

Lake Wabamun Water Quality and Sediment Survey

Summary

The 2002 Lake Wabamun Water Quality and Sediment Surveys were initiated based on public concerns regarding murky water in Lake Wabamun. The surveys were conducted between March and June 2002. During that time period, Alberta Environment (AENV) obtained a number of samples of drinking water, lake water and sediment samples from various locations across Lake Wabamun and TransAlta effluent.

While Alberta Environment is moving forward with a high degree of confidence to address the preliminary findings outlined in this report, more work is needed to confirm the results and findings that have been obtained to date. Final conclusions regarding water quality and specific sediment make-up in Lake Wabamun should not be drawn until AENV has completed its work and issues a final report in early 2003.

Alberta Environment continues to work closely with Alberta Health and Wellness and the local Health Authority to ensure that the health of lake users is not affected. No health advisories are in place for recreational use of the lake or consumption of fish.

In addition, Alberta Environment continues to work with TransAlta Utilities Corporation and other partners to investigate the incidence of fish mortality in the inlet canal of the TransAlta Power Plant.

Findings

- There is no evidence to suggest a widespread water quality problem in Lake Wabamun, however some water samples taken within 100 metres of the TransAlta Ash Lagoon discharge do exceed Alberta Surface Water Quality Guidelines for aluminium and do warrant further investigation.
- 2) The TransAlta Utilities ash lagoon discharge would appear to be a contributing source of the elevated heavy metals found in the lake sediments. Sediment concentrations above the Canadian Sediment Quality Guidelines for the Protection of Aquatic Life for chromium, arsenic and copper are primarily located within 100 metres of the ash lagoon discharge. Similar concentrations were also found in sediment within the ash lagoon. More work is required to understand the level of contribution and the significance of these levels.
- 3) Aluminium levels in the sediment in the vicinity of the ash lagoon outlet are generally higher than in other areas of the lake. More work is required to understand the level of contribution and the significance of these levels.
- 4) Ongoing monitoring of groundwater and drinking water in the area show no sign of metal contamination.
- 5) Concentrations of metals found in water and sediment do not appear to be the cause of the fish mortality. More work is required to understand what is causing the fish mortality.

Next Steps

Alberta Environment will direct TransAlta Utilities to immediately:

- 1) Conduct a risk assessment/analysis that includes, but is not limited to:
 - a) Providing more detailed information on the interactions between the ash lagoon and the lake. The information will include a water and material balance of the ash lagoons, retention times and flow regime within the lagoon and the lake,
 - b) Determine the extent of the metals contamination adjacent to the ash lagoon,
 - c) Determine the past and present relative contribution of TransAlta Utilities to the heavy metals concentrations found in the lake,
 - d) Evaluate the risk to the ecosystem of the current levels of heavy metals found in the lake adjacent to the ash lagoon, and,
 - e) Based on the level of risk to the ecosystem, provide a risk management plan.
- 2) Conduct monthly sampling, analysis and reporting of the ash lagoon effluent for a complete suite of heavy metals.
- 3) Develop and implement an action plan to resolve the fish mortality in the inlet canal of the TransAlta Power Plant.

Alberta Environment is conducting further sampling to determine how typical water and sediment samples taken so far compare to the rest of the lake and other lakes in Alberta. The terms of reference for this study are in Appendix 2. The in-depth survey report is expected to be released in early 2003.

Water quality monitoring and reporting continues on a regular basis beyond the scope of work discussed in this report. A 20-year review of water quality information on Wabamun Lake is currently underway.

Alberta Environment will continue to work with Alberta Sustainable Resource Development, Alberta Health and Wellness, the local Health Authority, Environment Canada, the Department of Fisheries and Oceans, the University of Alberta and TransAlta Utilities Corporation to investigate the incidence of fish mortality in the inlet canal of the TransAlta power plant.

Sediment Sampling

Alberta Environment undertook a comprehensive investigation of heavy metals in the sediment of Lake Wabamun and the TransAlta Wabamun ash lagoon after samples collected in March and April 2002 by Alberta Environment showed chromium and arsenic concentrations above the Canadian Council of Ministers of the Environment (CCME) Interim Sediment Quality Guidelines (ISQG). The results of the samples are presented in Figures 1 and 4 and Tables 1 and 2.

Sediment samples were collected using a core sampler, which was pushed into the lake bottom to a depth of approximately 15 cm. The top 0-5 cm core was sliced off and placed into a sample pail and thoroughly mixed with five other cores collected from both sides of the boat (for a total of six cores) and put into a sealed 500 ml glass jar. The exact sample location was recorded using a range finder and Global Positioning System. Other pertinent field observations on core color, texture, amount of organic matter and presence of invertebrates and benthos were also recorded.

The parameters analyzed for the lake sediments samples included metals, total organic carbon, total carbon, pH and particle size. The samples from TransAlta Utilities Ash Lagoon sediments were analyzed for the same parameters, with the addition of volatile priority pollutants and extractable priority pollutants.

Additional sediment samples from Wabamun Lake were collected on June 18, 2002 to screen sediments for toxicity using a range of different aquatic test organisms. At each of the five sampling locations the top 5 cm of 9 to 20 individual Ekman dredges were placed in a plastic sample bag. This testing is currently in progress.

Water Sampling

In March and April 2002, Alberta Environment collected water samples from Lake Wabamun and the TransAlta Utilities Wabamun Ash Lagoon Effluent. The initial lake samples were collected under winter ice conditions. An ice auger was used to drill holes through the ice. A sampling strainer was placed on the end of a sample line that was suspended below the bottom of the ice layer and approximately 15 cm off the lake bottom. The other end of the sample line was connected to a small portable, vacuum pump that was attached to a sample collection jar. Great care was taken to insure that no sediments were disturbed on the lake bottom and sediment was not introduced into the sample line. Lake water was analyzed for routine water chemistry, metals, total organic carbon, nutrients, total suspended solids, turbidity, and sulphide. Results are presented in Figure 2 and Table 3.

In May and June 2002, additional water samples were collected during spring and early summer conditions around Wabamun Lake. The water samples were collected from a boat at various sites using a Kemmerer water-sampling device that allowed lake water to be collected from three different depths of the lake. Water samples were taken near the bottom, mid way and at the surface for each sampling location. The individual grab samples from each depth at each sample site were combined into a sample bucket, thoroughly mixed and poured off into water sample bottles. Those samples requiring preservation were properly fixed with the appropriate preservative at the time of collection.

Industrial wastewater samples were collected at TransAlta Wabamun's Ash Lagoon Final Effluent, at the mouth of the inlet cooling water canal, at the railway bridge in the cooling water canal and at the outlet cooling water canal. The water sampling techniques used were the same as for the lake water samples with the exception of the ash lagoon effluent, which was collected using a single bucket grab sample. The parameters being analyzed included routine water chemistry, total suspended solids, chemical oxygen demand, metals, total phosphorus, iron, oil and grease, nutrients, total organic carbon, sulphide and ammonia. In addition volatile priority pollutants, extractable priority pollutants and polycyclic aromatic hydrocarbons were analyzed. Results are presented in Figure 3 and Table 4.

Drinking Water Samples

In response to concerns about the quality of drinking water around Wabamun Lake, Alberta Environment conducted extra testing of both surface and groundwater. Sampling and analysis were done according to Standard Methods for the Examination of Water and Wastewater.

The Village of Wabamun raw water intake and treated water were sampled on March 21 2002. The Treated Water Survey consisted of a metals scan, routine water chemistry, and nutrients. The water survey was done on both raw water and final treated water. The samples were also analyzed for a full spectrum chemical analysis that included organic compounds of the following groups, extractable priority pollutants, volatile priority pollutants, and pesticides scan.

Alberta Environment also tested water at Seba Beach. The water in question is not used for human consumption, however untreated water is pumped from the lake directly into a cistern and then used for domestic use. All results are presented in Table 5.

Groundwater Sampling

An Alberta Environment Groundwater Contaminant Specialist reviewed the 2002 TransAlta Groundwater Monitoring report and found that the program was sound and that monitoring has shown no concerns to date. However, because of continued concerns regarding groundwater quality, three private water wells in the Rich's Point area and one well on the Paul Band Reserve were sampled and tested for metals and routine water chemistry. Results are presented in Table 5.

Fish Mortality Investigation

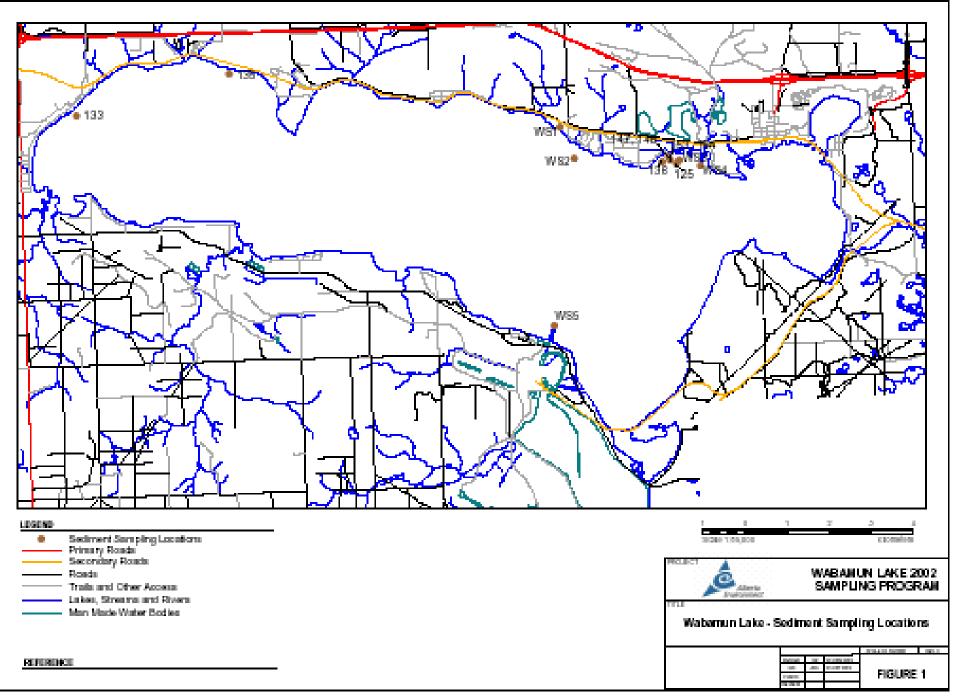
In October 2001, TransAlta Utilities reported the presence of dead whitefish on the cooling water inlet screens to their Wabamun Generating Station.

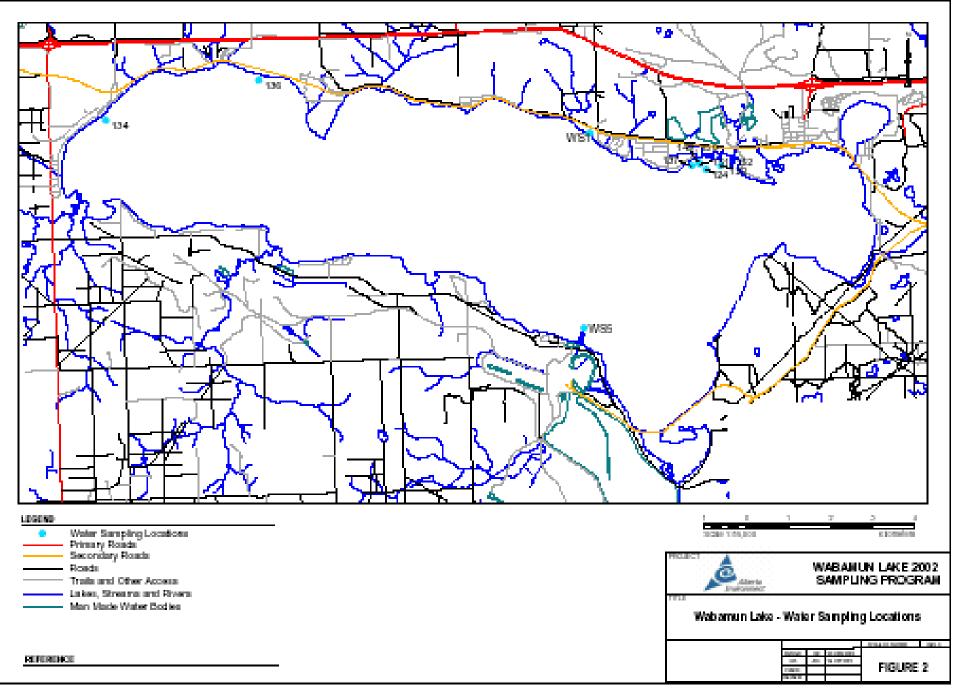
Since the initial report of fish kills, Alberta Environment has worked with Alberta Sustainable Resource Development, Federal Fisheries and Oceans, and Environment Canada to determine the cause of the fish mortality.

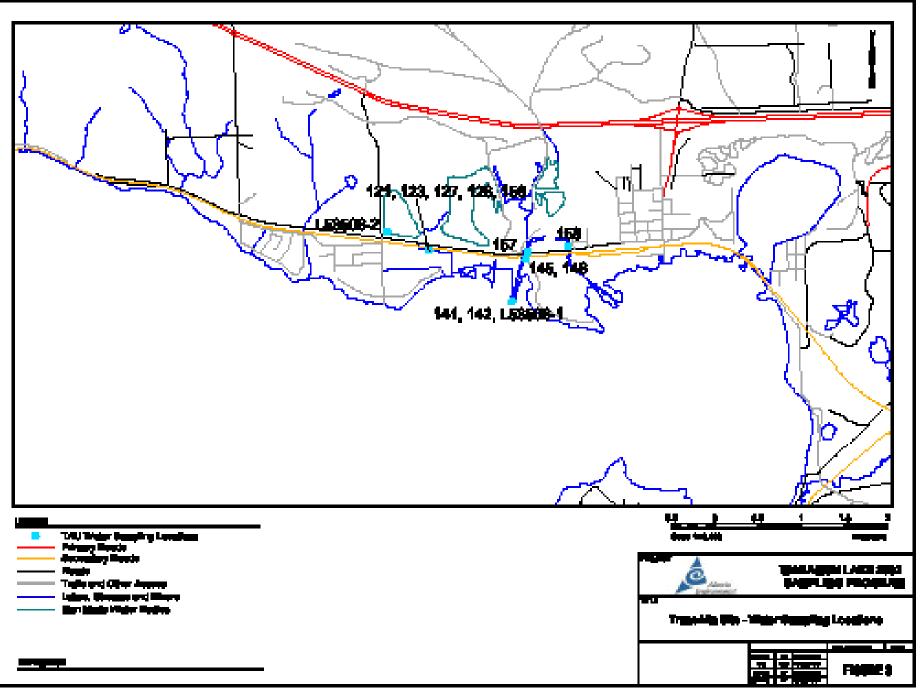
Alberta Environment commissioned the services of Dr Greg Goss, Ph.D., Assistant Professor from the University of Alberta to help investigate the cause of the fish mortality. Dr. Goss's report is included in Appendix 1.

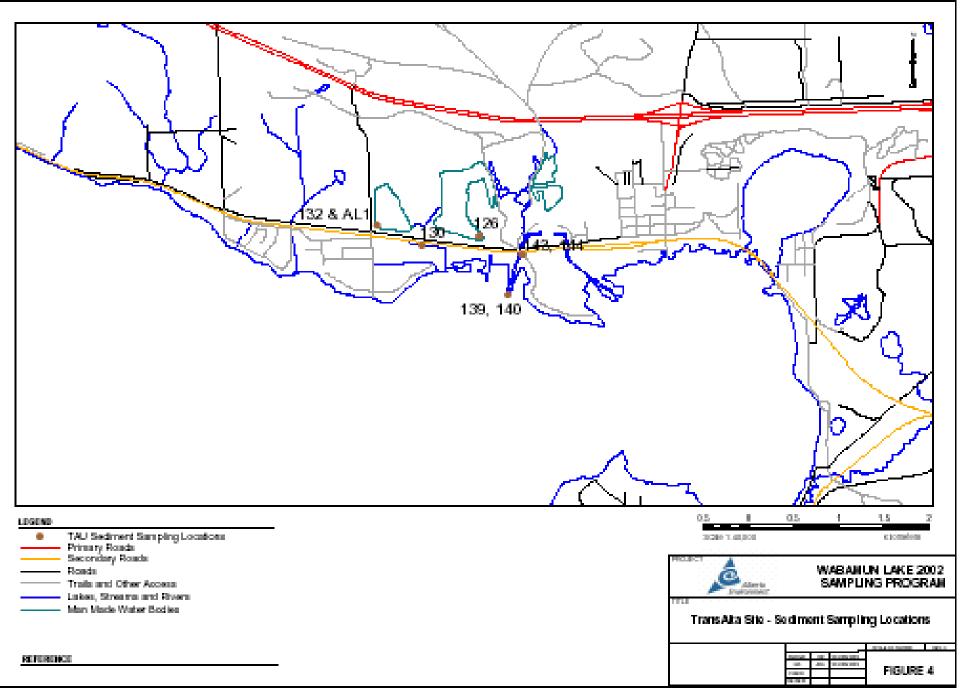
CCME Guidelines

The Canadian Sediment Quality Guidelines for the Protection of Aquatic Life provide scientific benchmarks, or reference points, for evaluating the potential for observing adverse biological effects in aquatic systems. The guidelines are derived from the available toxicological information according to the formal protocol established by the Canadian Council of Ministers of the Environment (CCME). More information about these guidelines, including specific concentration ranges, is included online at


http://www.ccme.ca/publications/pubs_updates.html?category_id=0#104


Alberta Surface Water Guidelines


Alberta's Surface Water Quality Guidelines provide general guidance in evaluating surface water quality throughout Alberta for the protection of aquatic life, agricultural use, recreational use and aesthetics. More information about Alberta Environment Surface Water Quality Guidelines is available online at http://www3.gov.ab.ca/env/protenf/publications/SurfWtrQual-Nov99.pdf.


For more info, please contact:

Rick Ostertag Acting Director Central Region Alberta Environment (780) 963-6131, ext. 277 Albert Poulette Regional Compliance Manager Alberta Environment (780) 422-3035 Kim Hunt Communications Alberta Environment (780) 427-2003

Autminuin 20100 21900 13000 14000	Table 1 – Wa	bamun Sedir	ment Sampling	g Results										
Date endments sediments sedistid addia dadia dadia dadia dadia dadia dadia dadia d														LEGEND
Data Baltmenting Besturine sectiments Besture sectimentsecont sectiments Besturine sectiments	Sample #	PAL	PAL	WS1	WS5	147	148	153	154	133	135	138	125	
Parameter ISQG PEL mg/Kg mg/Kg <t< td=""><td>Date</td><td>sediments</td><td>sediments</td><td>18-Jun</td><td>18-Jun</td><td>16-May</td><td>16-May</td><td>16-May</td><td>16-May</td><td>16-May</td><td>16-May</td><td>16-May</td><td>11-Apr</td><td></td></t<>	Date	sediments	sediments	18-Jun	18-Jun	16-May	11-Apr							
Total Ag 5.9 17 1 16.7 11.8 10.7 6.8 7.1 4.3 1.2 3.3 Total 1000 0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <	Parameter	ISQG	PEL	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	с с
Ordal ng 0.17 0.480 40.05 <	Total As	5.9	17	1	16.7	11.8	10.7	6.8	7.1	4.3	1.2	3.3		
Total Se	Total Hg	0.17	0.486	<0.05	<0.05	<0.05	0.05	<0.05	0.08	<0.05	<0.05	<0.05		
Silver <t1< th=""> <1 <1</t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<></t1<>	Total Se			<0.2	0.4	1.6	2.1	0.7	1	<0.1	<0.1	0.3		
Autminum 20100 21900 13000 14000 14000 4400 2000 5100 17000 17000 Arsenic 1 17 21 21 21 28 <5 <5 11 26 1000 10000	Silver			<1		<1	<1	<1	<1	<1	<1	<1	<0.1	4 · · ·
Boron Image: Constraint of the second s	Aluminum			20100	21900	13600	12000	10400	10000	4500	2600	5100	17000	125 Wabamun Lake 100 meters East of Ash Lagoon Discharge
Boron Image: Constraint of the second s	Arsenic												19.1	Acronyms
Barjum Image: state of state sta	Boron					17	21	21	28	<5	<5	11		
Berguium Image: constraint of the second secon				572	370	661				63	59	262		
Bismuth Image: Constraint of the second of the	Beryllium			<1									0.7	
Cadmim 0.6 3.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	,												< 0.5	ISQG Interim Sediment Quality Guideline
Cobalt m 8 8 4 4 3 3 4 2 3 5.3 Market and market and start	Cadmium	0.6	3.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5		Parameters
Chronium 37.3 90 23.5 25.6 50.9 44.7 25.8 29.2 9.9 5.2 7.7 136 197 20 20 25 22 18 18 2 2 8 66 Molydenum 1 1 3 2 2 1														
Copper 35.7 197 20 20 25 22 18 18 2 2 8 66 Molydenum 1 1 3 2 2 1 <1		37.3	90		25.6	50.9	44.7			9.9		7.7		
Molybdenum 1 1 3 2 2 2 1 <1 <1 1 1 1 3 2 2 2 1 <1 <1 1 1 1 1 3 2 2 2 1 <1 <1 1 1 1 3 2 2 2 1 <1 <1 1 1 1 3 2 2 2 1 <1 <1 1 1 3 2 2 2 1 <1 <1 1 1 3 2 2 2 1 <1 <1 1 1 3 2 2 2 1 <1 <1 1														Sanu/sil/clay expressed as percentage
Nickle 21 21 14 8 12 6 9 5 3 33.6 Lead 35 91.3 9 9 10 9 7 7 <5				1						1				< denotes that the parameters was below the Detection Limit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	· ·			21	21					9	5	3		Red indicates that the parameter exceeds limits or guidelines
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		35	91.3											
Strontium 49 56 587 536 607 573 14 16 356 616 Titanium 124 247					<5			<5	<5					
Titanium 124 247 1 1 1 1 1 1 63.2 Thallium 1 <1														
Thallium <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 0.24 Uranium <40														C,
Uranium Image: Constraint of the constraint	Thallium					<1	<1	<1	<1	<1	<1	<1		
Vanadium 37 43 36 33 25 25 15 7 9 60.5 Zinc 123 315 100 90 50 50 40 40 30 20 30 78 Calcium 21900 24900 135000 142000 17700 174000 2100 4600 105000 132000 Potassium 6860 7060 1280 1290 1100 1310 830 510 690						<40	<40	<40	<40	<40	<40	<40		
Zinc123315100905050404030203078Calcium21900249001350001420001770017400021004600105000132000Potassium6860706012801290110013108305106901000Magnesium7600800052005400490054002500250050005760Sodium11008007008006007002001005001080Iron2020018600950093007300810067003700580010700Maganese59062053048070063013090510497iron Extract </td <td>Vanadium</td> <td></td> <td></td> <td>37</td> <td>43</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Vanadium			37	43									
Calcium21900249001350001420001770017400021004600105000132000Potassium6860706012801290110013108305106901000Magnesium7600800052005400490054002500250050005760Sodium110011008007008006007002001005001080Iron2020018600950093007300810067003700580010700Manganese59062053048070063013090510497iron Extract62053048070063013090510497Tot. Inorganic6206205304404.960.080.433.51Tot. Organic620620511147999744% sand665154636002243	Zinc	123	315	100	90						20	30		
Potassium 6860 7060 1280 1290 1100 1310 830 510 690 100 Magnesium 7600 8000 5200 5400 4900 5400 2500 2500 5000 5760 Sodium 1100 800 700 800 600 700 200 100 500 1080 Iron 20200 18600 9500 9300 7300 8100 6700 3700 5800 10700 Manganese 590 620 530 480 700 630 130 90 510 497 iron Extract EC <td></td>														
Sodium11008007008006007002001005001080Iron2020018600950093007300810067003700580010700Manganese59062053048070063013090510497iron Extract60060070063013090510497iron Extract600600600600600600600EC60060060060080.433.51600Tot. Inorganic6006006000.21.7600% sand60060070063022430	Potassium			6860	7060		1290	1100			510			
Sodium Into 800 700 800 600 700 200 100 500 1080 Iron 20200 18600 9500 9300 7300 8100 6700 3700 5800 10700 Manganese 590 620 530 480 700 630 130 90 510 497 iron Extract 600 600 700 630 130 90 510 497 iron Extract 600 600 700 630 130 90 510 497 iron Extract 600 600 600 100 600													5760	
Iron 20200 18600 9500 9300 7300 8100 6700 3700 5800 10700 Manganese 590 620 530 480 700 630 130 90 510 497 iron Extract 497 EC <th<< td=""><td></td><td></td><td></td><td>1100</td><td>800</td><td>700</td><td>800</td><td>600</td><td>700</td><td>200</td><td></td><td>500</td><td>1080</td><td></td></th<<>				1100	800	700	800	600	700	200		500	1080	
Manganese S90 620 530 480 700 630 130 90 510 497 iron Extract Image: Constraint of the second				20200	18600	9500								
iron Extract Image: Constraint of the				590										
ECImage: Second sec			1											1
Tot. Inorganic Inorganic<			1											1
Tot. Organic Image: Constraint of the system Image: Constrainton of the system Image: Constant of the system </td <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>4.4</td> <td></td> <td>4.96</td> <td>0.08</td> <td>0.43</td> <td>3.51</td> <td>1</td> <td>1</td>			1				4.4		4.96	0.08	0.43	3.51	1	1
% sand 1 14 7 99 97 44 % silt 51 54 63 60 2 2 43	Q												1	1
% silt 51 54 63 60 2 2 43	0					15		14						1
			1						-					1
	% clay					35	35	24	33	1		13	1	1

	CCME	CCME	Bottom							
Sample #	PAL	PAL	126	140	139	143	144	130	131	132
Date	sediments	sediments	11-Apr	16-May	16-May	16-May	16-May	16-May	16-May	16-May
			Ash	Sediment						Sediment
Parameter	ISQG	PEL	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Total Arsenic	5.9	17	2.6	4	4.6	4.7	5.1	4.6	4.6	15
Total Mercury	0.17	0.486		0.05	0.08	< 0.05	< 0.05	0.06	< 0.05	0.09
Total Selenium	0.11	0.100	4.9	< 0.1	0.2	< 0.1	< 0.1	0.2	< 0.1	1.5
Silver			0.1	<1	<1	<1	<1	<1	<1	<1
Aluminum			28900	9200	8500	7100	6900	13100	15600	12500
Boron			93	<5	14	5	8	14	12	19
Barium			794	155	152	85	94	225	223	529
Beryllium			1.7	<1	<1	<1	<1	<1	<1	<1
Bismuth			<0.5		-				-	-
Cadmium	0.6	3.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Cobalt			4.5	5	5	5	5	4	4	5
Chromium	37.3	90	10.1	13.5	22.6	10.9	12.5	20.8	13.9	85.8
Copper	35.7	197	7	18	18	7	8	12	13	39
Molybdenum			2.5	<1	<1	<1	<1	<1	<1	7
Nickel			11.2	15	18	13	13	13	11	31
Lead	35	91.3	2.4	32	7	<5	<5	9	9	9
Tin			<0.1	<5	<5	<5	<5	<5	<5	<5
Strontium			313	120	120	31	36	213	225	233
Titanium			476							
Thallium			<0.05	<1	<1	<1	<1	<1	<1	<1
Uranium			2.8	<40	<40	<40	<40	<40	<40	<40
Vanadium			18.6	19	19	17	19	23	26	45
Zinc	123	315	26	60	50	40	40	40	40	40
Calcium			33400	38300	41200	10800	12200	32200	30200	50300
Potassium			420	1200	1330	970	1220	1550	1520	1220
Magnesium			2430	4300	4900	2300	2800	4400	4000	4400
Sodium			1040	300	300	200	300	400	400	500
Iron			9400	9800	9600	7300	7500	9900	10600	9100
Manganese			252	290	290	200	200	150	150	170
pH				8.5	8.5	8.5	8.5	8.5	8.2	8.1
Total Carbon					4.9		0.6	4		5.1
Total Inorganic Carbon					1.8		0.69	1.6		1.91
Total Organic Carbon					3.1		0.1	2.4		3.2
% sand				63	65	86	83		48	43
%silt				23	23	7	10		26	29
% clay				14	12	8	7		26	28

LEGEND

Site Descriptions

- 126 Bottom ash sample
- 140/139 Mouth of inlet Canal
- 130 Ash Pond Effluent Discharge
- 131/132 Ash pond prior to discharge

Acronyms

- CCME Canadian Council of Ministers of the Environment
- PAL Protection of Aquatic Life
- PEL Probable Effects Level
- ISQG Interim Sediment Quality Guideline

Parameters

All parameters are in units of mg/Kg except the following: Sand/silt/clay expressed as percentage

< denotes that the parameters was below the Detection Limit Red indicates that the parameter exceeds limits or guidelines

Table 3 – Wabamun Lake Water Sampling Results

	CCME													
Sample #	PAL	WS1	WS5	149	150	151	152	134	136	137	155	124	124-a	122
Date	WATER	18-Jun	18-Jun	16-May	16-May	16-May	16-May	16-May	16-May	16-May	16-May	11-Apr	11-Apr	21-Mar
	assumed hardness	water	water	water	water	water	water	water	water	water	water	water	water	Lake NF
Parameter	100mg/l	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Total Antimony												0.0025	0.0014	
Total Arsenic	0.005	0.0025	0.0025	0.0035	0.0035	0.0029	0.0029	0.0027	0.0026	0.0028	< 0.0004	0.0093	0.0092	
Total Mercury	0.000013 / 0.000005	<0.0002	<0.0002	< 0.0002	< 0.0002	<0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	
Total Selenium	0.001	<0.0004	0.0004	0.0004	< 0.0004	0.0005	<0.0004	< 0.0004	<0.0004	< 0.0004	< 0.0004	0.0007	0.0006	
Silver	0.0001	<0.005	0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	< 0.0004	< 0.0004	T
Aluminum	0.1	0.05	0.06	0.14	0.16	0.27	0.28	0.02	0.03	0.09	<0.01	0.36	0.07	
Arsenic												0.009	0.009	
Boron		0.85	0.86	0.92	0.98	0.86	0.91	0.9	0.87	0.87	<0.05	1.75	1.8	T
Barium		0.12	0.124	0.12	0.134	0.124	0.137	0.126	0.127	0.127	< 0.003	0.157	0.154	T
Beryllium		<0.002	0.002	< 0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	0.001	
Bismuth												< 0.0001	0.0006	
Cadmium	0.000033	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.0002	< 0.0002	T
Cobalt		<0.002	<0.002	< 0.002	< 0.002	< 0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0003	< 0.0002	1
Chromium	0.0089/0.001	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	0.0017	<0.0008	
Copper	0.003	0.001	0.001	0.002	0.001	0.002	0.002	0.002	0.002	0.002	< 0.001	0.004	0.002	
Molybdenum		0.005	0.006	0.008	0.007	0.006	0.006	0.005	0.005	0.006	<0.005	0.0199	0.0198	
Nickel	0.065	<0.002	< 0.002	< 0.002	< 0.002	0.002	0.002	0.002	0.002	<0.002	< 0.002	0.001	0.0009	
Lead	0.004	<0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	0.0019	0.0002	
Antimony												< 0.005	< 0.005	
Selenium												<0.0008	<0.0008	
Tin		<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.0004	< 0.0004	
Strontium		0.271	0.28	0.265	0.284	0.28	0.3	0.288	0.288	0.294	< 0.002	0.314	0.313	
Titanium		< 0.001	0.001	0.005	0.004	0.008	0.008	0.001	0.001	0.002	< 0.001	0.023	0.005	1
Thallium	0.0008	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.0001	< 0.0001	
Uranium												0.0015	0.0016	
Vanadium		0.001	0.001	0.004	0.004	0.003	0.003	0.001	0.001	0.002	< 0.001	0.0201	0.0197	
Zinc	0.03	0.003	0.004	0.006	0.003	0.019	0.007	0.014	0.01	0.007	0.006	0.017	0.007	
Calcium		22.4	22.9	20.8	21.3	20.9	24.1	23.3	22.9	22.8	<0.5	21.6	20.7	20.6
Potassium		10.0	9.8	8.6	8.9	8.2	9.4	9.7	9.7	9.4	<0.1	10.2	10.3	10.7
Magnesium		16.6	16.6	14.7	15.1	14.2	16.7	17.1	16.9	16.5	<0.1	15.1	15.6	15.2
Sodium		65	63	60	60	55	62	62	64	62	<1	82	85	82
Iron	0.3	0.027	0.029	0.09	0.06	0.107	0.142	0.022	0.024	0.037	<0.005	0.235	0.014	
Manganese		0.017	0.02	0.015	0.016	0.024	0.031	0.051	0.025	0.018	<0.001	0.014	0.001	
Iron Extract	0.3	0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.15	0.12	0.09
Chloride		5	5	10	10	8	8	7	8	8	<1	24	22	20
Fluoride		0.41	0.39	0.39	0.4	0.39	0.4	0.39	0.4	0.4	<0.05	0.51	0.51	0.52
Nitrite/Nitrate		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.2	0.1
Nitrite		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Silica		1.9	2	2.3	2.4	1.5	1.5	3.7	3.7	1.6	<0.1	12.3	12.1	10.7
рН		8.6	8.5	8.5	8.5	8.5	8.4	8	8.2	8.4	6.2	8.7	8.7	8.6
Conductivity		509	514	508	485	521	498	500	501	497	3.9	608	602	613
Bicarbonate		230	249	233	233	250	252	259	261	253	<5	221	216	251
Carbonate		13	<5	<5	<5	<5	<5	<5	<5	<5	<5	15	17	14
Hydroxide		5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5

LEGEND

Site Descriptions

- WS1 Wabamun Lake West of Ash Lagoon Discharge Mouth of Sundance Water Treatment Plant Discharge
- WS5 149/150
- 50 meters East of the Ash Lagoon Discharge 151/152 100 meters East of the Ash Lagoon Discharge
- 134
- 200 meters West of Stream 16, 50 meters off shore
- 400 meters West of Fallis point, 50 meters off shore 136
- 137 250 meters West of Ash Lagoon Discharge
- 155 Field Blank QA/QC
- 124 Ash Lagoon Discharge to Wabamun Lake Filtered
- 124-a Ash Lagoon Discharge to Wabamun Lake
- 122 Ash Lagoon Discharge to Wabamun Lake

Acronyms

- CCME Canadian Council of Ministers of the Environment
- Protection of Aquatic Life PAL
- PEL Probable Effects Level

Parameters

All parameter units are in mg/L (ppm) except the following: pH - Unitless Conductivity - us/cm Ion Balance - % Turbidity - NTU's

< denotes that the parameters was below the Detection Limit Red indicates that the parameter exceeds limits or guidelines

Alkalinity		210	211	199	199	211	211	212	214	212	<5	205	204	229
Ion Balance		106	106	105	105	103	105	103	102	103	low	102	99.6	94.2
Tot. Diss. Solids		325	323	297	294	305	303	303	305	304	<1	356	354	351
Hardness		139	139	124	124	132	133	130	130	130	<1	122	120	114
Sulphate		68.8	69	55.3	53.1	55.8	52.5	52.8	52.5	53.4	<0.5	73.1	76.6	64.6
Sulphide		0.051	0.031	0.006	< 0.003	0.007	0.006	<0.003		0.004	<0.003			
Tot. Phosphorus	0.05	<0.02	0.02	<0.02	0.03	0.04	<0.02	<0.02	<0.02	<0.02	<0.02	0.05		
Ammonia-N	pH-T-dependent	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		
Tot. Kjeldahl Nitrogen		0.8	0.8									1.3		
Diss. Kjeldahl Nitrogen												1.3		
Nitrate				<0.1	⊲0.1	<0.1	⊲0.1	⊲0.1	⊲0.1	⊲0.1	⊲0.1	0.1		
Chemical Oxygen Demand		30	30									20		
Diss. Organic Carbon		12	12	12	13	13	13	12	12	14	<1			
Tot. Organic Carbon		12	12	14	13	15	15	13	14	14	<1		<1	
Tot. Suspended Solids				6	6	20	15	\$	4	ぐ	\$			\$
Turbidity				4.9	1.5	7.7	5.7	1.1	0.79	1.7	0.1		0.2	

Table 4 – Tra	nsAlta Wabamun Water	Sampling	Results											
Sample #	CCME	157	158	156	127	128	142	141	145	146	123	123	121	LEGEND
Date	PEL	5-Jun	5-Jun	5-Jun	16-May	16-May	16-May	16-May	16-May	16-May	11-Apr	11-Apr	21-Mar	Site Descriptions
	WATER	Water	Water	Water	Water	Water	inlet Canal	inlet Canal	south RR	south RR	effluent	Effl. Filter	effluent	157 Bridge Crossing Inlet Canal 158 Bridge Crossing Outlet Canal
Parameter	assumed hardness=100	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	156 Ash Pond Effluent Discharge
Total SB											0.0021	0.0014		127/128 Ash Pond Effluent Discharge 142/141 Mouth of Inlet Canal
Total As	0.005	0.0026	0.0028	0.0075	0.0067	0.0057	0.0028	0.0026	0.0026	0.0026	0.0095	0.0093	0.0104	145/146 Inlet canal 42 m South of Rail Crossing
Total Hg	0.000013 / 0.000005	<0.0002	<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	123 Ash Pond Effluent Discharge 123 Ash Pond Effluent Discharge Filtered
Total Se	0.001	<0.0004	0.0004	0.0006	< 0.0004	0.0006	0.0005	< 0.0004	< 0.0004	< 0.0004	0.0007	0.0006	0.0004	121 Ash Pond Lagoon Discharge
Silver	0.0001	<0.005	0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.0004	< 0.0004	0.005	1 .
Aluminum	0.1	0.06	0.08	0.2	0.28	0.24	0.09	0.09	0.17	0.14	0.41	0.07	0.7	Acronyms CCME Canadian Council of Ministers of the Environment
Arsenic											0.009	0.009		PEL Probable Effects Level
Boron		0.84	0.83	1.44	1.29	1.16	0.82	0.89	0.86	0.89	1.72	1.77	1.78	Parameters
Barium		0.124	0.127	0.182	0.155	0.121	0.113	0.124	0.116	0.124	0.168	0.194	0.169	All parameter units are in mg/L (ppm) except the following:
Beryllium		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.001	<0.001	0.002	pH - Unitless Conductivity - us/cm
Bismuth											<0.0001	<0.0001		Ion Balance - %
Cadmium	0.000033	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	< 0.0002	< 0.0002	0.001	Turbidity - NTU's
Cobalt		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0003	<0.0002	0.002	< denotes that the parameters was below the Detection Limit
Chromium	0.0089/0.001	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	0.0013	0.001	0.005	Red indicates that the parameter exceeds limits or guidelines
Copper	0.003	0.001	0.002	0.001	0.001	0.001	0.002	0.002	0.002	0.002	0.002	0.002	0.002]
Molybdenum		0.005	0.006	0.021	0.016	0.014	0.006	0.005	0.006	0.005	0.02	0.0199	0.02]
Nickel	0.065	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002	<0.002	0.0011	0.0008	0.002	
Lead	0.004	<0.005	<0.005	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0004	<0.0001	0.005	
Antimony											<0.005	<0.005		
Selenium											<0.0008	<0.0008		
Tin		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.0004	0.0008	0.05	
Strontium		0.284	0.283	0.288	0.249	0.209	0.266	0.29	0.271	0.287	0.322	0.317	0.331	
Titanium		<0.001	0.001	<0.004	0.009	0.008	0.003	0.002	0.005	0.003	0.031	<0.005	0.037	
Thallium	0.0008	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.0001	<0.0001	<0.05	
Uranium											0.0015	0.0015		
Vanadium		<0.001	0.002	<0.016	0.013	0.012	0.002	0.002	0.002	0.002	0.0208	0.0199	0.02	
Zinc	0.03	0.002	0.015	<0.002	0.008	0.014	0.017	0.006	0.005	0.004	0.006	0.006	0.004	
Calcium		22.3	22.6	19.6	19	18.2	19.7	22.9	19.9	21.7	21.8	21.1	21.4	
Potassium		9.2	9.3	8.7	7.8	7.5	8.1	9.5	8.1	9.2	10.2	10.2	9.8	1
Magnesium		16.6	16.6	12.9	11.8	11.1	14.4	16.7	14.1	15.6	15.5	15.6	15.2	
Sodium		62	62	68	60	60	55	62	54	59	82	85	82	_
Iron	0.3	0.023	0.028	0.051	0.105	0.106	0.043	0.041	0.069	0.067	0.282	0.01	0.324	1
Manganese		0.024	0.027	0.003	0.012	0.011	0.015	0.017	0.018	0.02	0.016	0.002	0.016	_
Iron extr.	0.3	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	0.16	0.13	0.19	_
Chlorides		6	6	21	19	19	8	7	8	8	24	23	27	1
Fluoride		0.37	0.38	0.44	0.41	0.4	0.39	0.4	0.39	0.39	0.51	0.051	0.53	4
Nitrate/Nitrite		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.2	0.1	4
Nitrite		< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	4
Silica		1	1	8	7.3	7	1.7	1.7	1.6	1.6	12.5	12.4	12.2	4
pH		8.4	8.4	8.7	8.7	8.8	8.5	8.4	8.5	8.4	8.7	8.8	8.8	4
Conductivity		489	490	480	451	472	516	494	515	494	608	607	611	4
Bicarbonate		246	247	187	163	169	248	248	247	246	220	214	207	J

24	LEGEND
5	
209	Site Descriptions 157 Bridge Crossing Inlet Canal
	158 Bridge Crossing Outlet Canal
	156 Ash Pond Effluent Discharge
	127/128 Ash Pond Effluent Discharge
110	142/141 Mouth of Inlet Canal
65.6	145/146 Inlet canal 42 m South of Rail Crossing
0.02	123 Ash Pond Effluent Discharge123 Ash Pond Effluent Discharge Filtered
	121 Ash Pond Lagoon Discharge
0.6	Acronyms
0.5	CCME Canadian Council of Ministers of the Environment
0.1	PEL Probable Effects Level
1	Parameters
20	All parameter units are in mg/L (ppm) except the following:
	pH - Unitless Conductivity - us/cm
0	Ion Balance - %
	Turbidity - NTU's
	< denotes that the parameters was below the Detection Limit
	Red indicates that the parameter exceeds limits or guidelines
	5 209 95.5 346 110 65.6 0.02 0.05 0.6 0.5

able 5 – Potable Water	Sample Res													
		L1	ML2	WB1	SH1	FB1	K1	B1	323	322	321	320		
Date		10-Jun	10-Jun	10-Jun	10-Jun	10-Jun	24-May	10-May	9-May	9-May	21-Mar	21-Mar		
Tot. Arsenic							0.0025							
Tot. Mercury							< 0.0002						ML1	Priv. I
Tot. Selenium		40.00F	-0.005	10,005	-0.005	10,005	0.0004	10,0000	-0.000	10,0000	10,0000	10,0000		Priv. I
Silver		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	WB1	Priv.F
Aluminum		0.08	0.11	0.01	0.01	0.01	0.62	< 0.01	0.02	0.2	0.01	0.1	SH1	Priv. I
Arsenic	0.025 ^{imac}							< 0.0004	0.0028	0.0023	0.0032	0.0025		Priv. I
Boron	5.0 ^{imac}	0.91	0.92	0.26	0.23	0.27	0.89	0.35	0.928	0.963	1.09	1.08		Priv. I
Barium	1.0 ^{mac}	0.114	0.117	0.079	0.078	0.08	0.116	0.0687	0.125	0.117	0.13	0.125		Paul I Vill. o
Beryllium		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005		Vill. o
Bismuth	mac							0.00009						Vill. o
Cadmium	0.005 ^{mac}	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001		Vill. o
Cobalt		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0002	<0.0001	<0.0001	<0.0001	<0.0001	notes	ML2 a
Chromium	0.05 ^{mac}	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0006	<0.0001	<0.0004	<0.0004	<0.0004		
Copper	1.0 ^{ao}	0.052	0.001	0.016	0.003	0.003	0.023	0.0063	0.0178	0.0114	0.017	0.0119		
Hg	0.001 ^{mac}								<0.0001	<0.0001	<0.0001	<0.0001	GCDWQ MAC	Guide Maxir
Molybdenum		<0.005	0.005	<0.005	<0.005	<0.005	<0.005	0.0021	0.0057	0.0058	0.0059	0.0058		Interir
Nickel		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	0.0001	0.0001	0.0023	0.0002	0.0014		Aesth
Lead	0.010 ^{mac}	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.0002	0.002	0.0008	0.001	0.0005		
Antimony								<0.0008						
Selenium	0.01 ^{mac}							0.0004	0.0004	<0.0004	<0.0004	< 0.0004	parameters in	mg/L e
Tin		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.0002	0.0004	< 0.0002	0.0003	< 0.0002	pH - Unitless Conductivity -	uo/om
Strontium		0.286	0.286	0.064	0.063	0.059	0.263	0.0529	0.285	0.287	0.291	0.287	Ion Balance - S	
Titanium		0.002	0.002	0.004	0.003	0.003	0.013	0.0125	0.0007	<0.0003	0.0007	0.0004	Turbidity - NTI	
Thallium		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.00005	0.00005	< 0.00005	< 0.00005	< 0.00005		
Uranium	0.1 ^{mac}							<0.0001	0.0006	0.0004	0.0006	0.0005	< denotes valu	e belo
Vanadium		0.001	0.001	0.001	0.001	0.001	0.002	0.0002	0.0014	0.0012	0.0015	0.0013	Red numbers	indicat
Zinc	5.0 ^{ao}	0.005	0.002	0.067	0.041	0.054	0.027	<0.002	0.013	0.004	0.015	0.006		
Calcium		22.5	22.6	3.4	3.4	3.3	19.4	3.2	24.8	25.3	25	24.9		
Potassium		9.4	9.4	0.9	0.9	0.9	8.1	0.9	9.9	10.1	10.9	11		
Magnesium		16.6	16.6	0.2	0.2	0.2	13.4	0.3	18.3	18.2	18.7	18.5		
Sodium	200 ^{ao}	65	64	352	353	357	58	322	65	68	72	72		
Iron	0.3 ^{ao}	0.075	0.042	0.026	0.027	0.022	0.288	0.021	0.012	<0.005	0.007	0.005		
Manganese	0.05 ^{ao}	0.018	0.015	0.004	0.003	0.003	0.019	0.005	0.013	0.001	0.007	0.001		
Iron Extract							0.18							
Chloride	250 ^{ao}		5	2	1	1	14	13	8	17	16	10		
Fluoride	1.5 ^{mac}		0.41	1.22	1.16	1.17	0.38	1.63	0.37	0.36	0.43	0.44		
Nitrite & Nitrate			0.1	0.1	0.1	0.1	< 0.1	< 0.1	0.1	0.1	<0.1	<0.1		
Nitrite			< 0.05	0.05	0.05	0.05	<0.05	<0.1	0.06	< 0.05	0.05	<0.05		
Silica			2	13.4	10.7	12.9	2.7		2.4	1.9	2.8	3		

	LEGEND
	Site Descriptions
ML1	Priv. Res. SE-4-53-5-W5 Tap
ML2	Priv. Res. SE-4-53-5-W5 Lake Water
WB1	Priv.Res SW-3-53-4-W5 Ground Water
SH1	Priv. Res.SW-3-53-4-W5 Ground Water
FB1	Priv. Res. SW-3-53-4-W5 Ground Water Well
K1	Priv. Res. SE-4-53-5-W5 Tap
B1	Paul Band Ground Water Well
323	Vill. of Wabamun Raw Water supply
322	Vill. of Wabamun Treated Water supply
321	Vill. of Wabamun Raw Water supply
320	Vill. of Wabamun Treated Water supply
notes	ML2 and K1 not used for potable water
	Acronyms
CDWQ	Guidelines for Canadian Drinking Water Quality
MAC	Maximum Acceptable Concentration

- MAC Interim Maximum Acceptable Concentration
- AO Aesthetic Objectives

Parameters

parameters in mg/L except the following: pH - Unitless Conductivity - us/cm Ion Balance - % Turbidity - NTU's

< denotes value below detection limit Red numbers indicate value above guideline value

рН		8.4	8.4	8.4	8.4	8.3	8.6	8.5	7.9	7.9	8.3
Conductivity		530	1400	1410	1420	518	1320	520	559	591	595
Bicarbonate		253	918	916	912	242	725	252	252	261	291
Carbonate		<5	5	7	5	5	28	5	5	5	<5
Hydroxide		<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Alkalinity		212	759	762	753	198	640	214	207	214	239
Ion Balance		106	106	106	104	103	99.7	107	104	98.4	97.9
Total Dissolved Solids		302	826	842	836	298	775	307	318	346	340
Hardness		132	10	10	10	120	9	137	138	139	138
Sulphate	500 ^{ao}	53.1	0.5	7.5	4	50.7	51.3	52.5	55.4	75.4	60.4
Total Phosphorus						<0.02		0.04	<0.02		
Dissolved Phosphorus						<0.02					
Ammonia-N						0.07		<0.05	<0.05	0.05	0.05
Total Kjeldahl Nitrogen								0.7	0.9	0.5	0.8
Chemical Oxygen Demand		30	30	30	30		<10			30	30
Dissolved Organic Carbon		12	15	14	14	16	12	14	11		
Total Organic Carbon		14	17	16	17	17		16	12		
Colour								10	5		
Turbidity		1.3	0.32	0.39	0.1		0.16	1	0.71	0.12	0.39

LEGEND

Site	Descriptions
~ -	

Priv. Res. SE-4-53-5-W5 Tap
Priv. Res. SE-4-53-5-W5 Lake Water
Priv.Res SW-3-53-4-W5 Ground Water
Priv. Res.SW-3-53-4-W5 Ground Water
Priv. Res. SW-3-53-4-W5 Ground Water Well
Priv. Res. SE-4-53-5-W5 Tap
Paul Band Ground Water Well
Vill. of Wabamun Raw Water supply
Vill. of Wabamun Treated Water supply
Vill. of Wabamun Raw Water supply
Vill. of Wabamun Treated Water supply
ML2 and K1 not used for potable water

Acronyms

- GCDWQ Guidelines for Canadian Drinking Water Quality
- MAC Maximum Acceptable Concentration
- IMAC Interim Maximum Acceptable Concentration
- AO Aesthetic Objectives

ML1 ML2 WB1 SH1 FB1

K1 B1 323 322 321 320 notes

Parameters

parameters in mg/L except the following: pH - Unitless Conductivity - us/cm Ion Balance - % Turbidity - NTU's

< denotes value below detection limit Red numbers indicate value above guideline value

Appendix 1

A report prepared for Alberta Environment

Prepared by Greg G. Goss, Ph.D. Associate Professor Dept of Biological Sciences University of Alberta **Final Report**

Status of Lake Wabamun fishes regarding fish kills occurring at the TransAlta Wabamun power generating station.

A report prepared for Alberta Environment

Prepared by Greg G. Goss, Ph.D. Associate Professor Dept of Biological Sciences University of Alberta Edmonton Alberta T5G 2E7 Email: greg.goss@ualberta.ca Tel: 780-492-2381 FAX: 780-492-9234

Distribution:

July 30, 2002

Table of Contents

Table of Figures	20
General_Summary	4
Assessment of the problem-Current Hypothesis and Views	21
Recommendations:	22
General Introduction and Information provided prior to May 01, 2002	23
Metals in fish tissues	24
Introduction	
Sample Preparation	
Statistical Analysis	
Results	
Discussion	
Metals in Water column and sediments in Lake Wabamun	27
Muscle and liver glycogen analysis, muscle lactate analysis	11
Introduction	
Samples:	
Methods:	
Statistical Analysis	
Results	
Discussion	
Overall Discussion	32
Information transfer	33
References Cited	

Table of Figures

Figure 1- Analysis of Aluminum on the gills of fish Collected at Lake Wabamun fish were collected from screen house and by electrofishing. N= 6 for each sample		
Figure 2- Analysis of Cadmium on the gills of fish Collected at Lake Wabamun fish were collected from screen house and by electrofishing. N= 6 for each sample		
Figure 3- Analysis of Copper on the gills of fish Collected at Lake Wabamun fish were collected from screen house and by electrofishing. N= 6 for each sample		
Figure 4-Liver Glycogen Analysis of Fish Collected at Lake Wabamun fish were collected from screen house and by electrofishing. N= 6 for each sample		
Figure 5 Muscle Glycogen Analysis of Fish Collected at Lake Wabamun- fish werecollected from screen house and by electrofishing. N= 6 for each sample14		
Figure 6: Muscle Lactate of Fish Collected at Lake Wabamun- fish were collected from Inlet screen house and by electrofishing in the lake as described. N= 6 for each sample		

General Summary

This report summarizes the general findings to date regarding the problem of fish appearing on the inlet screens at the TransAlta Wabamun power generating plant. Despite a great deal of study employing rigorous scientific procedures and analyses, a direct cause for the appearance of fish on the inlet screens has not as yet been determined.

We are, however, able to positively state the following:

1) Metal toxicity does not appear to be related to fish kills at the TransAlta Wabamun power generating plant.

2) Fish appearing on the inlet screens at Lake Wabamun TransAlta have been exhaustively exercised prior to turning up on screens. However, Northern Pike released back to inlet channel indicates that return passage back to the lake is likely not a problem for this species. These mark and release tests were not performed for whitefish and it still remain a possibility that this species cannot get out of the inlet canal. Assessment of the problem-Current Hypothesis and Views

Low levels of metals found in the water and the sediment of the lake are not the proximal cause of the fish appearing on the screen (see below for explanation). We have eliminated the most likely causes and now must search for a less discrete and more complex mechanism. We have been made aware of specific indicators of serious ecological problems on the lake. Specifically, a reduced fitness in the fishes indicated by a drop in condition factors in the fish caught combined with a reduced zooplankton level in the lake indicated a reduced primary productivity in the lake. We do not have data regarding invertebrate productivity in the lake at this time. The lake has recently been severely impacted by dropping lake levels. At this point, one hypothesis is that a drop in water levels in the lake may likely be the cause of a reduced primary productivity in the lake. Combined with other unknown events, it is my opinion that fishes may be migrating to new habitats for spawning as a result of the deteriorating conditions in the lake. Since the only outlet from the lake is via the inlet canal of the TransAlta powerplant, fish may be migrating into the canal seeking a new environment. Suggestions to eliminate this problem may include a fish exclusion program for the inlet canal. However, a fish exclusion program may simply move the problem to another site. I feel that with a drop in temperature in October, we may see a repeat of the problems that surfaced in October 2001. A contingency plan for such a scenario should be readied and in place should the problems arise once again.

Recommendations:

Recommendation #1)

A complete investigation of the elevated metals in the sediments are Lake Wabamun and surrounding lakes should be undertaken. While in general, these levels were low and given the hydrogeology of the lake, relatively non-toxic, the appearance of higher than normal levels of metals in the sediments and water column in the 200FAR site west of the inlet canal cannot be discounted.

Recommendation #2)

While plans should be drawn up for a fish exclusionary device for the inlet canal, this may only divert the problem 500 metres away from the plant. Ultimately, a reason for the fish wishing to enter the inlet canal (leave the lake?) will have to be understood and rectified.

Recommendation #3)

I recommend that a "library" of key indicator fish species (8-10 pike, whitefish, walleye) be kept. Additionally, invertebrate, water and sediment samples be collected and processed properly for each year from a selected set of sites (6-10) around the lake. Finally, copies of theses and studies on the lake should be catalogued and maintained as a central resource for this lake. This would allow for historical data to be accessible regarding metals, organics, populations, species richness etc. With this data accessible, it can serve as a database should future problems arise and should allow for more rapid assessment of problems, should they occur.

Recommendation #4)

Should the problems re-occur in the fall of 2002 (likely associated with a drop in water temperature), I recommend that a mark and release study be immediately initiated with lake whitefish to determine if they are able to swim out of the inlet channel. Since whitefish are much more sensitive to handling stress, I would expect a greater mortality associated with this study than was found for Northern Pike.

Recommendation #5)

I recommend that a survey of the invertebrate population be instigated. This may either be by a new study or through gathering data already collected. This study is imperative if we are to able to accurately assess the condition of the lake and how it is faring during re-instatement of historical water levels through the contribution of the Sundance water treatment plant. In numerous personal and telephone meetings (January to April) with representatives of Alberta Environment (Stephen Spencer and Ryan Levitt), I was made aware of problems occurring out at the TransAlta Wabamun power generating station. I was informed of daily fish kills occurring at the inlet screen of the Powerplant. The fish killed were primarily lake whitefish during this time and ranged in numbers from <10 to >100 on some days. Information presented at that time indicated that the fish kills started on October 26 and continued with regular numbers of fish appearing on the screens through to the spring.

Initially, we discussed the possibility that gas bubble disease may be resulting from specific operations at the plant. It was presented to me that a recirculating system was in place at the plant to put warmer water back into the inlet canal to prevent ice buildup. It was suggested that the fish kills might be caused by gas bubble disease resulting from mixing cool and warm water. However, two pieces of evidence were later present suggesting that gas bubble disease were not the proximal cause of fish mortality in the fish appearing on the screen. First, histological analysis by fish pathologist Bev Larson suggested there was no evidence of gas bubble disease found in the fish. Secondly, TransAlta agreed to remove the recirculating water returning to the inlet canal in February. Cessation of these operations did not result in any apparent reduction in fish mortality suggesting that gas bubble disease and plant operation relating to the practice of recirculating the water was not the cause of the fish mortality. At this time, no apparent cause of mortality could be determined and a more thorough investigation was initiated.

In early April, Northern Pike started to appear on the inlet screens in ever increasing numbers. TransAlta initiated a round the clock rescue program when it was determined that most of the Pike who were found on the inlet screens were not dead but simply exhausted and washed up on the inlet screens.

At this point I was asked to provide independent scientific analysis of the fish metabolic status (see below) and analysis for the possibility that sublethal metal toxicity (see below) resulted in fish appearing on the inlet screens. Additionally, I was asked to provide independent input and scientific assessment of the data provided during the subsequent investigation.

INVESTIGATIONS

Metals in fish tissues

Introduction

Metals are known toxicant in fishes, with their primary mode of toxicity at the gills. Evidence found in the literature demonstrates that toxicity in freshwater fish produces gross morphological damage to gills resulting in impaired gas exchange at the gills and eventually leading to suffocation. However, at more environmentally relevant concentrations of metals, the toxic mechanisms are usually through disruption of ion transport. Metals, including cadmium, copper, silver, zinc and others, tend to bind to the gill at very specific receptor sites. It appears that at concentrations at and below the 96hour LC50s, metals tend to interfere with the ability of the organism to regulate ion transport across the gill (e.g., McDonald et al., 1989; Wood, 1992; Wood et al., 1996 and 1999). The physiological mechanisms of toxicity for most metals can generally be divided into two categories: monovalent metals (Ag⁺, Cu⁺) affecting Na⁺ (and Cl⁻) transport, and divalent metals (i.e. Cd²⁺, Zn²⁺) disrupting Ca²⁺ metabolism. In turn, the relative toxicity of each of these metals is impacted greatly impacted by the water chemistry of the specific environment. Specifically, with regard to Lake Wabamun, high water pH and increase water hardness act to reduce or negate the impact of most metals on the fishes. Given that metals had been found in the water column during an investigation by Alberta Environment in March-April of 2002, I was asked to perform an independent analysis of metals in the gills of whitefish found both in the lake and fish that turned up on the inlet screens of the powerplant.

Sample Preparation

The gill samples were received frozen. They were thawed and subsamples of filaments were removed for digestion in ultrapure nitric acid followed by heating to 80 degrees centrigrade. Samples were left overnight and allowed to settle. Supernatent was removed and diluted in ultrapure water before analysis by a graphite furnace atomic absorption spectroscopy (Varian, 10 μ l injection volumes). Samples were run in random order against fresh standards prepared from certified samples. Results are reported as both nmol metal/g wet tissue and μ g metal/g wet tissue.

Statistical Analysis

All results were test using a non-parametric Kruskal-Wallis test for significance. A value of P<0.05 was considered significant.

Results

Aluminium (Figure 1), Copper (Figure 2) and Cadmium (Figure 3) were measured in the gills of fish collected by electrofishing in Lake Wabamun and fish that turned up on the screen house at the Lake Wabamun powerplant. Additionally, we tested 6 rainbow trout obtained from the University of Alberta holding facility. These rainbow trout were used as an indicator of background metals levels under conditions that are know to be non-toxic for a sensitive species. Results of the metals analysis indicated that for all three metals measured, there were no significant differences between the treatment groups. In all cases, the levels of metals were found to be extremely low and well below levels that would be inducing toxicity in rainbow trout. No specific LC50's (an indicator of toxicity) could be found in the literature for Lake whitefish. However, given these low levels and with comparison to other fish species, I do not believe these levels would negatively impact the whitefish.

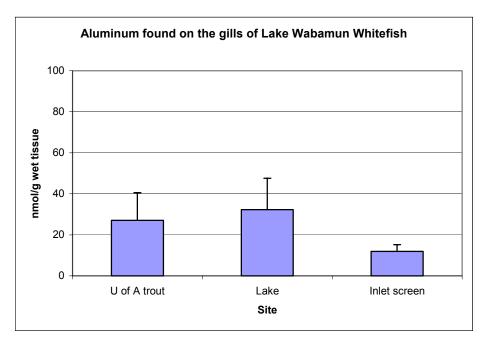


Figure 1- Analysis of Aluminum on the gills of fish Collected at Lake Wabamun fish were collected from screen house and by electrofishing. N= 6 for each sample

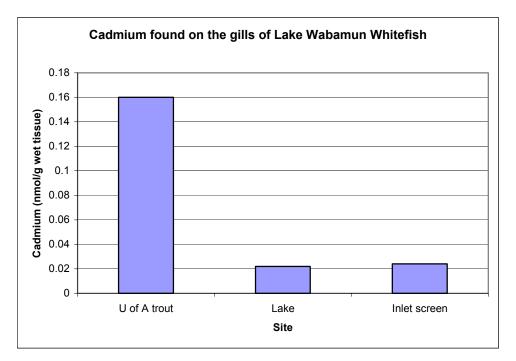


Figure 2- Analysis of Cadmium on the gills of fish Collected at Lake Wabamun fish were collected from screen house and by electrofishing. N= 6 for each sample

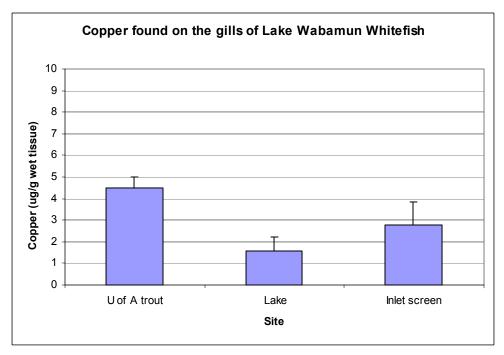


Figure 3- Analysis of Copper on the gills of fish Collected at Lake Wabamun fish were collected from screen house and by electrofishing. N= 6 for each sample

Discussion

The lack of any appreciable accumulations of metals on the gills of whitefish suggest that metals are not the cause of toxicity in the fishes appearing on the inlet screens at the Lake Wabamun powerplant. These values are very low and would not be associated with fish toxicity. The values reported are very much in line with those reported by Golder and Associates (employed by Transalta) in their 2001 analysis of whitefish obtained from Lake Wabamun. The water quality in Lake Wabamun includes a very high ph (usually pH> 8.0) and a fairly high level of hardness in the water. These two environmental features will act to significantly reduce any impact of metals by reducing their toxicity. The toxic species of most metals is the free ionic form (e.g. Al3+, Cu2+) and these act by entering and preventing normal Na+ and Ca++ transport functions by the fish gill. However, at high pH and elevated hardness, these metals exist mostly as complexes of hydroxyls (e.g. Al(OH)3 and Cu(OH)2 which are non-toxic forms of the metals. It is my conclusion that the very low levels of metals present on the gills of Lake whitefish do not present a problem to the fish in that lake.

Metals in Water column and sediments in Lake Wabamun

As part of the initial investigation, it was found by members of Alberta environment that there were elevated levels of metals found in the water and sediments in the region of the powerplant. Specifically, in areas near the outfall from the settling ponds, elevated levels of metals (Aluminium and Arsenic) were found in the water column while both Alberta Environment and Golder Associates also reported elevated levels in the sediment in this region. Aluminium is present as the third most abundant element in the earth's crust and therefore, measuring elevated levels of this metal should be interpreted with caution. There is a great deal of variability and naturally occurring aluminium is present everywhere. However elevated levels of other metals including Arsenic should be more thoroughly investigated. While the specific water chemistry in the lake renders these metals non-toxic, they are still present and will eventually find their way into the food chain as insects take up the metals, followed by consumption by fishes. The presence of elevated levels of Boron in these sediment samples suggested a human source rather than a natural one. Elevated levels of Boron, while non-toxic, are known indicators of coal mining effluents. It is likely that a long-term build-up in metals released from the outfall from the ash lagoon, even in low and non-toxic quantities, is causing an elevated level of certain metals in these areas. A more complete investigation of these problems is warranted. However, I have no reason to believe that these issues are at all related to the fish kills occurring at the plant. I think these two issues are entirely separate.

Muscle and liver glycogen analysis, muscle lactate analysis

Introduction.

In fish, the maximal sustainable swimming speed is termed Ucrit. This value is obtained experimentally in fish by sequentially increasing swimming speed until the fish can no longer keep up and exhaustion is noted (Wilson and Egginton, 1994). Ucrit is a parameter that is affected greatly in each fish as there is both individual variability as well as other parameters that go into the critical swimming speed determined for each species of fish. In general, the parameters that most affect swimming speed are size (larger fish have higher swimming speeds), temperature (a decrease in temperature is directly related to a drop in Ucrit for most species) and fish health (Wilson and Egginton, 1994). For example, the presence of toxicants in fish is known to significantly reduce Ucrit in salmonids.

Glycogen is the primary energy store found in muscles and the liver. It is a large molecule made up of linked glucose molecules. During longer periods of exercise below Ucrit, metabolic fuel (ATP) demand is increased and glycogen is broken down into glucose by a process called glycolysis. ATP can be produced aerobically (using O₂) or anaerobically (without O₂) In general, animals do not use anaerobic glycolysis to any great extent as long as O2 supply meets the demand. Only at higher levels of exercise, such as short bursts of exercise above 100% Ucrit, the demand for metabolic fuel outstrips the capacity of the fish to deliver fuel and anaerobic glycolysis begins to increase supply of ATP to the cells. Above Ucrit, there is an increase in lactic acid production and this type of exercise is not sustainable for more than a few minutes. In general, fish can maintain values below 70% of Ucrit indefinitely, as long as adequate food and O₂ supply is maintained. Neither exercise below 70% Ucrit will not lower tissue alvcogen levels nor will tissue lactate be elevated. At speeds greater the 70% Ucrit but below Ucrit, the fish can maintain these speeds over extended periods of time. However, these speeds are not sustainable indefinitely if food supply for replacement of metabolic fuel is lacking. Under these conditions, tissue glycogen stores will be depleted and the fish will eventually exhaust. However, since the exercise is below Ucrit and all exercise is aerobic, there will be no elevation in tissue lactate noted. At exercise levels above 100% Ucrit, noticeable increases in muscle lactate will be present in conjunction with a depletion of glycogen reserves in both the liver and the muscle tissue. We investigated whether muscle and liver glycogen reserves were lowered in fish obtained from the screens to determine if the fishes were exhaustively exercised prior to turning up on the screens at the Wabamun powerplant. Increases in tissue lactate will only be found if fish are held in an anaerobic state for extended periods of time. This may occur if fish are exercising above Ucrit or if fish are out of water for long periods of time (>2 minutes) while on the inlet screen. At these times, the ability of the gill to uptake oxygen does not meet metabolic demand and anaerobic glycolysis will be initiated to meet these ATP demands. An elevation in tissue lactate would be noted in fish removed from water for extended periods of time.

Samples:

6 Lake Whitefish Collected at each of two sites:

- a) Wabamun Power Plant Inlet Screens
 - b) Lake Wabamun (electrofishing)

Methods:

Sample for muscle and liver glycogen and muscle lactate were collected from 6 fish on the inlet screens. Fish tissues were processed as soon as possible after being found on the inlet screen. Similarly, 6 fish were collected on Lake Wabamun by electrofishing and fish were prepared for analysis as rapidly as possible. The collection of fish from both the inlet screens and by electrofishing was performed by employees of Golder Associates as directed. Liver and muscle samples were removed from the fish and rapidly frozen. The tissue were then delivered to the University of Alberta for analysis and kept at -80 °C until measurement could be completed.

For measurement of glycogen, samples (100-250 mg) were placed directly in 30% KOH and boiled to completely digest the tissue. Glycogen was then isolated by the method of Hassid and Abraham (1957) and measured as free glucose (Sigma glucose kit) after digestion with amylglucosidase. For measurement of tissue Lactate, tissue (~ 100-250 μ g) were ground into a fine powder under liquid nitrogen using a mortar and pestle, then 6 volumes (x weight) of 8% perchloric acid was added and the slurry was homogenized with a tissue homogenizer. Samples were then centrifuged and the deproteinized supernatant analyzed by standard techniques (Sigma lactate kit). Samples are expressed as mM lactate/L.

Statistical Analysis

All results are tested for significant differences from each other using a two-tailed Student's t-test. A value of P<0.05 was used as the fiducial limit of significance.

Results

In fish collected by electrofishing, the liver glycogen content was found to be normal in these fishes, ~ 150 µg/gm wet tissue weight (Figure 4) compared to those measured in many other species. These levels are comparable to those found in many other fish species under normal non-exercising conditions (trout, Milligan et al, 2000). In fish collected from the inlet screens at Wabamun screen house, the levels of liver glycogen were very low, averaging ~ 50 µg/gm wet tissue weight (Figure 4). The values measured are significantly lower than those measured from fish electrofished in the lake. These levels are indicative of extreme exhaustive swimming for extended periods of time (>15 minutes of exhaustive exercise).

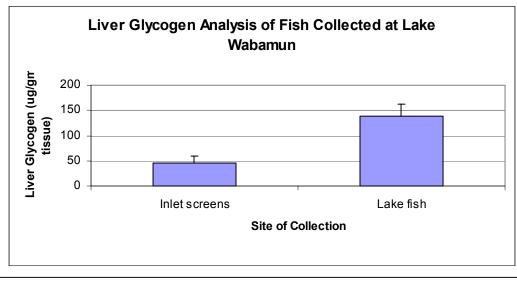
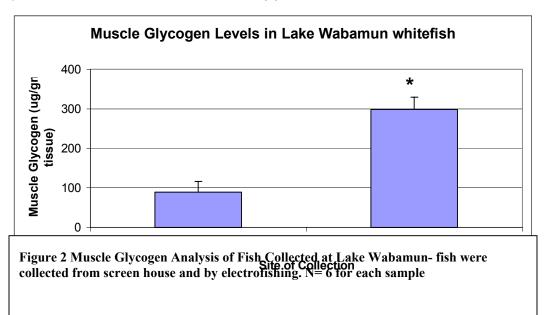



Figure 1-Liver Glycogen Analysis of Fish Collected at Lake Wabamun fish were collected from screen house and by electrofishing. N= 6 for each sample

Muscle glycogen content was also found to be normal in fishes electrofished from the lake at ~ $300 \mu g/gm$ wet tissue weight (Figure 5). These values are similar to those measured in other species. However, in fish collected from the inlet screens at Wabamun screen house, the levels of muscle glycogen were very low, averaging ~ $100 \mu g/gm$ wet tissue weight (Figure 5). The values measured are significantly lower than those measured from fish electrofished in the lake indicating similar results to those of Figure 4, (above) and suggesting exhaustive swimming for extended periods of time (>15 minutes of exhaustive exercise) prior to collection.

Muscle lactate was found to be low in both fish collected by electrofishing and in fish collected on the inlet screens at the Wabamun powerplant (Figure 6). Values of muscle lactate are usually in the range of 2-5 mmol/L are typical of resting fish or fish exercised below their swimming speed (Ucrit) (Taylor et al, 1996). These values were not found to be statistically different from each other. Additionally, these data also suggest that the fish collected at the screens were collected rapidly enough so that the fish did not experience significant hypoxia prior to collection.

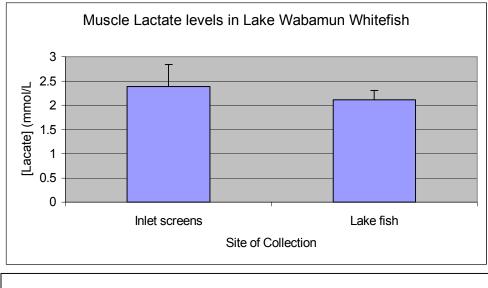


Figure 3: Muscle Lactate of Fish Collected at Lake Wabamun- fish were collected from Inlet screen house and by electrofishing in the lake as described. N= 6 for each sample

Discussion

The data collected indicate that fish collected at the Wabamun screen house have been exercised exhaustively over longer periods of time. The tissue lactate levels measured previously demonstrated a slight but not great increase in tissue lactate levels found in fish collected at the screen house. The small increase in lactate was more indicative of a short-term aerial exposure rather than exercise above their critical swimming speeds (Ucrit). However, we have found that tissue glycogen (both liver and white muscle) was significantly depressed in fish found on the Wabamun screen house when compared to those found by electrofishing in the lake. Taken together, these data indicate that the fish are swimming at fairly high levels that cannot be sustained over longer periods of time given the fishes overall fitness. This likely resulted in exhaustion and ended with the fish turning up on the screens.

It is known that most fish species demonstrate a reduction in Ucrit with a drop in water temperature. This is due primarily to the reduction in efficiency of many enzymes at lower temperatures. The appearance of whitefish on the screens at the Wabamun power plant (late October) coincides with two major events in the lake. The first is the spawning time for whitefish and the second is a decrease in water temperature.

Whitefish normally are fall spawners and spawn in bays in the lake. If there is a drop in the condition of the lake and fish are migrating looking for adequate spawning habitat, then the only outlet from the lake is the inlet canal leading to the powerplant. At the same time, it is know that a drop in water temperature is associated with a significant reduction in swimming performance. It is likely that the colder temperature results in a reduced swimming performance and weak fishes may be turning up on the inlet screens.

These two factors may combine under these circumstances to put the whitefish in the inlet channel while the drop in temperature may be related to a decrease swimming performance. We know from analysis of stomach contents of the whitefish found on the inlet screens (reported by TransAlta) that there is little food present in stomachs of the fish caught on the screens. This may indicated a reduced food resource present in the lake itself. Additional data provided by Alberta environment including historically low yields for whitefish, additionally, the condition factor (length: girth ratio) for whitefish caught in the lake is significantly reduced in recent years. There is also a general reduction in zooplankton biomass found in the lake in recent years point. These indicators point to significant long-term ecological problems with the lake and I believe this is a major contributing factor leading to the Wabamun TransAlta powerplant fish deaths. The factors resulting in this reduced fitness of the fish are as yet unknown and should be further investigated. Cyclic variations in lake ecological parameters such as zooplankton, fish fitness and invertebrate populations are known to occur. However, this lake is also impacted heavily by many anthropomorphic factors including historically low water levels, increased recreational use and housing development and the continued impact of heavy industry. Any or all these factors may contribute to reduce the overall fitness of the lake to sustain historical fish numbers. With a poor condition factor in the lake whitefish, they are likely simply seeking new and better habitats. By entering the inlet channel, the fish are naïve to the presence of the inlet screens and are caught on the screens. Mark re-capture experiments with Pike suggest that one aware, the pike can leave the inlet canal and re-enter the lake.

Information transfer

While many studies have been performed on the lake and we are aware of much of the lake and it characteristics through these previous studies, it was difficult at times to get information from various groups. It would have been nice to have rapid access to a library of information regarding the lake. Lake Wabamun is one of the more heavily impacted lakes in Alberta. Access to historical catch records, invertebrate productivity, water chemistry, etc was difficult or impossible to obtain. While requested, I have never received information regarding the invertebrate productivity or community structure in the lake. A simple change in the invertebrate species distribution from a preferred food species to another may be a reason for the appearance of whitefish in the inlet canal. With this lake being so important economically, socially and politically, I think there should be a regular searchable library of documentation to both allow for historical records to be accessed and to prevent repetition of future studies.

References Cited

Hassid, WZ and Abraham, S (1957) Chemical procedures for analysis of polysaccharides. Methods in Enzymology, New York, Academic Press 3: 34-37.

Kieffer, JD, Alsop, D, and Wood CM (1998) A respirometric analysis of fuel use during aerobic swimming at different temperatures in rainbow trout (*Oncorhynchus mykiss*) Journal of Experimental Biology 201: 3123-3133.

Milligan CL, Hooke, CB and Johnston, C. (2000) Sustained swimming speed at low velocity following a bout of exhaustive exercise enhances metabolic recovery in rainbow trout. Journal of Experimental Biology, 203: 921-926.

Taylor, SE, Egginton, S, and Taylor, EW (1996) Seasonal temperature acclimatization of rainbow trout: cardiovascular and morphometric influences on maximal sustainable exercise level. Journal of Experimental Biology 199: 835-845.

Wilson, RW and Egginton S (1994) Assessment of maximum sustainable swimming performance in rainbow trout (*Oncorhynchus mykiss*) 192: 299-305.

Appendix 2

Outline of Further Water Quality and Sediment Quality Sampling Programs On Wabamun Lake Alberta Environment

Outline of Further Alberta Environment Water Quality and Sediment Quality Sampling Programs On Wabamun Lake

1. Sediment Chemistry

Sediment sampling has been carried out by various researchers in Wabamun Lake to determine contaminant levels (metals and trace organic compounds). The interpretation of the data requires a better understanding of the various types of sediments across the lake; data from other lakes in the province are needed to place Wabamun Lake results into context.

1.1 Sediment Survey

To characterize the distribution of sediments across the lake with respect to particle size (% sand, clay, loam), total organic content (TOC). This information is critical because it will allow standardizing contaminant levels.

Sampling based on grid in deeper areas, transects in littoral zone and near point sources.

- Ekman dredges, top 4 cm.
- QA/QC: triplicates at three sites.

1.2 Sediment Chemistry Wabamun Lake

To characterize the distribution of contaminants (metals and trace organics) in Wabamun Lake sediments.

- Grid sampling (random stratified); some transects near point sources and littoral zone.
- Composite Ekman dredges, top 4cm
- Metal Analysis (29 metals ICP-MS+ CV-AAS Hg) at selected sites
- Priority Pollutants (EPP, VPP, PAH) at selected sites
- QA/QC: triplicates at three sites.

1.3 Sediment Chemistry in Other Lakes

Following lakes would provide a general indication of contaminant levels in other Alberta lakes that have similar features to Wabamun Lake: Pigeon, Gull, Sylvan, Isle, St Anne, Wizard, Bonnie and Amisk.

- Three composite samples from the profundal area of each lake
- Composite Ekman dredges, top 4cm
- TOC and particle size distribution.
- Metal Analysis (29 metals ICP-MS+ CV-AAS Hg)
- Priority Pollutants (EPP, VPP, PAH)
- QA/QC: one set of triplicate samples at one lake

1.4 Sediment Chemistry In Other Lakes Based On 1990's Freeze-Dried Samples

Archived, freeze-dried sediments are available for about 25 Alberta lakes. A metals analysis of these sediments would provide a broader perspective of variability in metal levels in surficial (top 5 cm) sediments in Alberta lakes.

- . These archived sediments are not suitable for the analysis of Hg, As, Se or trace organic compounds.
- Particle size and TOC data are available.

2. **Disinfection By-Product (DBP) Survey**

The water treatment process at the Wabamun Water Treatment Plant comprises chlorination and ozonation. These processes generate by-products such as trihalomethanes (THMs). THMs, more specifically chloroform, have been detected in the outlet canal where treated water is discharged. Ozonation by-products have not been analyzed in the canal at this time. Precursors of ozonation and chlorination by-products are TOC and bromide. There is a need to document DBP and their precursors in the lake.

- . THMs, Halo-aceto-nitriles. halo-ketones, chloropicrin, halogenated VOCs, chloramines, bromate, chlorite/chlorate, Halo-acetic acids, aldehydes, and chlorinated phenols
- Sampling carried out this week (8 samples, 7 sites).

3. Spatial Variability In Lake Water Quality

The current water quality monitoring program is suitable to track whole lake changes in water quality, but it does not depict possible differences in east and west basin water quality or provide information on water quality in various bays and along the littoral zone.

- Grid pattern sampling
- Temperature, pH, conductivity and DO (surface, middle, bottom) to document horizontal and vertical variability
- Euphotic composites: TP, chl-a, sulphate •
- Euphotic composites: major ions (selected sites)
- Bottom samples for metals (29), sulphide, ultra-trace Hg (selected sites)
- Surface grab samples for pesticide scan (selected sites)
- QA/QC:
 - All chemistry except Hg: triplicates at three sites; three field blanks over sampling _ period.

-	Hg:	On three different days:	Three field blanks poured off in field
	-		Three open trip blanks
			Three closed trip blanks
		Triplicates at three sites	

4. Sediment Toxicity Testing

Sediment Health Assessments are currently being carried out on six samples taken from Wabamun Lake to determine if toxicity is an issue. Formal toxicity testing, following Environment Canada protocols, will be required to confirm the presence of toxicity in the sediments. Toxicity Identification Evaluation (TIE) may be needed to identify the toxic compound(s) in the sediments.

Depending on outcome of initial testing, further work may be required.

5. Invertebrate Impact Assessment Study

Aquatic invertebrate distribution (numbers and species composition) can serve as an indicator of the degree of impact on aquatic biota. Depending on the outcome of the sediment toxicity testing such impact assessment may be required.

- Ideally, samples from a control site (un-impacted), in the greatest impact zone, and at increasing distances from the impact source (e.g.," near- field": 50 m and "far field": 100 to 200 m from impact source) are needed.
- Replicate samples are needed from each site to capture local spatial variability (estimated 10).