

JUNE -21, 1968

E VIRONMENTAL HEALTH SERVICES LIVISION

WATER WITH ATHABASCA RIVER

TN 858.G2 A333h

c.2

INDEX

INTRODUCTION				rage
DISCUSSION				1-2-3
CONCLUSIONS				3

Department of the Environment Library

PRELIMINARY COMPATIBILITY STUDIES OF

G.C.O.S. SAND TAILINGS POND WATER WITH

ATHABASCA RIVER

INTRODUCTION

On May 30, 1968 G.C.O.S. requested permission to discharge 110×10^6 Ft³ of effluent from the sands tailings pond at the Fort McMurray site into the Athabasca River during periods of high river flow. G.C.O.S. outlined the events which made this request necessary in order that an adequate base be developed for a stable 200 foot dike.

Samples of the tailings pond water were obtained on June 3, 1968 to assess it's compatibility with the river water. Samples of the A.P.I. separator retention pond effluent, waste water storage pond, and Lake Athabasca were also obtained.

DISCUSSION

Analytical results are included in the Appendix.

A. Chemical Analyses

(i) A.P.I. Separator Retention Ponds Effluent (A-1)

High values were observed for odor number 10,000, oil content 25 mg/l, and phenol concentration 760 p.p.b.

(ii) <u>Waste Water Storage Pond Effluent (A-2)</u>

All parameters were satisfactory except a high odor number of 1000 - CH(hydrocarbon).

(iii) Tailings Pond Vater (A-3)

The following parameters were considered to be excessive:

odour number 1000 - CH
total solids 11,494 mg/l
suspended solids 10,360 mg/l

.....2

oils and greases 103.8 mg/l phenols 150 p.p.b.

(iv) Athabasca River Upstream of G.C.O.S. (A-4)

High turbidity of 63 mg/l was observed and most probably characteristic of flood flow. G.C.O.S. have noted that the suspended solids of the raw river water during July 1965 ranged from 475 to 870 p.p.m. and averaged 680 p.p.m.

Oil content of a mud sample was 34 mg/1.

(v) Lake Athabasca at Fort Chipewyan (A-5)

Water quality was satisfactory although ammonia-nitrogen and phenols were monitored at 0.6 mg/l and 5 p.p.b. respectively.

B. Calculated Compatibility of Tailings Pond Vater With Athabasca River

Appendix A-6 and A-7 represent the calculated increase of various river constituents due to Tailings Pond water being discharged to the Athabasca River at river flow of 20,000 c.f.s. at dilutions of 1:500 and 1:1000 respectively. The latter dilution would increase odor number by 10.

C. Settleability Tests

- (1) Appendix A-8 represents the rate of settleability of various blends of Tailings Pond water with river water. Rapid settling of the blended mixtures occurred within the first 10 hours.
- (2) Equal portions of Tailings Pond water and A.P.I. Separator retention pond water effluent were combined and diluted with river water. Settleability profiles are represented in Appendix A-9
- (3) Appendix A-10 represents settleability profiles of Tailings Fond water and a 1:1 blend of Tailings Fond water with A.P.I. Separator retention pond water effluent.

- (4) Appendix A-11 represents the settleability profile of the A.P.I. Separator retention rond water effluent.
- (5) Analyses of the supernatant liquid obtained from the settleability tests (196 hours) are listed in Appendix A-12.

CONCLUSIONS

Analytical data suggest that a discharge of 10×10^6 I.G.P.D. from the Tailings Pond would minimize effects on the Athabasca River and yet allow the discharge of 110×10^6 ft³ to occur during a 2 month period when river flows exceed 20,000 c.f.s.

Sedimentation of the high solids content could be induced by directing the Tailings Pond water to the retention ponds prior to discharge from the waste water storage cond. Assuming that the regular process waste water discharge is maintained at 10×10^6 I.G.P.D., settling time of the Tailings Pond water (10×10^6 I.G.P.D.) would be 7 hours in the retention ponds and 8.4 days in the waste water storage pond.

E.E. Kupchanko

June 21, 1968

APPENDIX

INDEX TO APPENDIX

A.P.I. Separator Retention Fond Effluent	- A - 1
Waste Water Storage Pond Effluent	- A-2
Tailings Pond Water	- A-3
Athabasca River Upstream of G.C.O.S	A-4
Lake Athabasca at Fort Chipewyan	- A-5
Calculated Compatibility of Tailings	
Pond Water With Athabasca River	A-6-7
Settlesbility	A-8-9-10-11
Supernatant Liquid Analyses	A-12

GREAT CANADIAN OIL SANDS LTD. ____ SETTLING POND EFFLUENT

Sampled June 3, 1968

Biochemical Oxygen Demand	24	(mg/l)
Chemical Oxygen Demand	197	(mg/l)
pH	7.7	
Alkalinity (as CaCO3)	85	(mg/l)
Oils and Greases	26	(mg/l)
Threshold Odor Number	10,000	
Total Solids	240	(mg/l)
Volatiles Fixed	74 166	(mg/l) (mg/l)
Suspended Solids	64	(mg/l)
Volatilės Fixed	30 34	(mg/l) (mg/l)
Phenols	760	(ppb)
Arsenic	65	(ppb)

GREAT CAMADIAN OIL SANDS LTD. POND EFFLUENT

Sampled June 3, 1968			
			lbs/day
Biochemical Oxygen Demand	11	(mg/l)	1430
Chemical Oxygen Demand	112		13260
pH	7.6		
Alkalinity (as CaCO3)	105	(mg/l)	13620
Threshold Odor Number	1000	СН	
Oils and Greases	4.6	(mg/l)	59.8
Total Solids	330	(mg/l)	. 42800
Volatiles Fixed	96 234	(mg/1) (mg/1)	12500 30400
Suspended Solids	19	(mg/l)	2470
Volatiles Fixed	5 14	(mg/l) (mg/l)	650 1820
Phenols	64	(ppb)	8.3
Arsenic	75	(ppb)	9.2

FLOW RATE=13 x 10⁶ I.G.P.D.

GREAT CANADIAN OIL SANDS LTD. TAILINGS

POND

Sampled June 3, 1968

Biochemical Oxygen Demand	145	(mg/l)
Chemical Oxygen Demand	3557	(mg/l)
p H	8.4	
Alkalinity	315	(mg/1)
Threshold Odor Number	10,000	СН
Total Solids	11,494	(mg/1)
Volatiles Fixed	1,882 9,612	(mg/l) (mg/l)
Suspended Solids	10,360	(mg/l)
Volatiles Fixed		(mg/l) (mg/l)
Oils and Greases	103.8	(mg/l)
Phenols	150	(ppb)
Arsenic	0.0	(ppb)

Summary of Analysis

ATHABASCA RIVER UPSTREAM OF GREAT CANADIAN OIL SANDS LIMITED (ONE MILE UPSTREAM)

Sampled	Tuno	2	7068	FLOW =	30	gnn:	o f c
pambred	oune	29	1200	TLUW -	20,	,000	C.T.D.

Biochemical	1.0	(mg/l)	
pΗ		8.2	
Alkalinity	(as CaCO ₃)	99	(mg/1)
Threshold C	dor Number	4 Musty	
Turbidity a	s SiO ₂	63	(mg/l)
Total Hardn	ess (as CaCO ₃)	110	(mg/1)
Chlorides		1.0	(mg/l)
Ammonia Nit	rogen (NH ₃ -N)	0.3	(mg/l)
Nitrate Nit	0.09	(mg/l)	
Total Resid	ue	240	(mg/l)
	Volatile Fixed	70 170	(mg/l) (mg/l)
Sulfates		30	(mg/1)
Color	425 mu 450 mu 500 mu	75 50 7	
Phenols		(ppb)	
Oils and Gr	3. 4	(mg/l)	
Fluorides	0.09	(mg/l)	
Tannins and	0.7	(mg/l)	

Sampled June 11, 1968

Bioche	mical Oxygen Demand		
pН		0.9 8.3	
Alkalir	nity (as CaCO ₃)	89	(/2)
	old Odor Number	40	(mg/l)
Turbidi	ty (as SiO ₂)	25	(mg/l)
Hardnes	s (as CaCO ₃)	102	(mg/1)
Chlorid	es	54	
Ammonia	Nitrogen (NH3-N)	0.6	(mg/l)
	Nitrogen (NO ₃ -N)	0.07	
Sulfates	마음 집에 가게 되는 사람들이 하는 것이 되었다.	59	(mg/1)
Total Re	sidue	180	(mg/l) (mg/l)
	Volatiles Fixed	66 114	(mg/l) (mg/l)
Color	425 450 500	65 50 40	
Phenols		5	(ppb)
Oils and	Greases	0.3	(mg/l)

FLOW FROM TAILINGS POND 20 MILLION GALLONS PER DAY, RIVER FLOW 20,000 c.f.s.

Approximate dilution ration 1/500

Biochemical Oxygen Demand	. 290	(mg/1)
Chemical Oxygen Demand	7.2	(mg/1)
Threshold Odor Number	20	CH
Total Solids	23	(mg/l)
Volatiles Fixed	3.8 19.2	(mg/l) (mg/l)
Suspended Solids	20.8	(mg/l)
Volatiles Fixed	3.4 17.4	(mg/l) (mg/l)
Oils and Greases	0.206	(mg/l)
Phenolics	.3	(ppb)

Great Canadian Oil Sands Ltd. Tailings Pond added directly to Athabasca River.

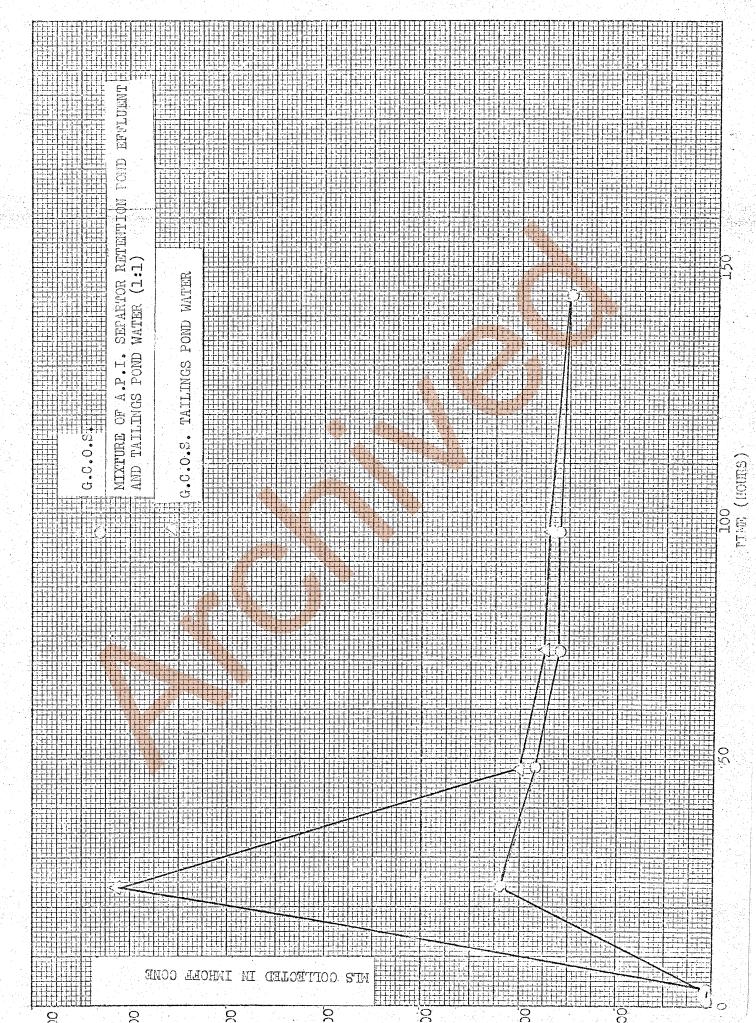
FLOW FROM TAILINGS POND 10 MILLION GALLONS

PER DAY

RIVER FLOW 20,000 c.f.s.

Approximate dilution ratio 1/1000

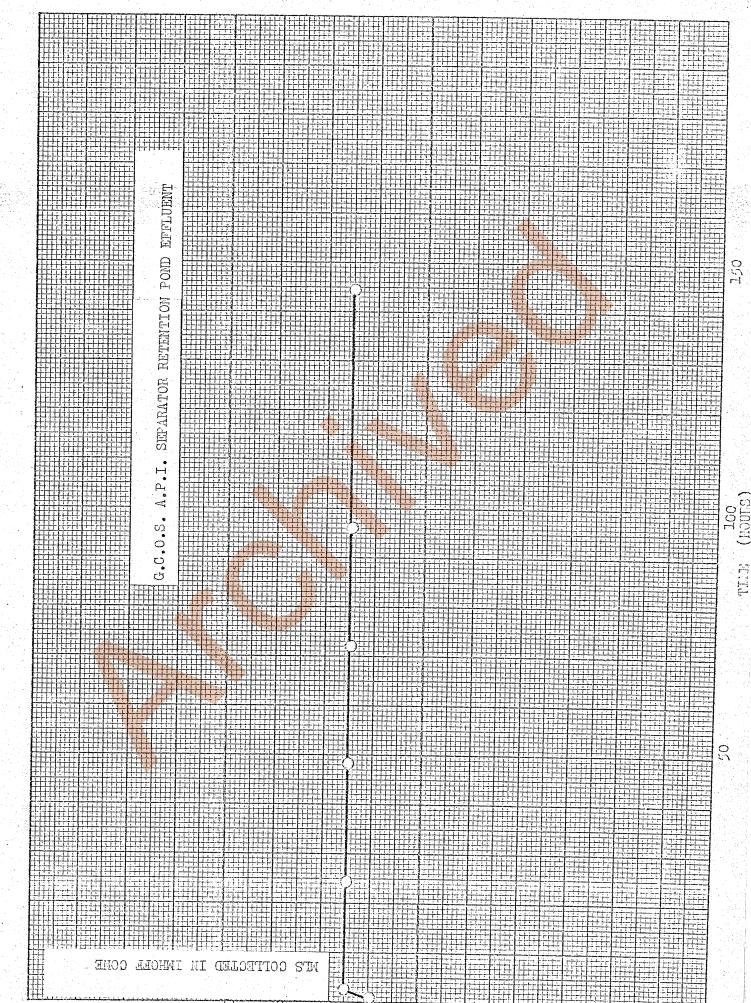
Invrease of various constituents.


Biochemical Oxygen Demand	.145	
Chemical Oxygen Demand	3.6	(mg/l)
Threshold Odor Number	10 CH	
Total Solids	11.5	(mg/l)
Volatiles Fixed	1.9 9.6	(mg/1) (mg/1)
Suspended Solids	10.4	(mg/1)
Volatiles Fixed	1.7	(mg/l) (mg/l)
Oils and Greases	0.103	(mg/l)
Phenolics	•15	(ppb)

KAT 10 X 10 TO V2 INCH A
7 X 10 INCHES MA
KEUFFEL & ESSER CO.

A-8

50


K+M 10 X 10 TO 12 INCH 46 1323

46 1323

MARC 10 X 10 TO 1/2 INCH

KEUFFEL & ESSER CO.

10 X 10 TO 10 INCH 46 1323 1 X 10 INCHES HADE IN U. 9. A. KEUFFEL & ESSER CO.

ANALYSES OF SUPERNATAR'T LIQUID FROM SETTLEABILITY

TESTS

(AFTER 196 HOURS)

A. Tailings Pond water diluted with Athabasca River

DILUTION	SUSPENDED SOLIDS	IGNITION LOSS
1:1200	9 mg/l	9 mg/l
1:800	4 mg/l	4 mg/l
1:600	5 mg/l	5 mg/l

B. 1:1 Mixture of Tailings Pond water and A.P.I. Separator retention pond effluent diluted with Athabasca River

DILUTION	SUSPENDED SOLICS	IGNITION LOSS
1:1200	3 mg/1	3 mg/l
1:800	6 mg/l	6 mg/l
1:600	5 mg/l	4 mg/l

C.	Oils & Greases	Suspended Solids	Ignition Loss
Tailings Pond Water	22 mg/l	1080 mg/l	420 mg/l
Tailings Pond water + A.P.I. Separator retention pond effluent (1:1)	n 14 mg/1	98 mg/l	41 mg/1
A.P.I. Separator retention pond effluent	n 5.6 mg/l	4 mg/l	4 mg/l