 

cluster.  

Figure 4.1, Figure 4.2 and Figure 4.3 show the resulting mapping for the Alberta bimonthly NO2 clusters 

using the 1-R dissimilarity metric, for 1-R = 0.6, 0.5 and 0.45 (R = 0.4, 0.5 and 0.65) respectively. At 1-R 

dissimilarity metric levels of 0.6 and 0.5 (Figure 4.1 and Figure 4.2), the continuous monitors form a single 

cluster (cluster number 1), while the passive monitors form the remaining clusters. Two WCAS continuous 

monitors separate from the remaining continuous monitors at R=0.5 (Figure 4.2). The expanded views to 

the right of each of these figures for specific Airsheds show that some of the continuous monitors in 

WBEA and one in LICA also cluster with the passives, though the LICA passive fails to cluster with the 

continuous monitors by R=0.45 (Figure 4.3), and the collocated PAS continuous and passive monitors do 

not cluster at any of the correlation levels shown. The continuous monitors as a group remain distinct 

from the passive monitors until Steeper/1055C and Power/1059C form a distinct cluster with passive 

station St. Lina/1252P. The tendency of the continuous monitors to remain separate from the passive 

monitors shows that these two monitoring technologies are not providing equivalent bimonthly average 

results in some regions (LICA, PAS) at the given correlation levels. In the Athabasca oil sands region, 

passive and continuous stations located closer to the oil sands facilities tend to cluster up at 1-R = 0.5, 

but for levels of correlation above 0.5, the clustering between stations monitoring similar source areas is 

rare. Solazzo and Galmarini (2015) in their analysis of European monitoring networks found similar 

patterns between different European nations, noting that “The reason for this distinct country-related 

grouping most likely lies in the country sampling methodologies, sensitivity and data acquisition protocols 

not being harmonised across [the] EU”. The same is true for the Alberta passive and continuous 

monitoring stations – the 1-R clustering is showing that the continuous stations are more similar to each 

other than to the passive stations continuous and passive stations collocated at the same Airshed. This is 

also discussed in the previous sections of this chapter on a within-Airshed basis, for the WBEA and LICA 
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Airsheds. Given that collocated passive stations do not always correlate well with each other, and 

collocated passive stations with high correlations sometimes have high Euclidean distances (e.g. LICA 

1193P and 1227P cluster at R=0.9 but have a Euclidean distance of 3.2 ppb, see Table 4.6), much of this 

variability seems to lie with the sampling methodology, sensitivity and data accuracy.  

That the passive NO2 monitors may suffer from sampling sensitivity issues is also suggested by the many 

WBEA and LICA passive monitors clustering together, despite being located in different airsheds, down to 

R = 0.65 (Figure 4.3, cluster “3”, red circles); the two source regions are not yet distinct at this correlation 

level. The converse possibility, that the temporal variability of sources and meteorology in these two 

regions is sufficiently similar to drive the cross-Airshed clustering, is unlikely, given the presence of other 

within-Airshed stations which are not part of the larger cross-Airshed cluster. Figure 3.11 shows that the 

passive monitors for those two regions do not become distinct until 1-R = 0.31 (R=0.69); Figure 3.12 

shows that the Euclidean distances do not separate the regions into distinct clusters until Euclidean 

distances less than 2.77 ppbv are reached. However, Table 4.6 also shows that collocated LICA passive 

NO2 monitors have Euclidean distances as great at 3.2 ppb, and Figure 3.2 and Figure 3.3 show that 

highly correlated and collocated (R>0.9) passive and continuous monitors (1032C/1032P) are separated 

by Euclidean distances of 14.4 ppb. Taken together, these findings suggest that the data from the passive 

monitors have sufficiently high levels of noise to make distinguishing between stations at different 

Airsheds difficult, and that the magnitude of the noise is as high or higher than the differences between 

stations within the same Airshed. One important caveat on the redundancy analysis carried out here is 

thus that while the stations may be ranked in order of redundancy according to the 1-R or Euclidean 

distances, at least some of the similarities and dissimilarities are clearly being influenced by high levels of 

noise within the observations.  
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Figure 4.1 Associativity analysis for passive and continuous bimonthly NO2 averages for 1-R = 0.6 

(R=0.4) Stations are colour-coded according to cluster formation, with continuous stations are marked as 
triangle and passive as a circle. 
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Figure 4.2 Associativity analysis for passive and continuous bimonthly NO2 averages for 1-R = 0.5 

(R=0.5) Stations are colour-coded according to cluster formation, with continuous stations are marked as 
triangle and passive as a circle. 
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Figure 4.3 Associativity analysis for passive and continuous bimonthly NO2 averages for 1-R = 0.45 

(R=0.65) Stations are colour-coded according to cluster formation, with continuous stations are marked 
as triangle and passive as a circle. 

 

The timescale filtering of the hourly continuous NO2 data for the single year analysis may be used to 

show the extent to which different time scales influences the similarities (noting here that at the bimonthly 

averaging discussed above, all continuous monitors are part of the same 1-R cluster).  Figure 4.4 shows 

the spatial locations of clusters occurring for 1-R = 0.6 (R=0.4), for the hourly data and time-filtered data. 

The hourly data  (Figure 4.4 (a)) at this low level of correlation cluster across Airsheds; lower values of 1-

R are required to distinguish Airsheds and local sources clearly. As variability associated with shorter time 

scales is removed  (Figure 4.4 (b) through (d)), the number of clusters decreases, with only a single 

station remaining distinct at this correlation level when monthly timescales are removed (Figure 4.4 (d)). 

At a fixed level of correlation, the regional scale component of the NO2 time series becomes more 

dominant as shorter time scales are removed. Most of the variation occurs in the shorter time scales, and 

all stations forming a single cluster at bimonthly time scales and lower levels of correlation is thus 

reasonable.  
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Figure 4.4 Associativity analysis for NO2 hourly time series and the filtered time-scales using 1-R as the 

metric to compute the dissimilarity matrix, assuming a dissimilarity level of 0.6. Stations are colour-coded 
according to cluster formation, and Airsheds are plotted with different polygons. 

 

Table 4.12 shows the 1-R and Euclidean distance dissimilarity rankings for the entire collection of Alberta 

continuous and passive SO2 monitors. Once again, the ranking between the lowest 1-R (highest R) and 

lowest Euclidean distance stations differs significantly; e.g. only five of the stations on the left and right 

columns of the table for the bottom twenty rows overlap (Violet Grove, Tomahawk, and FAP stations 46, 

(c) (d)

(a) (b)
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40, and 03); stations with the highest correlations do not necessarily have the lowest Euclidean distances. 

However, the differences in the order of the station rankings between the two metrics are smaller than 

was noted for NO2. Nevertheless, this difference in the rankings once again suggests that decisions on 

redundancy must thus be based on the metric which has the greater relevance towards the intended 

purpose of the monitoring network at these locations – long time period averages (Euclidean distance), or 

differences in temporal variability (1-R).  

Table 4.12 Bimonthly SO2 Similarity Ranking. Note that stations at the bottom of the two columns are the 

most similar (hence one measure of their level of redundancy) with respect to each metric of dissimilarity. 

R station ID station name EuN station ID station name 

0.08 1156C Redwater Industrial 24.72 1156C Redwater Industrial 

0.11 1066C Mildred Lake 6.96 1066C Mildred Lake 

0.23 9918P WF4 6.13 1069C Mannix 

0.25 1250C ST.LINA 5.96 9918P WF4 

0.37 1312P FAP-56 5.53 1250C ST.LINA 

0.43 1170C Valleyview 4.93 9908P JP104 

0.47 1241C Wagner2 4.23 1162C Lamont County 

0.47 1029C Edmonton East 4.18 9907P JP102 

0.51 1198P Hilda Lake 4.18 1074C Lower Camp 

0.53 9908P JP104 3.32 9904P BM11 

0.55 1074C Lower Camp 3.26 1075C Millennium Mine 

0.55 1179P Telegraph Creek 3.26 1068C Buffalo Viewpoint 

0.55 1092C Caroline 3.23 1244C Shell Muskeg River 

0.57 1162C Lamont County 3.14 9917P SM8 

0.57 1059C Power 2.99 9912P JP212 

0.57 1166C Evergreen Park 2.99 1029C Edmonton East 

0.57 1036C Edmonton South 2.88 9906P JP101 

0.58 9907P JP102 2.88 9901P AH3 

0.58 1064C 
Fort McMurray-Athabasca 

Valley 
2.84 9902P AH8 
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0.59 1075C Millennium Mine 2.82 9916P NE7 

0.59 1068C Buffalo Viewpoint 2.82 9909P JP107 

0.59 9912P JP212 2.78 1032P Fort McKay-Bertha Ganter 

0.59 1057C Genesee 2.60 1312P FAP-56 

0.60 1161C Range Road 220 2.59 9915P NE11 

0.61 2001C 
Fort Saskatchewan-92St & 

96Ave 
2.49 1241C Wagner2 

0.62 9904P BM11 2.49 1057C Genesee 

0.62 9903P BM10 2.48 1032C Fort McKay-Bertha Ganter 

0.62 9915P NE11 2.48 1076C 
Fort McKay South (Syncrude 

UE1) 

0.62 1244C Shell Muskeg River 2.34 1064C Fort McMurray-Athabasca Valley 

0.64 1159C Ross Creek 2.32 1070C Fort McMurray-Patricia McInnes 

0.64 1248C Maskwa 2.32 1226C CNRL Horizon 

0.65 1069C Mannix 2.28 1248C Maskwa 

0.66 1032P Fort McKay-Bertha Ganter 2.25 1198P Hilda Lake 

0.66 1226C CNRL Horizon 2.11 9913P JP213 

0.67 2000C Bruderheim 2.08 1159C Ross Creek 

0.71 9902P AH8 2.05 9910P JP205 

0.71 1292P FAP-35 1.99 1161C Range Road 220 

0.72 1063C Breton 1.99 2000C Bruderheim 

0.72 1070C 
Fort McMurray-Patricia 

McInnes 
1.96 1049C Lethbridge 

0.73 1157C Elk Island 1.95 1170C Valleyview 

0.73 1174C Cold Lake South 1.95 1092C Caroline 

0.73 9909P JP107 1.94 1187P Maskwa 

0.75 1272P FAP-15 1.89 1292P FAP-35 

0.75 1049C Lethbridge 1.87 9903P BM10 
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0.75 1172C Crescent Heights 1.81 1174C Cold Lake South 

0.75 1225C Anzac 1.78 1142C Red Deer-Riverside 

0.76 1032C Fort McKay-Bertha Ganter 1.78 1165C Grande Prairie (Henry Pirker) 

0.76 1076C 
Fort McKay South 
(Syncrude UE1) 

1.74 1036C Edmonton South 

0.77 1062C Edson 1.73 9911P JP210 

0.78 1199P Town of Bonnyville 1.73 1225C Anzac 

0.80 9901P AH3 1.68 1058C Meadows 

0.81 1186P Primrose 1.56 1252P St. Lina 

0.81 1187P Maskwa 1.56 1197P Mahihkan 

0.82 1259P FAP-02 1.54 2001C 
Fort Saskatchewan-92St & 

96Ave 

0.82 9913P JP213 1.47 1277P FAP-20 

0.83 1167C Smoky Heights 1.47 1259P FAP-02 

0.83 1168C Beaverlodge 1.41 1303P FAP-47 

0.84 1306P FAP-50 1.40 1186P Primrose 

0.85 9911P JP210 1.40 1157C Elk Island 

0.85 9906P JP101 1.34 1059C Power 

0.85 1176P Therien 1.28 9914P NE10 

0.85 1252P St. Lina 1.28 9905P BM7 

0.85 1285P FAP-28 1.27 1199P Town of Bonnyville 

0.85 1279P FAP-22 1.27 1291P FAP-34 

0.86 9914P NE10 1.22 1272P FAP-15 

0.86 1052C Violet Grove 1.22 1179P Telegraph Creek 

0.86 1053C Tomahawk 1.19 1071C Fort Chipewyan 

0.86 1192P Beaverdam 1.19 1054C Carrot Creek 

0.87 1058C Meadows 1.15 1168C Beaverlodge 

0.87 9916P NE7 1.12 1167C Smoky Heights 
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0.87 9910P JP205 1.12 1062C Edson 

0.88 1197P Mahihkan 1.08 1052C Violet Grove 

0.88 1183P La Corey 1.08 1053C Tomahawk 

0.88 1303P FAP-47 1.00 1166C Evergreen Park 

0.88 1302P FAP-46 1.00 1063C Breton 

0.88 1297P FAP-40 0.98 1302P FAP-46 

0.88 1260P FAP-03 0.98 1278P FAP-21 

0.88 1189P Frog Lake 0.92 1055C Steeper 

0.88 1182P Dupre 0.92 1172C Crescent Heights 

0.89 1311P FAP-55 0.88 1297P FAP-40 

0.89 1262P FAP-05 0.88 1260P FAP-03 

0.89 9905P BM7 0.86 1176P Therien 

0.89 1178P Lake Eliza 0.83 1285P FAP-28 

0.89 1190P Clear Range 0.83 1279P FAP-22 

0.91 1278P FAP-21 0.82 1189P Frog Lake 

0.91 1277P FAP-20 0.82 1182P Dupre 

0.91 1227P Cold Lake South Passive 2 0.82 1306P FAP-50 

0.91 1193P Cold Lake South Passive 0.80 1177P Flat Lake 

0.91 1195P Fort George 0.79 1311P FAP-55 

0.91 1177P Flat Lake 0.79 1262P FAP-05 

0.92 1291P FAP-34 0.73 1178P Lake Eliza 

0.92 1054C Carrot Creek 0.73 1190P Clear Range 

0.93 9917P SM8 0.70 1195P Fort George 

0.93 1071C Fort Chipewyan 0.70 1192P Beaverdam 

0.93 1055C Steeper 0.61 1183P La Corey 

0.97 1142C Red Deer-Riverside 0.50 1227P Cold Lake South Passive 2 



 

Hierarchical Clustering Network Analysis of Ambient Air Monitoring in Alberta: Phases 1 and 2 | No. 4.0  109 

0.97 1165C 
Grande Prairie (Henry 

Pirker) 
0.50 1193P Cold Lake South Passive 

 

The Alberta bimonthly SO2 dendrogram was used to generate clusters at 1-R values of 0.8, 0.7 and 0.6 

(R = 0.2 0.3, and 0.4, respectively for spatial mapping (Figure 4.5 (a),(b),(c)). The SO2 clusters are 

considerably more discontinuous (more clusters for a given area and correlation level) than NO2, showing 

the influence of more discrete local sources and conditions as opposed to the regional influences 

apparent for NO2 at low correlation levels (compare Figure 4.5 (a) continuous monitors those of with 

Figure 4.1). At low correlation levels, many of the SO2 stations, both passive and continuous, fall into the 

same cluster (Figure 4.5(a), cluster 3), and widely separated stations fall into the same cluster (e.g. some 

FAP stations cluster with WBEA stations (Figure 4.5 (a), cluster 1). These anomalies persist to higher 

correlation levels (Figure 4.5 (c), cluster 4 including passive stations in WBEA, FAP and LICA, along with 

WCAS and LICA continuous stations. At the highest correlation level shown here (R= 0.4), collocated 

continuous and passive stations in LICA and PAS do not form clusters, and many stations which are 

located in different areas of the province fall within the same cluster ( Figure 4.5 (c)). As noted earlier, 

NO2 and SO2 are influenced by different source types (primarily large stack sources for SO2, and surface 

area mobile sources for NO2), and these differences help explain a more spatially discontinuous pattern 

of clusters (at a given 1-R level) for SO2 than for NO2. However, the 1-R clustering of passive stations and 

some continuous stations across large spatial distance suggests that the SO2 data are similar for reasons 

which at present are unknown, but may include sources with similar time signatures to their emissions, 

similarly low concentrations, or the same issues as noted in the NO2 analysis (sampling methodology, 

instrument sensitivity and/or data acquisition protocols not being harmonized, and the likelihood, based 

on collocated passive and continuous monitors, of a high degree of error within the measurements).  

The one year dataset of hourly continuous SO2 observations were analysed in the same fashion as for 

those NO2 to show spatial relationships of the clusters, with the results shown in Figure 4.6, at a 1-R 

dissimilarity level of 0.7 (R=0.3). Even at this low level of correlation, the clustering of the unfiltered hourly 

data (Figure 4.6 (a)) shows a large degree of spatial variability (large number of clusters), reflecting the 

spatial and temporal heterogeneity of SO2 sources. 
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Figure 4.5 Associativity analysis for passive and continuous bimonthly SO2 averages using 1-R as the 

dissimilarity metric, assuming a dissimilarity level of 0.7, 0.6 and 0.5 (R=0.3, 0.4, 0.5). Stations are colour-
coded according to cluster formation, with continuous stations are marked as triangle and passive as a 
circle. 

(c)

(a) (b)
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Figure 4.6 Associativity analysis for SO2 hourly time series and the filtered time-scales considering 1-R 
as the metric to compute the dissimilarity matrix, assuming a dissimilarity level of 0.7. Stations are colour-
codded according to cluster formation, and Airsheds are plotted with different polygons. 

 

(c) (d)

(a) (b)
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In order to better discuss possible redundancies for SO2 the 1-R clusters (Figure 3.13) which contain four 

or more stations were collected in Table 4.13. The clusters are ordered in terms of increasing R. The 

maximum and minimum Euclidean distance between stations within each of these 1-R clusters is shown 

in the final two columns of the Table (the Euclidean distances were determined by finding the largest 

Euclidean distance between pairs of stations in the 1-R cluster, using the Euclidean distance 

dendrogram, Figure 3.14). The following observations may be made, based on Table 4.13: 

1) The clusters are mainly represented by WBEA stations (cluster numbers 1, 3, 4 5, and 6, 7 and 8) 

with a correlation level ranging from 0.53 to 0.80. There are also three clusters for FAP (cluster 

numbers 1, 2 and 5) with correlation ranging from 0.67 to 0.84, and a single cluster for LICA  

2) Clusters comprised of WBEA stations tend to have lower correlations but higher maximum Euclidean 

distance values (2.82 to 6.13 ppbv) than other Airsheds, suggesting high source emissions and 

greater variability compared to the other clusters.  

3) FAP clusters have lower variability between correlation and the difference between the lowest and 

highest Euclidean distance value is the smallest, suggesting many of these monitors are sampling 

similar sources or background concentrations. 

4) LICA monitors are having a difference of ~1ppbv between the lowest and the highest Euclidean 

distance values and as a reasonable correlation (0.75). Though spread out spatially, these passives 

monitors are measuring similar sources or background concentrations. 

Table 4.13 and the associated discussion thus provides a methodology whereby both sets of clustering 

information may be combined to rank stations, providing information on relative levels of similarity and 

hence potential redundancies, with regards to both metrics. 

Table 4.13 1-R SO2 clusters selected from Figure 3.13, with the largest Euclidean distance 

between their members (from Figure 3.14). 

1-R Cluster 

Number 

(Airshed 

Abbreviation) 

 

1-R Cluster 

Members 

 

1-R 

 

R 

Euclidean Distance between 

1-R members (ppbv) 

largest               smallest 

1(FAP) 

Brudenheim 

(C) 

FAP-15 (P) 

FAP-22 (P) 

FAP-28 (P) 

FAP-03 (P) 

FAP-40 (P) 

FAP-46 (P) 

 

0.33 

 

0.67 

 

1.99                     0.83 
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2(FAP) FAP-02 (P) 

FAP-20 (P) 

FAP-21 (P) 

FAP-47 (P) 

0.18 0.82 1.47                     0.98 

3(LICA) 

Cold Lake South Passive (P) 

Cold Lake South Passive 2 (P) 

Dupre (P) 

Frog Lake (P) 

La Corey (P) 

Mahihkan (P) 

Beaversdam (P) 

Flat Lake (P) 

Fort George (P) 

Clear Range (P) 

Lake Eliza (P) 

St. Lina (P) 

Therien (P) 

0.25 0.75 1.56                     0.50 

3(WBEA) 

JP107 (P) 

JP213 (P) 

JP205 (P) 

NE7 (P) 

0.27 
 

0.73 

 

2.82                   2.05 

4(WBEA) 

JP104 (P) 

Shell Muskeg River (C) 

NE11 (P) 

0.47 0.53 4.93                2.59 

5(FAP) 

FAP-50 (P) 

FAP-05 (P) 

FAP-55 (P) 

0.16 0.84 8.16              7.9 

6(WBEA) 

AH3 (P) 

NE10 (P) 

BM7 (P) 

Fort Chipewyan (C) 

SM8 (P) 

0.20 0.80 3.13              1.19 

7(WBEA) 

Buffalo Viewpoint (C) 

Millenium Mine (C) 

Lower Camp (C) 

Fort McMurray-Athabasca 

Valley (C) 

JP102 (P) 

 

0.57 
0.43 

 

4.18              2.34 
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4.1.4 All Alberta: Continuous Monitoring for Multiple Chemical Species 

Figures 3.15 and 3.16 illustrate some of the complexities in determining potential redundancies for the 

suites of continuous monitoring stations. For example, all WBEA continuous O3 monitors are highly 

correlated and cluster together as successively longer time scales being removed with respect to 

correlation (Figure 3.15(a) through (c)), but maintain that clustering from the standpoint of magnitude only 

for original hourly and daily timescales (Figure 3.16(a),(b)). The correlation coefficients all increase as the 

timescale of the variations being removed is increased. The Euclidean distances also decrease as 

successively longer timescales are removed –the stations become more similar to each other, implying 

that most of the variability with regards to 1-R and Eulerian distance resides at shorter timescales. The 

residual signal in the data records at longer timescales is highly similar, implying a greater degree of 

overall potential redundancy with increasing timescale. The ozone figures thus provide a good example of 

one of the central themes of the continuous monitor analysis – the way the desired purpose of the 

monitoring has bearing on the assessment of redundancy. If the component of ozone concentrations 

which constitutes the long-term regional background signal (which is isolated by the filtering out of time 

scales smaller than a month) is a key result of the continuous ozone monitoring network, many of these 

monitors might be interpreted as redundant based on this similarity, since many will have similar 

Euclidean distances and high correlation coefficients. However, if the shorter timescale variations are 

important, then far fewer of the stations might be interpreted as redundant, since at shorter timescales the 

correlation levels are lower and the Euclidean distances are higher, even within a given Airshed.  

Given an a priori decision on the relevant timescale and metric for redundancy, the colour-coded station 

lists on the right hand side of each of the panels the Figure 3.15 through 3.34 may be used to assess 

potential relative redundancy based on similarity, for the metrics examined here. The station names 

appearing at the bottom of the lists are the most similar, hence potentially the most redundant; the station 

names at the top of the list are the least redundant.  

An example for unfiltered hourly data and the 1-R metric, the stations with the four highest correlation 

coefficients, and the stations with the four lowest correlation coefficients, are shown in Table 4.14. It 

should be noted that the “highest” values within the upper half of Table 4.14 refer to the highest 

correlations for the given species, within that species. The correlations themselves are not always 

particularly high in an absolute sense, and depend on the species under consideration. Ranked in order 

from highest to lowest, two groups can be seen, with higher values for NOx, NO, NO2, O3 and PM2.5, and 

lower values for NMHC, CH4, THC and TRS.  This split may represent differences in the relative accuracy 

of the sampling methodology in each case, the dynamic range of the chemical being measured (e.g. CH4 

has a high “background” concentration and this may affect the correlations), and/or differences in the 

8(WBEA) 

Fort Mackay-Bertha South (C) 

Fort Mackay-Bertha Ganter (C) 

Mannix (C) 

CNRL Horizon (C) 

Fort Mackay-Bertha Ganter (P) 

 

0.36 

 

0.64 
6.13               2.13 
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locations and variety of sources between the different chemicals. As noted throughout this work, the 

methodology provides a relative ranking; “more” or “less” similar for a given metric, hence potentially more 

or less redundant, but a single number of 1-R thus cannot be used to represent a limit for redundancy for 

all species. The stations in in the upper part of Table 4.14 are the more similar, for hourly timescales, 

using 1-R as the metric. 

Table 4.15 is a similar table for the hourly stations for the Euclidean distance metric of dissimilarity. Larger 

tables could be reconstructed from the hourly (or other timescale) dendrograms of Figures 3.15 to 3.34). 

Table 4.14, Table 4.15, and extensions of these tables using the station rankings appearing to the right of 

the dendrograms in Figures 3.15 to 3.34, may be used to assign relative redundancy levels for the two 

metrics examined here, and may also be used to determine the potential penalty in assessing a given 

station as potentially redundant. For example, for the chemical NO, and the 1-R dissimilarity metric (Table 

4.14), the two most similar stations are Fort McKay South/1076 and Fort McKay Bertha Ganter/1032. If 

one of those stations were to be removed, then the other station would be expected to correlate with the 

missing station to a level of R=0.81. However, these two stations’ Euclidean distances from each other on 

an hourly basis is 657 ppb from Figure 3.20, compared to the lowest Euclidean distance for hourly NO 

being 80.5 ppb, indicating that at times elevated NO concentrations are measured at one station but not 

at the other. The two stations are 4 km apart, with an elevation difference of 6 metres, and are located in 

a shallow river valley. A comparison of the time series for the two stations shows that many of the events 

with elevated NO concentrations at the two sites coincide, and last several hours, though the arrival times 

of the peak concentrations are often offset by an hour, and occasional peaks occur which are much 

higher in one station compared the other. The stations are located to the north and south of a settlement 

located in a shallow river valley, and may be exposed to high concentration plumes from different 

emissions sources (which may also reach one station but not the other); this sequence of events seems 

plausible given the data record and geographical information, and explains the high correlation yet high 

Euclidean distance resulting from the clustering analysis. The Euclidean distances for NO decrease 

between these and other stations as shorter time scales are removed (e.g. 80.4 ppb when monthly and 

shorter time scales are filtered out) – the stations become more redundant in the residual “background” 

concentration signal, but are much less redundant from the standpoint of shorter term high concentration 

events.  

The time scale of interest for monitoring must therefore be taken into consideration in determining 

potential redundancy based on the similarity analysis. The above illustration describes the process by 

which the analysis done here may better inform decision making, but those decisions clearly must be 

made on the basis of individual chemical species, and must take into account the time scale(s) of interest 

for the monitoring network, and other reasons for the placement of the monitors. 
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Table 4.14 Stations with the four highest, four lowest correlation coefficients, hourly observations, by chemical species. 

Highest Correlation Coefficient Stations, R (most similar to other stations) 

NO 
0.8105 (1076) Fort McKay South (Syncrude UE1) 
0.8106 (1032) Fort McKay-Bertha Ganter 
0.7786 (1157) Elk Island 
0.7786 (1162) Lamont County 

NO2 

0.8899 (2001) Fort Saskatchewan - 92 St and 96 Ave 
0.8899 (1159) Ross Creek 
0.8539 (2002) Woodcroft 
0.8539 (1028) Edmonton Central 

NOx 

0.8403 (1157) Elk Island  
0.8403 (1162) Lamont County 
0.8393 (1032) Fort McKay-Bertha Ganter 
0.8393 (1076) Fort McKay South (Syncrude UE1) 

O3 

0.9316 (1032) Fort McKay-Bertha Ganter 
0.9316 (1076) Fort McKay South (Syncrude UE1) 
0.9286 (2002) Woodcroft 
0.9286 (1036) Edmonton Central 

PM2.5 

0.8218 (1032) Fort McKay-Bertha Ganter 
0.8218 (1076) Fort McKay South (Syncrude UE1) 
0.7623 (1221) Calgary Central 2 
0.7623 (1039) Calgary Northwest 

SO2 

0.8188 (1032) Fort McKay-Bertha Ganter 
0.8188 (1076) Fort McKay South (Syncrude UE1) 
0.6570 (1070) Fort McMurray-Patricia McInnis 
0.6570 (1064) Fort McMurray-Athabasca Valley 

CH4 

0.6038 (1221) Calgary Central 2 
0.6038 (1039) Calgary Northwest 
0.5343 (1070) Fort McMurray-Patricia McInnis 
0.5343 (1064) Fort McMurray-Athabasca Valley 

NMHC  
0.3744 (1221) Calgary Central 2 
0.3744 (1039) Calgary Northwest 
0.2457 (1070) Fort McMurray-Patricia McInnis 
0.2457 (1064) Fort McMurray-Athabasca Valley 

THC  
0.8057 (1032) Fort McKay-Bertha Ganter 
0.8057 (1076) Fort McKay South (Syncrude UE1) 
0.6232 (1028) Edmonton Central 
0.6232 (1036) Edmonton South 

TRS  
0.7234 (1032) Fort McKay-Bertha Ganter 
0.7234 (1076) Fort McKay South (Syncrude UE1) 
0.5513 (1072) Barge Landing 
0.3684 (1165) Grande Prairie (Henry Pirker), (1166) Evergreen Park 

Lowest Correlation Coefficient Stations, R (least similar to other stations) 

NO  

0.0369 (1055) Steeper  
0.0664 (1225) Anzac 
0.2045 (1248) Maskwa 
0.2062 (1064) Fort McMurray-Athabasca Valley  

NO2 

0.2782 (1248) Maskwa  
0.3885 (1225) Anzac 
0.4336 (1057) Genesee 
0.4336 (1241) Wagner2 

NOx  

0.2580 (1248) Maskwa  
0.2607 (1225) Anzac 
0.3171 (1064) Fort McMurray-Athabasca Valley 
0.3525 (1172) Crescent Heights 

O3  PM2.5 SO2 
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Table 4.15 Stations with the four lowest and four highest Euclidean distances. 

Highest Correlation Coefficient Stations, R (most similar to other stations) 

NO 
8.05x101 (1250) St. Lina  
8.05x101 (1092) Caroline  
8.40x101 (1055) Steeper  
1.07x102 (1059) Power 

NO2 

2.69x102 (1162) Lamont County  
2.69x102 (1157) Elk Island 2.82x102 (1055) Steeper  
2.82x102 (1250) St. Lina 

NOx 
3.24x102 (1055) Steeper  
3.24x102 (1250) St. Lina  
3.41x102 (1162) Lamont County 3.41x102 (1157) 
Elk Island 

O3 

0.470 (1076) Fort McKay South 0.470 (1032) Fort 
McKay-Bertha Ganter 
0.501 (1029) Edmonton East 0.501 (1028) 
Edmonton Central 

PM2.5 

2.89x102 (1059) Power  
2.89x102 (1053) Tomahawk 2.98x102 (1057) 
Genesee 
4.02x102 (1062) Edson 

SO2 

2.50x101 (1055) Steeper  
2.50x101 (1142) Red-Deer-Riverside  
4.56x101 (1166) Evergreen Park  
5.23x101 (1172) Crescent Heights 

CH4 

9.07 (1070) Fort McMurray-Patricia McInnes  
NMHC  
4.37x103 (1064) Fort McMurray-Athabasca Valley  

THC  
1.09x101 (1070) Fort McMurray-Patricia McInnes  

0.3475 (1055) Steeper  
0.6110 (1057) Genesee  
0.6662 (1168) Beaverlodge 
0.6662 (1165) Grande Prairie (Henry Pirker)  

0.1881 (1056) Hinton  
0.3212 (1049) Lethbridge  
0.4149 (1156) Redwater Industrial  
0.4487 (1055) Steeper  

0.0406 (1092) Caroline  
0.0406 (1156) Redwater Industrial  
0.1237 (1167) Smoky Heights  
0.2137 (1170) Valleyview  

CH4 

0.3057 (1162) Lamont County 
0.3971 (1142) Red Deer-Riverside  
0.4004 (1225) Anzac 
0.4682 (1032) Fort McKay-Bertha Ganter 

NMHC  

0.0905 (1161) Range Road 220 
0.0910 (1225) Anzac  
0.0910 (1225) Anzac  
0.1680 (2000) Bruderheim 

THC  

0.2185 (1248) Maskwa  
0.2395 (1250) St. Lina  
0.2420 (1165) Grande Prairie (Henry Pirker) 
0.3362 (1029) Edmonton East  

TRS  

0.0427 (1092) Caroline  
0.0470 (1167) Smoky Heights  
0.0906 (1225) Anzac  
0.1977 (1056) Hinton  
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9.07 (1064) Fort McMurray-Athabasca Valley  
9.96 (1039) Calgary Nortwest 9.96 (1221) Calgary 
Central 2 

4.37x103 (1225) Anzac  
4.50x103 (1028) Edmonton Central  
4.50x103 (1039) Calgary Northwest 

1.09x101 (1064) Fort McMurray-Athabasca Valley  
1.28x101 (1221) Calgary Central 1.28x101 (1039) 
Calgary Northwest 

TRS  
2.66x101 (1167) Smoky Heights  
2.66x101 (1092) Caroline  
2.82x101 (1076) Fort McKay South  
2.82x101 (1032) Fort McKay-Bertha Ganter 

Lowest Correlation Coefficient Stations, R (least similar to other stations) 

NO  

2.02x103 (1156) Redwater Industrial  
1.65x103 (1221) Calgary Central 2 
1.45x103 (1244) Shell Muskeg River  
1.45x103 (1165) Grande Prairie (Henry Pirker) 

NO2 

1.05x103 (1244) Shell Muskeg River  
9.84x102 (1064) Fort McMurray-Athabasca Valley  
9.84x102 (1075) Millennium Mine 9.41x102 (1165) 
Grande Prairie (Henry Pirker) 

NOx  

2.84x103 (1156) Redwater Industrial  
2.71x103 (1221) Calgary Central 2 
2.24x103 (1244) Shell Muskeg River  
2.12x103 (1165) Grande Prairie (Henry Pirker) 

O3  

1.04 (1057) Genesee  
0.905 (1172) Crescent Heights 0.905 (1049) 
Lethbridge 
0.888 (1168) Beaverlodge 

PM2.5 

8.69x102 (1167) Smoky Heights 8.36x102 (1226) 
CNRL Horizon 
8.36x102 (1244) Shell Muskeg River  
8.03x102 (1028) Edmonton Central 

SO2 

4.89x102 (1075) Millennium Mine 
4.40x102 (1244) Shell Muskeg River  
3.97x102 (1074) Lower Camp 2.99x102 (1226) 
CNRL Horizon 

CH4 

2.59x101 (1142) Red Deer-Riverside  
1.93x101 (1029) Edmonton East 1.84x101 (1028) 
Edmonton Central 
1.84x101 (1161) Range Road 220 

NMHC  
1.96x104 (2000) Bruderheim 1.58x104 (1161) 
Range Road 220 
8.26x103 (1032) Fort McKay-Bertha Ganter  
7.11x103 (1221) Calgary Central 2 

THC  
5.03x101 (2000) Bruderheim 4.31x101 (1142) Red-
Deer-Riverside 
3.99x101 (1092) Caroline  
3.91x101 (1244) Shell Muskeg River 

TRS  

5.91x101 (1165) Grande Prairie (Henry Pirker) 
5.49x101 (1075) Millennium Mine  
5.13x101 (1225) Anzac  
4.63x101 (1064) Fort McMurray-Athabasca Valley 
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4.2 Comparisons of Hierarchical Clustering Results using 
Time-filtered versus Time-averaged Data 

In the analysis described in Section 4.1.4, it was noted that as successively larger time scales are filtered 

from the data used for clustering. Analyzing the dendograms, the magnitudes of the clustering metrics 

show an increasingly higher degree of similarity, though the stations no longer cluster according to 

Airshed. This is shown by the tendency of the clusters to move nearer to the x-axis in the dendrograms 

for both metrics as the time-filtering removed successively longer timescales, and for the clusters to no 

longer group according the same colour-coded Airshed (most noticeable for the 1-R metric). These 

findings indicate that much of the correlation signal may be found on the shorter timescales within 

individual Airsheds, and on the longer timescales, the regional background residual correlation signal 

becomes more similar across Airsheds. The overall decrease in Eulerian metric values as increasingly 

larger time scales are removed indicates that the residual concentrations are also becoming similar in 

magnitude. This effect varied depending on the chemical species, and was stronger in those species for 

which short-term “spikes” in concentration are surrounded by lower concentration background levels 

(such as SO2) to those with a smaller dynamic range in concentration (such as O3; compare 1-R 

dendrograms at different time scales for SO2 (Figure 3.23) and O3 (Figure 3.15).  

While these results demonstrate that most of the concentration signal which identifies specific Airsheds 

as unique resides in the shorter time scales, this does not mean that this information is necessarily lost 

for observations that comprise long-term averages. The KZ time-filtering removes the information in short 

time scales, but observations which are averaged across time periods do not necessarily lose this 

information, since the high frequency signal is incorporated in the average. The relative impact of time-

filtering versus averaging is explored in this section, though carrying out hierarchical clustering for data 

sets which are time-filtered and averaged, and comparing the resulting dendrograms.  

Here we show the results for hierarchical clustering analysis for NO2 and SO2 when 1-year continuous 

observations were averaged daily (365 values), weekly (52 values) and monthly (12 values), and are 

compared to the dendrograms in which the daily, weekly and monthly time-scales have been removed by 

KZ filtering. The results from these tests for NO2 are compared in Figure 4.7 (1-R) and Figure 4.8 

(Euclidean distance), with Figure 4.9 and Figure 4.10 providing the equivalent comparison for SO2.  

The results for NO2 using the 1-R metric (Figure 4.7) show that different clusters are being generated at 

all levels of averaging or time-filtering (compare columns of panels in the Figure; the pattern of clustering 

changes), and these differences become more pronounced for the longer time intervals of either 

averaging or scaling. Clearly different information is being retained via the two processes. However, at 

longer time averages and scales (Figure 4.7 (c),(f),), monthly time scales removed (c) and averaged (f) 

most of the tendency of the data to cluster within Airsheds has been lost, aside from the WBEA stations. 

For the corresponding Euclidean distance analysis (Figure 4.8), the differences between averaging and 

time-filtering is even more pronounced.  

The results for SO2 using 1-R (Figure 4.9) and Euclidean distance (Figure 4.10) as the metric to compute 

dissilarity show an even larger difference between clusters generated using time-filtered data (top row of 

panels) and time-averaged data (bottom row of panels) than NO2. As noted earlier, the SO2 time series 



 

120 Hierarchical Clustering Network Analysis of Ambient Air Monitoring in Alberta: Phases 1 and 2 | No. 4.0  

are more likely to be composed of short-term “spikes” in concentration surrounded by lower “background” 

levels than NO2. The short-term spikes will be included in time averaging but removed in time-filtering, 

driving the larger differences between SO2 than NO2 dendrograms. 

The averaging results (bottom row of panels in in Figure 4.7, Figure 4.8, Figure 4.9, Figure 4.10) also 

show that averaging loses some of the information identifying an airshed and its sources as unique. That 

is, comparing panels (e – weekly averages) and (f – monthly averages) in these figures, the pattern of 

clustering changes, and there is a reduced tendency for clusters of stations to be found within Airsheds. 

This tendency can be seen in all Airsheds, though is less pronounced for WBEA stations for the 1-R 

metric than for the other Airshed stations. Although the averages result in different clusters compared to 

time-filtered data, the inclusion of short time spikes within a long-term average also results in a reduced 

abililty to identify locally unique source signals: the level of “smoothing” associated with averaging is 

sufficiently high that similarities with respect adjacent stations may be lost.  

A consequence of this analysis is that data which consists of monthly averages (such as the passive 

data) will lack sufficient information to distinguish the extent to which station records within an Airshed are 

unique to that Airshed, using hierarchical clustering. On one hand, this shows a limitation of the analysis 

methodology – the uncertainty with regards to assigning relative levels of similarity and uncertainty 

becomes higher as the data are subjected to (or the result of) longer duration averaging periods. On the 

other hand, the analysis also shows an inherent issue with observations which are long-term averages: if 

one of the intentions in monitoring is to provide information on the relative influence of local sources of 

emitted pollutants versus regional background concentrations due to long-range transport, the use of 

long-term average observations (or long-term averages of short-term observations) loses that information 

through the process of including short-term events into a long-term average. For example, a single one-

hour “spike” in SO2 concentration which is 720 times greater than the typical background concentration, 

with background concentrations for the remainder of the month, is indistinguishable from a month long 

record with a continuous elevation above background of 0.14% (1+720-1), when both are averaged to a 

monthly level.  

This may in turn explain some of our findings with the bimonthly data for NO2 and SO2 in which stations 

located in different airsheds form clusters – the monthly averaging time of the underlying passive data is 

sufficiently long that the short term events which would separate out the Airsheds has been lost.  
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Figure 4.7 Continuous NO2 1-R dendrogram analysis, averaging versus time-filtering. Top row: time-filtering, with (a) daily, (b) weekly and (c) 
monthly scales removed. Bottom row: time-averaging, with d) daily e) weekly f) monthly averages. Airshed names: WCAS: West Central Airshed 
Society, WBEA: Wood Buffalo Environmental Association, FAP: Fort Air Partnership, ACAA: Alberta Capital Airshed Alliance, CRAZ: Calgary 
Regional Airshed Zone, PAZA: Peace Airshed Zone Association, PAS: Palliser Airshed Society, PAMZ: Parkland Airshed Management Zone, 
LICA: Lakeland Industrial Community Association (LICA). Stations are colour-coded according to Airshed.  

(c)(a) (b)

(f)(d) (e)
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Figure 4.8 Continuous NO2 Euclidean distance dendrogram analysis, averaging versus time-filtering. Panels arranged as in Figure 4.7. 

(c)(a) (b)

(f)(d) (e)
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Figure 4.9 Continuous SO2 1-R dendrogram analysis, averaging versus time-filtering. Panels arranged as in Figure 4.7. 

 

(c)(a) (b)

(f)(d) (e)
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Figure 4.10 Continuous SO2 Euclidean distance dendrogram analysis, averaging versus time-filtering. Panels arranged as in Figure 4.7.  

 

(c)(a) (b)

(f)(d) (e)
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4.3 The Effects of Random Error on Clustering 

The passive and continuous data used for cluster analysis are subject to errors associated with the 

precision of the sampling methodology (see Error! Reference source not found.). We examine here the p

otential errors associated with the detection limit of the monitoring methodology, using hourly time series 

at station locations from the GEM-MACH air pollution model (Makar et al, 2015, 2017, Moran et al, 2010). 

Model simulations from the period August 1, 2013 through July 31, 2014 were used to generate idealized 

“data” time series at observation station locations for three different chemical species, NO2, O3 and SO2. 

Random noise was added to each of these time series, with the maximum magnitude of the noise for 

each species taken from the detection limit range of each instrument (1 ppbv for O3 and SO2, and 0.5 

ppbv for NO2). Dendrograms were then generated for each of the three chemical species, and each of the 

two sets of time series (with and without the random noise).  

Comparisons of the resulting dendrograms for the original hourly time series, the corresponding time 

series with the added random noise, and the corresponding time series with monthly and smaller time 

scales removed, are shown in Figure 4.11 (O3), Figure 4.12 (NO2) and Figure 4.13 (SO2). The upper row 

of panels shows the dendrograms resulting from the original time series, and the lower row of panels 

shows the corresponding dendrogram for time series to which hourly random noise was added. The first 

two columns of panels in these figures correspond to the 1-R metric clustering for hourly and monthly and 

shorter time scales removed, respectively, and the 3rd and 4th column are the hourly and monthly and 

shorter time scales removed dendrograms for the Euclidean distance metric. Differences between the 

upper and lower rows panels in each column of the figures illustrates the extent to which the addition of 

random noise may affect the clustering – if differences can’t be discerned, this impact is minimal. 

However, if the pattern of clustering changes between the upper and lower rows within a column 

changes, the impact of precision on the clustering results is larger.  

The results show that for O3, the addition of random error in the range +/- 1ppb has little impact on the 

clustering between stations, with the four dendograms in the lower panel remaining identical to the 

original results (Figure 4.11).  

For NO2 (Figure 4.12), 1-R hourly data dendrograms for the original time series and the time series with 

the addition of random noise (a,e) seem identical, but this is not the case for the monthly and shorter time 

periods removed 1-R dendograms (b,f). For the Euclidean distance dendrograms, both the hourly and 

monthly and shorter time periods removed time series (c,d) of the original data appear identical to those 

from the analysis with the data bearing the addition of random noise ((g,h), respectively).  

The SO2 results (Figure 4.13) show the largest variation between the clusters generated with the original 

time series and those containing additional random noise. The difference in clustering is particularly 

noticeable for the 1-R dendograms, for both hourly (a,e) and time filtered data (b,f) and slightly less 

pronounced for Euclidean distances (c,g, and d,h, respectively).  

This analysis suggests that the analysis methodology is least effected when the atmospheric 

concentrations measured are typically higher than the detection limit of the instrumentation carrying out 

the observations (the case for O3, with +/- 1ppbv being relatively small compared to typical background 

ozone concentrations). However, for instruments measuring more discrete concentration events 
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(industrial plumes) interspersed with near-detection limit concentrations (e.g. the case for SO2 with a 

detection limit of 1 ppbv, and to a lesser extent, NO2, with a detection limit of 0.5 ppbv) the impact of 

precision on the clustering results may be stronger.  

There are two important implications to this test. The first is that for species with similar concentration 

characteristics as SO2 (many samples close to the detection limit) poor precision close for samples close 

to the detection limit will have a large impact on the analysis, leading to potentially erroneous results. The 

second is that the detection limit and the precision at those levels matters more for these species – that 

is, identifying the corresponding stations as being within a common airshed becomes more difficult due to 

low precision close to the detection limit.  
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Figure 4.11 GEM-MACH O3 concentrations predicted at the stations available for the 1 year study. Top row: dendrograms generated using the 

original model time series at each station; bottom row: random noise added at detection limit range of +/- 1 ppbv. 1-R metric results (a), (b), (e) 
and (f), Euclidean distance results (c), (d), (g), (h). Hourly data: (a), (e), (c), (g); Monthly and shorter time scales removed (b), (f), (d), (h). Pairs 
within each of the four columns of dendrograms can be compared – significantly different dendrograms within a given column indicate a greater 
impact of random nois

 
(c) (a) (b) (d) 

(g) (e) (f) (h) 
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Figure 4.12 GEM-MACH NO2 concentrations predicted at the stations available for the 1 year study. Rows and columns arranged as in Figure 

4.11. Random noise level added +/- 0.5 ppbv. 

(c)(a) (b) (d)

(g)(e) (f) (h)
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Figure 4.13 GEM-MACH SO2 concentrations predicted at the stations available for the 1 year study. Panels arranged as in Figure 4.11. Random 

noise level added: +/- 1 ppbv

(c)(a) (b) (d)

(g)(e) (f) (h)
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5 Summary 
The methodology proposed in this report serves as a tool for providing information on the data collected 

at monitoring stations, and on their geographical location networks. The methodology expands on the 

work of Solazzo and Galmarini (2015), and includes two dissimilarity metrics for hierarchical clustering of 

monitoring data: the Euclidean distance and 1-R. The Euclidean distance metric allows cross-comparison 

of the stations in terms of the magnitude of the concentrations, whereas 1-R evaluates their temporal 

variation similarity. A KZ filter was adopted in its original low-pass configuration, filtering the original 

hourly time series to remove time scales periods less than daily, weekly and monthly, in order to 

distinguish the relative impacts of the different time scales on clustering.  

The study suggests that optimization of networks should be carried out according to species rather than 

stations, as the species examined here are primarily emitted by different sources and/or the results of 

secondary chemistry. Overall, the methodology is able to identify groups of stations, which are influenced 

by common emissions sources (e.g. stations which are influence by oil sands emissions as opposed to 

stations located elsewhere) when the methodology is applied to hourly and, to some extent, daily time-

filtered time series. Stations mainly influenced by seasonality are identified when the methodology is 

applied to weekly and monthly time-filtered data. The methodology also identifies monitoring stations 

making use of different monitoring methodologies (passive vs continuous) or monitoring stations records 

which are markedly different from all others in a given dataset due to outliers or data inaccuracy. 

Stations will be similar when showing low 1-R (high correlation) and/or low Euclidean distance levels. 

Generally, we recommend evaluating the similarity of the station and their potential redundancy using 

both metrics when possible. However, both metrics can be used together or separately for the same 

purpose. The metric chosen for determining redundancies may thus be dependent on which of these two 

factors is considered to be more important with regards to the intent of the monitoring network, and 

combinations of the metrics may be preferred in assessing redundancies.  

Ordering the station according to their similarity provides a relative ranking of similarity, depending on the 

available observation data (number of stations and chemical species observed) and time period analyzed, 

thus absolute thresholds for redundancy cannot be generated. In addition, other considerations such as 

spatial proximity to highly populated locations or sensitive ecosystems, the regulatory purpose of the 

station(s), and logistics (e.g. accessibility or power supply), may outweigh the recommendations based on 

similarity.  

The methodology is highly dependent on the data available: number of stations and their spatial 

representation and the quality of the reported data. Therefore, we note that the lack of useable data may 

also be a potential consideration for network optimization. Regarding the quality of the data, in this 

analysis it should be mentioned the following confounding factors:  

 Sampling accuracy. This seems to be related more to the passive monitors, with collocated passive 

monitors sometimes having large differences in Euclidean distance and/or large values of the 1-R 
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dissimilarity metric, when zero would be the expected value for collocated instruments sampling the 

same air. 

 Averaging time of observations. Analyses in which hourly data were time-filtered to remove 

successively longer timescales suggested much of the information identifying pollutants sampled 

within specific Airsheds as unique resides in shorter timescales. Analyses of averaging time showed 

that increasing averaging times increases the degree of similarity, but at the expense of being able to 

resolve station records as unique to a given location. 

 Random errors within the data records. Numerical tests show how random errors in the observations 

can potentially change the associativity analysis results.  

There are also constraints on the interpretation of the analysis which must be mentioned: 

 The analysis groups stations according to the degree of similarity but does not in and of itself provide 

the cause for that degree of similarity. The latter may only be achieved by examination of the data 

records, and the use of local knowledge of sources and conditions. Similarly, other constraints such as 

the availability of power and accessibility of station locations, and the intended purpose of the stations, 

while outside of the scope of the analysis carried out here, would also be constraints in network station 

siting. 

 Passive and continuous monitors were analyzed together in order to determine the relative 

comparability of the two methodologies, but that portion of the analysis is not intended for providing 

information on relative levels of similarity and hence redundancy for continuous monitors; the separate 

analysis on continuous monitors alone should be consulted for the latter purpose. 

 We have shown that averaging time may have an impact on the clustering results and longer term 

averages may lose some information which would shorter time scale averages would include - the 

methodology has the maximum benefit in assessing redundancies when the maximum amount of 

information is available (hourly data). 

 The analysis is limited to the available stations which meet the data completeness criteria – some 

stations have been excluded due to data being insufficiently complete for analysis, and the analysis 

may be limited by the accuracy (precision) of the methodologies being used for data collection. 

For each application of the methodology presented here, we provide caveats on the accuracy of the 

observation data, and recommendations on how the data may be used as an aid in assessing station 

redundancy: 

WBEA Passive + Continuous NO2 monitors 

a) Caveats on the accuracy of the observation data: 

 Passive and continuous monitors separate out using the 1-R dissimilarity metric, and collocated 

continuous and passive monitors fail to cluster with each other, indicating that the two types of 

sampling have sufficiently different results that they are poorly comparable.  

 Passive monitors in general have smaller values of the Euclidean distance with each other than 

continuous monitors have with each other. This may represent an inability on the part of the 

passive monitors to accurately capture the magnitude of short-term events.  

 We note that the some of the passives in the WBEA Airshed are located above the local vegetation 

height, and this may affect the clustering with other monitors. 

b) Using the available data 

 Table 4.1: The stations are ranked by 1-R (or R) and Euclidean distance – for NO2, the order of 

these rankings is almost reversed between the two metrics: stations which are the most redundant 

from the standpoint of correlation may be less redundant from the standpoint of Euclidean distance. 
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The choice of which metric to use in assessing potential relative redundancy thus depends which 

metric most closely represents the intent of the monitoring observations. Table 4.2 and Table 4.3 

further illustrate this issue. 

 The rankings of Table 4.1 could be used to determine potential redundancy through (a) choosing 

the station(s) at the bottom of the table (highest R or lowest Euclidean distance, depending on the 

metric considered most relevant), then identify that station on the relevant dendrogram, in order to 

determine the stations with which it clusters the most closely. One may thus see which stations 

would remain, representing the given station to that level of the metric of similarity, if it was 

removed from the list of stations (or moved to another location where its relative level of 

redundancy might be lower). 

 

WBEA Passive + Continuous SO2 monitors 

a) Caveats on the accuracy of the available data: 

 There was a lower tendency for the stations to cluster according to passive versus continuous 

technology compared to NO2. However, the clustering pattern did not always follow Airshed 

locations spatially for the 1-R metric, suggesting there may be a high degree of error in some of the 

observations (Figure 3.4) the Euclidean distance (Figure 3.5) sometimes showed a “close to site” 

versus “far from site” clustering for high EuN values (Figure 3.5 (b)).  

 1-R and Euclidean distance metrics had a greater tendency to agree on redundancy levels than 

was the case for NO2, i.e. frequently the same stations had relatively high correlation coefficients 

and low Euclidean distances.  

 Note that the later use of model values as a surrogate for observations suggests that of the low 

accuracy of the SO2 sampler has a very strong impact on the clustering behavior – the low 

precision in sampling makes the data less useful, and harder to interpret. 

b) Using the available data: 

 The rankings of Table 4.4 could be used to determine potential redundancy through a similar 

process as described for Table 4.1, above. 

 

LICA Passive + Continuous NO2 monitors 

a) Caveats on the data 

 The NO2 monitors had a more common ranking of similarity between both metrics than was seen 

for WBEA sites (perhaps fewer local sources/more distributed sources for LICA).  

 Collocated continuous and passive monitors had non-unity correlations (range 0.22 to 0.44) and 

sometimes quite large Euclidean distances (range 3.9 to 10.7 ppb). This indicates a large degree of 

incommensurability between the two measurement technologies. Collocated passive monitors had 

high Euclidean distances as well (3.2 ppb), indicating a high level of noise in the passive 

observations. Table 4.6 and Table 4.7 illustrate this issue. 

b) Using the available data 

 Table 4.5 may be used to rank stations based on redundancies for the 1-R and Euclidean 

distances, similar to Table 4.1, above.  
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LICA Passive + Continuous SO2 monitors 

a) Caveats on the data 

 Both Euclidean and 1-R rankings agreed in the general trend (similar stations appeared in the 

bottom of Table 4.8.  

 Continuous monitors tended to correlate better with each other than with (sometimes collocated) 

passive monitors.  

 Collocated passive monitors had non-zero Euclidean distances and 1-R values, though Euclidean 

distances were smaller than for WBEA stations, indicating a greater degree of redundancy for this 

metric in LICA than WBEA. 

 Table 4.9 and Table 4.10 show that several highly correlated station pairs also have relatively low 

Euclidean distances despite separations of up to 51 km.  

 The analysis using model data degraded due to adding noise to the data suggests that SO2 may 

be strongly impacted by sampling inaccuracy. 

b)  Using the available data 

 Table 4.8 may be used to rank stations in a similar manner to Table 4.1, above. 

 

All Alberta Passive + Continuous NO2 monitors 

a) Caveats on the Data 

 Stations that are widely separated in space may have similar time variation due to similar 

emissions sources nearby (e.g. mobile emissions of NOX being the dominant factor in NO2 1-R 

clustering, coal-fired powerplants with similar seasonal power loads and hence similar 1-R time 

series clustering for SO¬2). 

 Stations with the highest correlations are not necessarily the ones with the lowest Euclidean 

distances – 1-R is the metric most relevant for station time series “shape” while Euclidean norm is 

the most relevant station for concentration magnitudes.  

 Stations clustering with the lowest Euclidean distances are often sampling “background” air; e.g. 

mountain top sites and other remote locations. 

 NO2 is to some extent affected by adding random error to the concentrations – this makes it 

difficult to distinguish different sites, and low Euclidean norms and poor correlation coefficients 

may reflect inaccuracy of the sampling methodology. 

 Continuous stations remain distinct from passive stations to 1-R levels of 0.5 – this indicates that 

the methodologies are not really equivalent, but have systematic or random differences. Aside 

from the possible inaccuracy of the sampling methodology mentioned above, this seems to reflect 

inaccuracies for the passive stations, several of which are collocated with continuous stations, yet 

fail to correlate with them. Collocated passive monitors have Euclidean distances as high as 3.2 

ppb, and collocated continuous and passive monitors have Euclidean distances as high as 14.4 

ppb. 

b)  Using the available data, 

  Table 4.11 may be used to provide relative similarity rankings as an aid to assessing 

redundancy, in a similar manner to Table 4.1, as described above.  
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All Alberta Passive + Continuous SO2 monitors 

a) Caveats on the Data 

 The 1-R and Euclidean distance metric rankings differ significantly – decisions must be based on 

the metric most aligned with the purpose of the monitoring network.  

 Loss of within-Airshed 1-R clustering tends to occur at higher correlation levels, potentially 

indicating a greater dependence on very local emissions sources. 

 Correlations are generally lower than for SO2, again likely the result of the nature of the emissions 

sources (large stacks). 

b) Using the available data 

 For this dataset, an additional analysis was carried out which combined both metrics: The 1-R and 

Euclidean distances are ranked in 1-R clusters occurring within Airsheds were retrieved from the 1-

R dendrogram and the corresponding maximum and minimum Euclidean distance between 

members of the cluster can be retrieved from the Euclidean dendrogram. This allowed groups of 

stations with relatively high correlations and low Euclidean distances to be identified (Table 4.13). 

WBEA 1-R clusters ranked in this fashion tended to have higher Euclidean distances (i.e. are less 

similar, less redundant), while six clusters (one in PAZA, PAS, FAP, LICA and two in PAMZ) had 

both higher 1-R values and Euclidean distances, indicating a greater degree of redundancy. 

 Single metric redundancies may be assigned based on the relative rankings of Table 4.12; the data 

may be used in assessing potential redundancies as described for Table 4.1, above. 

 

All Alberta Continuous Monitors 

a) Caveats on the Data 

 Analyses carried out in Section 4 suggest that the hourly data hold the most information for useful 

similarity rankings and should be the focus for redundancy assessment. For a given time scale, 

the magnitudes of both metrics vary widely between species – this finding shows that 

redundancies must be considered within each species separately; stations which may be more 

redundant (for either 1-R or Euclidean distance) for one chemical species may be much less 

redundant for a different chemical species. 

b) Using the available data 

 The dendrograms in Figures 3.15 to 3.34 show 1-R and Euclidean distance rankings for the 

different stations, at the different timescales, with the higher R values and lower Euclidean 

distances identifying the more redundant stations within a given metric. Table 4.14 and Table 

4.15 identify the highest and lowest ranking members of each Figure for the hourly data, and the 

rankings for a given time scale across all stations examined are provided to the right of each 

Figure. 

  The relative rankings appearing to the right of each of the hourly analyses in each of Figures 

3.15 through 3.34 may thus be used to aid in assessing potential redundancies – these may be 

examined in the same manner as described for Table 4.1, above.  
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In this report, we described the time-filtering and cluster methodology chosen for the network optimization 

project (Phase 1), and its applicability for the optimization of the current monitoring network in Alberta 

(Phase 2). In Phase 3 of the network analysis project, the same methodology is applied to hourly model 

results extracted at station locations, to assess the model’s ability to create matching associations 

between station records. In phase 4, the methodology is applied to gridded model output time series, 

treating each grid-cell as a potential monitoring station location, to generate maps describing dissimilarity 

sub-regions, within which a single station will represent the entire sub-region, to a given level of 

dissimilarity. These maps may be combined with other georeferenced data to assist in monitoring network 

design.  
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Appendix 

B. The KZ Filter, Low-Pass versus Band Pass Filtering 

The KZ-filter is defined as an iteration of a moving average filter applied on a time-series S(ti) (Zurbenko, 

1986): 

𝐾𝑍𝑚,𝑝 = 𝑅𝑖=1
𝑝

{𝐽𝑘=1
𝑊𝑖 [

1

𝑚
 ∑ 𝑆(𝑡𝑖)𝑘,𝑗

𝑚−1

2

𝑗=
𝑚−1

2

]} { 𝑊𝑖 = 𝐿𝑖 − 𝑚 + 1           (A1) 

Where R is the iteration, m is the window size, p is the number of iterations, J is the running window, S(ti) 

the time series, and Li is the length of the time series S(ti). Equation (A1) may be interpreted as p 

successive applications of a moving average of length m to the time series S, with the updated S being 

used as the starting time series for the subsequent moving average. The initial time series must thus 

have additional entries before and after the period L of interest, in order to result in a filtered time series of 

length L following the last application of the moving average. The first moving average is computed with a 

running window J and becomes the input for the second pass, and so on. The KZ filter controlling 

parameters m and p allow different time scales to be removed and filtered, as is described below. 

The KZ belongs to the class of low-pass filters (since it filters periods smaller than a selected cut-off 

represented by a specific pair of m and p. The filter removes high frequency variations from the data (with 

respect to the window size) and belongs to the class of low-pass filters (since it filters periods smaller than 

the selected cut-off period). The KZ filter’s original intent was a low-frequency pass filter but has been 

used as a band-pass in several air quality applications (e.g. Kang et al (2013), Galmarini et al (2013), 

Hogrefe et al (2000), Rao et al, (1997)), through taking the differences of time series pre-filtered for 

different time scales. However, the application of the difference in KZ filters for band-pass purposes does 

not separate the spectral components completely, with the energy spectrum overlapping on between the 

neighbour components (Hogrefe et al., 2000, 2003). The band-pass applications of the KZ filter 

suggested by Solazzo and Galamarini (2015) were tested by the authors of the current report. Artificial 

time series were constructed to examine the band-pass application’s ability to separate known time-

scales in those time series; the results were mixed, with intermediate time scales known to be in the input 

data failing to be resolved in subsequent clustering analysis. The band-pass approach’s inability to 

completely separate adjacent time scales is the likely cause of this problem; too much energy leakage 

occurred, reducing correlations in clustering, and adding “noise” to the analysis. 

However, the KZ filter in its original low-pass form was found to be able to separate the time scales in the 

test data accurately, with clustering showing the influence of the different time scales, given an 

appropriate choice of the filtering parameters m and p. That is, the analysis used here removes all of the 

energy below each of the time scales of interest (or, equivalently, above specific frequency thresholds), 

rather than attempting a band-pass approach. In addition to the hourly QA/QC and gap-filled data, the KZ 

filter was thus used to remove the energy for periods less than 1 day (KZ17,3), less than 7 days (KZ95,5) 

and less than 30 days is removed (KZ523,3).  
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The choice of the values of m and p for these filters follows from the energy characteristics of the filter 

system. These can be derived from the transfer function of the KZ filter (see Eskridge et al. (1997) and 

Zurbenko, (1986) for details on the transfer function), given by 

|∅𝑚,𝑝(𝜔)|
2

=  [
1

𝑚

sin (𝜋𝑚𝜔)

sin (𝜋𝜔)
]

2𝑝
                   (A2) 

where ω has units of cycles per hour (frequency), for hourly observation data. The transfer function 

defines the energy passed or removed by the filter as a function of frequency. Figure A1 shows the lines 

defining the low-pass filters for (m,p) = (17,3), (95,5), and (523,3) used in the current analysis. The 

frequencies to the left of the lines are “passed” by the filter for the given value of (m,p), those to the right 

are removed.  

 

 

Figure A1 Energy transfer functions for KZ17,3, KZ95,5, KZ523,3 

 

It can be seen from inspection of  Figure A1 that the lines forming the boundaries between frequencies 

which are passed and those which are removed are not step-functions, but have a gradual change – for 

example, the (523,3) KZ filter passes 99.75% of the energy for frequencies less than 3.0x10-5 cycles/hour 

(period greater than 3.75 years), 50% of the energy at 5.01x10-4 cycles per hour (periods of 83.2 days) 

and less than 0.25% of the energy at frequencies greater than 1.36x10-3 cycles/hour (periods less than 

31.1 days). The filter characteristics of the three low-pass filters used here are given in Table A1 below. 

Table A1 shows that the three different (m,p) pairs selected for our work remove 99.75% of the energy for 

periods less than 1 day (17,3), 7 days (95,5), and 31 days (523,3), respectively. In subsequent figures 

and drawings, time series subjected to these filters will be referred to as having removed periods less 

than 1 day, less than 1 week and less than one month. It should also be noted that despite the gradual 

slope of each band-pass filter, the near-complete removal of energy for periods less than those in the 

final column of Table A1 is a well-defined quantity. One can say with good confidence then that the 

resulting filtered time series will have less than 0.25% of the energy remaining for periods less than the 

limits shown in the table. One caveat on that is the 17,3 “daily” filter, which shows some energy leakage 
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at periods specifically of the original time series (one cycle per hour); this daily filter will contain about 

20% of the energy of periods equal to the original hourly time series interval. 

Table A1 Frequency and period pass characteristics of the three KZ filters used here. 

M P Frequency 
99.75% 

Period 
99.75% 

Frequency 
50% 

Period 
50% 

Frequency 
0.25% 

Period 
0.25% 

17 3 9.38332x10-4 44.4 days 1.54338x10-2 2.70 days 4.12341x10-2 1.01 days 

95 5 1.26846x10-4 328 days 2.14594x10-3 19.4 days 6.06578x10-3 6.97 days 

523 3 3.04471x10-5 3.75 years 5.00840x10-4 83.2 days 1.35751x10-3 31.1 days 

 

The gradual slope, rather than a square-wave cut-off, for the KZ low-pass filter, highlights a potential 

difficulty with the use of the past use of that filter for band-pass purposes (e.g. Hogrefe et al, 2000, 

Solazzo and Galmarini, 2015). The use of the KZ filter as a band-pass filter involves two steps. In the first 

step, the KZ filter is applied on the original data for two different sets of (m,p) pairs, resulting in two 

different filtered time series. In the second step, the difference between these time series at each time 

point is constructed (lower order pair filtered time series – higher order pair filtered time series, at each 

time step). The KZ filters used in these past applications are shown in Table A1 KZ3,3, KZ13,5, KZ103,5, and 

KZ310,7. The time series resulting from the difference between the original time series and KZ3,3 is referred 

to as “intra-day” (periods less than 12 hours), whereas “diurnal” (periods between 12 hours and 2.5 days), 

“synoptic” (periods between 2 days and 21 days) and “long-term” (periods between 21 and 90 days) time 

series are formed from the differences KZ3,3-KZ13,5, KZ13,5-KZ103,5, and KZ103,5-KZ310,7, respectively. KZ310,7 

is said to form the “seasonal” (periods over 90 days) component of the time series. 

The energy transfer functions for these “standard” filters are applied two ways in Error! Reference s

ource not found.. Error! Reference source not found.(a) shows the low-pass filters for the regions 

bounded by KZ3,3, KZ13,5, KZ103,5, and KZ310,7. The energy response of the filters has a similar shape to 

those in Error! Reference source not found., though the energy response of the KZ3,3 filter can be seen t

o have a more significant contribution near frequencies of 1 cycle per hour, suggesting a significant 

“leakage” of energy from short time scales with this filter. The regions used in previous work to describe 

different filter bands are labelled as noted above. While it can be seen by inspection of Error! Reference s

ource not found.(a) that the energy associated with the difference between any two KZ filters will vary 

depending on frequency, the implications of that variation are more clearly displayed in Error! Reference s

ource not found. (b), in which the differences between low-pass filters are used to define the band-pass 

filters used in previous work. Error! Reference source not found.(b)  shows significant overlap in filtered e

nergy between the “diurnal” (green), “synoptic” (purple), “long term” (light blue), and “seasonal” (red) 

filters. For example, the seasonal and synoptic filters both pass 47% of the energy at a frequency of 

5.75x10-4 cycles/hour (72 days), and the seasonal and synoptic filters both pass 49% of the energy at 

2.0x10-3 cycles/hour (21 days); the diurnal and synoptic filters both pass 49% of the energy at 1.58x10-2 

cycles/hour (2.6 days) and the diurnal and intraday filters share the same boundary for frequencies 

greater than 4.17x10-2 (1 day), including the region near frequencies of 1 cycle/hour. Some energy 
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leakage occurs between the diurnal and synoptic filters as well, at the less than 0.05 level. The filters are 

not the ideal “square wave” associated with a band pass, but are subject to considerable overlap. 

 

Figure A2 Energy transfer for previous applications of KZ filtering as a “band-pass” filter. (a) Transfer 

functions for low-pass filters. (b) Transfer functions for band-pass difference filters, as well as intra-day 
band-pass and seasonal low-pass filters 

 

This degree of overlap has significant implications for the “bandpass” use of the KZ filter in the manner 

described in previous work (Eskridge et al, 1997, Hogrefe et al, 2000, Solazzo and Galmarini, 2015). The 

time labels for these filters are based on the 50% energy transfer levels of the differences to define a 

range in time represented by the filters. Error! Reference source not found.(b) shows that these b

oundaries are not unique in energy – that is, a significant fraction of “seasonal” energy will be present in 

the “long-term” signal, a significant fraction of the “long-term” energy will be present in the “seasonal” 

signal, and so on.  

In order to determine the potential impact of the overlap in band-pass on hierarchical clustering 

(described in more detail below), three time series were constructed for testing both low-pass and band-

pass filtering combined with correlation analysis. The three time series are intended to represent 

hypothetical observations from three observation sites (A,B,C), and the time signals going into their 

construction are shown in Error! Reference source not found., with the formulae describing the c

omponents of each time series and the net time series shown in Error! Reference source not found..  
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Figure A3 Construction of the test time series for three hypothetical stations. (a) Annual trend. (b) 

Monthly variation. (c) Weekly variation. (d) Diurnal variation. (e) Random noise (0 or 1) used to represent 
plume titration. (f) Resulting net signal. (g) Net signal for an entire year of hourly values. 
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Table A2 Components of Time Series for Testing 

Site  
 

Trend 

Time Component Formula (h=hour of year) 
 
       Monthly                               Weekly 

 
 
               Daily 

A 
ℎ (

5

8760
) + 0.1 2.5 [𝑐𝑜𝑠 (

𝜋ℎ

360
) + 1]                5 [𝑐𝑜𝑠 (

𝜋ℎ

84
) + 1] 

 

5 [𝑐𝑜𝑠 (
𝜋ℎ

12
) + 1] 

B 
ℎ (

3

8760
) + 3 5 [𝑐𝑜𝑠 (

𝜋(ℎ−168)

360
) + 1] 3.5 [𝑐𝑜𝑠 (

𝜋(ℎ+24)

84
) + 1] 5 [𝑐𝑜𝑠 (

𝜋ℎ

12
) + 1] 

C 
ℎ (

3

8760
) + 1 [𝑐𝑜𝑠 (

𝜋(ℎ−168)

360
) + 1] 3.5 [𝑐𝑜𝑠 (

𝜋(ℎ+24)

84
) + 1] 5 [𝑐𝑜𝑠 (

𝜋ℎ

12
) + 1] 

 

In order to create the time series used for testing and displayed in Error! Reference source not f

ound.(f,g), the four components for each site described in Error! Reference source not found. were 

added. The resulting time series where then multiplied by random numbers whereby at any given hour, 

two of the three time series values were multiplied by unity, with the remaining site value by zero, the 

choice of which time series to locally zero being chosen at random. This addition of random zeroing was 

added to mimic plumes which may reach only one station at a time (e.g. the summed time series 

representing ozone, and the zeroing representing a plume of NOx titrating ozone at one station and not 

the others). Error! Reference source not found. and Error! Reference source not found. show that all th

ree stations are identical in terms of their diurnal variation, stations B and C are identical for the weekly 

variation, stations B and C have the same monthly variation and a magnitude offset, and the stations all 

have different long-term trends. Having constructed this test dataset of three stations, it may be used for 

different KZ filtering approaches in order to determine whether those approaches may discern the 

timescales known to exist within the constructed time series.  

The aim of the dissimilarity analysis (described in more detail in the following section) is to compare 

station time series based on a metric such as 1-R, where R is the Pearson correlation coefficient, in order 

to group stations based on the lowest level of dissimilarity (or highest correlation). For a simple set of only 

3 stations such as has been constructed here for testing, the correlation between their time series need 

only be calculated three times for the three unique pairs of the stations ((A,B), (B,C) and (A,C)). The 

different methodologies for KZ filtering are first applied to the time series, and then correlations are 

calculated for the three resulting pairs of filtered time series; these may be used to determine whether the 

methodology used recovers information about the time scale used. Error! Reference source not found. s

hows this analysis using the 1-R metric, for the band-pass filters, starting from the time series constructed 

from Error! Reference source not found. and Error! Reference source not found.. 

 

 

 



 

145 Hierarchical Clustering Network Analysis of Ambient Air Monitoring in Alberta: Phases 1 and 2 | No. 4.0 

Table A3 1-R values between pairs of test time series, for original time series and KZ band-pass 

filters. 

Original Hourly Time Series  Interpretation  

 A     B      C 
 
A 0.0000    1.298     1.260 
B 1.298    0.0000   1.233 
C 1.260    1.233     0.0000 

The dissimilarity (1-R) is greater than unity for all pairs – 
the addition of the random zeroing has created sufficient 
noise that the original time series are anticorrelated. 

Intra-day dissimilarity 
(original time series - KZ3,3) 

Interpretation  

 A     B       C 
 
A 0.0000     1.489      1.503 
B 1.489     0.0000    1.466 
C 1.503     1.466      0.0000 

The intraday dissimilarity includes most of the random 
noise: since a different station is being zeroed at every 
hour, most of the noise appears in this time scale – the 
dissimilarity values are all greater than unity, indicating 
that most of the noise occurs at this time scale. 

Diurnal dissimilarity 
(KZ3,3 – KZ13,5) 

Interpretation  

 A B C 
 
A 0.0000 1.032 0.8968 
B 1.032 0.0000 0.9458 
C 0.8968 0.9458 0.0000 

The diurnal component is usually assumed to retrieve 
signals between 0.5 to 2.5 days. However, despite the 
identical diurnal signal present in all three original time 
series, the dissimilarity between all three time series 
remains high (the correlation remains low). The 
dissimilarity pairs ordered from lowest to highest are 
(A,C), (B,C), (A,B): the conclusion from this analysis 
would be that (A,C) are the most similar stations at this 
time scale, followed by (B,C) then (A,B). However, the 
temporal variation used to construct the time series is 
identical at this time scale – the band-pass methodology 
would lead to an erroneous conclusion. The low 
correlation is likely due to the lower frequency end of the 
band-pass including the time scale incorporating most of 
the noise. 

Synoptic dissimilarity 
(KZ13,5 – KZ103,5) 

Interpretation  

 A B C 
 
A 0.0000 0.7909 0.7222 
B 0.7909 0.0000 0.5286 
C 0.7222 0.5286 0.0000 

The synoptic component is usually assumed to retrieve 
signals between 2.5 and 21 days. The pairings here from 
lowest to highest dissimilarity are (B,C) < (C,A) < (A,B). 
The methodology has successfully identified the (B,C) pair 
as the most similar; from Table A1, this is correct – the 
weekly signal is identical for this pair. The other two pairs 
should be equally dissimilar based on Table A1, but this is 
only true to the first digit in the band-pass analysis. 

Long-term dissimilarity Interpretation  
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Error! Reference source not found. suggests that the diurnal filter may be severely affected by energy l

eakage from other parts of the frequency spectrum, failing to identify the identical similarity in the diurnal 

signal constructed here (and indicating a low degree of similarity at that time scale in general). The 

synoptic dissimilarity correctly identified the most similar pair, but failed to give the remaining two pairs 

identical similarities, indicating that energy leakage from the adjacent bands are also present at this time 

scale. The long-term dissimilarity seems to have captured the main features of that signal; a combination 

of similarities in magnitude or phase lag of the monthly time series.  

Error! Not a valid bookmark self-reference. provides the low-pass filter results for the filters described 

in Error! Reference source not found. and Error! Reference source not found.. The use of the KZ as a 

low-pass filter as in Table A4 has some advantages for the shorter time scales compared to the band-

pass filters of Table A3 – the noise leakage from the short term variations has contaminated the band-

pass filters for the diurnal signal, creating negative correlation coefficients, reducing correlations and 

obscuring the identical variation at that time scale. The synoptic band-bass similarity also shows some 

energy leakage. The low-pass filters have removed the high frequency noise due to the choice of m and p 

values. The interpretation between band-pass and low-pass filters of course differs – the low-pass 

includes all frequencies less than the cut-off frequency (or all periods greater than the cut-off period), and 

must be interpreted in that context. Here we choose to use the low pass filters for our subsequent 

analysis, largely to avoid the high frequency noise and energy overlap issues shown below.  

 

 

 

 

 

 

(KZ103,5 – KZ310,7) 

 A B C 
 
A 0.0000 0.8408 0.6003 
B 0.8408 0.0000 0.4364 
C 0.6003 0.4364 0.0000 

The long term dissimilarity is intended to isolate signals 
between 21 and 90 days. The Monthly signal from Table 
A1 should therefore be resolved by this analysis. From 
Table A1, the (B,C) pair should have the greatest degree 
of similarity – and this is reflected in the analysis. (A,C) is 
shown to have a greater degree of similarity than (A,B). 
The periodicity differences between (A,C) and (A,B) 
should be identical, but the average value of the signals 
(A: 2.5, B: 5.0, C: 1.0) are likely why (A,C) has been 
identified as being more similar than (A,B). So at this time 
scale the results are reasonable. 
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Table A4 1-R values between pairs of test time series, for KZ low-pass filters. 

Filters out time scales less than 1 day 
(KZ17,3) 

Interpretation  

 A     B      C 
 
A 0.0000    0.8236     0.7208 
B 0.8236    0.0000     0.5282 
C 0.7208    0.5282     0.0000 

The daily time (and shorter) variation has been 
removed. (B,C) are the most similar due to their 
identical weekly time series and time variation for the 
monthly time series. (A,B) are the least similar due to 
their difference in magnitude and period at both 
monthly and weekly time scales. (A,C) are 
intermediate due to the similar period at monthly 
time scales and the relatively small size of the offset 
at weekly time scales. 

Filters out time scales less than one 
week (K95,5) 

Interpretation  

 A     B       C 
 
A 0.0000    0.8455     0.6172 
B 0.8455    0.0000     0.4377 
C 0.6172    0.4377     0.0000 

The highest similarity is between (B,C), suggesting 
that the trend and the magnitude of the monthly 
signal dominates the similarity. (A,B) are the least 
similar, indicating that the monthly period offset 
between the signals and the difference in slope in 
the trend between these stations results in lower 
similarity than between (A,C). The intermediate 
values of the latter reflect the identical periods of the 
monthly signal and the identical slope in the trend. 

Filters out time scales less than 1 
month (KZ532,3) 

Interpretation  

 A    B      C 
 
A 0.0000    0.2855    0.1083 
B 0.2855    0.0000    0.2146 
C 0.1083    0.2146    0.0000 

The dissimilarities are low (and hence the similarities 
are high) for all variable pairs. (A,C) are the most 
similar, reflecting the similarity in the magnitudes of 
these lines during the year. (B,C) are the next most 
similar pair, reflecting the similarity in the slopes. 
(A,B) are the least similar pair, reflecting the 
similarity in the slopes but the constant offset 
between this last pair. 

 

A McLauren series expansion of the sinusoids in Equation (A2), to the first two terms in the expansion for 

the numerator and denominator functions may be used to approximate the frequency energy cut-off- 

curves. If A is the fractional energy passed at a given frequency in the line, then that frequency may be 

approximated by: 

𝜔0 ≈
√6

𝜋
 √

1−(𝐴)
(

1
2𝑝)

𝑚2−(𝐴)
(

1
2𝑝)

                      (A3) 
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where ω0 is the desired separating frequency and the approximate solution to the equation  

|∅𝑚,𝑝(𝜔)|
2

=  𝐴                       (A4) 

A value of A = ½ has been used in band-pass applications in the past to indicate the “boundaries” of 

these filters, though it can be seen from Error! Reference source not found.(b) and Error! Reference so

urce not found. that the band-pass applications have significant energy leakage beyond these bounds. 

The KZ17,3, KZ95,5, and KZ523,3 filtering was then applied to the hourly data available as continuous 

observations. The continuous and passive bimonthly data was used as is, as the high frequency time 

scales have been naturally removed when averaging was applied. These KZ-filtered (for the continuous 

data) and unfiltered (bimonthly) time series were then analyzed using hierarchal clustering, described in 

more detail below. 

 

 

B. Dissimilarity Analysis using Hierarchical Clustering: 
Mathematical Underpinning 

Dissimilarity analysis comprises a group of methodologies used to rank datasets based on the extent to 

which they are different (or dissimilar) from each other. Here, the datasets are the time series of 

observations at different monitoring network stations. Highly dissimilar pairs of station datasets, or groups 

of datasets, are the least like each other, while station datasets with low levels of dissimilarity are the 

most like each other. Dissimilarity may thus be used to rank stations in terms of potential redundancy in 

that those stations having low levels of dissimilarity may be sufficiently similar to be redundant. 

One of the most commonly used methodologies for dissimilarity analysis is hierarchical clustering; a well-

established method to determine the inherent or natural groupings of datasets, and/or to provide a 

summarization of data into groups. The first step for hierarchal clustering is to choose a metric to describe 

how different (how dissimilar) a pair of time series are from each other. This metric is then calculated for 

all possible pairs of the time series comprising the dataset, resulting in a dissimilarity matrix. The matrix is 

then used to cluster the data based on their level of dissimilarity. The pair of time series with the lowest 

level of dissimilarity (i.e. are the most similar or closest to being identical according to the metric chosen) 

are combined in some fashion as a cluster. The metric of dissimilarity is then recalculated between this 

cluster and the remaining time series, the lowest dissimilarity pair is once again determined, resulting in 

another combination of time series and/or clusters calculated from previous iterations of the method. The 

number of clusters, which was originally equal to the number of time series in the original dataset, is thus 

reduced at each stage of the hierarchical clustering process, until only two clusters remain – once these 

are joined, the process is complete.  

To recalculate the dissimilarity matrix based on the dissimilarity metric, here we make use of the general 

averaging method – once the initial level of dissimilarity between each of the time series comprising the 

original dataset have been calculated, and the lowest dissimilarity pair has been identified, the 
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dissimilarity between the new cluster and the remaining members of the dataset is represented by the 

average of the metrics between the two members of the data pair being brought together as the new 

cluster, with respect to each of the remaining members of the dataset. This is known as the general 

average or linked average or average linkage method (c.f. Nӕs et al, 2010). An alternative (and older) 

approach would be to average each value at each time within the two time series to create a new time 

series, then explicitly recalculate the dissimilarity metric with the remaining members of the dataset. 

However, general averaging has been shown in the past to provide robust and accurate clustering, with a 

substantial reduction in the processing time required to generate clusters. The processing time for 

methods in which the dissimilarity metric is explicitly re-calculated tend to scale as the third power of the 

number of time series in the initial dataset, while those making use of approximations such as general 

averaging scale as the second power of the number of stations. Approximations such as general 

averaging are thus the norm in modern applications of hierarchical clustering.  

Here, the hierarchical clustering thus provides a ranking of stations based on their degree of dissimilarity 

– those stations which group into clusters early in the process (i.e. at low levels of dissimilarity), have time 

series which are more “like” each other in terms of the dissimilarity metric chosen. Those which are least 

like each other do not group into clusters until later in the process, at higher levels of dissimilarity. There 

are also many possible choices for the dissimilarity metric. In the analysis which follows, we determine 

dissimilarity separately with two metrics, 1-R and the Euclidean norm (described in detail below), starting 

by finding the pair of station time series with the lowest value of the metric (i.e. the most similar time 

series), and merge these two to form the first cluster. As data series and clusters merge, their 

combination as well as their level of dissimilarity at the point of merging is called a node. The consequent 

merging of other time series and clusters is repeated until all the clusters are combined, here using the 

average-linkage method. The analysis proceeds from the most similar station time series, building 

clusters between station time series and earlier clusters, until all of the station data have been merged 

into clusters. The order in which stations merge, as well as the dissimilarity level at which they merge (i.e. 

the nodes for the clustering) are tracked, and are used to generate explanatory diagrams of the clustering 

known as dendrograms. Dendrograms show the pattern of linkages between nodes as the analysis 

progressed, with vertical lines representing the level of dissimilarity between stations time series or 

between station time series and clusters, and horizontal lines showing which time series or clusters have 

become linked as nodes. Dendrograms thus resemble the root system of a tree, with the most similar 

stations forming the lowest level of the smallest roots, and the two least similar clusters being linked at 

the top of the diagram as the trunk of the tree. Dendrograms have M-1 nodes, where M is the number of 

stations in the original dataset; that is, there will be M-1 linkages (nodes) formed from a dataset starting 

with M stations. For very large numbers of stations, the dendrograms become difficult to interpret, but in 

the work carried out here the number of stations is sufficiently small that they are useful aids in 

interpreting the dissimilarity analysis results.  

B.1 Dissimilarity Metric: 1-R 

Solazzo and Gamarini (2015) chose as their dissimilarity metric 1-R, where R is the Pearson linear 

correlation coefficient, in their application of dissimilarity analysis using hierarchical clustering for 

European and North American ozone data. For two time series XI(t) and XJ(t) (=XI,t and XJ,t) available for 

stations I and J, the Pearson's correlation coefficient is defined as follows: 
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𝑅𝑋𝐼,𝑡,𝑋𝐽,𝑡
=

𝑐𝑜𝑣(𝑋𝐼,𝑡,𝑋𝐽,𝑡)

𝜎𝑋𝐼,𝑡
𝜎𝑋𝐽,𝑡

=
∑ 𝑋𝐼,𝑡,𝑋𝐽,𝑡

𝑁
𝑡=1 −𝑁𝑋𝐼̅̅̅̅  𝑋𝐽̅̅ ̅̅

[∑ (𝑋𝐼,𝑡−𝑋𝐼̅̅̅̅  )
2𝑁

𝑡=1 ]

1
2

[∑ (𝑋𝐽,𝑡−𝑋𝐽̅̅ ̅̅  )
2𝑁

𝑡=1 ]

1
2
                       (B1) 

where cov is the covariance, σ the standard deviation, and N is the number of entries in the time series 

for stations I and J. Here, the time series XI(t) may be the hourly observations, the time series after 

applying the KZ filtering on the hourly time series, or the bimonthly averaged observations, described 

elsewhere in this report. 

The Pearson’s correlation coefficient describes the level of similarity of the shape of the two time series, 

and has been used successfully for dissimilarity analyses of air pollution network data in the past 

(Solazzo and Galmarini, 2015). However, this metric fails to capture changes in the magnitude of 

concentrations between two time series. For example, a pair of time series in which the entries of one 

member of the pair are all 1/100 of those of the other member of the pair will have a correlation coefficient 

of unity, missing the impact of the difference in magnitude. For this reason, our analyses are repeated 

with a second dissimilarity metric, the Euclidean distance. 

 

B.2 Dissimilarity Metric: Euclidean Distance 

Additionally, a dissimilarity matrix was determined by computing the Euclidean distance for the time 

series, where the distance between time series XI(t) and XJ(t) is: 

𝑑𝑋𝐼,𝑡,𝑋𝐽,𝑡
= √∑ (𝑋𝐼,𝑡 − 𝑋𝐽,𝑡)2𝑁

𝑡=1                      (B2) 

While the previous metric (1-R) is unitless, the Euclidean norm expresses dissimilarities in the units of the 

time series, and is the net magnitude of the differences between the two time series. Low values of the 

Euclidean distance thus represent pairs of time series or clusters which are closer to being identical in 

terms of magnitude, while high values of the distance represent time series pairs or clusters which have 

very different magnitudes.  


