

Innovative Energy Technologies Program Project Annual Report Requirements

TABLE OF CONTENT

1	Sum	mary	_1
	1.1	Chronological activities	_1
2	Pilo	t Data	_1
	2.1 2.1.1 2 2 2.1.2 2.1.3 2.1.4 2.1.5	Data submission	-1 -1 -2
	2.2	Interpretation of Pilot Data	_2
3	Well	Information	_3
	3.1	Well layout map	_3
	3.2	Review completion operations and any difficulties encountered in 2006	_3
	3.3	Well operation	_4
	3.3.1 3.3.2	Well list and status	_4 _4
4	Prod	luction performance and data	_4
	4.1	Injection and production history on an individual well and composite basis	_4
	4.2	Composition of produced / injected fluids	_5
	4.3 differen	Comparison of predicted versus actual well / pilot performance and discussion regarding the	ie _5
	4.4	Updated incremental production	_5
	4.5	History of injection, production and observation well pressures and temperatures	_6
5	Pilo	t economics to date	_8
	5.1	Sales volumes of natural gas and by-products	_8
	5.2	Revenue	_8
	5.3	Capital costs (include a listing of items with installed cost greater than 10,000\$)	_8
	5.4	Direct and indirect operating costs by category (e.g. fuel, injectant costs, electricity)	_9
	5.5	Crown royalties, applicable freehold royalties, and taxes	_9
	5.6	Cash flow	_9
	5.7	Cumulative project costs and net revenue	_9
	5.8	Explanation of material deviation from budget costs	_9
6	Faci	lities	_9
	6.1 existing	Description of major capital items (including new facilities and additions / modifications to g facilities)	_9
	6.2	Capacity limitation, operational issues, and equipment integrity	_9

i

Innovative Energy Technologies Program – Project Annual Report Requirements JOSLYN CREEK PILOT PLANT

	6.3 connec	Process flow and site diagram identifying major facilities, including production equipment eted pipelines, gathering and compressing facilities	., _10
7	Env	ironment / Regulatory / Compliance	_10
	7.1	Summary of project regulatory requirements and compliance status	_10
	7.2	Procedures to address environmental and safety issues	_10
	7.3	Plan for shut-down and environmental clean-up	_10
8	Fut	ure operating plan	_10
	8.1	Project schedule update including deliverables and milestones	_10
	8.2 optimi	Changes in pilot operations, including production operations, injection process, and cost zation strategies	_10
	8.3	Salvage update	_10
9	Inte	rpretations and conclusions	_10
	9.1	Lessons learned	_10
	9.2	Difficulties encountered	_10
	9.3	Technical and economic viability	_11
	9.4	Overall effect on overall gas and bitumen recovery	_11
	9.5	Assessment of future expansion or commercial field application and discussion of reasons	_11
A	PPENI	DIX	_12

ii

LIST OF FIGURES

Figure 1: Actual vs Forecast	5
Figure 2 Weekly Cumulative Production - Actual	6
Figure 3 Pilot Pressures 2006	7
Figure 4 Pilot Temperatures	7
Figure 5 Pilot Temperature Profile	8

LIST OF TABLES

Table 1: Observation & core wells descriptions	2
Table 2: Drilling and completion operations summary	4
Table 3: Well list and status - distance of observation wells from 1P1 & 1I1	4
Table 4: Direct & indirect operating costs gathering 2006	9

iii

1 Summary

Total E&P Canada Joslyn pilot project Phase 1 began in the field in November 2003 with drilling operations. This pilot aimed to validate the feasibility of shallow SAGD (Steam Assisted Gravity Drainage). In 2004 and 2005 oil was produced by using two types of artificial lift, a Sucker Rod Pump and an ESP (Electrical Submersible Pump). In 2006 production continued with the use of ESP and reached a yearly high of $62 \text{ m}^3/\text{d}$ of bitumen. The goal of this pilot was to earn experience and increase knowledge of shallow SAGD mechanisms to operate and optimize future commercial projects. The production for the Phase 1 Pilot produced to the Phase 1 Plant until February 2006. The production was at that point disconnected from Phase1 and tied into the Phase 2 Facility via Pad 204.

1.1 Chronological activities

The following are the main activities that took place on Phase 1 in 2006:

- February 2006: Phase 1 production no longer goes to Phase 1 plant. Tie in is completed to the Phase 2 Pad 204 and the Phase 2 Facility. For further information refer to Appendix 7.
- February 2006: Workover completed to remove ESP for inspection and evaluation of well. A Formation Saver Valve (FSV) was installed to prevent cooling of the wellbore during workover operation. For further information refer to section 3.2 and Appendix 3.
- April 2006: Workover to replace pump. For further information refer to section 3.2 and Appendix 3.
- April 2006: Workover to pull, inspect and remove obstruction in injection tubing. For further information refer to section 3.2 and Appendix 3.
- July 2006: Workover to replace pump. For further information refer to section 3.2 and Appendix 3.

The ESP failures mentioned above and further in section 3.2 and Appendix 3 were mainly due to electrical problems along with general wear on the pump components. All pumps were sent to Schlumberger in Nisku, Alberta to be broken down and inspected. Components that were salvageable were placed in customer inventory or used on replacement pumps. Longest run life for an ESP on this well was 2310perating days with a Schlumberger DN1750 pump. This pump was installed in late July 2006 and pulled at the end of June 2007 and replaced by a PCM (Kudu Industries Inc) Vulcain 400MET100 Progressing Cavity Pump (PCP).

2 Pilot Data

2.1 Data submission

2.1.1 Geology and geophysical data

2.1.1.1 Producer & Injector well-pair

As described in the 2005 report, the Phase 1 well pair was drilled before both slant observation wells, relying on logs and cores that were done previously on the heel and toe area of the horizontal wells. This first data collected showed good reservoir quality, and the drilling trajectories of the well pair were designed in accordance with this data. Later, two slant observation wells were drilled and logs done in the middle part of the horizontal well pair, revealing that this area of the reservoir was not as good as expected. In fact the heel portion of the producer was drilled too low and outside the reservoir.

Full lithological descriptions can be found in the geology reports of the producer and injector well. (Appendix 3/B/C1/D1/D2) Gamma ray logs can be found in Appendix 3/C1/C2.

2.1.1.2 Observation and core wells

Survey (trajectories, GR) are available in the Appendix 3/E1/2 and on the CD under Appendix 3-2 under LAS format files.

Cores were only done with vertical observation wells (B/11-33, 0/11-33, A/11-33, OB1C). Pictures are shown in Appendix 3/F1.

Well name	UWI	Status	Drilling date
A/11-33	A/11-33-95-12W4	Core well	1974
B/11-33	B/11-33-95-12W4	Core well	2000
0/11-33	0/11-33-95-12W4	Observation well with casing but not equipped	2003
OB1AA or OB1P1H	103/06-33-095-12W4	Slant observation well	2004
OB1B or OB1P1M	102/06-33-095-12W4	Slant observation well	2004
OB1C or OB1P1T	100/03-33-095-12W4	Observation well	2003

 Table 1: Observation & core wells descriptions

2.1.1.3 Cross sections & maps

Refer to Appendix 3E1/2.

2.1.2 Laboratory studies

No additional laboratory studies for Phase 1 were completed in 2006.

2.1.3 Simulations

The description of what has been done in geophysics and reservoir simulation (input data, methodology and main results) is available in Appendix 4. This data was not updated in 2006.

2.1.4 Pressure, temperature and other applicable reservoir data

Updated 2006 pressure data for the injector and the producer along with the temperature at the pump intake can be found in Appendix 5.

2.1.5 Any other measurements, observations, test or data pertinent to the pilot

Raw well data (Injector, producer and observation wells) data and production data with trends are available in Appendix 5. BHP is maintained in a range from 600kPa to 1200kPa, with a slightly higher pressure for the injector. BHP never reached the maximum allowable pressure of 1200 kpa that was defined after the steam release on Phase 2 well 204-P1.

2.2 Interpretation of Pilot Data

This pilot has allowed gathering a of information in SAGD technology. Geologically, the formation has been well described. Unfortunately, both slant observation wells were drilled after the horizontal well pair and showed worse quality than expected.

- Sensa fibre allows operations to monitor temperature changes, issues are identified early and acted on immediately.

3 Well Information

3.1 Well layout map

Refer to table 1 and Appendix 1.

3.2 Review completion operations and any difficulties encountered in 2006

DATE	EVENTS				
	WELL OPERATIONS				
February 2006	Work-over: Schlumberger ESP (Electrical Submersible Pump)				
	Producer:				
	o 38.1 mm CT removed				
	• 88.9mm tubing removed				
	• Removed Schlumberger REDA DN1750 pump				
	• Performed maintenance on the well				
	• Install Sensa Fibres aling with 89mm tbg				
	• Installation of the Schlumberger REDA DN1750 30 stage Hotline I pump				
	 Bottom feeder intake 				
	 Advanced gas handler 				
	 42.8 hp Dominator motor 				
	 Protector consisting of a labyrinth and two parallel Aflas bags 				
	 VFD: REDA Speedstar 2000. 6 pulse. 460 volt 				
	 Backspin relay 				
	Comments:				
	- The ESP was removed due to electrical failures in the system				
	- Wanted to perform routine maintenance on the well to enhance the production				
	For more details about operating phase completion, refer to Appendix 2				
April 2006	Work-over: Schlumberger ESP (R &R ESP System)				
	Installation of the Schlumberger REDA DN1750 30 stage Hotline I pump				
	– Bottom feeder intake				
	– Advanced gas handler				
	- 42.8 hp Dominator motor				
	 Protector consisting of a labyrinth and two parallel Aflas bags 				
	- VFD: REDA Speedstar 2000. 6 pulse. 460 volt				
	– Backspin relay				
	Producer:				
	• 88.9mm tubing removed				
	• Breakdown ESP system				
	• Install new Schlumberger REDA DN1750 30 stage Hotline I nump				
	Comments:				
	- The ESP was removed due to electrical failures in the system				
	- The ESF was removed due to electrical failures in the system				
	For more details about operating phase completion, refer to Appendix 2				
April 2006	Work-over: 60.3 mm tubing string				
1	• Injector:				
	• Pull 60.3 mm string for inspection				
	• Re-installed 60.3 mm tubing				
	• Found obstruction @ int 69				
	• Unable to get past obstruction after flushing csg and tbg				
	• Pulled 60.3 mm string and tried 60.3 mm Hydril 503 pipe				
	\circ Could only get ~13 m past the heel landed the $@$ 355.82 m				
	Comments:				
	For more details about circulation phase completion, refer to Appendix2				
July 2006	Work-over: Pump Replacement				
	Installation of the Schlumberger REDA DN1750 30 stage Hotline I pump				
	– Bottom feeder intake				
	 Advanced gas handler 				

-	42.8 hp Dominator motor
_	Protector consisting of a labyrinth and two parallel Aflas bags
-	VFD: REDA Speedstar 2000, 6 pulse, 460 volt
_	Backspin relay
Produce	er:
0	88.9mm tubing removed
0	Breakdown ESP system
0	Install new Schlumberger REDA DN1750 30 stage Hotline I pump
Comments:	
Pui	mp was pulled due to normal wear.

Table 2: Drilling and completion operations summary

3.3 Well operation

3.3.1 Well list and status

Well name	UWI	Status	Distance from 1I1 (m)	Distance from 1P1 (m)
Phase 1 P1 (1P1)	102/03-33-095-12W4/00	Producer	-	-
Phase 1 I1 (111)	103/03-33-095-12W4/00	Injector	-	-
OB1AA or OB1P1H	103/06-33-095-12W4	Observation wells	3.60	3.07
OB1B or OB1P1M	102/06-33-095-12W4	Observation wens	6.05	5.40
OB1C or OB1P1T	100/03-33-095-12W4		0.45	0.69
0/11-33	0/11-33-95-12W4	Observation well with casing but not equipped	-	-
B/11-33	B/11-33-95-12W4	Come wells		
A/11-33	A/11-33-95-12W4	Core wens	-	-
PW 10214-20	102/14-20-095-12W4M			
PW 102-14-36	102/14-36-095-12W4M			
PW 11-36	100/11-36-095-12W4M	Draduced water dispessel wells (No.		
PW 14-20	100/14-20-095-12W4M	longer utilized in Phase 2)		-
PW-14-36	100/14-36-095-12W4M	Tonger utilized in Fliase 2)		
PW 3-29	100/03-29-095-12W4M			
PW 5-4	100/05-04-096-11W4M			
BD 15-12	100/15-12-095-13W4M			
BD 4-16	100/04-16-095-12W4M	Blow-down disposal wells (No		
BD 5-16	100/05-16-095-12W4M	longer utilized in Phase 2)	-	-
BD 7-13	100/07-13-095-12W4M			

Table 3: Well list and status - distance of observation wells from 1P1 & 1I1

3.3.2 Wellbore schematics

Refer to Appendix 2 - Completion & work-over for all producer and injector wellbore schematics.

4 **Production performance and data**

4.1 Injection and production history on an individual well and composite basis

The 2006 production fluctuated between 20-60 m3/d of bitumen. This is illustrated in Figures 1 and 2 below. The workover in February 2006 is responsible for the production fall at this period. Total steam injection was increased slowly at the beginning of 2006 and was maintained towards the end of 2006. Different injection strategies have been applied between Heel and Toe, to ensure a homogeneous development of the steam chamber and to optimize the subcools. Optimum subcools are 1-2 in order to optimize the production. The pump subcool is the difference between the pump inlet temperature and the steam temperature (calculated with a steam table knowing the pressure). Reservoir subcool is the difference between the reservoir temperature in the injector (calculated with a steam table knowing the BHP), and the producer reservoir temperature.

4.2 Composition of produced / injected fluids

For oil analysis refer to Appendix 5B. Produced water was not analysed.

4.3 Comparison of predicted versus actual well / pilot performance and discussion regarding the difference

See Figure 1 below. The production actuals were lower due to forecasts based on early modelling. The producer heel being drilled too low can partly explain this. Operations experienced difficulty maintaining pump subcool lower than 15-20°C This can be explained by the ESP not being the optimal type of artificial lift for this type of application. In 2007 replacement of the ESP with a new type of PCP is expected to improve the means of extracting the bitumen in SAGD.

Joslyn Creek Phase 1 Weekly Production 2006

Figure 1: Actual vs Forecast

4.4 Updated incremental production

See Figure 2 below for updated incremental production. Raw data can be found in Appendix 5.

Figure 2 Weekly Cumulative Production - Actual

4.5 History of injection, production and observation well pressures and temperatures

The following Figures 3, 4 and 5 demonstrate the pressure and temperature history during the year 2006. The lower temperatures result from workover periods and the warmer areas are during the production phase. BHP was always lower than the injector operating between 600-1000 kPa.

Figure 3 Pilot Pressures 2006

Pilot Temperatures

Figure 4 Pilot Temperatures

Figure 5 Pilot Temperature Profile

5 Pilot economics to date

5.1 Sales volumes of natural gas and by-products

No natural gas or by-products are sold.

5.2 Revenue

Gross revenue for 2006 was **\$4,397,991** For details, refer to Appendix 6.

5.3 Capital costs (include a listing of items with installed cost greater than 10,000\$)

- Well workover capital portion (gross): \$942,731
- Decommissioning costs for 2006 including tie in to Phase 2: \$337,976

For details, refer to Appendix 6.

5.4 Direct and indirect operating costs by category (e.g. fuel, injectant costs, electricity)

Refer to Appendix 6 for more details.

Total costs for 2006. The cost for Phase 1 has been calculated by dividing the total operating cost for 2006 by the number of well operating months and then multiplied by the number of operating months for the phase 1 wells.

ct ing s	Pipeline/Terminal expense	27,991
ire rat ost	Trucking	965,893
D ope	Diluent	2,180,161
0	Total	3,174,045
	Operations Staff	857,015
sts	Facility Costs	252,579
300	Fuel	597,757
ng	Consumables	15,898
ati	Utilities	274,673
Der	Chemicals	96,518
t ol	Transportation	193,940
rec	Repairs and	214 153
ibi	Maintenance	211,135
In	Workovers	707,314
	Total	3,209,847

Table 4: Direct & indirect operating costs gathering 2006

5.5 Crown royalties, applicable freehold royalties, and taxes
Refer to Appendix 6 for more details.
Total royalties paid for 2006: \$14,065 (Phase 1 fraction of total in 2006)

5.6 Cash flow Refer to Appendix 6.

5.7 Cumulative project costs and net revenue
Refer to Appendix 6.
Cumulative project cost: \$19,372,372
Net revenue: \$1,209,881 (2006). Excluding royalty paid of \$2,500,000

5.8 Explanation of material deviation from budget costs $N\!/\!A$

6 Facilities

6.1 Description of major capital items (including new facilities and additions / modifications to existing facilities)

In early 2006 the Phase 2 Plant was completed and the production from Phase 1 Pilot was tied in to the Phase 2 facility. The Phase 1 Plant was scheduled for decommissioning in mid 2007.

6.2 Capacity limitation, operational issues, and equipment integrity

The main issues and limitations that have been experienced are mainly due to pump issues. No major surface facility issues have been experienced. In a low pressure SAGD the ESP's are difficult to maintain and require a lot of attention by both operations and engineering.

6.3 Process flow and site diagram identifying major facilities, including production equipment, connected pipelines, gathering and compressing facilities

The Phase 1 wells are now tied in to Pad 204 and the Phase 2 facility. PFD/P&ID's of Pad 204 has been included in Appendix 6.

7 Environment / Regulatory / Compliance

7.1 Summary of project regulatory requirements and compliance status

The pilot project is in compliance with all the necessary regulation.

7.2 Procedures to address environmental and safety issues

Company HSE procedures are being followed and are in compliance with environmental regulations.

7.3 Plan for shut-down and environmental clean-up

Decommissioning of the Phase 1 facility will be completed in 2007. All environmental requirements will be fulfilled.

8 Future operating plan

8.1 Project schedule update including deliverables and milestones

In 2007, one main event will occurred in this pilot facility:

- Dismantling of Phase 1 Plant.

8.2 Changes in pilot operations, including production operations, injection process, and cost optimization strategies

The pilot well is now linked to the new commercial production facility through the Phase 2 Pad 204. Steam is coming from the Phase 2 facility and production is treated in the Phase 2 process.

8.3 Salvage update

As Phase 1 is being dismantled, any equipment that can be used in Phase 2 will be transferred and used in the Phase 2 process or additional well pads.

9 Interpretations and conclusions

9.1 Lessons learned

As more experience was gained with shallow SAGD operations the following optimizations were implemented.

- Formations Saver Valve (FSV) installed in February 2006. The purpose of this valve is to prevent cooling of the well chamber during workovers. This was implemented successfully.
- Found that ESP's were not the ideal pumps for this type of shallow SAGD production. Plan to use a high temperature Progressing Cavity Pump (PCP) in the future.
- Steam chamber expertise has continued to increase and with this, well production is expected to improve.

9.2 Difficulties encountered

Refer to 9.1 for operational issues.

9.3 Technical and economic viability

From a technical point of view, this pilot was successful and demonstrated that shallow SAGD could be produced safely, efficiently and within economic viability. A PCP pump is being installed in 2007 and further research is being done to increase pump efficiency and runtime.

9.4 Overall effect on overall gas and bitumen recovery

Pilot oil is considered dead oil. Gas recovery is not applicable here. An efficient oil recovery was successfully demonstrated.

9.5 Assessment of future expansion or commercial field application and discussion of reasons

The pilot facility is called Phase 1 within the Company. Because of the pilot project success, the commercial Phase 2 was built in 2005/2006. In February 2006, the pilot well pair was connected to the commercial facility, phase 2 together with 4 other wellpads. Further development is being evaluated.

APPENDIX

Appendix 1: Drilling operations

Appendix 1/A: Injector well Appendix 1/B: Producer well Appendix 1/C: Observation wells

Appendix 2: Completion operations

Appendix 2/A1: February 2006, ESP Workover Replacement Appendix 2/A2: New Completion Drawing Appendix 3/A3: April 2006, ESP Pump Replacement

Appendix 3: Mud and Geological Reports

Appendix 3/A: Injector well Appendix 3/B: Producer well Appendix 3/C1: Injector well – Horizontal lithology strip log Appendix 3/C2: Producer well – Horizontal lithology strip log Appendix 3/D1: Injector well – Vertical lithology strip log Appendix 3/D2: Producer well – Vertical lithology strip log Appendix 3/E1: Injector well – Cross section through Facies model Appendix 3/E2: Producer well – Log cross section Appendix 3/F: Core pictures

Appendix 4: Geophysics simulations

Appendix 5: Production data

Appendix 5/A: Observation Well Temperatures Appendix 5/B: Oil analysis

Appendix 6: Economics data

Appendix 6/A: Statement of operating income 2006 Appendix 6/B: Capital 2006

Appendix 7: Facilities

Appendix 7/A: Process Flow Sheet Appendix 7/B1: P&ID: Phase 1 Appendix 7/B2: P&ID: Pad 204 Appendix 7/C: Facilities plot Appendix 7/D: Major Equipment Listing Appendix 7/E1: Process Description Appendix 7/E2: Pilot overall description **APPENDIX 1:**

Drilling operations

APPENDIX 1/A:

Injector well

Wellcore	Daily Dr	illing Report		Report # Ops. Date	8 12/3/2003
vvencore	Project : Joslyn Creek Phase 1	Well Name : DCEL 111 JC	SLYN CREEK 3-3	Days From Spud	7
Well License : 0296169 AFE # : 054-0303S Ops. Objective : TO INJEC AM Ops. : Cleaning F	Amount : \$1,411,066 I Amount : \$1,411,066 I IN TO THE MCMURRAY FM	Spud : 11/26/2003 R.R. : 12/3/2003	GL : 339.70 CF : 0.00 KB : 343.46	Day Cost : Cost To Date : Est. TD : Depth @ 2400hr : Progress :	\$168,599 \$1,070,631 966.0 0.00 0.0
Ops. Forecast : Finish clea	ning rig, load out rentals & rig			Day Rot. Hrs. :	0.00
Bit Record Bit # Size Mfg. Mc	Daily del RPM WOB Progress Hou	rs ROP Out Depth	imulative Hours ROP	Condition	
Mud Record	Gal	Strength Solid	ds Cl	Mudilloss	
Time Type	Density Visc. PV YP 10 S	ec 10 Min W.L. pH	<u>% (ppm) Oil %</u>	Volume Formation	۸P
Bit # Nozzles	Model Stroke Liner Som M	Todel Stroke Liner Som	Press Dens O	Average	۵۳ %
Mud Additivies Mud Item Unit # of	Deviation Record Depth Incl (deg) Az (deg)	BHA Item # Of (D.D. Length	Geological Formation	Тор
Today's Mud Cost : \$0				<u>Casing</u>	C -4.44
Item Make	U. Flow O. Flow	DP OD : 0.00 mm	BHA: 0.00 m	Surface Intermediate Liner	28.0 374.0 0.0
Shaker :	Screens :	DC OD : 0.00 mm String	Wgt.: 0.00		
<u>lime Distribution</u>	Total Hours: 0.00				
Time From Time To T	ime Category Remarks		I		
12:00:00 AM 12:00:00 AM R	ig Up/Tear Down Tear out rig, stear	n clean equipment, strip bac	k mud		
Contractor : Precision Drilling Rig : Precision #297 Lease : Good condition/ Weather : Clear/ -11	Rig Manager : Ken Hein Rig Manager Phone : 403 850 7181 Icy	Geologist : Dai Engineer : Roo Superintendent : Dav Supervisor : Roo	ne Bridge dney Tetreault ve Loxam dney Tetreault	Phone # : 403 540 8 Phone # : 403 804 6 Phone # : 403 538 4 Phone # : 403 804 6	729 953 590 953
Report by Wellcore	R	elease 12	-	December 4,	2003 07:35

13			Daily Dr	illing Re	nort			Report #	: 7
Wellcor	е	Project [‡] Joslyn Cre	eek Phase 1	Well Name : DO	CEL 111 J	OSLYN CRI	EEK 3-3	Ops. Date	12/2/2003
		Well Type : Steam Inje	ector	Main Hole : 10	13/03-33-0)95-12-W4N	1	Day Cost	• ¢245 608
Well Licen	se : 0296169			Spud : 11/26/200	03	GI ·	339 70	Cost To Date :	• \$807 532
AFF	# · 054-030	3S-I Amou	nt: \$1,411.066	R.R. :		CF :	0.00	Est. TD	966 (
Ops. Objecti	ve : TO INJE	CT IN TO THE MCMU	RRAY FM			KB :	343.46	Depth @ 2400hr :	0.00
AM Op	os.: Steam c	leaning rig, begin tear o	out.				0.01.0	Progress	0.00
Ops. Foreca	ast : Steam c	lean rig and rentals, sta	irt tearing & loadin	g out rentals				Day Rot. Hrs. :	0.0
Bit Record		·	Daily	Depth	1 (Cumulative	······································		0.00
Bit # Size	e Mfg. I	Model RPM WOB	Progress Hou	irs ROP Ou	t Depti	h Hours	ROP	Condition	
Mud Record	4		Ge	Strength	So	lids Cl		MudiLoss	
Time	Type	Density Visc.	PV YP 10 S	Sec 10 Min W.L.	. pH	(mqq) %	Oil %	Volume Formation	
11:30:00 AM	Polymer	1070 71	10 16	45 60 50	0 90	5.0 500	0.0	56	
Circulation F Bit # Nozz	Record les	Ри Model Stro	mp#1 ke Liner Spm M	Pump #2 Model Stroke Lin	ier Spm	Press. D	ens. O	<u>Average</u> utput DC DP	Δ Ρ %
Mud Additiv	vies	Deviation Rec	ord	BHA				Geological	20. 1 101 J
Mud Item	Unit #of	Depth Incl (dea) Az (dea)	Item	# Of	OD Le	nath	Formation	Тор
Caustic soda	$\frac{0}{1}$ 0		uog) / 12 (uog)		1	270.0	0.35		
	a i U			PDC Dit	1	270.0	7.24		
DSCO Deloa					1	203.2	7.34		
Defoam X	4 0			Float sub	1	170.0	0.72		
EMI-695	1 0			Non-mag DC	1	1/0.0	9.28		
Fedzan	10 0			Hang-off sub	1	168.0	1.70		
Poly plus dry	<i>y</i> 5 0			X/O sub	1	162.0	0.64		
Today's Muc	d Cost : \$0			Jars	1	168.0	6.35	Casing	
Solids Contr	rol							Section	Set At
ltem	Make	U. Flow	O. Flow					Surface	28.0
Centrifuge	Swace	o 191	0 1025					Intermediate	374.0
Centrifuge	Swace	o 191	0 1025			-		Liner	0.0
Desander	Swace	o 122	5 1060	DP OD : 127.00	mm	BHA : 26	.38 m		
Shaker	Brandt	Screens : 20		DC OD : 0.00	mm Strin	g Wgt.: 0	.00		
Time Distrib	ution	Total Hours :	24.00			, , , , , , , , , , , , , , , , , , ,			
Time From	Time To	Time Category	Remarks						
12:00:00 AM	12:30:00 AM	Reaming	Ream & nump to	ETD w/ reamer Bh					
12:30:00 AM	3:00:00 AM	Circ./Condition Mud	Circulate hole cle transfer tank from	an. (Mud foaming, flooding).	used vac	cuum truck to	o aid tran	sfer pump in keeping	g
3:00:00 AM	6:00:00 AM	Reaming	POOH & lay down Tripped out w/o p	n reamer BHA. umps, hole in good	d conditio	n.			
6:00:00 AM	6:15:00 AM	Ria Service	Rig service	-					
6:15:00 AM	6:30:00 AM	Safety Meetings	Safety meeting p	rior to running liner	•				
					•				
Contractor : P Rig : P Lease : G Weather : C	recision Drilli recision #297 Good conditior lear/ -11	ng Rig Mana Rig Manager Pho n/ Icy	ger : Rick Higgins one : 403 850 7181	Geo Eng Superinte Supe	ilogist : Da jineer : Re ndent : Da rvisor : Re	ane Bridge odney Tetre ave Loxam odney Tetre	ault ault	Phone # : 403 540 8 Phone # : 403 804 6 Phone # : 403 538 4 Phone # : 403 804 6 December 3	729 953 590 953 2003 07 ⁻ 39

							
()			Daily Dr	illing Report		Report # :	7
Wellco	re	Proiect [:] Joslvn Cr	eek Phase 1	Well Name : DCEL 111 JOS	LYN CREEK 3-3	Ops. Date :	12/2/2003
		Well Type : Steam In	iector	Main Hole : 103/03-33-095	-12-W4M	Days From Spud .	6
	000010	, , , , , , , , , , , , , , , , , , ,		Carriel - 44/00/0000	01 . 000 70	Day Cost :	\$245,695
Well Lice	nse: 029010	9	unt : \$1 411 066	Spud : 11/26/2003	GL: 339.70	Cost To Date :	\$897,532
	E # : 054-030		UNE: \$1,411,000	R.R. 1	CF: 0.00	Est. ID :	966.0
Ops. Object					KB: 343.46	Deptn @ 2400nr :	0.00
	ps. Steam c	cleaning ng, begin lear	oul.	a out rontolo		Day Rot Hrs	0.0
Ops. 1 ofec		sean ny anu rentais, si			1-4:	Day Not. 1113	0.00
Bit # Siz	ze Mfg.	Model RPM WOE	Progress Hou	rs ROP Out Depth	Hours ROP	Condition	
Mud Dooo	rd		Col	Strongth Solida	Cl	Mudilaco	
Time	Type	Density Visc		Solids		Mud Loss	
14.00.00.4	Type	dono 74	<u>FV IF 103</u>				
11:30:00 A	ANPolymer	1070 71	19 16 4	4.5 6.0 5.0 9.0 5.0	0 500 0.0	56	
Circulation	Record	P	ump#1	Pump #2		Average	ΔP
Bit # Noz	zles	Model Str	oke Liner Spm N	lodel Stroke Liner Spm F	Press. Dens. O	utput DC DP	%
Mud Addit	ivies	Deviation Rec	ord	BHA		Geological	
Mud Item	Unit #of	f Depth Incl	(dea) Az (dea)	Item #Of O.	D. Lenath	Formation	τορ
SADD	4 0		(v	
UALI	4 0						
Today's Mi	ud Cost : \$0				-	Casing	
Solids Con	trol					Section	Set At
Item	Make	U. Flow	O. Flow			Surface	28.0
Centrifuge	Swace	o 19 [.]	10 1025			Intermediate	374.0
Centrifuge	Swace	o 19 [.]	10 1025			Liner	0.0
Desander	Swace	o 12	25 1060		UA - 26.20 m		0.0
Shako	r · Brandt	Scroops : 20			IA: 20.30 III		
The Diake	i . Dianut		04.00		igi. 0.00		
<u>Time Distri</u>	bution	I otal Hours	; 24.00				
Time From	Time To	Time Category	Remarks				
6:30:00 AM	12:30:00 PM	Run Csg & Cement	Run 47 joints (636 make up davis alu blank, #21 slot and & #37 blanks, #38 #47 blanks. Instsa	6.61m) of 291.1mm, 53.75kg/m minum tapered shoe & run slo d alternated in this sequence to slot, #39 & #40 blanks, #41 sl lled davis type bow centraliser	, L80, Rge slotted tted liner to joint # o joint #32. Then r ot, #42 & #43 blan s w/ stop collars o	l liner. 19. Then from jnt #2 an 2 blanks #35 slot nks, #44 slot, #45 #4 n jts #46 & #47.	20 , #36 6 &
12:30:00 PM	4:00:00 PM	Run Csg & Cement	Make up Baker HT	LLP on Joint #47.			
		, , , , , , , , , , , , , , , , , , ,	Start pump & chec Liner weight, 25 D RIH w/ HWDP to la	ck seals - o.k. aN up & 4DaN down and liner.			
	4-15-00 DM	Ria Service	Ria service				
4.00.00 PW	4.15.00 PW	riy delvice	ruy service.				
Contractor ·	Precision Drilli	ng Ria Mana	ager : Rick Hiaains	Geologist : Dane	Bridge	Phone # : 403 540 8	729
Ria	Precision #297	Rig Manager Ph	one : 403 850 7181	Engineer : Rodn	ey Tetreault	Phone # : 403 804 6	953
Lease : (Good condition	n/ Icy		Superintendent : Dave	Loxam	Phone # : 403 538 4	590
Weather :	Clear/ -11	-		Supervisor : Rodn	ey Tetreault	Phone # : 403 804 6	953
Report by Wellcor	e		Re	lease 12	-	December 3, 2	2003 07:39

	*0		Daily Dr	illing Report		Report # :	: 7
vvenco	'I E	Project [÷] Joslyn Cr Well Type : Steam In	eek Phase 1 jector	Well Name : DCEL 111 JO Main Hole : 103/03-33-09	SLYN CREEK 3-3 5-12-W4M	Days From Spud : Day Cost :	£7272003 6 2 \$245,695
Well Lice Af Ops. Objec AM C Ops. Fore	ense : 029616 E # : 054-030 ctive : TO INJE Dps. : Steam o cast : Steam o	9 /3S-I Amo ECT IN TO THE MCML cleaning rig, begin tear clean rig and rentals, st	unt : \$1,411,066 IRRAY FM out. art tearing & loading	Spud : 11/26/2003 R.R. : g out rentals	GL: 339.70 CF: 0.00 KB: 343.46	Cost To Date : Est. TD : Depth @ 2400hr : Progress : Day Rot. Hrs. :	\$897,532 966.0 0.00 0.0
Bit Record Bit # Si	I ze Mfg.	Model RPM WOE	Daily Progress Hou	Depth <u>Cu</u> rs ROP Out Depth	mulative Hours ROP	Condition	
Mud Reco Time 11:30:00 / <u>Circulation</u>	r <u>d</u> Type ANPolymer Record	Density Visc. 1070 71 P	<u>Gel</u> PV YP 10 S 19 16	<u>Strength</u> Solid lec 10 Min W.L. pH 9 4.5 6.0 5.0 9.0 5 Pump #2	s Cl 6 (ppm) Oil % 0 500 0.0	Mud Loss Volume Formation 56 <u>Average</u>	 ΔP
<u>Bit #</u> Noz	zzles	Model Str	oke Liner Spm M	fodel Stroke Liner Spm	Press. Dens. O	utput DC DP	%
<u>Mud Addit</u> Mud Item	t <u>ivies</u> Unit #o	Deviation Rec	<u>ord</u> (deg) Az (deg)	BHA Item # Of C	D. Length	Geological Formation	Тор
Today's M Solids Con	ud Cost : \$0					<u>Casing</u> Section	Set At
Item	Make	U. Flow	O. Flow			Surface	28.0
Centrifuge	Swac	o 19 [.]	10 1025			Intermediate	374.0
Centrifuge	Swace	o 19 [.]	10 1025			Liner	0.0
Desander	Swace	o 122	25 1060	DP OD : 127.00 mm	3HA: 26.38 m		
Shake	er : Brandt	Screens : 20		DC OD : 0.00 mm String V	Ngt.: 0.00		
<u>Time Distri</u>	bution	Total Hours	24.00		I		
Time From	Time To	Time Category	Remarks				
4:15:00 PM	4:30:00 PM	Run Csg & Cement	Break circulation (kpa. Pressure blea pressure up to 8,5	@ landing depth of 973m. Dro d back to 1,200kpa & held for 00kpa to shear running tool.	p ball & pump 105 2 min. Bleed off pr	stks. Stop pump @ essure. Start pump a	6,200 and
4:30:00 PM	5:00:00 PM	Circ./Condition Mud	Pick up string to e Displace casing ov	nsure liner hanger was free - ver to water.	string weight up wa	as 11,900 Da N	
5:00:00 PM	6:30:00 PM	Tripping	POOH & lay down Rig out import run	HWDP. ning tool.			
6:30:00 PM	12:00:00 AM	Rig Up/Tear Down	Rig out & tear dow Start cleaning rig & Rig released Dec 2	/n rig & tanks. 2/03 @ 24:00 hrs.	·		
Contractor : Rig : Lease : Weather : Report by Wellcor	Precision Drilli Precision #297 Good conditior Clear/ -11	ng Rig Mana ' Rig Manager Ph n/ Icy	iger : Rick Higgins one : 403 850 7181	Geologist : Dan Engineer : Rod Superintendent : Dav Supervisor : Rod	e Bridge ney Tetreault ∋ Loxam ney Tetreault	Phone # : 403 540 8 Phone # : 403 804 6 Phone # : 403 538 4 Phone # : 403 804 6 December 3 :	729 953 590 953 2003 07:39

Casing Report

Project : Joslyn Creek Phase 1

Well Name : DCEL 111 JOSLYN CREEK 3-33-9 Main Hole : 103/03-33-095-12-W4M

Section									
Section	Hole Size	Hole Depth	Casing Set A	t (MD) Casing	Set At (T	VD) L	eak Off Gradie	nt Mud T	уре
Surface	508.0	28.0		28.0		0.0	C	0.0	
Intermediate	374.6	375.0		374.0		0.0	(0.0	
Liner	269.0	982.0		0.0		0.0	().0	
Casing For : Liner		(Casing Date :						
Run			-						
Order Description	# Of Type/M	igr. O	D ID	Weight Grade	Range	Connection	Length	From	То
Guide Shoe	1 Import	C	0.0 0.0	0.00			0.0	0.0	0.0
Slotted Joint		219	.1 198.8	53.57L80	3		14.3	-14.3	0.0
		C	0.0 0.0	0.00			12.9	-27.2	-14.3
		0	0.0 0.0	0.00			13.5	-40.7	-27.2
		0	.0 0.0	0.00			13.4	-54.1	-40.7
		0	.0 0.0	0.00			13.6	-67.7	-54.1
		0	.0 0.0	0.00			13.5	-81.2	-67.7
		0	.0 0.0	0.00			13.5	-94.6	-81.2
		0	.0 0.0	0.00			13.7	-108.3	-94.6
		0	.0 0.0	0.00			13.7	-122.0	-108.3
		0	.0 0.0	0.00			13.6	-135.5	-122.0
		0	.0 0.0	0.00			12.5	-148.0	-135.5
		0	.0 0.0	0.00			13.4	-161.4	-148.0
		0	.0 0.0	0.00			13.6	-174.9	-161.4
		0	.0 0.0	0.00			12.5	-187.4	-174.9
		0	.0 0.0	0.00			13.4	-200.8	-187.4
		0	.0 0.0	0.00			13.4	-214.2	-200.8
		0	.0 0.0	0.00			13.5	-227.7	-214.2
			Act	ual Above KB :		0.00	Above KB	:	636.61
Accessories						Ta	ally Document	S	
Item	Туре		Quantity S	Spacing Fron	n ⁻	Го			
						L			

Torque Monitoring :

Torque Company :

Jts. In Hole :

Jts. Delivered :

Comments

0

Jts. Left On Rack :

Casing Report

Project : Joslyn Creek Phase 1

Well Name : DCEL 111 JOSLYN CREEK 3-33-9 Main Hole : 103/03-33-095-12-W4M

Well Type : Steam Injector

Section	Hole Size	Hole Depth	Casing	Set At	t (MD) Cas	sing Set	At (T	VD) L	eak Off Gradie	nt Mud T	уре
asing For Liner			Casing	Data ·							
Run			Casing	Date .							
Order Description	# Of Type	e/Mfgr.	OD	ID	Weight Grad	de Ra	nge	Connectior	h Length	From	То
			0.0	0.0	0.00				13.2	-240.9	-227.7
			0.0	0.0	0.00				13.8	-254.7	-240.9
Blank Joint			0.0	0.0	0.00				13.6	-268.3	-254.7
Slotted Joint			0.0	0.0	0.00				12.5	-280.8	-268.3
Blank Joint			0.0	0.0	0.00				14.4	-295.2	-280.8
Slotted Joint			0.0	0.0	0.00				14.0	-309.2	-295.2
Blank Joint			0.0	0.0	0.00				12.8	-322.0	-309.2
Slotted Joint			0.0	0.0	0.00				13.5	-335.5	-322.0
Blank Joint			0.0	0.0	0.00				13.5	-348.9	-335.5
Slotted Joint			0.0	0.0	0.00				13.5	-362.4	-348.9
Blank Joint			0.0	0.0	0.00				13.8	-376.2	-362.4
Slotted Joint			0.0	0.0	0.00				13.3	-389.4	-376.2
Blank Joint			0.0	0.0	0.00				13.6	-403.0	-389.4
Blank Joint			0.0	0.0	0.00				13.8	-416.8	-403.0
Slot Joint			0.0	0.0	0.00				13.5	-430.3	-416.8
Blank Joint			0.0	0.0	0.00				14.4	-444.6	-430.3
Blank Joint			0.0	0.0	0.00				13.2	-457.8	-444.6
Slotted Joint			0.0	0.0	0.00				13.8	-471.7	-457.8
				Actu	ual Above KB	B :	(0.00	Above KB	:	636.61
cessories								Ta	ally Document	S	
Item	Туре		Quantil	ty S	pacing F	rom	T	ō	an an an an Anna an an Anna an Anna an Anna an Anna an Anna an Anna		
				· · ·							
		T									
I orque Monitoring :		Torque Co	mpany :								
Jts. Delivered :		Jts.	In Hole :					Jt	s. Lett On Rack	<:	0
mments											

Casing Report

Project : Joslyn Creek Phase 1

Well Type : Steam Injector

Well Name : DCEL 111 JOSLYN CREEK 3-33-9 Main Hole : 103/03-33-095-12-W4M

Section													
Section	Hole	e Size	Hole Depth	Casing	Set A	At (MD)	Casing	Set At (TVD)	Lea	k Off Gradie	nt Mud T	уре
Casing For : Liner				Casing	Date	;							
Run				Ū									
Order Description	# Of	Type/	Mfgr.	OD	ID	Weight	Grade	Range	Connec	tion	Length	From	То
Blank Joint				0.0	0.0	0.00					13.9	-485.5	-471.7
Blank Joint				0.0	0.0	0.00					14.3	-499.9	-485.5
Slotted Joint				0.0	0.0	0.00					13.9	-513.8	-499.9
Blank Joint				0.0	0.0	0.00					13.7	-527.5	-513.8
Blank Joint				0.0	0.0	0.00					14.5	-542.0	-527.5
Slotted Joint				0.0	0.0	0.00					13.8	-555.8	-542.0
Blank Joint				0.0	0.0	0.00					13.5	-569.3	-555.8
Blank Joint				0.0	0.0	0.00					13.2	-582.5	-569.3
Slotted Joint				0.0	0.0	0.00					13.3	-595.8	-582.5
Blank Joint				0.0	0.0	0.00					13.5	-609.3	-595.8
Blank Joint				0.0	0.0	0.00					13.9	-623.2	-609.3
Blank Joint				0.0	0.0	0.00					13.5	-636.6	-623.2
					Ac	tual Above	KB :		0.00		Above KB	•	636.61
Accessories									The second se	Tally	Document	S	
Item	Тур	e		Quantit	y S	Spacing	From	n	То				
Torque Menitering			Tarawa Ca										
			Torque Co	mpany :						H- 1	- 1 0 - 0		•
Jts. Delivered :			JIS.	In Hole :						Jts. L		(:	U
Comments													
Report By Wellcore					Releas	se 12						Decembe	r 3, 2003 7:45

()			Daily Dr	rillina	Report			Report #	: 6
Wellcor	e	Project ≑.loslvn Cre	ek Phase 1	Well Nam	e DCFL 11	IOSLYN	CREEK 3-3	Ops. Date	: 12/1/2003
		Well Type : Steam Inj	ector	Main Ho	le : 103/03-33	-095-12-V	V4M	Days From Spud	: 5
Well Licer AFI Ops. Object	nse: 0296169 Ξ #: 054-030 ive: TO INJE	9 03S-I Amou ECT IN TO THE MCMU	int : \$1,411,066 RRAY FM	Spud : 11/2 R.R. :	26/2003	GL CF KB	: 339.70 : 0.00 : 343.46	Cost To Date Est. TD Depth @ 2400hr	\$63,080 \$576,722 966.0 982.00
AM O	ps.: Running	219.1mm Liner	tt 0 -lt			4 1		Progress	117.0
Ops. Forec	ast : Run 219	3.1 mm production liner	tear out & clean t	anks. Steam	down rig and	tanks.		Day Rot. Hrs.	4.75
Bit # Siz 1P 26	e <u>Mfg.</u> 9 Reed	Model <u>RPM WOB</u> DSS9 155 11	Progress Hou 117.0 4	ırs ROP .75 24.6	Out Dep Out Dep 982.0 6	oth Hou 607 19.4	rs ROP 50 31.1	<u>Condition</u> 0-0-NO-AI-NO	-TD
Mud Deeer	-			Ctrongth		alida (01	NAU AL ANA	
Mud Recor		Density Visc		Sec 10 Min	WI nH	iolids (CI vm) Oil %	Mud Loss	
11:30:00 A	MPolymer	1070 71	19 16	4.5 6.0	5.0 9.0	5.0	500 0.0	56	. D
Bit # Noz	rles	Fu Model Stro	ke liner Snm M	Pul Model Strok	n Liner Sor	 n Press	Dens (<u>Average</u>	ΔP %
1P 127	10710710	7 12 7 12 BSE 80/ 22	0 152 00 E		152 OC	750	0 1070	213 0 49	2 <u>/0</u> 2 17.2
16 12.7	, 12.7, 12.7, 12.	7,12.7,12D3F-00(ZZ	9 132 90 6	557-00 229	152 90	/ /50	0 1070	2.13 0 40) 17.3
Mud Additi	vies	Deviation Rec	ord	BHA				Geological	
Mud Item	Unit # o	f Depth Incl (deg) Az (deg)	Item	# Of	O.D.	Length	Formation	Тор
Caustic sod	a 1			PDC bit	1	270.0	0.35		
DSCO Defo	an1			Motor	1	203.2	7.34		
Defoam X	4			Float sub	1	170.0	0.72		
EMI-695	1			Non-mag	DC 1	170.0	9.28		
Fedzan	10			Hang-off	sub 1	168.0	1.70		
Poly plus dr	y 5			X/O sub	1	162.0	0.64		
Today's Mu	d Cost : \$0			Jars	1	168.0	6.35	<u>Casing</u>	
Solids Cont	rol							Section	Set At
Item	Make	U. Flow	O. Flow					Surface	28.0
Centrifuge	Swac	o 191	0 1025					Intermediate	374.0
Centrifuge	Swace	o 191	0 1025					Liner	0.0
Desander	Swace	o 122	5 1060	DP OD : 12	27.00 mm	BHA :	26.38 m		
Shaker	Brandt	Screens : 20		DC OD :	0.00 mm Stri	ng Wgt. :	15.00		
Time Distrib	ution	Total Hours :	24.00					1	
Time From	Time To	Time Category	Remarks						
12:00:00 AM	12:15:00 AM	Rig Service	Rig service.						
12:15:00 AM	1:45:00 AM	Drilling	Drill 269 mm hori	zontal produc	tion hole fron	n 865 to 9	15mMD		
1:45:00 AM	2.42.00 AM	Directional Work	Accumulated dire	ctional surve	vs				
2:45:00 AM	5:30:00 AM	Miscellaneous	Circulate hole & v range against - at well] and changed	vait on Heats tempted thre d coil out & W	eekers (Lost e shots, Heat /elltec change	resistivity/ seekers p ed relay to	MGT signal ulled resistiv tractor).	too weak for Sperry vity tool OOH [produ	/-Sun to cer
5:30:00 AM	7:00:00 AM	Tripping	Ten single wiper	trip.					
7:00:00 AM	7:30:00 AM	Drilling	Drill 269 mm hori	zontal produc	tion hole fron	n 915 to 9	42mMD.		
7:30:00 AM	8:00:00 AM	Directional Work	Accumulated dire	ctional surve	ys.				
					-				
Contractor : F Rig : F Lease : C Weather : C	Precision Drilli Precision #297 Good condition Glear/ -11	ng Rig Mana 7 Rig Manager Pho n/ Icy	ger : Rick Higgins one : 403 850 7181	l Sup	Geologist : I Engineer : I erintendent : I Supervisor : I	Dane Brido Rodney Te Dave Loxa Rodney Te	ge etreault im etreault	Phone # : 403 540 Phone # : 403 804 Phone # : 403 538 Phone # : 403 804	8729 6953 4590 6953

				illing Donort		Penort # ·	6
Mollco	ro		Daily Dr	ming Report		Ops. Date :	12/1/2003
vvenco	C	Project : Joslyn Cre	ek Phase 1	Well Name : DCEL 111 JOS	LYN CREEK 3-3	Days From Spud :	5
		Well Type : Steam Inje	ector	Main Hole : 103/03-33-095-	12-W4M	Day Cost :	\$63,080
Well Lice	nse: 0296169)		Spud : 11/26/2003	GL: 339.70	Cost To Date :	\$576,722
AF	E # : 054-030	3S-I Amou	nt: \$1,411,066	R.R . :	CF : 0.00	Est. TD :	966.0
Ops. Objec	tive : TO INJE	CT IN TO THE MCMUI	RRAY FM		KB: 343.46	Depth @ 2400hr :	982.00
	ps.: Running	219.1mm Liner		anka. Otaana dawa sia and tanka		Progress :	117.0
Ops. Forec	ast : Run 219	.1 mm production liner,	tear out & clean ta	anks. Steam down rig and tanks	S.	Day Rol. HIS	4.75
Bit # Siz	ze Mfg. I	Model RPM WOB	Progress Hou	rs ROP Out Depth	Hours ROP	Condition	
Mud Recor	rd		Gel	Strength Solids	CI	Mud Loss	
Time	Tvpe	Density Visc.	PV YP 10 S	ec 10 Min W.L. pH %	(ppm) Oil %	Volume Formation	<u> </u>
11:30:00 A	NPolymer	1070 71	19 16	4.5 6.0 5.0 9.0 5.0	500 0.0	56	
Circulation	Record	Pu	mp#1	Pump #2		Average	ΛP
Bit # Noz	zles	Model Stro	ke Liner Spm M	Nodel Stroke Liner Spm F	Press. Dens. O	output DC DP	%
-							
Mud Addit	ivies	Deviation Reco	ord	BHA		Geological	Tere
Mud Item	Unit # of	Depth Incl (deg) Az (deg)	Item # Of O.I	D. Length	Formation	гор
Today's Mu	ud Cost : \$0					<u>Casing</u>	
Solids Con	t <u>rol</u>					Section	Set At
Item	Make	U. Flow	O. Flow			Surface	28.0
Centrifuge	Swaco	o 191	0 1025			Intermediate	374.0
Centrifuge	Swaco	o 191	0 1025			Liner	0.0
Desander	Swaco	o 122	5 1060	DP OD : 127.00 mm B	HA: 26.38 m		
Shake	r :Brandt	Screens : 20		DC OD : 0.00 mm String W	/gt.: 15.00		
Time Distril	oution	Total Hours :	24.00				
Time From	Time To	Time Category	Remarks				
8:00:00 AM	10:45:00 AM	Drilling	Drill ahead from 9	42 to 982mMD (FTD).			
10:45:00 AM	12:00:00 PM	Directional Work	Accumulated dire	ctional surveys.			
12:00:00 PM	1:00:00 PM	Circ./Condition Mud	Circulate & condit	ion hole clean.			
1:00:00 PM	1:15:00 PM	Rig Service	Rig Service.				
1:15:00 PM	6:00:00 PM	Tripping	POOH to lay dow	n directional tools (Backream &	pump to interme	diate casing shoe).	
6:00:00 PM	7:00:00 PM	Directional Work	Lay down direction	nal tools.			
7:00:00 PM	8:00:00 PM	Slip/Cut Drillina Line	Slip & cut 12.1 m	drill line/ Rig service.			
8:00:00 PM	8:15:00 PM	Safety Meetings	Pre-job safetv me	eting (Handling reamer BHA).			
8:15:00 PM	11:45:00 PM	Reaming	RIH w/ reamer BH	IA.			
Contractor	Precision Drillin		ner · Rick Higgins	Geologist · Dano	Bridge	Phone # : 403 540 8	729
	Precision #207	Rig Manager Pho		Engineer : Rodn	ev Tetreault	Phone # : 403 804 6	953
Lease : (Good condition	/ lcv		Superintendent : Dave	Loxam	Phone # : 403 538 4	590
Weather (Clear/ -11	- 2		Supervisor : Rodn	ey Tetreault	Phone # : 403 804 6	953
Report by Wellcon	e		D			December 2	2003 07:27

WellCon Well Licen AFE Ops. Objecti AM Op Ops. Foreca <u>Bit Record</u> Bit # Size	€ se : 0296169 # : 054-0303 ve : TO INJEC os. : Running 2 ast : Run 219. e Mfg. M	Project : Joslyn Cre Vell Type : Steam Inje S-I Amou CT IN TO THE MCMUF 219.1mm Liner 1 mm production liner, odel RPM WOB	Daily Dr ek Phase 1 ector nt : \$1,411,066 RRAY FM tear out & clean t Daily Progress Hou	Filling Report Well Name : DCEL 111 JO Main Hole : 103/03-33-09 Spud : 11/26/2003 R.R. : anks. Steam down rig and tan DepthCu urs ROP Out Depth	SLYN CREEK 3-3 5-12-W4M GL : 339.70 CF : 0.00 KB : 343.46 Mks. <u>Imulative</u> Hours ROP	Report # : Ops. Date : Days From Spud : Day Cost : Cost To Date : Est. TD : Depth @ 2400hr : Progress : Day Rot. Hrs. : <u>Condition</u>	6 12/1/2003 5 \$63,080 \$576,722 966.0 982.00 117.0 4.75
Mud Record Time 11:30:00 Al	<u>1</u> Type VPolymer	Density Visc. 1070 71	<u>Ge</u> PV YP 10 \$ 19 16	<u>I Strength</u> Solic Sec <u>10 Min W.L. pH</u> 4.5 6.0 5.0 9.0 5	ds Cl % (ppm) <u>Oil %</u> 5.0 500 0.0	Mud Loss Volume Formation 56	
Circulation F Bit # Nozz	Record des	<u>Pu</u> Model Stro	mp#1 ke Liner Spm I	Pump #2 Model Stroke Liner Spm	Press. Dens. C	<u>Average</u> Dutput DC DP	ΔP %
Mud Additiv Mud Item	vies Unit #of	Deviation Reco	ord deg) Az (deg)	BHA Item #Of C	D.D. Length	Geological Formation	Тор
						Casing	
I oday's Mu	d Cost : \$0					Section	Set At
Item	<u>roi</u> Make	U Flow	O. Flow			Surface	28.0
Centrifuge	Swaco	191	0 1025			Intermediate	374.0
Centrifuge	Swaco	191	0 1025			Liner	0.0
Desander	Swaco	122	5 1060	DP OD · 127 00 mm	BHA 26.38 m		
Shaker	Brandt	Screens : 20		DC OD : 0.00 mm String	Wgt.: 15.00		
Time Distrib	oution	Total Hours :	24.00	L			
Time From	Time To	Time Category	Remarks				
11:45:00 PM	11:59:59 PM	Rig Service	Rig Service.	pipe arm iron roughneck & to	n drive		
Contractor : F Rig : F Lease : C	Precision Drillir Precision #297 Good condition Clear/ -11	ig Rig Mana Rig Manager Ph / Icy	ger : Rick Higgins one : 403 850 718	Geologist : Da 1 Engineer : Ro Superintendent : Da Supervisor : Ro	ne Bridge dney Tetreault ve Loxam dney Tetreault	Phone # : 403 540 a Phone # : 403 804 a Phone # : 403 538 a Phone # : 403 804 a	8729 6953 4590 6953
Report by Wellcore	9			Release 12		December 2	, 2003 07:27

0			Daily Dr	illing Re	nort		Report #	: 5
Wellcon	re	Project : Joslyn Cre	ek Phase 1	Well Name : D(SLYN CREEK 3.	Ops. Date	: 11/30/200
		Well Type : Steam Inje	ector	Main Hole : 10	3/03-33-09	5-12-W4M	Days From Spud	: 400 400
Well Licen AF Ops. Object AM O Ops. Forec	nse : 0296169 E # : 054-030 tive : TO INJE ps. : Wiper tri ast : Drill ahe	3S-I Amou CT IN TO THE MCMUI p @ 915mMD (10 Joint ad to TD, POOH & L/D	nt : \$1,411,066 RRAY FM s DP)/ Troublesho directional tools, F	Spud : 11/26/200 R.R. : pot Heatseekers/ W RIH w/ reamer asse	03 /elltec resis embly, PO0	GL: 339.7 CF: 0.0 KB: 343.4 stivity problem. DH, Run liner	20 Cost To Date 20 Est. TD 26 Depth @ 2400hr 27 Progress 20 Day Rot. Hrs. 2	\$93,193 \$513,642 966.0 865.00 490.0 14.75
Bit Record			Daily	Depth	1 Cu	mulative		
<u>Bit #</u> Siz 1P 26	e Mfg. I 9 Reed I	Model RPM WOB DSS9 155 11	Progress Hou 490.0 14	ırs ROP Ou .75 33.2 490.	t Depth 0 490	Hours ROP 14.75 33.2	Condition	
Mud Recor	ď		Ge	Strength	Solic	ls Cl	Mud Loss	
Time	Type	Density Visc.	PV YP 10 S	Sec 10 Min W.L.	pH	% (ppm) Oil %	Volume Formation	
8:00:00 PN	I Polymer	1060 42	11 5	1.5 2.0 5.0	09.04	.0 450 96	.0 44	
Circulation	Deserved			D				
Bit # Noz	Record	Pu Model Stro	mp#i ke liner Som M	Pump#2	er Som	Press Dens	<u>Average</u>	۸P %
1P 127	12 7 12 7 12	7 12 7 12 BSF-80 22	9 152 90 F	3SE-80 229 15	52 90	8100 1060	2 13 0 48	15.8
	,,,.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					2.10 0 10	10.0
Mud Additi	vies	Deviation Reco	ord	BHA			Geological	
Mud Item	Unit # of	Depth Incl (deg) Az (deg)	Item	#Of (D.D. Length	Formation	Тор
Antifoam D	47 4			PDC bit	1 2	70.0 0.35		
Antifoam M	45 1			Motor	1 2	03.2 7.34		
DSCO Defo	ban4			Float sub	1 1	70.0 0.72		
	11			Non-mag DC	1 1	70.0 9.28 68.0 1.70		
Safe-solv	4			X/O sub	1 1	62.0 0.64		
Today's Mi	ud Cost · \$0			Jars	1 1	68.0 6.35	Casing	****
Solids Cont	trol						Section	Set At
Item	Make	U. Flow	O. Flow				Surface	28.0
Centrifuge	Swace	o 191	0 1025				Intermediate	374.0
Centrifuge	Swace	o 191	0 1025					
Desander	Swace	o 122	5 1060	DP OD : 127.00	mm	BHA: 26.38 m		
Shake	r : Brandt	Screens : 20		DC OD : 0.00	mm String	Wgt.: 15.00		
Time Distril	oution	Total Hours :	24.00					
Time From	Time To	Time Category	Remarks					
12:00:00 AM	12:15:00 AM	Rig Service	Rig service.					
12:15:00 AM	12:30:00 AM	Directional Work	Continue to P.U.	directional tools.				
12:30:00 AM	2:30:00 AM	Tripping	RIH (Tag cement	top @ 366mMD).				
2:30:00 AM	3:00:00 AM	Drill Out	Drill out float & sh	noe. Drill ahead to	375mMD.			
3:00:00 AM	3:30:00 AM	Circ./Condition Mud	Displace hole to p	polymer mud.				
3:30:00 AM	6:00:00 AM	Drilling	Drill 269 mm hori	zontal production h	nole to 465	mMD. (Install pul	ldowns @ 379mMD).	
6:00:00 AM	8:00:00 AM	Deviation Survey	Accumulated dire	ctional surveys.				
8:00:00 AM	8:15:00 AM	Kig Service	Kig Service. Visually inpsect p	ipe arm & top drive	Э			
			,					
Contractor	Precision Drilli	ng Rig Mana	ger : Rick Higgins	Geo	logist : Dar	ne Bridae	Phone # : 403 540 8	3729
Rig : I	Precision #297	Rig Manager Pho	one : 403 850 7181	1 Eng	gineer : Roo	ney Tetreault	Phone # : 403 804 6	3953
Lease : (Good condition	n/ Icy		Superinte	ndent : Dav	/e Loxam	Phone # : 403 538 4	1590
Weather : 0	Clear/ -16			Supe	rvisor : Roo	Iney Tetreault	Phone # : 403 804 6	3953
Report by Wellcon	e		R	elease 12			December 1,	2003 07:32

0			Dailv Dr	rillina Repor	rt	Report # :	: 5
Wellco	re	Project [:] Joslyn Cre	eek Phase 1	Well Name : DCEL 1	I1 JOSLYN CREEK 3-3	Ops. Date : Days From Spud	11/30/200
		Well Type : Steam Inj	ector	Main Hole : 103/03-3	33-095-12-W4M	Day Cost :	4 \$93,193
Well Licen AF Ops. Object AM O Ops. Forec	nse : 029616 E # : 054-030 tive : TO INJE 0ps. : Wiper tr cast : Drill ahe	9)3S-I Amou ECT IN TO THE MCMU rip @ 915mMD (10 Join ead to TD, POOH & L/D	int : \$1,411,066 RRAY FM ts DP)/ Troubleshc directional tools, F	Spud : 11/26/2003 R.R. : oot Heatseekers/ Wellted RIH w/ reamer assembly	GL : 339.70 CF : 0.00 KB : 343.46 resistivity problem. , POOH, Run liner	Cost To Date : Est. TD : Depth @ 2400hr : Progress : Day Rot. Hrs. :	\$513,642 966.0 865.00 490.0 14.75
Bit # Siz	ro Mfa		Daily	Depth	Cumulative	Canditian	
	e wig.		Progress Hou	<u>irs ROP Out D</u>	eptn Hours ROP	Condition	
Mud Recor	<u>rd</u>		Ge	Strength	Solids Cl	Mud Loss	
<u>Time</u> 8:00:00 PN	<u>Type</u> /I Polymer	Density Visc. 1060 42	<u>PV YP 10 S</u> 11 5	Sec <u>10 Min W.L.</u> pH 1.5 2.0 5.0 9.0	<u>% (ppm) Oil %</u> 0 4.0 450 96.0	Volume Formation 44	
Circulation	Record	Pu	imp#1	Pump #2		Average	ΔP
<u>Mud Additi</u> Mud Item Sodium bic	<u>vies</u> Unit #o arb2	<u>Deviation Rec</u> f Depth Incl (<u>ord</u> deg) Az (deg)	BHA Item # Of	O.D. Length	<u>Geological</u> Formation	Тор
Today's Mu	ıd Cost : \$0					Casing	
Solids Cont	trol					Section	Set At
Item	Make	U. Flow	O. Flow			Surface	28.0
Centrifuge	Swac	o 191	0 1025			Intermediate	374.0
Desandor	Swac	0 191 2 132	0 1025	-			
Chaker	Swau	0 122 Caraana : 20	5 1060	DP OD : 127.00 mm	BHA : 26.38 m		
Time Dietrik		Total Hours	24.00		tring vvgt. : 15.00		
Time Frem	<u></u>		27.00				
8.15.00 AM	2:45:00 PM	Drilling	Drill aboad to 695	mMD			
2:45:00 PM	4.00.00 PM	Deviation Survey	Accumulated dire	ctional surveys			
4:00:00 PM	4:15:00 PM	Rig Service	Rig Service. Visually inpsect in	on roughneck.	ал, та		
4:15:00 PM	10:00:00 PM	Drilling	Drill ahead to 865	mMD.			
10:00:00 PM	11:59:59 PM	Deviation Survey	Accumulated dire	ctional surveys.			
Contractor : F Rig : F Lease : C Weather : C	Precision Drilli Precision #297 Good condition Clear/ -16	ng Rig Mana 7 Rig Manager Pho n/ Icy	ger : Rick Higgins one : 403 850 7181	Geologist Engineer Superintendent Supervisor	: Dane Bridge : Rodney Tetreault : Dave Loxam : Rodney Tetreault	Phone # : 403 540 8 Phone # : 403 804 6 Phone # : 403 538 4 Phone # : 403 804 6	729 953 590 953
Report by Wellcore	Э		Re	elease 12		December 1, 2	2003 07:32

Wellcore

Daily Geology Operations

Project : Jos	slyn Creek Phase 1	Well :DCE	EL 111 JOSLYN CREI	Main Hole :103/03	-33-095-12-W4N	Date :11/30/2003		
Well Type :Ste	eam Injector	Surface :10-3	3-095-12-W4M	AFE # :054-03	03S-I	Report # :	4	
Objective :TO	INJECT INTO THE N	ICMURRAY FM		AFE \$:	\$1,411,066	Day Cost :	\$93,193	
		Spud Date :		DFS :	0	Cost To Date :	\$513,642	
MD :	0.00	TVD :	0.00	PD MD :	0.00 2	4 Hr. Progress :	0	
Current FM :		ROP :	0.00	Sliding :	0.00	Rotating :	0	

AM Operations :

24 Hr. Summary :begin drilling out at 3:30 am. first sample at 4:21. first samples are fine grained with ~20% coal, rare mica, pyrite and multi-colored chert.

24 Hr Forecast :

Contractor :	: Rig :		Mud :	Directional Co. :		MWD :						
Mechanical H	lole Co To	onditions oday	C Ye	omments : sterday		То	day	Ye	sterday	Mud Type ·		
Drag Rot. Up	Value 0.0	Comment	Value 0.0	Comment	Drag Rot. Down	Value 0.0	Comment	Value 0.0	Comment	Density :	0	
Drag Slide Up	0.0		0.0		Drag Slide Down	0.0		0.0	*****	Viscosity :	0	
Max. Allow Ten	0.0		0.0		Torque	0.0		0.0		WL :	0.00	
String Weight	0.0		0.0		Max. Allow Torque (90%)	0.0		0.0		pH :	0.00	

Bit Run Dat	a			Daily			Cu	mulative		
Bit # Siz	ze Mi	g Model	Progress Hours	ROP	RPM WOB	Depth Out	Depths	Hours	ROP	Condition

Remarks

Drilling Foreman Phone :

0			Dailv Dr	illina Re	port			Report # :	4
Wellcor	e	Project [:] Joslyn Cre Well Type : Steam Inje	eek Phase 1 ector	Well Name : Do Main Hole : 10	CEL 111 JC	OSLYN CRE 95-12-W4M	EEK 3-3	Ops. Date : Days From Spud : Day Cost :	11/29/200 3 \$116.070
Well Licer AFI Ops. Object AM O Ops. Forec	nse : 0296169 5 # : 054-030 ive : TO INJE ps. : Drilling 2 ast : Drill 269) 3S-I Amou CT IN TO THE MCMU 269 mm horizontal hole mm horizontal product	nt : \$1,411,066 RRAY FM e @ 421mMD. ion hole.	Spud : 11/26/20 R.R. :	03	GL : CF : KB :	339.70 0.00 343.46	Cost To Date : Est. TD : Depth @ 2400hr : Progress : Day Rot. Hrs. :	\$420,449 966.0 375.00 0.0 0.00
Bit Record Bit # Siz	e Mfg. N	Model RPM WOB	Daily Progress Hou	Deptl rs ROP Oנ	n <u>C</u> it Depth	umulative Hours	ROP	Condition	
Mud Recor Time 6:15:00 AM	d Type 1 Polymer Record	Density Visc. 1080 47 Pt	<u>Gel</u> PV YP 10 S 17 7	<u>Strength</u> sec 10 Min W.L 4.0 7.0 6. Pump #2	Soli H 0 10.0	ids Cl % (ppm) 5.5 450	<u>Oil %</u> 0.0	Mud Loss Volume Formation 50	
Bit # Nozz	zles	Model Stro	oke Liner Spm M	Nodel Stroke Lin	ner Spm	Press. D	ens. O	<u>Average</u> utput DC DP	<u>%</u>
Mud Additi Mud Item Defoam X Cellophane Antifoam M	vies Unit # of 11 45 1	Deviation Rec Depth Incl (<u>ord</u> deg) Az (deg)	BHA Item PDC bit Motor Float sub Non-mag DC Hang-off sub X/O sub	<u># Of</u> 1 2 1 2 1 - 1 - 1 - 1 -	O.D. Lei 270.0 203.2 170.0 170.0 168.0 162.0	ngth 0.35 7.34 0.72 9.28 1.70 0.64	Geological Formation	Тор
Today's Mu <u>Solids Conf</u>	id Cost : \$0 : rol			Jars	1 ′	168.0	6.35	Casing Section	Set At
Item Centrifuge Centrifuge Desander Shaker	Make Swaco Swaco Swaco	U. Flow 0 0 Screens : 20	O. Flow 0 0 0 0 0 0 0 0	DP OD : 127.00	mm MM String	BHA: 26	.38 m 00	Surface Intermediate	28.0 374.0
Time Distrit	oution	Total Hours	23.99			Jui gt			
Time From 12:00:00 AM 12:15:00 AM	Time To 12:15:00 AM 5:45:00 AM	Time Category Rig Service Run Csg & Cement	Remarks Continue to run in	termediate casing	ı: 375.8 m	(5 jts. 69.9	kg/ m & :	27 jts. 89.27 kg/ m),	L80,
E 45 40 AM			U.S. Steel. Casing connections prope	g landed @ 374.0 erly; installed pullo	mMD. (Ha lowns @ 2	d to align ea 95mMD.)	ach joint	in order to make-up	
5:45:40 AW	8:00:00 AM	Circ./Condition Mud	Circulate & condit	ion noie/ w.O. ce	ment plug	(wrong size	ping pig	lught out by cemente	лs).
8:15:00 AM	1:00:00 PM	Circ./Condition Mud	Circulate & condit	ion hole: decreas	e visc. to 4	7 sec/ I. LS	RV to 47	00 cP./ W.O. cemen	it plug.
1:00:00 PM	1:15:00 PM	Safety Meetings	Pre-job safety me	eting w/ Sanjel ce	menters.				
Contractor : F Rig : F Lease : C Weather : C	Precision Drilli Precision #297 Good condition Clear -18	ng Rig Mana 7 Rig Manager Ph n/ Icy	ager : Rick Higgins one : 403 850 7181	Geo En Superinte Supe	ologist : Da gineer : Ro endent : Da ervisor : Ro	ane Bridge odney Tetre ave Loxam odney Tetre	ault	Phone # : 403 540 8 Phone # : 403 804 6 Phone # : 403 538 4 Phone # : 403 804 6 December 1	1729 1953 1590 1953 2003 07:32

Wellcon	e	Project [∶] Joslyn Cre Well Type ∶ Steam Inje	Daily Dr eek Phase 1 ector	illing Report Well Name : DCEL 111 JOS Main Hole : 103/03-33-095	SLYN CREEK 3-3 5-12-W4M	Report # Ops. Date Days From Spud Day Cost	: 4 11/29/200: 3 \$116,070
Well Licer AF Ops. Object AM O Ops. Forec	nse : 0296169 E # : 054-030 ive : TO INJE ps. : Drilling 2 ast : Drill 269) 3S-I Amou CT IN TO THE MCMU 269 mm horizontal hole mm horizontal product	unt : \$1,411,066 RRAY FM @ @ 421mMD. ion hole.	Spud : 11/26/2003 R.R. :	GL: 339.70 CF: 0.00 KB: 343.46	Cost To Date : Est. TD : Depth @ 2400hr : Progress : Day Rot. Hrs. :	\$420,449 966.0 375.00 0.0 0.00
Bit Record Bit # Siz	e Mfg. I	Model RPM WOB	Daily Progress Hou	Depth <u>Cur</u> Irs ROP Out Depth	Hours ROP	Condition	
Mud Recor Time 6:15:00 AN	<u>d</u> Type 1 Polymer	Density Visc. 1080 47	<u>Gel</u> PV YP 10 S 17 7	<u>Strength</u> Solids Sec <u>10 Min W.L. pH %</u> 4.0 7.0 6.0 10.0 5.	s Cl 5 (ppm) Oil % 5 450 0.0	Mud Loss Volume Formation 50	
Circulation Bit # Noz	Record zles	Model Stro	ump#1 oke Liner Spm N	Pump #2 /lodel Stroke Liner Spm	Press. Dens. C	<u>Average</u> Dutput DC DP	∆P <u>%</u>
<u>Mud Additi</u> Mud Item	<u>vies</u> Unit #ot	Deviation Rec Depth Incl (ord (deg) Az (deg)	BHA Item #Of O	.D. Length	Geological Formation	Тор
Today's Mi	ud Cost : \$0					Casing	
Solide Cont						Section	Set At
Item	Make	U. Flow	O. Flow			Surface	28.0
Centrifuge	Swac	0	0 0			Intermediate	374.0
Centrifuge	Swac	0	0 0				
Desander	Swac	0	0 0		3HA · 26 38 m		
Shake	Brandt	Screens : 20		DC OD : 0.00 mm String V	Vat.: 0.00		
Time Distril	oution	Total Hours	: 23.99		_	I	
Time From	Time To	Time Category	Remarks				
1:15:00 PM	2:30:00 PM	Run Csg & Cement	Rig to & cement i 1.0 m3 scavenge 0.25% CFL-3 + 1 down @ 1412hrs. Plug @ 367.3mM	ntermediate casing. Pump 5.0 r @ 1300 kg/ m3. Pump 27.0 r .0% FWCA-H @ 1885 kg/ m3. . Nov. 29/ 03. Float & annulus ID.	m3 H2O ahead. I n3 (36.0 tonnes) Displace casing v held okay. Had 4.	PT lines to 19.0 MPa Thermal 40 + 2.0% C w/ 21.65 m3 H2O. Pl 0 m3 good cement re	. Pump CaCl2 + ug eturns.
2:30:00 PM	6:30:00 PM	WOC	WOC.				
6:30:00 PM	8:00:00 PM	Miscellaneous	Cut conductor & c	casing, weld conductor back to	ogether & install flo	ow line.	Tanga and the second se
8:00:00 PM	8:15:00 PM	Safety Meetings	Pre-job safety me	eeting w/ Sperry-Sun - P.U. dire	ectional tools.		
8:15:00 PM	8:30:00 PM	Rig Service					
8:30:00 PM	9:30:00 PM	Miscellaneous	Change out Ketch	h pump (for transfer tank).			
Contractor : Rig : Lease : Weather :	Precision Drill Precision #29 Good conditio Clear -18	ing Rig Mana 7 Rig Manager Ph n/ Icy	ager : Rick Higgins Ione : 403 850 718′	Geologist : Dan 1 Engineer : Rod Superintendent : Dave Supervisor : Rod	e Bridge ney Tetreault e Loxam ney Tetreault	Phone # : 403 540 8 Phone # : 403 804 6 Phone # : 403 538 4 Phone # : 403 804 6	8729 6953 4590 6953
Report by Wellcor	e		R	elease 12	-	December 1	, 2003 07:32

()		Daily Dr	rilling Report		Report # :	4
Wellcore	Project ≑.loslvn Ci	reek Phase 1	Well Name : DCEL 111 JOS	SLYN CREEK 3-3	Ops. Date :	11/29/200:
	Well Type : Steam In	jector	Main Hole : 103/03-33-095	5-12-W4M	Days From Spud :	3 ¢140.070
Wall License . 029	6169	-	Snud : 11/26/2003	GL · 339.70	Day Cost :	\$116,070
AFF # 054	-0303S-I Amo	unt: \$1.411.066	R.R. :	CF: 0.00	Est. TD :	966.0
Ops. Objective : TO	INJECT IN TO THE MCMU	JRRAY FM		KB: 343.46	Depth @ 2400hr :	375.00
AM Ops. : Drill	ing 269 mm horizontal hol	e @ 421mMD.			Progress :	0.0
Ops. Forecast : Drill	269 mm horizontal produc	tion hole.			Day Rot. Hrs. :	0.00
<u>Bit Record</u> Bit # Size Mfg.	Model RPM WOE	Daily 3 Progress Hou	Depth <u>Cur</u> urs ROP Out Depth	nulative Hours ROP	Condition	
Mud Record		Ge	I Strength Solids	s Cl	Mud Loss	
Time Type	Density Visc.	PV YP 10 \$	Sec 10 Min W.L. pH %	6 (ppm) Oil %	Volume Formation	
6:15:00 AM Polyme	r 1080 47	17 7	4.0 7.0 6.0 10.0 5.	5 450 0.0	50	
Circulation Record	P	'ump#1	Pump #2		Average	ΔP
Bit # Nozzles	Model Str	roke Liner Spm	Model Stroke Liner Spm	Press. Dens. O	utput DC DP	%
Mud Additivies	Deviation Rec	cord	BHA		Geological	-
Mud Item Unit	# of Depth Incl	(deg) Az (deg)	Item # Of O	.D. Length	Formation	Гор
					Casing	
Today's Mud Cost : S	50				Castian	C
Solids Control		0.51			Section	Set At
Item IV		O. Flow			Surface	28.0
Centrifuge S	waco	0 0			Intermediate	374.0
Decentrinuge S	owaco	0 0				
Choker Drendt	Sereens : 20	0 0	DP OD : 127.00 mm E	3HA: 26.38 m		
Snaker : Brandt	Screens : 20	. 22.00		wgi 0.00		
Time Distribution	I otal Hours	: 23.99		10.17		
Time From Time To	Time Category	Remarks				
9:30:00 PM 11:59:59	PM Directional Work	P.U. directional t	ools.			
						4 M M M M M M M M M M M M M M M M M M M
Contractor : Precision	Drilling Rig Man	ager : Rick Higgins	Geologist : Dan	e Bridge	Phone # : 403 540 8	729
Rig : Precision	#297 Rig Manager Pl	hone : 403 850 718	1 Engineer : Rodi	ney Tetreault	Phone # : 403 804 6	953
Lease : Good con	dition/ Icy		Superintendent : Dave	e Loxam	Phone # : 403 538 4	590
Weather : Clear -18			Supervisor : Rodi	ney Tetreault	Phone # : 403 804 6	953
Report by Wellcore		F	Release 12		December 1,	2003 07:32

Casing Report

Project : Joslyn Creek Phase 1

Well Name : DCEL 111 JOSLYN CREEK 3-33-9 Main Hole : 103/03-33-095-12-W4M

Well Type : Steam Injector

28.0 375.0 Casin OD 0.0 298.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	ng Date ID 0.0 273.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	28.0 374.0 Weight Grade 0.00 89.27L80 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Range 3	0.0 0.0 <u>Connectio</u>	0. 0. 10. 10.0 7.5 10.5 10.7	0 0 From 374.0 366.5 355.9	To 374.0 374.0
375.0 Casin OD 0.0 298.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	ID 0.0 273.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	374.0 Weight Grade 0.00 89.27L80 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Range 3	0.0	n <u>Length</u> 0.0 7.5 10.5 10.7	From 374.0 366.5	<u>To</u> 374.0 374.0
Casi OD 0.0 298.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	ng Date ID 0.0 273.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Weight Grade 0.00 89.27L80 0.00 0.00 0.00 0.00 0.00 0.00	Range 3	Connectio	n <u>Length</u> 0.0 7.5 10.5	From 374.0 366.5	To 374.0 374.0
Casin OD 0.0 298.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ID 0.0 273.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Weight Grade 0.00 89.27L80 0.00 0.00 0.00 0.00 0.00 0.00	Range 3	Connectio	n Length 0.0 7.5 10.5	From 374.0 366.5	To 374.0 374.0
OD 0.0 298.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ID 0.0 273.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Weight Grade 0.00 89.27L80 0.00 0.00 0.00 0.00 0.00	Range	Connectio	n Length 0.0 7.5 10.5	From 374.0 366.5	To 374.0 374.0
0.0 298.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 273.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 89.27L80 0.00 0.00 0.00 0.00 0.00 0.00	3		0.0 7.5 10.5	374.0 366.5	374.0 374.0
298.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	273.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0	89.27L80 0.00 0.00 0.00 0.00 0.00 0.00	3		7.5 10.5 10.7	366.5	374.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00			10.5 10.7	366 0	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00			10.7	000.0	366.5
0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.00 0.00 0.00			10.7	345.3	355.9
0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.00			10.5	334.8	345.3
0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.00			10.7	324.1	334.8
0.0 0.0 0.0 0.0	0.0	0.00			10.7	313.4	324.1
0.0 0.0 0.0	0.0	0.00			12.3	301.1	313.4
0.0	0.0	0.00			11.9	289.2	301.1
0.0	0.0	0.00			12.6	276.6	289.2
	0.0	0.00			10.3	266.3	276.6
0.0	0.0	0.00			13.0	253.3	266.3
0.0	0.0	0.00			12.8	240.6	253.3
0.0	0.0	0.00			11.8	228.8	240.6
0.0	0.0	0.00			12.0	216.8	228.8
0.0	0.0	0.00			11.9	204.9	216.8
0.0	0.0	0.00			12.7	192.2	204.9
0.0	0.0	0.00			11.8	180.4	192.2
0.0	0.0						
	Ad	tual Above KB :		0.00	Above KB	•	1.87
					fally Document	<u>s</u>	
Qua	antity	Spacing Fro	om	То			
	1	2.0 37	3.0 3	73.0			
	3	6.0 36	7.0 3	56.9			
	22	12.5 35	6.9	93.5			
	4	25.0 9	3.5 2	29.8			
	3	0.0 2	9.8	0.0			
rque Compa	ny : Hun	ting					
Jts. In Ho	ole :	32			lts. Left On Racł	c :	3
	rque Compa Jts. In Ho	rque Company : Huni Jts. In Hole :	rque Company : Hunting Jts. In Hole : 32	rque Company : Hunting Jts. In Hole : 32	rque Company : Hunting Jts. In Hole : 32	rque Company : Hunting Jts. In Hole : 32 Jts. Left On Rac	rque Company : Hunting Jts. In Hole : 32 Jts. Left On Rack :

Casing Report

Project : Joslyn Creek Phase 1

Well Name : DCEL 111 JOSLYN CREEK 3-33-9 Main Hole : 103/03-33-095-12-W4M

Well Type : Steam Injector

ection										
Section	Hole Size	Hole Depth	Casing Se	et At (MD)	Casing	Set At (1	rvd) L	eak Off Gradien	t Mud Ty	pe
For : Interme	diate		Casing Da	ite :						
Run Order Description	# Of Type/N	Afar. C		D Weight	Grade	Range	Connectior	Length	From	То
18Casing			0.0 0	0.0 0.00		0	and a share of a share	12.8	167.7	180.4
19Casing			0.0 0	0.00				12.4	155.2	167.7
20Casing			0.0 0	0.0 0.00				12.8	142.4	155.2
21 Casing			0.0 0	0.0 0.00				12.7	129.8	142.4
22 Casing			00 0	0.0 0.00				12.8	117.0	129.
23Casing				0 0 00				12.5	104.5	117.
24Casing			0.0 0					12.0	92.5	104
25Casing			0.0 0 0.0 0					12.6	79.9	92
26Casing			0.0 0					12.5	67.4	79 (
20Casing								12.5	54.6	67
27 Casing								12.0	J4.0	54
28 Casing								12.9	41.7 20 0	04. 44 '
29Casing								12.9	20.0 46 A	41.
30 Casing								12.4	10.4	20.
31 Casing			0.0 0	0.00				12.0	4.4	16.4
32Casing		(0.0 0	0.00				0.0	4.4	4.4
33Casing		(0.0 0	.0 0.00				0.0	4.4	4.4
34 Casing		(0.0 0	.0 0.00				6.3	-1.9	4.4
				Actual Above	e KB :		0.00	Above KB		1.87
cessories							Ta	ally Documents	<u>1</u>	
tem	Туре		Quantity	Spacing	Fron	n	То			
	¥									
Torque Monitoring :		Torque Co	mpany : H	unting						
Jts. Delivered :	35	Jts.	In Hole :	32			Jt	s. Left On Rack	:	3
mments										
<u>nments</u>										
<u>mments</u>										

Cementing Details

Project : Joslyn Creek Phase 1

Well Type : Steam Injector

Well Name : DCEL 111 JOSLYN CREEK 3-33 Main Hole : 103/03-33-095-12-W4M

Section	Hole Depth	Hole Size	Casing OD	Casing Set At (MD)	Casing Set At (TVD)
Surface	28.0	508.0	406.40	28.0	0.0
Intermediate	375.0	374.6	42.24	374.0	0.00000

<u>Cement</u>	Cement Job Date : 11/29/2003						
						Interva	ıl
Sequence	Blend	Additives	Volume	Density	Weight	Тор	Bottom
Scavenger	Thermal 40	2.0% CaCl2 + 0.25% CFL-3 + 1.0% FWCA-H	1.00	1300.0	0	0.0	0.0
Fill	Thermal 40	2.0% CaCl2 + 0.25% CFL-3 + 1.0% FWCA-H	27.00	1885.0	0	0.0	375.0

Total Volume : 28.00 m3

	Yes	No	Remarks
Reciprocated	: 🗙		Rig to & cement intermediate casing. Pump 5.0 m3 H2O ahead (red dye & celloflake mixed in as marker). Pressure test lines to 19.0 MPa. Pump 1.0 m3 scavenger @ 1300 kg/ m3. Pump 27.0 m3
Rotated Casing			(36.0 tonnes) Thermal 40 + 2.0% CaCl2 + 0.25% CFL-3 + 1.0% FWCA-H @ 1885 kg/ m3. Displace casing w/ 21.65 m3 H2O. Plug down @ 1412hrs. Nov. 29/ 03. Float & annulus held okay. Had 4.0 m3 good cement returns. Casing landed @ 374.0mMD. Float @ 367.3mMD
Bumped Plugs			
Floats Held			
Annulus Held	\times		
Held Back Pressure :		\times	
Fluid Returns :	\mathbf{X}		
Cement Returns :	X		
Loss of Circulation :		\mathbf{X}	
Cement Return Volume :		4.00	

0			Daily	Drillina	Repor	t	Report #	:
VVellco	bre	Project [:] Joslyn	Creek Phase 1	Well Nan	ne : DCEL 11	- 1 JOSLYN CREEK	Ops. Date	: 11/28/2
		Well Type : Steam	Injector	Main Ho	le : 103/03-3	3-095-12-W4M	Days From Spud	:
Well Lic A Ops. Obje AM Ops. Fore	ense : 02961 FE # : 054-03 ective : TO IN Ops. : Wait o ecast : Cemer	69 303S-I An JECT IN TO THE MCI n 298mm wiper plug nt intermediate casing	nount : \$1,411,0 //URRAY FM , WOC, P/U BHA	Spud : 11/ 66 R.R. : & Drill out, drill 2	26/2003 269mm hztl h	GL : 33 CF : 0 KB : 34	9.70 Cost To Date : 0.00 Est. TD : 3.46 Depth @ 2400hr : Progress : Day Rot. Hrs. :	\$133,6 \$304,3 966 375. 34
Bit Record	d		Da	ily	Depth	Cumulative		۷۱.
<u>Bit # S</u> 1I 3	ize <u>Mfg.</u> 75 RR	Model RPM Wo S11J 195	DB Progress 10 347.0	Hours ROP 21.00 16.5	Out De 375.0	pth Hours RC 622 34.50 18	PP Condition 3.0	
Mud Reco	ord T			Gel Strength		Solids Cl	Mud Loss	
7:15:00 A	M Polymer	1080 58	РV ҮР 20 12	10 Sec 10 Min 4.0 6.5	<u>W.L.</u> pH 0.0 0.0	<u>% (ppm) Oi</u> 5.0 0	il % Volume Formation 0.0 50	
Circulation	Record		Pump#1	D				
Bit # No:	zzles	Model S	troke Liner Spr	n Model Strok	<u>10#2</u> Pliner Sr		<u>Average</u>	ΔP
1I 17.	5,17.5,17.5	BSF-80	229 152 110	0 BSF-80 229	152 11	0 7200 1080) 2.61 27 0	30.1
Mud Addit	tivies	Deviation Re	ecord	BHA			Geological	
Safe-solv	4		a (deg) Az (deg)	Item	# Of	O.D. Length	Formation	Тор
Fedzan	-			Bit	1	374.6 0.35		
Poly plus c	dry			X/O Sub	1	203.2 7.34		
Safe surf	,			Float sub	1	203.2 0.44		
				Non-mag	DC 3	201.0 13.95		
				Hang-off s	sub 1	207.0 1.91		
Today's M	ud Cost : \$0			Non-mag	DC 2	203.0 18.46	Casing	
Solids Con	itrol			X/O sub	1	200.0 0.43	Section	Set At
Item	Make	U. Flow	O. Flow	Jars	1	168.0 6.35	Surface	28.0
Centrifuge	Swac	o 2	010 1030				Intermediate	374.0
Centrifuge	Swac	o 20	010 1030					
Desander Shake	Swac r : Brandt	o 1: Screens : 20	385 1100	DP OD : DC OD : 12).00 mm 7 00 mm Stri	BHA: 50.13 m	n	
Time Distri	bution	Total Hours	: 24.00					
Time From	Time To	Time Category	Remarks		V			
12:00:00 AM	12:15:00 AM	Rig Service	Rig Service					
12:15:00 AM	6:45:00 AM	Drilling	Drill 374.6 mm	intermediate ho	e from 303 t	o 375mMD (Proble	ems w/ Welltec tractor)	
6:45:00 AM	8:00:00 AM	Deviation Survey	Accumulated d	irectional survey	S.			
B:00:00 AM	8:15:00 AM	Circ./Condition Mud	Circulate & con	dition hole/ Ria	Service.			
3:15:00 AM	12:30:00 PM	Tripping	Wiper trip to S	C shoe (Ream to	Sc & back t	o bottom).		
12:30:00 PM	12:45:00 PM	Rig Service	Rig service Visually inspec	t pipe arm, iron r	oughneck ar	nd top drive - o.k.		
12:45:00 PM	1:30:00 PM	Circ./Condition Mud	Condition mud	& circulate hole	clean prior to	running casing.		
:30:00 PM	4:00:00 PM	Tripping	POOH to lay do	own directional to	ols & run ca	sing.		
Contractor : I	Precision Drilli	ng Ria Man	ager ; Rick Higgin	15	Geologist · F)ano Bridgo	Phone # . 400 540 cm	20
Rig : F	Precision #297 Good conditior	Rig Manager Pl	none : 403 850 71	81 <u>Supe</u>	Engineer : F	Rodney Tetreault	Phone # : 403 540 872 Phone # : 403 804 699	29 53
Weather : 0	Clear -16	-		S	Supervisor : F	Rodney Tetreault	Phone # : 403 538 459	90 53
eport by Wellcore	9			Balaasa 10		, . Strouult	December 4.00	

WellCore Well License : 0296169 AFE # : 054-0303 Ops. Objective : TO INJE0 AM Ops. : Wait on 2 Ops. Forecast : Cement i <u>Bit Record</u> Bit # Size Mfg. M	Project : Joslyn Cre Well Type : Steam Inje 3S-I Amou CT IN TO THE MCMUF 298mm wiper plug ntermediate casing, W	ek Phase 1 ector nt : \$1,411,066	Well Name : DCEL 111 JOSLYN CREEK Main Hole : 103/03-33-095-12-W4M	Ops. Date : 11/28/20
Well License : 0296169 AFE # : 054-0303 Ops. Objective : TO INJE AM Ops. : Wait on 2 Ops. Forecast : Cement i <u>Bit Record</u> Bit # Size Mfg. M	Well Type : Steam Inje 3S-I Amou CT IN TO THE MCMUF 298mm wiper plug ntermediate casing, W	nt : \$1,411,066	Main Hole : 103/03-33-095-12-W4M	3-3
Well License : 0296169 AFE # : 054-0303 Ops. Objective : TO INJE0 AM Ops. : Wait on 2 Ops. Forecast : Cement i <u>Bit Record</u> Bit # Size Mfg. M	3S-I Amou CT IN TO THE MCMUI 298mm wiper plug ntermediate casing, W	nt: \$1,411,066		Days From Spud :
Bit Record Bit # Size Mfg. N		RRAY FM OC, P/U BHA & D	Spud : 11/26/2003 GL : 339 R.R. : CF : 0 KB : 343 rill out, drill 269mm hztl hole	Day Cost : \$133,66 9.70 Cost To Date : \$304,37 0.00 Est. TD : 966 3.46 Depth @ 2400hr : 375.0 Progress : 347 Day Rot. Hrs. : 21.0
Bit # Size Mfg. N	-	Daily	Depth Cumulative	
	lodel RPM WOB	Progress Hou	rs ROP Out Depth Hours RO	P Condition
Mud Record Time Type 7:15:00 AM Polymer	Density Visc. 1080 58	<u>Gel</u> PV YP 10 S 20 12	<u>Strength</u> Solids CI ec 10 Min W.L. pH % (ppm) Oi 4.0 6.5 0.0 0.0 5.0 0	Mud Loss 1 % Volume Formation 0.0 50
Circulation Record	Pur	<u>mp#1</u>	Pump #2	<u>Average</u> ΔP
Mud Item Unit # of	Depth Incl (d	leg) Az (deg)	Item # Of O.D. Length	Formation Top
Today's Mud Cost : \$0				Casing
Solids Control				Section Set At
Itom Make				
Item Make	U. Flow	O. Flow		Surface 28.0
Litem Make Centrifuge Swaco Centrifuge Swaco	<u>U. Flow</u> 2010 2010	<u>O. Flow</u>) 1030		Surface28.0Intermediate374.0
Item Make Centrifuge Swaco Centrifuge Swaco Desander Swaco	<u>U. Flow</u> 2010 2010 1385	<u>O. Flow</u>) 1030) 1030 , 1100		Surface 28.0 Intermediate 374.0
Item Make Centrifuge Swaco Centrifuge Swaco Desander Swaco Shaker : Brandt	<u>U. Flow</u> 2010 2010 1385 Screens : 20	<u>O. Flow</u>) 1030) 1030 ; 1100	DP OD : 0.00 mm BHA : 50.13 r	Surface 28.0 Intermediate 374.0
Item Make Centrifuge Swaco Centrifuge Swaco Desander Swaco Shaker : Brandt	<u>U. Flow</u> 2010 2010 1385 Screens : 20 Total Hours :	O. Flow 1030 1030 1030 1100 1 24.00	DP OD: 0.00 mm BHA: 50.13 r DC OD: 127.00 ^{mm} String Wgt.: 0.00	Surface 28.0 Intermediate 374.0
Item Make Centrifuge Swaco Centrifuge Swaco Desander Swaco Shaker : Brandt Time Distribution Time From Time To	<u>U. Flow</u> 2010 2010 1385 Screens : 20 Total Hours : "ime Category	O. Flow 1030 1030 1030 1100 1 24.00 Remarks	DP OD: 0.00 mm BHA: 50.13 r DC OD: 127.00 ^{mm} String Wgt.: 0.00	Surface 28.0 Intermediate 374.0
Item Make Centrifuge Swaco Centrifuge Swaco Desander Swaco Shaker : Brandt Swaco Time Distribution Time To Fime From Time To T 4:00:00 PM 6:00:00 PM E	U. Flow 2010 2010 1385 Screens : 20 Total Hours : ime Category Directional Work	O. Flow 1030 1030 1100 24.00 Remarks -ay down direction	DP OD: 0.00 mm BHA: 50.13 r DC OD: 127.00 mm String Wgt.: 0.00 nal tools.	Surface 28.0 Intermediate 374.0
Item Make Centrifuge Swaco Centrifuge Swaco Desander Swaco Shaker : Brandt Time Distribution Time From Time To 4:00:00 PM 6:00:00 PM 5:00:00 PM 6:15:00 PM	U. Flow 2010 2010 1385 Screens : 20 Total Hours : Time Category Directional Work Safety Meetings	O. Flow 1030 1030 1030 1100 24.00 Remarks -ay down direction Pre-job safety mee	DP OD : 0.00 mm BHA : 50.13 r DC OD : 127.00 mm String Wgt. : 0.00 nal tools.	Surface 28.0 Intermediate 374.0

()				Da	aily	Dri	lling	Rep	ort				Report #	: 2
Wellco	re	Project Well Type	: Joslyn C : Steam Ir	reek Ph ijector	nase 1		Well Nam Main Ho	ne : DCE le : 103/	EL 1I1 JC)SLYN CF)5-12-W41	REEK 3-3 И	Days F	Ops. Date From Spud	: 11/27/200 : 1
Well Lice AF Ops. Objec AM C Ops. Fore	nse : 029616 E # : 054-03 tive : TO INJ Ops. : Drilling cast :	59 03S-I IECT IN TO ⁻ 374.6 mm ir	Amo THE MCMI ntermediate	unt : S JRRAY e hole @	\$1,411,0 FM ⊉ 357ml	066 MD.	Spud : 11// R.R. :	26/2003	3	GL: CF: KB:	339.70 0.00 343.46	Co Depth Day	st To Date Est. TD @ 2400hr Progress y Rot. Hrs.	: \$0 : \$0 : 966.0 : 0.00 : 275.0 : 13.50
Bit Record Bit # Siz 1I 37	ze Mfg. 75 RR	Model R S11J	PM WO 195	B Prog 9 2	Da ress 275.0	aily Hours 13.50	6 ROP 0 20.4	Depth Out 303.0	Cu Depth 275	umulative Hours 13.50	ROP 20.4	(Condition	
Mud Reco Time 10:30:00 F	r <u>d</u> Type ⁰NPolymer	Density 1100	Visc. 40	<u>РV</u> 11	YP 5	<u>Gel S</u> 10 Se 2	strength c 10 Min 5 3.0	W.L. 0.0	Solie pH 10.0 €	ds Cl % (ppm) 5.0 600	Oil % 0 0.0	Volume I 29	Mud Loss ⁻ ormation	
Circulation	Record		P	umn#1			Dur	an #2			11177 12107 VICTOR			~
Bit # Noz	zles	- N	/lodel Str	oke Li	ner Sp	m Mo	del Strok	e Liner	Spm	Press. [Dens. C	- Dutput	<u>Average</u> DC DP	۸۲ %
11 17.5	5,17.5,17.5	E	3SF-801	0	0 0)	0	0	0	0	0	0.00	0 0	0.0
<u>Mud Additi</u> Mud Item	i <mark>vies</mark> Unit # c	of [viation Red Depth Incl	<u>:ord</u> (deg) A	z (deg)		BHA Item	į	# Of (D.D. Le	ength	<u>Geoloc</u> Form	lical ation	Тор
SAPP	11		41 09	45.30	189.00		Motor		1 2	/4.0 03.2	0.35			
Sawdust	15		49.85	47.60	189.60		X/O Sub		1 2	03.2	0.44			
Citric acid	2		58.69	50.90	189.90		Float sub		1 2	03.0	0.44			
Sodium bic	arb2		68.17	54.30	190.50		Non-mag	DC	3 2	00.0 01.0 1	13.95			
Safe-solv	2		77.10	56.90	191.00		Hang-off	sub	1 2	07.0	1.91			
Today's Mu	ud Cost : \$0						Non-mag	DC	2 2	03.0 1	8.46	Casing		
Solids Cont	rol						X/O sub		1 20	0.00	0.43	Sectio	on	Set At
Item	Make	•	U. Flow	O. Fl	ow		Jars		1 10	58.0	6.35	Surfa	ce	28.0
Centrifuge	Swac	:0	20	10	1030							Intern	nediate	375.0
Centrifuge	Swac	0	20	10	1030									
Desander	Swac	:0	13	85	1100	D	P OD :	0.00 mi	m	BHA : 50	.13 m			
Shaker	Brandt	Screens	s : 20			D	C OD : 12	7.00 mi	m String	Wgt.: 0	.00			
Time Distrit	oution	T	otal Hours	: 24.0	0							I		
Time From	Time To	Time Categ	jory	Rema	rks	1.17 also								
12:00:00 AM	1:15:00 AM	Miscellane	ous	Contir	nue to w	eld ca	sing, instal	l belly p	an & flov	v line.				
1:15:00 AM	1:30:00 AM	Rig Service)	Rig se	ervice									
1:30:00 AM	5:00:00 AM	Directional	Work	P.U. d	lirection	al tool	s 9Change	offset p	oads).				****	
5:00:00 AM	6:15:00 AM	Drill Out		Drill o	ut ceme	nt. (Ta	ig cement (@ 24ml	MD).			······································		
6:15:00 AM	7:30:00 AM	Drilling		Drill 37	74.6 mm	n interi	mediate ho	le from	28 to 67	mMD.				
7:30:00 AM	8:00:00 AM	Deviation S	urvey	Accum	nulated	directi	onal survey	s.						
8:00:00 AM	8:15:00 AM	Rig Service		Rig Se	ervice									
8:15:00 AM	12:00:00 PM	Drilling		Drill in	termedi	ate ho	le from 67	to 104m	ו M D.					
12:00:00 PM	1:45:00 PM	Circ./Condi	tion Mud	Displa	ce hole	to poly	/mer mud &	& clean	transfer	tank.				
Contractor : F Rig : F Lease : C Weather : C	Precision Drilli Precision #297 Good condition Clear -12	ing 7 Rig M n/ Icy	Rig Mana anager Ph	iger : Ri one : 40	ck Higg 03 850 7	ins 181	Supe	Geolog Engine rintende Supervis	gist : Dan eer : Rod ent : Dav sor : Rod	e Bridge ney Tetrea e Loxam ney Tetrai	ault	Phone # : Phone # : Phone # : Phone # :	403 540 8 403 804 6 403 538 4 403 804 6	1729 1953 1590 1953

Wellcore Well License : 029616	Project [:] Joslyn Cre Well Type : Steam Inje 3 3S-1 Amou	Daily Dr ek Phase 1 ector	Filling Report Well Name : DCEL 111 JOS Main Hole : 103/03-33-09 Spud : 11/26/2003 R R	SLYN CREEK 3-3 5-12-W4M GL : 339.70 CF : 0.00	Report # : Ops. Date : Days From Spud : Day Cost : Cost To Date : Est. TD :	2 11/27/200: 1 \$0 \$0 966.0
Ops. Objective : TO INJI AM Ops. : Drilling Ops. Forecast :	ECT IN TO THE MCMUI 374.6 mm intermediate	RRAY FM hole @ 357mMD.		KB : 343.46	Depth @ 2400hr : Progress : Day Rot. Hrs. :	0.00 275.0 13.50
<u>Bit Record</u> Bit # Size Mfg.	Model RPM WOB	Daily Progress Hou	Depth <u>Cu</u> urs ROP Out Depth	mulative Hours ROP	Condition	
Mud Record Time Type 10:30:00 PMPolymer	Density Visc. 1100 40	<u>Ge</u> PV YP 10.5 11 5	<u>I Strength</u> Solid Sec 10 Min <u>W.L. pH</u> 2.5 3.0 0.0 10.0 6	s Cl % (ppm) Oil % ^ .0 600 0.0	Mud Loss Volume Formation 29	
Circulation Record Bit # Nozzles	Pu Model Stro	mp#1 ke Liner Spm I	Pump #2 Model Stroke Liner Spm	Press. Dens. O	<u>Average</u> utput DC DP	ΔP %
Mud Additivies Mud Item Unit # c Defoam X 5 Antifoam D47 2 Antifoam M45 2	f Deviation Rec. f Depth Incl (86.80 5 95.87 6 104.75 6 113.60 6 122.44 6 131.86 7	ord deg) Az (deg) 59.40 191.90 51.70 191.20 54.10 189.50 55.90 188.60 58.90 188.80 72.60 189.50	BHA Item #Of C	D.D. Length	Geological Formation	Тор
Today's Mud Cost : \$0 Solids Control Item Make Centrifuge Swac Centrifuge Swac Desander Swac Shaker : Brandt	U. Flow 0 201 0 201 0 138 Screens : 20	O. Flow 0 1030 0 1030 5 1100	DP OD : 0.00 mm DC OD : 127.00 mm String	BHA: 50.13 m Wat.: 0.00	<u>Casing</u> Section Surface Intermediate	<u>Set At</u> 28.0 375.0
Time Distribution Time From Time To 1:45:00 PM 3:15:00 PM 3:15:00 PM 4:00:00 PM 4:00:00 PM 4:15:00 PM 4:15:00 PM 11:15:00 PM 11:15:00 PM 11:59:59 PM	Total Hours : Time Category Drilling Deviation Survey Rig Service Drilling Deviation Survey	24.00 Remarks Drill intermediate Accumulated dire Rig Service. Drill intermediate Accumulated dire	hole from 104 to 132mMD. ectional surveys. hole from 132 to 303mMD. ectional surveys. (Problems w/	Welltec tractor [hy	draulics- movement]).
Contractor : Precision Dril Rig : Precision #29 Lease : Good conditio Weather : Clear -12 Report by Wellcore	ing Rig Mana 7 Rig Manager Ph n/ Icy	ger : Rick Higgins one : 403 850 718 F	Geologist : Dar 1 Engineer : Roc Superintendent : Dav Supervisor : Roc Release 12	e Bridge Iney Tetreault re Loxam Iney Tetrault	Phone # : 403 540 8 Phone # : 403 804 6 Phone # : 403 538 4 Phone # : 403 804 6 November 28,	3729 3953 1590 3953 2003 07:41

()		Daily Dr	rilling Report		Report # :	: 2
Wellcore	Project : Joslyn (creek Phase 1	Well Name : DCEL 111 JOSI	YN CREEK 3-3	Days From Spud :	: 11/27/200 : 1
	Well Type : Steam I	njector	Main Hole : 103/03-33-095-	12-VV4M	Day Cost :	: \$0
Well License : 029	96169		Spud : 11/26/2003	GL: 339.70	Cost To Date :	: \$C
AFE # : 054	4-0303S-I Am	ount : \$1,411,066	R.R. :	CF: 0.00	Est. TD :	966.0
Ops. Objective : TO	INJECT IN TO THE MCM	URRAY FM		KB: 343.46	Depth @ 2400hr :	0.00
AM Ops. : Dri	lling 374.6 mm intermediat	e hole @ 357mMD.			Progress :	275.0
Ops. Forecast :		D-11-		1 - 12	Day Rot. HIS	13.50
Bit Record	Madel DDM W/C	Daily	Depth <u>Cum</u>	ulative DOD	Condition	
Dit ii Oize Mig					Condition	
Mud Record		Ge	I Strength Solids	CI	Mud Loss	
Time Type	Density Visc.	PV YP 10 S	Sec 10 Min W.L. pH %	(ppm) Oil %	Volume Formation	
10:30:00 PNPolyme	er 1100 40	11 5	2.5 3.0 0.0 10.0 6.0	600 0.0	29	
Circulation Record		Pump#1	Pump #2		Average	ΔP
Bit # Nozzles	Model S	troke Liner Spm	Model Stroke Liner Spm F	ress. Dens. O	utput DC DP	%
Mud Additivies	Deviation Re	cord	BHA		Geological	
Mud Item Unit	# of Depth Inc	l (deg) Az (deg)	Item # Of O.I	D. Length	Formation	Тор
	140.82	75.70 190.80				
	150.32	78.20 191.90				
	159.23	81.00 191.90				
	168.31	82.40 192.10				
	177.28	84.40 192.80				
	186.60	85.00 194.10				
Today's Mud Cost :	\$0				Casing	
Solids Control					Section	Set At
Item	Vlake U. Flow	O. Flow			Surface	28.0
Centrifuge	Swaco 2	010 1030			Intermediate	375.0
Centrifuge	Swaco 2	010 1030				
Desander	Swaco 1	385 1100	DP OD : 0.00 mm B	HA: 50.13 m		
Shaker : Brandt	Screens : 20		DC OD : 127.00 mm String W	gt.: 0.00		
Time Distribution	Total Hour	s: 24.00				
Time From Time To	Time Category	Remarks				
12:00:00 AM 1:15:00	AM Miscellaneous	Continue to weld	casing, install belly pan & flow I	ine.		
1:15:00 AM 1:30:00	AM Rig Service	Rig service				
1:30:00 AM 5:00:00	AM Directional Work	P.U. directional to	ools 9Change offset pads).			
5:00:00 AM 6:15:00	AM Drill Out	Drill out cement.	(Tag cement @ 24mMD).			
6:15:00 AM 7:30:00	AM Drilling	Drill 374.6 mm in	termediate hole from 28 to 67m	MD.		
7:30:00 AM 8:00:00	AM Deviation Survey	Accumulated dire	ectional surveys.			
8:00:00 AM 8:15:00	AM Rig Service	Rig Service				
8:15:00 AM 12:00:0	0 PM Drilling	Drill intermediate	hole from 67 to 104mMD			
12:00:00 PM 1:45:00	PM Circ /Condition Mud	Displace hole to	nolymer mud & clean transfer to	nk		
12.00.00 F WI 1.45.00		Displace IIUle (0)	orginal mua a alcali tidiisiel ta			
Contractor : Precision	Drilling Riq Ma	nager : Rick Higgins	Geologist : Dane	Bridge	Phone # : 403 540 8	3729
Rig : Precision	#297 Rig Manager F	hone : 403 850 718	1 Engineer : Rodn	ey Tetreault	Phone # : 403 804 6	3953
Lease : Good cor	ndition/ Icy		Superintendent : Dave	Loxam	Phone # : 403 538 4	1590
Weather : Clear -12			Supervisor : Rodno	ey Tetrault	Phone # : 403 804 6	3953
Report by Wellcore		F	Release 12		November 28,	2003 07:41

()			Daily	/ Drilli	ing Report		Report # :	: 2
Wellcore	P	roject : Joslyn Ci	reek Phase 1	ı v	/ell Name : DCEL 1I1 J	JOSLYN CREEK 3-3	Ops. Date	: 11/27/200 ·
	Well	Type : Steam In	jector	r	Main Hole : 103/03-33-0	095-12-W4M	Days I foll Spud	. er
Mall License : 029	96169			Sn	ud : 11/26/2003	GL 339.70	Cost To Date	. au · sc
	4-0303S-L	Amo	unt · \$1.41	1066 R	R ·	CF: 0.00	Est. TD	
Ops. Objective : TO		N TO THE MCMU	JRRAY FM	1,000 11	••••	KB: 343.46	Depth @ 2400hr :	: 0.00
AM Ops. : Dri	llina 374.6	mm intermediate	hole @ 357	mMD.			Progress	275.0
Ops. Forecast :	g		U				Day Rot. Hrs.	13.50
Bit Record				Daily	Depth (Cumulative		
Bit # Size Mfg	. Mode	I RPM WOE	3 Progress	Hours	ROP Out Dept	h Hours ROP	Condition	
Mud Record				Gel Stre	ength Sc	olids Cl	Mud Loss	
Time Type	De	ensity Visc.	PV Y	P 10 Sec	10 Min W.L. pH	% (ppm) Oil %	Volume Formation	
10:30:00 PNPolyme	ər	1100 40	11	5 2.5	3.0 0.0 10.0	6.0 600 0.0	29	
Circulation Record		P	ump#1		Pump #2	_	Average	ΔP
Bit # Nozzles		Model Str	roke Liner	Spm Mode	I Stroke Liner Sprr	n Press. Dens. C	Output DC DP	%
Mud Additivies		Deviation Red	cord	BH	IA		Geological	
Mud Item Unit	# of	Depth Incl	(deg) Az (de	eg) li	tem # Of	O.D. Length	Formation	Тор
		195.69	85.40 194	1.70				
		205.12	85.30 194	1.60				
		214.20	84.90 194	1.60				
		223.02	85.50 194	1.90				
		231.98	86.30 194	.60				
		241.28	86.90 194	.10				
Today's Mud Cost :	\$0						Casing	
Solids Control							Section	Set At
Item	Make	U. Flow	O. Flow				Surface	28.0
Centrifuge	Swaco	20)10 10	030			Intermediate	375.0
Centrifuge	Swaco	20	010 10	30				
Desander	Swaco		85 11	00 DD		DUA · 50.12 m		
Sheker : Prandt		Sereens : 20			OD : 0.00 mm Strir	BHA: 50.15 m		
Shaker Brandi		Screens . 20	. 24.00		OD . 127.00 min 3th	ig vvgt. , 0.00		
Time From Time To	o Tim	e Category	Remarks		from 404 to 422m MD			
1:45:00 PM 3:15:00		ling	Drill Intern			•		
3:15:00 PM 4:00:00	PM Dev	viation Survey	Accumula	ted direction	nal surveys.		,	
4:00:00 PM 4:15:00	PM Rig	Service	Rig Servic	æ.				
4:15:00 PM 11:15:0	0 PM Dril	ling	Drill interm	nediate hole	from 132 to 303mMD	•		
11:15:00 PM 11:59:5	9 PM Dev	viation Survey	Accumula	ted directior	nal surveys. (Problems	w/ Welltec tractor [hy	draulics- movement	:]).
Contractor : Precisior	n Drilling	Rig Mar	ager : Rick H	liggins	Geologist : E	Dane Bridge	Phone # : 403 540	8729
Rig : Precisior	n #297	Rig Manager P	hone : 403 8	50 7181	Engineer : F	Rodney Tetreault	Phone # : 403 804 (6953
Lease : Good co	ndition/ Icy	/			Superintendent : D	Dave Loxam	Phone # : 403 538	4590
Weather : Clear -12	2				Supervisor : F	Rodney Tetrault	Phone # : 403 804 (6953
Report by Wellcore				Releas	e 12		November 28	, 2003 07:41

()			Daily D	rilling Report		Report # :	: 2
Wellcore		Project : Joslyn Ci	reek Phase 1			Ops. Date :	11/27/200
		Well Type : Steam In	iector	Main Hole : 103/03-33-09	5-12-W4M	Days From Spud :	: 1
Well License AFE # Ops. Objective AM Ops.	20296169 054-030 TO INJE Drilling 3	9 I3S-I Amo ECT IN TO THE MCML 874.6 mm intermediate	unt : \$1,411,066 JRRAY FM : hole @ 357mMD.	Spud : 11/26/2003 R.R. :	GL: 339.70 CF: 0.00 KB: 343.46	Day Cost : Cost To Date : Est. TD : Depth @ 2400hr : Progress :	\$0 \$0 966.0 0.00 275.0
Ops. Forecast	:					Day Rot. Hrs. :	13.50
Bit Record Bit # Size	Mfg.	Model RPM WOE	Daily 3 Progress Ho	Depth <u>Cu</u> urs ROP Out Depth	mulative Hours ROP	Condition	
Mud Record Time Ty	уре	Density Visc.	<u></u> PV YP 10	el Strength Solic Sec 10 Min W.L. pH	ls Cl % (ppm) Oil %	Mud Loss Volume Formation	
10:30:00 PNP	olymer	1100 40	11 5	2.5 3.0 0.0 10.0 6	.0 600 0.0	29	
Circulation Rec	cord		ump#1	Pump #2	_	Average	ΔP
Mud Additivie: Mud Item	<u>s</u> Unit #of	Deviation Rec Depth Incl 250.05 258.96	o <mark>ord</mark> (deg) Az (deg) 86.20 194.30 85.40 194.10	BHA Item #Of C).D. Length	<u>Geological</u> Formation	Тор
Today's Mud C Solids Control	Cost : \$0	267.72 276.82	86.40 193.50 86.90 194.00			Casing Section	Set At
ltem	Make	U. Flow	O. Flow			Surface	28.0
Centrifuge	Swace	20 ⁻	10 1030			Intermediate	375.0
Centrifuge	Swace	o 20 ⁴	10 1030				
Desander	Swace	D 138	35 1100	DP OD : 0.00 mm	BHA: 50.13 m		
Shaker : Br	randt	Screens : 20		DC OD: 127.00 mm String	Wgt.: 0.00		
Time Distribution	<u>on</u>	Total Hours	24.00				
Time From Tim	ne To	Time Category	Remarks				
12:00:00 AM 1:1	5:00 AM	Miscellaneous	Continue to weld	casing, install belly pan & flow	/ line.		
1:15:00 AM 1:3	80:00 AM	Rig Service	Rig service				
1:30:00 AM 5:0	00:00 AM	Directional Work	P.U. directional to	ools 9Change offset pads).			
5:00:00 AM 6:1	5:00 AM	Drill Out	Drill out cement.	(Tag cement @ 24mMD).			
6:15:00 AM 7:3	0:00 AM	Drilling	Drill 374.6 mm in	termediate hole from 28 to 67r	mMD.		
7:30:00 AM 8:0	0:00 AM	Deviation Survey	Accumulated dire	ectional surveys.			
8:00:00 AM 8:1	5:00 AM	Rig Service	Rig Service			······	
8:15:00 AM 12:	00:00 PM	Drilling	Drill intermediate	hole from 67 to 104mMD.			
12:00:00 PM 1:4	5:00 PM	Circ./Condition Mud	Displace hole to	oolymer mud & clean transfer t	ank.		
Contractor : Prec	cision Drillin	ng Rig Mana	ger : Rick Higgins	Geologist : Dan	e Bridge	Phone # : 403 540 87	729
Rig : Prec	ision #297	Rig Manager Ph	one : 403 850 718	1 Engineer : Rod	ney Tetreault	Phone # : 403 804 69	953
Lease : Good	d condition	/ Icy		Superintendent : Dave	e Loxam	Phone # : 403 538 45	590
vveather : Clea	ur -12			Supervisor : Rod	ney Tetrault	Phone # : 403 804 69	953

Daily Geology Operations

Proje	ct :Joslyn Creek Phase	1 Well :DCEL	L 111 JOSLYN CREI	Main Hole :103/03	-33-095-12-W4I	Date :11	1/28/2003
Well Typ	e :Steam Injector	Surface :10-33	3-095-12 -W4M	AFE # :054-03	03S-I	Report # :	2
Objectiv	e :TO INJECT INTO TH	E MCMURRAY FM		AFE \$:	\$1,411,066	Day Cost :	\$133,668
		Spud Date :		DFS :	C	Cost To Date :	\$304,379
М	D: 0.00	TVD :	0.00	PD MD :	0.00	24 Hr. Progress :	0
Current FI	И:	ROP :	0.00	Sliding :	0.00	Rotating :	0

AM Operations :

24 Hr. Summary :continue drilling intermediate section. samples are very bitumen rich with little sand. difficult to clean. a fair amount of clearwater/wabiskaw (contain glauconite) siltstones present in almost all samples, along with rare to trace pyrite. many samples also have rare to trace mica and coal. finish drilling intermediate section at 8am. landed at 375m MD. POOH, run casing.

24 Hr Forecast :

Contractor :		Ri	g :		Mud :		Directior	nal Co.	:	n	MWD :	
<u>Mechanical H</u>	lole Co To	onditions oday	C Ye	omments sterday		То	day	Ye	sterday	Mud Type :		
Drag Rot. Up	Value 0.0	Comment	Value 0.0	Comment	Drag Rot. Down	Value 0.0	Comment	Value 0.0	Comment	Density :	0	
Drag Slide Up	0.0		0.0		Drag Slide Down	0.0		0.0		Viscosity :	0	
Max. Allow Ten	0.0		0.0		Torque	0.0		0.0		WL:	0.00	
String Weight	0.0		0.0		Max. Allow Torque (90%)	0.0		0.0		pH :	0.00	

 Bit Run Data
 Daily
 Cumulative

 Bit # Size
 Mfg
 Model
 Progress
 Hours
 ROP
 RPM
 WOB
 Depth
 Durs
 ROP
 Condition

Remarks

Drilling Foreman :

Drilling Foreman Phone :

Geologist Phone : Report by Wellcore

Daily Geology Operations

Project : Jos	slyn Creek Phase 1	Well :DCE	EL 111 JOSLYN CREI	Main Hole :103/03	-33-095-12-W4N	Date :11/27	/2003
Well Type :Ste	eam Injector	Surface :10-3	33-095-12-W4M	AFE # :054-03	03S-I	Report # :	1
Objective :TO	INJECT INTO THE	MCMURRAY FM		AFE \$:	\$1,411,066	Day Cost :	\$0
		Spud Date :		DFS :	0	Cost To Date :	\$0
MD :	0.00	TVD :	0.00	PD MD :	0.00	24 Hr. Progress :	0
Current FM :		ROP :	0.00	Sliding :	0.00	Rotating :	0

AM Operations :

24 Hr. Summary :drill out of surface casing at 5:00. first sample at 50m at 7:35. samples every ten metres.

24 Hr Forecast :

Contractor :	: Rig :		Rig :		Ri		Mud :		Direction	nal Co.	•	N	/WD :	
Mechanical H	<u>iole Co</u> To	onditions oday	C Ye	omments sterday		То	day	Ye	sterday	Mud Type :				
Drag Rot. Up	Value 0.0	Comment	Value 0.0	Comment	Drag Rot. Down	Value 0.0	Comment	Value 0.0	Comment	Density :	0			
Drag Slide Up	0.0		0.0		Drag Slide Down	0.0		0.0		Viscosity :	0			
Max. Allow Ten	0.0		0.0		Torque	0.0		0.0		WL :	0.00			
String Weight	0.0		0.0		Max. Allow Torque (90%)	0.0		0.0		pH :	0.00			

 Bit Run Data
 Daily
 Cumulative

 Bit # Size
 Mfg
 Model
 Progress Hours
 ROP
 RPM WOB
 Depth Out
 Depths
 Hours
 ROP
 Condition

Remarks

Drilling Foreman :

Drilling Foreman Phone :

Geologist Phone : Report by Wellcore

5 Å		D - 11 - D -			_		Devented	L. A
Wallcora		Daily Dr	illing F	keport			Ops. Date	F: 11/26/200(
vvencore	Project : Joslyn Cre	ek Phase 1	Well Name	: DCEL 1I1	JOSLYN CR	EEK 3-3	Days From Spuc	1: 0
	Well Type : Steam Inje	ector	Main Hole	: 103/03-33	-095-12-W4N	Λ	Day Cos	t: \$0
Well License : 0296169)		Spud : 11/26	6/2003	GL :	339.70	Cost To Date	e: 31,069,559
AFE # : 054-030	3S Amou	nt: \$2,603,270	R.R. :		CF:	0.00	Est. TD	966.0
AM Ops : Drill out	Surface casing shoe				KB :	343.40	Progress	28.00 28.00
Ops. Forecast : Drill Int I	nole						Day Rot. Hrs.	.: 3.00
Bit Record		Daily	C	epth	Cumulative			
Bit # Size Mfg.	Model RPM WOB	Progress Hou	rs ROP	Out Dep	oth Hours	ROP	Condition	
1S 508 Hughes G	TX11H 100 4	28.0 3.0	00 9.3	28.0	28 3.00	9.3		
		0.1	0					
Time Type	Density Visc.	PV YP 10 S	ec 10 Min	S W.L. pH	olias Ci (maa) %	Oil %	Volume Formation	j
10:00:00 ANGel slurry	1080 40	0 0	0.0 0.0	0.0 0.0	0.0 (0.0	0	
,,								
Circulation Record	Pu	mp#1	Pum	p #2			Average	ΔP
Bit # Nozzles	Model Stro	ke Liner Spm N	lodel Stroke	Liner Spr	n Press. I	Dens. O	utput DC DF	> %
1S 22.2,22.2,22.2	BSF-80/ 22	9 152 100	0	0 0	0	1080	1.18 0	6 0.0
Mud Additivies Mud Item Unit # of	Deviation Rec	ord deg) Az (deg)	<u>BHA</u> Item	# Of		anath	Formation	Top
Caustic soda 1		ueg) Az (ueg)	Rit	<u># 01</u> 1	508.0	0.40		TOP
Gel 11			Reamer S	tab 1	508.0	2.04		
Defoam X 1			X/ O Sub	1	203.0	0.43		
			X/O Sub	1	200.0	0.61		
			2 DC	2	205.0	19.08		
			X/O Sub	1	173.0	0.41		
Today's Mud Cost : \$0			X/O Sub	1	165.0	0.34	Casing	
Solids Control	•						Section	Set At
Item Make	U. Flow	O. Flow					Surface	28.0
Chakar · Drandt	Sereens : 20		DP OD : 127	7.00 mm 0.00 mm Stri	BHA: 23 ing Wat: (3.31 m		
	Total Hours	24.00		5.00 31	ing vvgi			
Time From Time To	Time Ceteren/	Demerke						
12:00:00 AM 4:00:00 AM	Rig Up/Tear Down	Rig up to spud @	45 degrees					
4:00:00 AM 4:15:00 AM	Rig Service	ing up to optic @	io dogroco.					
4:15:00 AM 6:15:00 AM	Directional Work	P.U. 508 mm surf	ace bit & BHA	۹.				
6:15:00 AM 6:30:00 AM	Safety Meetings	Pre-spud safety m	neeting.					
6:30:00 AM 7:00:00 AM	Rig Repair	Thaw out frozen li	ne between m	nud pumps (ice plug).			
7:00:00 AM 8:00:00 AM	Drilling	Spud 508 mm sur	face hole & d	rill ahead to	12mMD.			
8:00:00 AM 8:15:00 AM	Rig Service							
8:15:00 AM 10:15:00 AM	Drilling	Drill 508 mm surfa	ace hole from	12 to 28mM	D. Hit boulde	er @ 25ml	MD.	
10:15:00 AM 10:45:00 AM	Circ./Condition Mud	Circulate & condit	ion hole.					
L							.	
Contractor : Precision Drilli	ng Rig Mana	ger : Rick Higgins		Geologist : I	Dane Bridge		Phone # : 403 540	8729 6052
Kig : Precision #29	n Kig Manager Phi n/ Icy	one : 403 850 /181	Suna	rintendent :	Rouney Tetra Dave Loxam	ull	Phone # : 403 804	4590
Weather : Clear -12			Supe	Supervisor :	Rodney Tetra	ult	Phone # : 403 804	6953
Report by Wellcore		Ri	elease 12		-,		November 2	7, 2003 07:46

()			Daily Dr	illing Report		Report #	: 1
Wellco	re	Project ¹ Jeelyn Cr				Ops. Date	11/26/200
		Well Type : Steam Ini	ector	Main Hole : 103/03-33-095	5-12-W4M	Days From Spud	c C
Woll Lico	nno · 029616	Q		Spud : 11/26/2003	CI : 339.70	Day Cost	\$C
AF	E#: 054-030)3S Amoi	unt : \$2,603,270	R.R. :	CF: 0.00	Est. TD :	966.0
Ops. Objec	tive : TO INJ	ECT IN TO THE MCMU	RRAY FM		KB: 343.46	Depth @ 2400hr :	28.00
AM C	ps.: Drill out	surface casing shoe.				Progress :	28.0
Ops. Forec	ast: Drill Int	hole				Day Rot. Hrs. :	3.00
<u>Bit Record</u> Bit # Si:	ze Mfg.	Model RPM WOE	Daily Progress Hou	Depth <u>Cun</u> Irs ROP Out Depth	nulative Hours ROP	Condition	
Mud Recor Time	<u>'d</u> Type	Density Visc.	<u>_Gel</u> PV YP 10 S	<u>Strength</u> Solids Sec 10 Min W.L. pH %	s Cl b (ppm) Oil %	Mud Loss Volume Formation	
10:00:00 A	NGel slurry	1080 40	0 0	0.0 0.0 0.0 0.0 0.0	0 0 0.0	0	
Circulation	Record	Pi	imn#1	Pump #2			D
Bit # Noz	zles	Model Stro	oke Liner Spm N	Nodel Stroke Liner Spm	Press. Dens. O	utput DC DP	<u>%</u>
Mud Addit	vies	Deviation Rec	ord	ВНА		Geological	
Mud Item	Unit # o	f Depth Incl ((deg) Az (deg)	Item # Of O.	.D. Length	Formation	Тор
Todov's Mi	ud Coot - ©0					Casing	
Folide Con						Casing	Cot At
Item	<u>Iroi</u> Make	U Flow	O Flow			Surface	Set At
	Mario	0.110	C. TIOW			Surface	28.0
Shake	Brandt	Screens · 20		DC OD : 0.00 MM String M	MA: 23.31 m		
Time Distril	oution	Total Hours :	24.00	DOOD . 0.00 Oung	•gt. : 0.00		
Time From	Time To	Time Category	Remarks				
10:45:00 AM	12:15:00 PM	Tripping	POOH to run surfa	ace casing.			
12:15:00 PM	12:30:00 PM	Safety Meetings	Pre-job safety me	eting w/ Hunting hand.			
12:30:00 PM	3:45:00 PM	Run Csg & Cement	Rig to & run 28.26 Casing landed @	6 m, 2 jts, 406.4 mm,96.71 kg/ 28.0 mMD.	m, H40, BT&C Lo	nestar surface casin	g.
3:45:00 PM	4:00:00 PM	Safety Meetings	Pre-job safety me	eting w/ Sanjel cementers.			
4:00:00 PM	5:00:00 PM	Run Csg & Cement	Rig to & cement s Pump 10.0 tonnes Float & annulus he	urface casing. Pump 3.0 m3 H s (7.5 m3) Thermal 40F + 3.0% eld okay. Had 4.0 m3 good cer	I2O ahead. Pressu 6 CaCl2. Plug dow ment returns. Plug	re test lines to 14MF n @ 1641hrs. Nov. 2 @ 27.86mMD.	²a. 26/ 03.
5:00:00 PM	5:15:00 PM	Rig Service					
5:15:00 PM	9:45:00 PM	WOC					
Contractor : I	Precision Drilli	ng Ria Mana	ger : Rick Hiaains	Geologist : Dane	Bridge	Phone # : 403 540 8	729
Rig : I	Precision #297	Rig Manager Pho	one : 403 850 7181	Engineer : Rodn	ey Tetrault	Phone # : 403 804 6	953
Lease : (Good conditior	n/ Icy		Superintendent : Dave	Loxam	Phone # : 403 538 4	590
Weather : (Clear -12			Supervisor : Rodn	ey Tetrault	Phone # : 403 804 6	953

Wellcore Well License : 0296169 AFE # : 054-0303S	Daily D Project : Joslyn Creek Phase 1 ell Type : Steam Injector Amount : \$2,603,270	Spud: 11/26/2003 GL: 339.7 R.R.: CF: 0.0	Report # : 1 Ops. Date : 11/26/2003 Days From Spud : 0 Days Cost : \$0 Cost To Date : \$1,069,559 0 Est. TD : 966.0
Ops. Objective : TO INJECT AM Ops. : Drill out surf Ops. Forecast : Drill Int hole	IN TO THE MCMURRAY FM ace casing shoe.	KB : 343.4	6 Depth @ 2400hr : 28.00 Progress : 28.0 Day Rot. Hrs. : 3.00
Bit Record Bit # Size Mfg. Moo	Daily Progress Ho	Depth <u>Cumulative</u> urs ROP Out Depth Hours ROP	Condition
Mud Record Time Type E 10:00:00 ANGel slurry	<u>Ge</u> Density Visc. PV YP 10 1080 40 0 0	e <u>l Strength</u> Solids Cl Sec 10 Min W.L. pH % (ppm) Oil % 0.0 0.0 0.0 0.0 0.0 0.0 0	<u>Mud Loss</u> Volume Formation 0 0
Circulation Record Bit # Nozzles	Pump#1 Model Stroke Liner Spm	<u>Pump #2</u> Model Stroke Liner Spm Press. Dens.	<u>Average</u> ∆P Output DC DP %
Mud Additivies Mud Item Unit # of	<u>Deviation Record</u> Depth Incl (deg) Az (deg)	BHA Item # Of O.D. Length	<u>Geological</u> Formation Top
Today's Mud Cost : \$0			Casing
Solids Control Item Make	U. Flow O. Flow	DP OD : 127.00 mm BHA : 23.31 m	Section Set At Surface 28.0
Shaker : Brandt	Screens : 20	DC OD : 0.00 mm String Wgt. : 0.00	
Time Distribution	Total Hours: 24.00		
Time From Time To Tin 9:45:00 PM 11:59:59 PM Mis	ne Category Remarks scellaneous Cut 406.4 mm ca	asing. Install belly pan. Weld 406.4 mm casing t	to cut-off casing.
Contractor : Precision Drilling Rig : Precision #297 Lease : Good condition/ Ic Weather : Clear -12 Report by Wellcore	Rig Manager : Rick Higgins Rig Manager Phone : 403 850 718 y	Geologist : Dane Bridge 1 Engineer : Rodney Tetrault Superintendent : Dave Loxam Supervisor : Rodney Tetrault	Phone # : 403 540 8729 Phone # : 403 804 6953 Phone # : 403 538 4590 Phone # : 403 804 6953

Casing Report

Project : Joslyn Creek Phase 1

Well Type : Steam Injector

Well Name : DCEL 111 JOSLYN CREEK 3-33-9 Main Hole : 103/03-33-095-12-W4M

Section										
Section	Hole Size	Hole Depth	Casing Se	et At (MD)	Casing Se	et At (TVD) Lea	k Off Gradien	t Mud Typ	е
Surface	508.0	28.0		28.0		0.	0	0.	D	
Casing For : Surface	97901000		Casing Da	ite :						
Run Order Description		lfar C		D Maiabt	Crada D			l a santh	F	T .
1 Float Shoe	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11gr. C			Grade R	ange Co		Length	From 27 6	10
2Casing	2Lonestar	406	5.4 387	7.0 0.00 7.4 96.73	H40 3	Bi	itt	0.4 27 9	-0.3	28.U 27.6
						5		21.0	0.0	27.0
Appagazzion				Actual Above	KB :	0.0	0	Above KB :		0.26
Accessories	T		0	o .	_	-	Tally	/ Documents		
	Турс		Quantity_	Spacing		10				
Torque Monitoring : Yes		Torque Cor	mpany : Hi	unting						
Jts. Delivered :	3	Jts. li	n Hole :	2			Jts. I	Left On Rack		1
Comments	~									
Unable to make up casing joints	s @ 45 degree	angle. Had to	weld casi	ng joints toge	ther.					

Cementing Details

Project : Joslyn Creek Phase 1

Well Type : Steam Injector

Well Name : DCEL 111 JOSLYN CREEK 3-33 Main Hole : 103/03-33-095-12-W4M

<u>Hole</u> <u>Section</u> Surface			Hole De	epth 28.0	Hole Size 508.0	Casing 40	OD 6.40	Casing Set	At (MD) 28.0	Casing Set	At (TVD) 0.0
Cement	Cement Job	Date : 1	1/26/2003							Intony	
Sequence	Blend 10.0 tonnes Th	ermal 4	0F	Additives 3.0 % Ca	aCl2		Volume 7.50	Density 1885.0	 Weight 0	Top 0.0	Bottom 28.0
		Yes	No	Remarks	Total \	/olume :	7.50	m3			
F	Reciprocated :	\times		Rig to & p Thermal 4 Nov. 26/ 0	ump 3.0 m3 H2O a 0F cement + 3.0% 3. Float & annulus	ahead. Pres CaCl2. Dis held okay.	sure test l place casi Had 4.0 m	ines to 14MP ing w/ 3.29 m i3 good ceme	a. Pump 10 3 H2O. Plu ent returns.	0.0 tonnes (7.8 ig down @ 16	5 m3) 41hrs.
Βι	Imped Plugs :	\times									
	Floats Held :	\times									
A Held Ba	nnulus Held :	X									
F	luid Returns :	\times									
Cerr	nent Returns :	\times									
Loss o	f Circulation :		\times								
Cement Ref	turn Volume :		4.00								
Report By Wello	ore]	L	Release 12					November 27 200	3 7.49 AM

APPENDIX 1/B:

Producer well

				illing Donort		Report #	. 1
Mollcore	`		Daily Dr	пппд кероп		Ops. Date	: 17/11/200
vvencore		Project : Joslyn Cre	eek Phase 1	Well Name : DCEL 1P1 J	oslyn Creek 3-33-9	Days From Spud	: (
	W	ell Type : Producer		Main Hole : 102/03-33-0	95-12-W4M	Day Cost	: \$56,994
Well Licens	e: 0295554			Spud : 19/11/2003	GL: 339.70	Cost To Date	: \$96,272
AFE	#: 054-0303S	Amou	int : \$2,603,270	R.R. : 25/11/2003	CF: 0.00	Est. TD	: 967.5
Ops. Objectiv	e: Drill Horizo	ntal Producer in Mc	Aurray		KB: 343.46	Depth @ 2400hr	: 0.00
AM Ops	s.: Loading οι	t rig from CNRL Loc	aiton			Progress	: 0.0
Ops. Forecas	st: MIRU on J	oslyn 1P 3-33-95-12	w4			Day Rot. Hrs.	: 0.00
<u>Bit Record</u> Bit <u>#</u> Size	Mfg. Mc	del <u>RPM WOB</u>	Daily Progress Hou	Depth <u>C</u> urs ROP Out Depth	umulative Hours ROP	Condition	
Mud Decend			Ga	I Strongth Sol	ide Cl	Mudilloss	
Mud Record	Turne			<u>i Strengtn</u> Sol Sec. 10 Min. W. L. n.H.	w (nnm) Oil %	Volume Formation	
Circulation R Bit # Nozzle	ecord es	Pt Model Stre	ump#1 oke Liner Spm I	Pump #2 Model Stroke Liner Spm	Press. Dens. C	<u>Average</u> Dutput DC DP	∆P %
<u>Mud Additiv</u> Mud Item	<u>ies</u> Unit #of	Deviation Rec Depth Incl	<u>ord</u> (deg) Az (deg)	BHA Item # Of	O.D. Length	Geological Formation	Тор
Today's Mud	d Cost ∶\$0					Casing	
Solids Contr	ol					Section	Set At
ltem	Make	U. Flow	O. Flow			Surface	41.3
						Intermediate	374.5
						Liner	974.8
				DP OD : 0.00 mm	BHA: 0.00 m		
Shaker	:	Screens :		DC OD : 0.00 mm Strin	g Wgt.: 0.00		
Time Distrib	ution	Total Hours	; 13.00				
Time From		ime Category	Remarks				
7:00:00 AM	8:00:00 PM F	Rig Up/Tear Down	Crew & Trucks o	n CNRL Location. Held safe	ty meeting. Tear out Pad. Move rig in to F	rig w/ trucks, load a	nd vait on
			daylight to travel	into location		on monunay and n	
Contractor	racision Drilling	n Dia Man	ager · Ken Hein	Geologiet · D	ane Bridge	Phone # : 403-540.	-8729
	recision #207	Rin Mananar Pl	10ne · 403-850-719	1 Engineer · R	odnev Tetreault	Phone # : 403-804	-6953
Lease G	Good Condition	managor r r		Superintendent : D	ave Loxam	Phone # : 403-538-	-4590
Weather : -2	2, no snow			Supervisor : R	odney Tetreault	Phone # : 403-804	-6953
Report by Wellcore			an mar an oraș -	Release 12	-	November 27	7, 2003 12:03

en e

Wellcore	• 0295554	Project ^ː Joslyn Cre Vell Type ː Producer	Daily Dr Beek Phase 1	Well Name Main Hole	Repor e : DCEL 1P e : 102/03-33	t 1 Joslyn Cre 3-095-12-W4 GL :	eek 3-33-9 #M 339.70	Report # Ops. Date Days From Spuc Day Cost Cost To Date	2 18/11/2003 12 0 12 148,790 22 245.062
AFE # Ops. Objective AM Ops. Ops. Forecast	: 054-03038 : Drill Horizo : Moving rig : MIRU Cen	Amou ontal Producer in McM into location tral system and rig, s	nt : \$2,603,270 Aurray pot rentals, rig in	R.R. : 25/1	1/2003	CF : KB :	0.00 343.46	Est. TD Depth @ 2400hi Progress Day Rot. Hrs	967.5 0.00 0.0 0.0 0.00
Bit Record Bit # Size 0	Mfg. Ma	odel <u>RPM</u> WOB 0 C	<u>Progress</u> <u>Ho</u> 0.000	urs ROP .00 0.0	Depth Out De 0.0	<u>Cumulative</u> pth <u>Hours</u> 0 0.00	8 <u>ROP</u> 0 0.0	Condition	
Mud Record Time Ty	уре	Density Visc.	<u>_Ge</u> PV YP 10 5	I Strength Sec 10 Min	W.L. pH	Solids C <u>%</u> (ppr	l n) Oil %	Mud Loss Volume Formation	3
Circulation Rec	cord	Pi	Imp#1	Pur	np #2			Average	ΔP
Bit # Nozzles	i	<u>Model</u> Stro C	oke <u>Liner Spm</u>) 0 0	<u>Model</u> <u>Strok</u> 0	e <u>Liner Sp</u> 0 (om Press.) 0	Dens. 0	Dutput DC DF 0.00 0	<u> </u>
Mud Additivie: Mud Item	<u>s</u> Unit <u># of</u>	Deviation Rec Depth Incl (<u>ord</u> (deg) Az (deg)	BHA Item Bit Welded E Cross Ov Drill Colla Cross Ov HWDP	# Of1Blade1rer Su1ar2rer Su122	O.D. 444.0 444.0 203.0 203.0 171.0 127.0	Length 0.40 1.88 0.89 19.08 0.74 19.01	Geological Formation	Тор
Today's Mud C	Cost : \$0			_				<u>Casing</u>	Sat At
Solids Control Item	Make	U. Flow	O. Flow					Section Surface Intermediate Liner	41.3 374.5 974.8
				DP OD : 12	27.00 mm	BHA :	42.00 m		
Shaker :	-	Screens :		DC OD : 20	03.00 mm St	ring Wgt. :	0.00		
	ion		; 10.00						
8:00:00 AM 4:0	00:00 PM	Rig Up/Tear Down	Unload trucks or cross bidge & re	location, ren -install tires. S	nove outer ti Spot rig and	res on rig ca central syste	errier to cro	ss bridge for the els cation	s river -
4:00:00 PM 7:0 7:00:00 PM 12	00:00 PM 2:00:00 AM	Rig Up/Tear Down Rig Up/Tear Down	Finish spotting r Rig in central sy	entals stem					
Contractor : Pre Rig : Pre Lease : Goo	cision Drillin cision #297 od Condition	g Rig Man Rig Manager Ph	ager : Ken Hein 10ne : 403-850-718	31 Sup	Geologist Engineer perintendent	: Dane Bridg : Rodney Te : Dave Loxa	je treault m	Phone # : 403-54 Phone # : 403-80 Phone # : 403-53	0-8729 4-6953 8-4590
Weather : -2, Report by Wellcore	no snow			Release 12	Supervisor	: Rodney Te	treault	Phone # : 403-804 November	4-6953 27, 2003 12:04

~			Daily Dr	illina Rer	ort			Report #	: 3
Wellcor	ρ	Ducie et l'Inches Orea				lockin Crool	< 3 3 3 Q	Ops. Date	: 19/11/200:
The field	-	Project · Josiyn Cree	ek Phase I	Main Hole : 10	2/03_33_0	1051y11 Creek	0-00-0	Days From Spud	: 0
		vven Type . Floducei			2/00-00-0	00-12-00-10	000 70	Day Cost	: \$83,924
Well Licen	se: 0295554			Spud : 19/11/200	13	GL :	339.70	Cost To Date	: \$328,987
AFE	#: 054-0303	3S Amoun	nt: \$2,603,270	R.R. : 25/11/200	13		0.00	ESL ID	. 907.5
Ops. Objecti	Ve : Drill Horiz	zontal Producer in Michie	urray			ND.	545.40	Progress	· 42.00
	s. Finish ng	iging in a get ready to s	puu surface hole to 4(mMD run & ceme	ent csa. V	VOC.		Day Rot. Hrs.	: 1.00
Pit Pecord	13t . Ttig to 3p		Daily	Denth	C	umulative			
Bit # Size	- Mfa N	- Iodel RPM WOB	Progress Hou	rs ROP Out	Depth	n Hours	ROP	Condition	
	Read HI	D3082 115 4000	42.0 1	10 + 10	<u></u> ר 1 4	2 1.00	42.0	0-0-NO-NI-NO-	TD
	need m	50002 110 4000	12.0						
Mud Pecor	4		Gel	Strength	So	lids Cl		Mud Loss	·····
Time	z Tvpe	Density Visc.	PV YP 10 S	Sec 10 Min W.L.	рН	% (ppm)	Oil %	Volume Formation	
12:00:00 A	VGel Chem	1030 60	0 0	0.0 0.0 0.0) 9.5	0.0 0	0.0	0	
12.00.00 A		1000 00	0 0	0.0 0.0 0.0					
0			~~~#1	Dump #2				A	۸P
Bit # Noza	<u>kecora</u>	Model Strol	hp#i	Andel Stroke Lin	er Som	Press Г	ens C	Average Jutput DC DP	<u>لا</u> ر %
<u>BIL# N022</u>	10 0 10 0 15 (2 165 115	203 16	5 115	3300	0		0.0
IA 19.0	19.0, 19.0, 15.:	9 200	5 105 115	203 10	5 115	5500	0	0.00 0 0	0.0
	_							Castarias	
Mud Additi	<u>vies</u>	Deviation Reco		BHA	# 05		nath	Eormation	Ton
Mud Item	Unit # of	Depth Incl (c	leg) Az (deg)		<u># Or</u>		angin 0.40	romation	iop
Caustic Soc	la 1			Bit	1	444.0	0.40		
Gel	55			Welded Blade	1	444.0	1.88		
				Cross Over Su	1	203.0	0.89		
				Drill Collars	2	203.0	19.08		
				Cross Over Su	1	1/1.0	0.74		
				HVVDP	2	127.0	19.01	Casing	
Today's Mu	d Cost : \$422							Cashig	Set At
Solids Cont	rol							Section	Sel AL
Item	Make	U. Flow	O. Flow					Surface	41.3
								Intermediate	374.5
								Liner	9/4.8
				DP OD : 127.00	mm	BHA : 42	2.00 m		
Shake	:	Screens :		DC OD : 203.00	mm Strin	ng Wgt.: (0.00		
Time Distrit	oution	Total Hours :	24.00						
Time From	Time To	Time Category	Remarks						
12:00:00 AM	8:00:00 AM	Rig Up/Tear Down	Fire up boilers, ri	g up prefabs, circ s	steam & v	water throu	gh centra	I system, raise derri	ck to 45
			deg						
8:00:00 AM	4:00:00 PM	Rig Up/Tear Down	Finish rigging in a	central system to s	pud				
4:00:00 PM	7:00:00 PM	Rig Up/Tear Down	Finish rigging in s	solids control equi	pment				
7:00:00 PM	7:30:00 PM	Safety Meetings	Have safety mee	ting & procedural r	eview w/	both rig cre	ws		
7:30:00 PM	8:30:00 PM	Drilling	Spud & drill 444n	nm surface hole to	surface 7	TD @ 42mN	1D		
8:30:00 PM	12:00:00 AM	Run Csg & Cement	Condition mud &	wait on Hunting To	ubulars re	ep to arrive	with casir	ig nubins - blizzard	
			conditions across	s the province.					
L	ala								
			ner (Kon Hoin			ano Prideo		Phone # 103_540	-8729
Contractor :	-recision Urilli	ng Rig Mana	981 : NEN MEIN		nogist : L nineer · D	odnev Tetr	ault	Phone # : 403-340	-6953
Rig :	-recision #29	n rug wanager Pflo	UNE , 400-000-7 10	Superinte	andent · F	ave Lovam	Jaun	Phone # : 403-538	-4590
Lease :	.13 deg 3" en	ow overnight		Sune	ervisor · R	odnev Tetr	eault	Phone # : 403-804	-6953
weather	io deg, o isli	on overngitt.							7 0000 10 01

				Dai	lv Dr	illina I	Rep	ort					Report	t # :	4
Wellcore	P	oiect ∶.loslv	n Cree	ek Phas	- j e 1	Well Nam	e : DCE	L 1P1	Joslvn (Creek 3-3	3-9	Dava	Ops. Da	ite:	20/11/2003
	Well	Type : Prod	ucer		0 1	Main Hol	e : 102/	03-33-0	095-12-\	W4M		Days r	Day Ca	ua.	1 1
	5664					Soud - 10/1	1/2003		GI	. 330	70	<u> </u>	Day Co et To Da	nta ·	\$389 170
Well License : 029	03035		۵mour	1t· \$2	603 270	B R · 25/1	1/2003		CE	:. 000 :. (0.00		Est. 1	TD :	967.5
Ons Objective : Drill	Horizonta	l Producer ir	1 McM	nt. ψ∠, urrav	000,270	1.1.1. 20/	172000		KB	343	3.46	Depth	@ 2400)hr :	0.00
AM Ops. : Drill	ing 311 m	m intermedi:	ate hol	le @ 16	OmMD								Progre	ss :	84.0
Ops. Forecast : Drill	311mm h	ole to ICP. v	viper ti	rip. ria ta	o & run ca	isina						Da	y Rot. Hi	rs. :	3.50
Bit Record					Daily		Depth	(Cumulat	ive					
Bit # Size Mfa.	Mode	RPM	wob	Progre	ss Hou	urs ROP	Out	Dept	h Ho	urs RO	P P		Conditio	n	
1A 444 Reed	HD308	2 100	4	42	2.0 1	.00 42.0	42.0	8	34 2	.00 42	2.0				
11 311 Hughe	s X1CXF	p 75	6	42	2.0 2	.50 16.8	84.0	4	42 2	.50 16	5.8				
			-												
Mud Record					Ge	Strength		Sc	olids	CI			Mud Lo	SS	
Time Type	De	nsity Vis	C.	PV	YP 10 3	Sec 10 Min	W.L.	pН	% (p	opm) Oi	il %	/olume	Formatic	on	
10:00:00 PNWater		1030	30	0	0	0.0 0.0	0.0	8.0	2.0	0	0.0	32			
			D			Dur	on #2								٨P
Dit # Nerrice		Madal	Stro	hp#i	r Som	Model Strok	nµ#∠ ∋line	r Som	– D Pres	s Dens	0	utnut	DC I	₽ DP	<u>۸</u> ،
DIL # 10022185	15.0	Model	300					0	1 103		. ⊻ ∩	0.00	0	0	0.0
1A 19.0,19.0,19.0	,15.9 -		0	0	0	0	0	0			0	0.00	0	0	0.0
11 17.5,17.5,17.5	0		0	0	0	0	U	U		0 0	0	0.00	0	0	0.0
Mud Additivies		Deviation	Reco	ord		BHA		"	0 D			Geolo	<u>gical</u>		Tan
Mud Item Unit	# of	Depth	Incl (deg) Az	(deg)	Item		<u># Of</u>	O.D.	Length	<u> </u>	Forn	hation		Top
Gel						Bit		1	311.0	0.30	0				0.0
Caustic Soda						Motor		1	203.2	7.34	4				
Poly Plus Dry 1						Float sub		1	163.0	0.53	3				
SAPP						Non Mag	DC	3	169.0	16.49	9				
Fedzan 5						Hang off	sub	1	168.0	1.70	0				
Caustic Soda						Non mag	DC	2	167.0	18.43	3				
Today's Mud Cost :	\$0					XO sub		1	162.0	0.64	4	Casin	a		
Solids Control						Jars		1	168.0	6.38	5	Sect	ion		Set At
Item N	lake	U. Flo	W	O. Flo	W							Surf	ace		41.3
Centrifuge S	waco			0	0							Inter	mediate		374.5
Centrifuge S	waco			0	0							Line	r		974.8
Desander S	waco			0	0	DP OD : 12	27.00 n	nm	BHA	: 51.78	m				
Shaker : Brandt	5	Screens : 50				DC OD : 1	27.00 n	nm Strii	ng Wgt.	: 8.00					
Time Distribution		Total H	ours :	24.00)										
Time From Time To	Tim	e Category		Remar	ks										
12.00.00 AM 12.45.00	AM Circ	/Condition N	/ ud	Circula	te & cond	lition hole (W	O. Hun	itina thr	read-har	nd for cas	sina n	ubbins).			
12:45:00 AM 2:30:00		ning	nuu	POOH	to lay do	wn stabilizer					5				
12.45.00 AM 4:45:00			ont	Pro joh	cofety m	eeting / Rig to	8 run	41 74	m 3 its	339.7 m	nm 7	1 43 ka/	m .155	1 78	C.
2:30:00 AWI 4.45.00		Csy & Cem	em	Lonest	ar Surface	eeting./ Kig to e casing.	Jocium	41.741	m, 5 jis.	, 555.7 11		1.40 Ng/	m, 000,		.0
4:45:00 AM 5:15:00		Condition N	Aud	Circula	te & cond	lition hole to c	ement	Decre	ase visc	to 45 d	lensit	v - 1020	ka/ m3.		
F:15:00 AM 5:20:00		ty Montings	nuu	Dra joh	cofety m		ontore	Deele				,			
5.15.00 AM 5:30:00			<u></u>				Due		n3 U20	prefluch	Droc	curo tor	st lines to	17 ר	MPa
5.30.00 AW 7.00.00		Csg & Celli	ent	Pump H2O. F	10.0 tonno Plug down	es (7.6 m3) T @ 0617Hrs.	hermal Nov. 20	40F ce 0/ 03. F	ment +	3.0% Ca innulus h	CI2. [eld ol	Displace (ay. Had	casing v 1 4.0 m3	v/ 3 goo	.39 m3 d
				cemen	t returns.	casing lande	u @ 41	.smML	. Float (<i>ധ</i> 41.1m	IVIU.				
L	1		-	1					-			D			
Contractor : Precision	Drilling	Rig	Mana	ger : Ke	n Hein		Geol	ogist : [Dane Br	idge		Phone	#:403 5	40 8	3/29
Rig : Precision	#297	Rig Manag	er Ph	one : 40	3 850 718	31	Engi	ineer : F	Rodney	Tetrault		Phone	#:4038	04 6	5953
Lease : Good cor	dition					Sup	erinten	ident : [Dave Lo	xam		Phone	#:4035	384	1090
Weather : Overcast	-14						Super	visor : F	Rodney	retrault		Phone	#:4038	04 6	9900

ø		Dailv Dri	illina Report	Report # :	4
Wellcore	Project [:] Joslyn Cre Well Type : Producer	ek Phase 1	Well Name : DCEL 1P1 Joslyn Creek 3- Main Hole : 102/03-33-095-12-W4M	Ops. Date : 20 33-9 Days From Spud : Day Cost :)/11/200: 1 \$60 183
Well License : 029555 AFE # : 054-03 Ops. Objective : Drill Ho AM Ops. : Drilling Ops. Forecast : Drill 31	54 03S Amou prizontal Producer in McN 311 mm intermediate ho 1mm hole to ICP, wiper t	nt : \$2,603,270 Iurray Ie @ 160mMD. rip, rig to & run cas	Spud : 19/11/2003 GL : 33 R.R. : 25/11/2003 CF : KB : 34	99.70 Cost To Date : \$ 0.00 Est. TD : 3.46 Depth @ 2400hr : Progress : Day Rot. Hrs. :	\$389,170 967.5 0.00 84.0 3.50
<u>Bit Record</u> Bit # Size Mfg.	Model RPM WOB	Daily Progress Hour	rs ROP Out Depth Hours R	DP Condition	
Mud Record Time Type 10:00:00 PMWater	<u>Density</u> <u>Visc.</u> 1030 30	<u>Gel</u> PV YP 10 S 0 0 0	<u>Strength</u> Solids Cl ec <u>10 Min</u> <u>W.L. pH % (ppm) C</u> 0.0 0.0 0.0 8.0 2.0 0	Mud Loss Dil % Volume Formation 0.0 32	
Circulation Record	Pu	mp#1	Pump #2	Average	ΔP
<u>Mud Additivies</u> Mud Item Unit # Safe-Solv Safe Surf Defoamer A Sodium Bicart	of <u>Deviation Rec</u>	ord deg) <u>Az (deg)</u>	BHA Item # Of O.D. Lengt	h Formation	<u>Top</u> 0.0
Todav's Mud Cost : \$0				Casing	
Solids Control	,,,,,,			Section S	et At
Item Mak	U. Flow	O. Flow		Surface	41.3
Centrifuge Swa	ico	0 0		Intermediate	374.5
Centrifuge Swa	ico	0 0		Liner	974.8
Desander Swa		0 0	DP OD : 127.00 mm BHA : 51.78	s m	
Shaker : Brandt	Screens : 50	24.00	DC OD : 127.00 1000 String Wgt. : 8.00		
Time Distribution		24.00			
Time From Time To	Time Category	Remarks			
1:15:00 PM 1:30:00 PM	I Rig Service				
1:30:00 PM 4:00:00 PM	Directional Work	P.U. directional to survey data.	ools (W.O. magnetic storm to pass in orde	r to receive accurate direction	nal
4:00:00 PM 4:15:00 PM	Rig Service				
4:15:00 PM 4:45:00 PM	Directional Work	Continue to P.U.	directional tools.		
4:45:00 PM 5:45:00 PM	Slip/Cut Drilling Line	Slip & cut 12.15 n	n drill line.		
5:45:00 PM 8:15:00 PM	Directional Work	Continue to P.U.	directional tools. (Magnetic storm subsided	j).	
8:15:00 PM 8:30:00 PM	I Drill Out	Drill out cement &	shoe (Tag cement top @ 39mMD).		
Contractor : Precision Dr Rig : Precision #2 Lease : Good condit Weather : Overcast -1	illing Rig Mana 97 Rig Manager Ph ion 4	ager : Ken Hein one : 403 850 7181	Geologist : Dane Bridge Engineer : Rodney Tetrault Superintendent : Dave Loxam Supervisor : Rodney Tetrault	Phone # : 403 540 872 Phone # : 403 804 695 Phone # : 403 538 459 Phone # : 403 804 695 November 27. 200	29 53 90 53 12:04

Wellcore	W	Project ÷ Joslyn Cre ell Type ː Producer	Daily Dr ek Phase 1	Well Name : DCEL 1P Main Hole : 102/03-33	1 Joslyn Creek 3-33-9 3-095-12-W4M	Report # Ops. Date Days From Spud Day Cost	: 4 : 20/11/2003 : 1 : \$60,183
Well License : AFE # : Ops. Objective : AM Ops. : Ops. Forecast :	0295554 054-0303S Drill Horizon Drilling 311 Drill 311mm	Amou ntal Producer in McN mm intermediate ho n hole to ICP, wiper t	nt : \$2,603,270 Iurray Ie @ 160mMD. rip, rig to & run ca:	Spud : 19/11/2003 R.R. : 25/11/2003 sing	GL: 339.70 CF: 0.00 KB: 343.46	Cost To Date Est. TD Depth @ 2400hr Progress Day Rot. Hrs.	: \$389,170 : 967.5 : 0.00 : 84.0 : 3.50
Bit Record Bit # Size	Mfg. Moo	del RPM WOB	Daily Progress Hou	rs ROP Out De	Cumulative pth Hours ROP	Condition	
Mud Record Time Typ 10:00:00 PNWa	e ter	Density Visc. 1030 30	<u>Gel</u> PV YP 10 S 0 0	<u>Strength</u> Sec <u>10 Min</u> W.L. pH 0.0 0.0 0.0 8.0	Solids Cl % (ppm) Oil % 2.0 0 0.0	Mud Loss Volume Formation 32	
Circulation Reco Bit # Nozzles	ord	<u>Pu</u> Model Stro	mp#1 ke Liner Spm N	Pump #2 /lodel Stroke Liner Sp	m Press. Dens. C	<u>Average</u> Dutput DC DP	∆P %
Mud Additivies Mud Item U	nit <u># of</u>	Deviation Reco	<u>ord</u> deg) Az (de <u>g)</u>	BHA Item # Of	O.D. Length	Geological Formation	<u>Тор</u> 0.0
						Casing	
Solids Control	ost : \$0					Section	Set At
Item	Make	U. Flow	O. Flow			Surface	41.3
Centrifuge	Swaco		0 0			Intermediate	374.5
Centrifuge	Swaco		0 0			Liner	974.8
Desander	Swaco		0 0	DP OD · 127 00 mm	BHA: 51.78 m		
Shaker : Bra	andt	Screens : 50		DC OD : 127.00 mm St	ring Wat.: 8.00		
Time Distributio	n	Total Hours	24.00				
Time From Time	eTo Ti	me Category	Remarks				
8:30:00 PM 11:0	0:00 PM D	rilling	Drill 311 mm inte	rmediate hole from 42 to	84mMD.		
11:00:00 PM 11:5	59:59 PM D	eviation Survey	Accumulated dire	ectional surveys.			
Contractor Droci	icion Drilling	Dia Mara	aer : Ken Hoin	Ceologist	Dane Bridge	Phone # : 403 540	8729
Rig : Preci	ision #297	Rig Manager Ph	one : 403 850 718	1 Engineer	: Rodney Tetrault	Phone # : 403 804	6953
Lease : Good	1 condition			Superintendent	: Dave Loxam	Phone # : 403 538	4590
Weather : Over	cast -14			Supervisor	Rodney Tetrault	Phone # : 403 804	6953 7 2003 12:04
Report by Wellcore			F	telease 12		wovernuer 2.	, 2000 12.04

Wellcore	e w	Project [:] Joslyn Cree ell Type : Producer	Daily D ek Phase 1	Filling Well Nam Main Ho	Repo ne : DCEL 1 le : 102/03-	rt P1 Joslyn C 33-095-12-V	Creek 3-33-9 V4M	Report # Ops. Date Days From Spuc Day Cos	#: 5 9:21/11/2003 1: 2 t: \$64,119
Well Licens AFE Ops. Objectiv AM Op Ops. Foreca	ee:0295554 #:054-0303S ve:Drill Horizo s.:Wiper trip to st:	Amoun ntal Producer in McMu o SC shoe. (ICP = 37	t : \$2,603,27(urray 4.5mMD).	Spud : 19/) R.R. : 25/	11/2003 11/2003	GL CF KB	: 339.70 : 0.00 : 343.46	Cost To Date Est. TE Depth @ 2400h Progress Day Rot. Hrs	\$453,289 \$1 967.5 \$1 0.00 \$2 248.0 \$2 16.25
Bit Record Bit # Size 11 311	<u>Mfg. Mo</u> Hughes X1C	del <u>RPM WOB</u> XP 175 9	Dair Progress H 248.0	/ ours ROP 16.25 15.3	Oeptn Out [] 332.0	Depth Hou 290 18.	<u>irs ROP</u> .75 15.5	Condition 	
Mud Record Time 4:30:00 PM	Type Polymer	Density Visc. 1050 44	PV YP 1 12 8	Gel Strength D Sec 10 Min 2.5 3.0	<u>W.L.</u> pł 6.0 9.	Solids <u>H %</u> (p 0 3.1	Cl pm) <u>Oil %</u> 450 3. ⁻	Mud Loss Volume Formation 1 38McMurray	<u> </u>
Circulation R	ecord	Pur	nn#1	Pu	mp #2			Average	۸P
Bit # Nozz	es	Model Strok	ke Liner Spr	Model Strok	ke Liner \$	Spm Pres	s. Dens.	Output DC DI	> %
1I 17.5, ⁻	17.5,17.5	F800 229	165 100	F800 229	165	100 680	00 1050	2.79 0	0 35.6
Mud Additiv	ies	Deviation Reco	rd	BHA				Geological	
Mud Item	Unit # of	Depth Incl (d	leg) Az (deg)	Item	# C	of O.D.	Length	Formation	Тор
SAPP				Bit	1	311.0	0.30		0.0
Envirofloc				Motor	1	203.2	7.34		
Desco				Float Su	b 1	163.0	0.53		
Defoamer A				Non-ma	g DC 1	0.0	16.49		
EMI-695				Hang-of	fSub 1	168.0	1.70		
Sawdust				Non-ma	g DC 1	167.0	18.43	0	
Today's Mu	d Cost : \$0			X/O sub	1	162.0	0.64	Casing	C + 1 1
Solids Contr	ol		0.5	Jars	1	108.0	0.30	Section	Set At
Item	Make	U. Flow	O. Flow					Surrace	41.3
Centrifuge	Swaco	1800	U 1015					Linor	074.0
Centrifuge	Swaco	1800	J 1015			DUA	54 70 m	Linei	374.0
Desalider	Drandt	Saraana : 50	5 1020		0.00 mm	BHA String Wat	· 0.00		
Time Distrib	. Dranut	Total Hours :	23.08		0.00	String Vygt.	. 0.00		
			Domestic						
		ine category							
12:15:00 AM	12:45:00 AM	Fire /Condition Mud	Displace hole	to pre-mixed p	olymer muc	I.			
12:45:00 AM	7:00:00 AM	rilling	Drill 311 mm i	ntermediate ho	le from 84 1	to 196mMD	(Aerated/ fo	aming mud).	
7:00:00 AM	8:00:00 AM D	eviation Survey	Accumulated of	directional surv	eys.				
8:00:00 AM	8:15:00 AM	la Service			-				
8:15:00 AM	11:30:00 AM D	Prilling	Drill 311 mm i	ntermediate ho	le from 196	to 241mME) (Aerated/1	foaming mud).	
11:30:00 AM	12:15:00 PM D	eviation Survey	Accumulated of	directional surv	eys.				
12:15:00 PM	4:00:00 PM C	irc./Condition Mud	Condition muc	and hole (aera	ated mud s	ystem).			
4:00:00 PM	4:15:00 PM R	lig Service							
Contractor : F Rig : F Lease : C Weather : C	Precision Drilling Precision #297 Good condition Overcast -14	n Rig Mana Rig Manager Pho	ger : Ken Hein one : 403 850 7	181 Su	Geologis Enginee perintender Superviso	st : Dane Bri er : Rodney ⁻ nt : Dave Lox or : Rodney ⁻	dge Tetrault xam Tetreault	Phone # : 403 54 Phone # : 403 80 Phone # : 403 53 Phone # : 403 80	0 8729 4 6953 8 4590 4 6953

()			Daily D	rilling Report	t	Report #	: 5
vvelicor	e	Project : Joslyn Cre	ek Phase 1	Well Name : DCEL 1P	1 Joslyn Creek 3-33-9	Davs From Spud	: 21/11/200
		Well Type : Producer		Main Hole : 102/03-33	3-095-12-W4M	Day Cost	: \$64.119
Well Licer				Spud : 19/11/2003	GL: 339.70	Cost To Date	: \$453,289
AFI	E#: 054-0303	S Amou	int : \$2,603,270	R.R. : 25/11/2003	CF: 0.00	Est. TD	967.5
Ops. Object	ive : Drill Horiz	zontal Producer in McN	<i>l</i> urray		KB: 343.46	Depth @ 2400hr	: 0.00
AM O	ps.:Wiper trip	o to SC shoe. (ICP = 3	74.5mMD).			Progress	: 248.0
Ops. Forec	ast :					Day Rot. Hrs.	: 16.25
Bit Record			Daily	Depth	Cumulative		
<u>Bit # Siz</u>	e <u>Mfg. N</u>	lodel RPM WOB	Progress Ho	ours ROP Out De	pth Hours ROP	Condition	
Mud Recor Time 4:30:00 PM	<u>d</u> Type 1 Polymer	Density Visc. 1050 44	<u>G</u> PV YP 10 12 8	el StrengthS Sec 10 Min W.L. pH 2.5 3.0 6.0 9.0	Solids Cl <u>%</u> (ppm) <u>Oil %</u> 3.1 450 3.1	Mud Loss Volume Formation 38McMurray	
Circulation	Record	<u> </u>	ımp#1	Pump #2		Average	ΔP
<u>Bit # Noz:</u>	zles	Model Stro	oke Liner Spm	Model Stroke Liner Sp	m Press. Dens. C	Dutput DC DP	%
Mud Additi	vies	Deviation Rec	ord (deg) Az (deg)	BHA Item # Of	O.D. Length	Geological Formation	Тор
Fodzan	5		(deg) Az (deg)		<u>C.D.</u> <u>Longin</u>		0.0
Feuzan Dely Dive D	5						0.0
Today's Mu	ıd Cost : \$0					<u>Casing</u> Section	Set At
Solids Con	<u>troi</u> Maka	LL Flow				Surface	41.3
Item	Make	U. Flow				Intermediate	41.3 274.5
Centrifuge	Swaco	D 180	00 1015			Linor	074.0
Centrifuge	Swaco	180	10 1015			Linei	974.0
Desander	Swaco		10 1020	DP OD : 0.00 mm	BHA: 51.78 m		
Shake	r : Brandt	Screens : 50		DC OD : 0.00 mm St	ring vvgt. : 0.00		
Time Distri	bution	Total Hours	: 23.98				
Time From	Time To	Time Category	Remarks				
4:15:00 PM	11:00:00 PM	Drilling	Drill 311 mm in	termediate hole from 241 to	o 332mMD.		
11:00:00 PM	11:59:00 PM	Deviation Survey	Accumulated d	rectional surveys.			
		J					
Contractor ·	Precision Drilli	ng Ria Mana	ager : Ken Hein	Geologist	: Dane Bridge	Phone # : 403 540	8729
Ria :	Precision #297	Rig Manager Ph	none : 403 850 71	81 Engineer	: Rodney Tetrault	Phone # : 403 804	6953
Lease :	Good condition	1		Superintendent	: Dave Loxam	Phone # : 403 538	4590
Weather :	Overcast -14			Supervisor	: Rodney Tetreault	Phone # : 403 804	6953
Report by Wellcor	e			Release 12		November 2	7, 2003 12:04

Wellcore	Project [:] Joslyn Cree Well Type : Producer	Daily Dr ek Phase 1	illing Rep Well Name : DC Main Hole : 102	D ort EL 1P1 Josly 2/03-33-095-1	m Creek 3-33-9 12-W4M	Report # : Ops. Date : Days From Spud : Day Cost :	6 22/11/200(3 \$148,458
Well License : 029555 AFE # : 054-03 Ops. Objective : Drill Ho AM Ops. : WOC. Ops. Forecast :	i4 03S Amour prizontal Producer in McM	nt: \$2,603,270 urray	Spud : 19/11/200 R.R. :	3	GL: 339.70 CF: 0.00 KB: 343.46	Cost To Date : Est. TD : Depth @ 2400hr : Progress : Day Rot. Hrs. :	\$594,665 967.5 0.00 42.5 0.00
<u>Bit Record</u> <u>Bit # Size Mfg.</u> 11 311 Hughes	Model RPM WOB X1CXP 175 9	Daily Progress Hou 42.5 0.	Depth rs ROP Out 00 0.0 374.5	Depth 333	Hours ROP 18.75 17.7	Condition 	
Mud Record Time Type 10:45:00 PNPolymer	Density Visc. 1100 44	<u>Ge</u> PV YP 10.5 13 7	<u>Strength</u> Sec <u>10 Min</u> W.L. 4.5 7.5 6.0	Solids <u>pH %</u> 9.0 7.0	Cl (ppm) Oil % 400 0.0	Mud Loss Volume Formation 34	
Circulation Record	Pu	mp#1	Pump #2			Average	ΔP
Bit # Nozzles 11 17.5,17.5,17.5	Model Stro F800 22	ke Liner Spm M 9 152 100 F	Model Stroke Lin -800 229 15	er Spm F 2 100	ress. Dens. (6600 0	Dutput DC DP 2.37 0 37	<u>%</u> 0.0
						Coological	
Mud Additivies Mud Item Unit #	of Deviation Reco	b <u>rd</u> deg) Az (deg)	BHA Item	<u># Of</u> O.I	D. Length	Formation	Тор
Poly Plus Dry	0.00 4	5.00 193.00	Bit	1 311	.0 0.30		
Sawdust	5.40 4	5.00 193.00	Motor	1 203	3.2 7.34		
Defoam X 7	51.20 4	9.80 191.30	Float Sub	1 163	0.53		
	60.10 5	1.70 196.60	Non-mag DC	1 (0.0 16.49		
	69.12 5	4.00 193.30	Hang-off Sub	1 168	3.0 1.70		
	78.62 5	6.00 194.40	Non-mag DC	1 167	7.0 18.43		
Today's Mud Cost : \$0			X/O sub	1 162	2.0 0.64	Casing	0-4.44
Solids Control			Jars	1 168	3.0 6.35	Section	
Item Mał	<u>ke U. Flow</u>	O. Flow				Surrace	374.5
Centrifuge Swa	aco 165	1040				mennediate	574.5
Centrifuge Swa		0 0	DD 0D + 127.00	mm P	UA · 51 78 m		
Shakar Brandt	Screens : 50	0 0	DP OD : 127.00	mm String V	/at.: 15.00		
Time Distribution	Total Hours	24.00	00000.000				
Time From Time To	Time Category	Pemarks					
12:00:00 AM 12:15:00 A	M Rig Service				-		
12:00:00 AM 12:00:00 A	M						
12:15:00 AM 3:15:00 AM	1 Drilling	Drill 311 mm inte	ermediate hole from	1 332 to 374.	5mMD.		
3:15:00 AM 4:00:00 AM	Deviation Survey	Accumulated dir	ectional surveys.				
4:00:00 AM 5:15:00 AM	A Circ./Condition Mud	Circulate hole cl	ean.				
5:15:00 AM 8:00:00 AM	/ Tripping	Wiper trip from 3	374.5 to 42mMD/ B	ackream & p	ump out.		
8:00:00 AM 8:15:00 AM	A Rig Service						
8:15:00 AM 9:15:00 AM	1 Tripping	Continue wiper t	rip to SC.			,	
9:15:00 AM 10:15:00 A	M Circ./Condition Mud	Circulate hole cl	ean.				
Contractor · Precision D	rilling Rig Man	ager : Ken Hein	Ge	ologist : Dane	Bridge	Phone # : 403 540	8729
Ria : Precision #2	297 Rig Manager Ph	one : 403 850 718	31 En	gineer : Rodr	ney Tetrault	Phone # : 403 804	6953
Lease : Good condi	tion/ Icy		Superinte	endent : Dave	Loxam	Phone # : 403 538	4590
Weather : Overcast -3	0		Supe	ervisor : Rodr	ney Tetreault	Phone # : 403 804	6953 4 2003 07:26
Report by Wellcore			Release 12			November 2	-, 2000 01.20

Wellcore	V	Project : Joslyn Cree /ell Type : Producer	Daily Dri ^{k Phase 1}	Well Name : D Main Hole : 1	port CEL 1P1 Josly 02/03-33-095-1	vn Creek 3-3 I2-W4M	³³⁻⁹ [Report # : Ops. Date : Days From Spud : Day Cost :	6 22/11/2003 3 \$148,458
Well License AFE # Ops. Objective AM Ops. Ops. Forecast	 295554 0295554 054-03035 Drill Horizo WOC. t : 	S Amoun ontal Producer in McMu	t : \$2,603,270 ırray	Spud : 19/11/20 R.R. :	003	GL: 33 CF: KB: 34	9.70 0.00 3.46	Cost To Date : Est. TD : Depth @ 2400hr : Progress : Day Rot. Hrs. :	\$594,665 967.5 0.00 42.5 0.00
Bit Record Bit # Size	Mfg. Mo	odel RPM WOB	Daily Progress Hour	Dep s ROP O	th <u>Cum</u> ı ut Depth	<u>ulative</u> Hours RC	DP	Condition	
Mud Record Time T 10:45:00 PMF	Гуре ^P olymer	Density Visc. 1100 44	<u>Gel</u> PV YP 10 S 13 7	<u>Strength</u> ec <u>10 Min</u> W. 4.5 7.5 6	Solids L. <u>pH %</u> 3.0 9.0 7.0	Cl (ppm) C 400	0.0	Mud Loss olume Formation 34	
Circulation Re Bit # Nozzle	ecord es	Pur Model Strok	np#1 ke Liner Spm M	Pump# lodel Stroke L	2 iner Spm F	Press. Dens	s. Out	<u>Average</u> put DC DP	∆P <u>%</u>
<u>Mud Additivio</u> Mud Item	<u>es</u> Unit #of	Deviation Reco Depth Incl (d 87.72 56 96.68 66 105.93 66 114.69 6	<u>rd</u> leg) Az (deg) 8.40 195.20 0.20 195.50 2.50 197.10 4.90 196.90	BHA Item	<u># Of</u> O.I	D. Lengt	<u>h</u>	Geological Formation	Тор
Today's Mud <u>Solids Contro</u> Item	Cost : \$0 <u>ol</u> <u>Make</u>	123.79 6 132.94 6 <u>U. Flow</u>	7.30 196.50 9.70 196.50 O. Flow					<u>Casing</u> Section Surface	<u>Set At</u> 41.3
Centrifuge Centrifuge Desander Shaker :	Swaco Swaco Swaco Brandt	169 169 Screens : 50	0 1040 0 1040 0 0	DP OD : 127.0 DC OD : 0.0	0 mm B 0 mm String V	HA : 51.78 Vgt. : 15.00	3 m)	Intermediate	374.5
Time Distribu	ution	Total Hours :	24.00						
Time From T 10:15:00 AM 1 12:00:00 PM 1	Fime To 12:00:00 PM 12:15:00 PM	Time Category Tripping Miscellaneous	Remarks Trip to lay down o Winterize mud lir	directional tools. nes.					
12:15:00 PM 1 1:30:00 PM 1	1:30:00 PM 1:45:00 PM	Directional Work Safety Meetings	Lay down direction	onal tools. eeting w/ casing	hand.				
1:45:00 PM 4 4:00:00 PM 4	4:00:00 PM 4:15:00 PM	Run Csg & Cement Rig Service	Rig to & run 244.	o mm intermedia	ng.				
9:30:00 PM 1 11:45:00 PM 1	11:45:00 PM 11:59:59 PM	Circ./Condition Mud Safety Meetings	Circulate & condi Pre-job safety me	ition hole; decrea	ase viscosity to ters.	44, density	y 1100, j	oH 9.0.	
Contractor : P Rig : P Lease : G Weather : O Report by Wellcore	recision Drilli recision #297 lood conditior lvercast -30	ng Rig Mana Rig Manager Ph n/ Icy	ger : Ken Hein one : 403 850 718	1 C Superin Su Release 12	Beologist : Dane Engineer : Rodi ntendent : Dave ipervisor : Rodi	e Bridge ney Tetrault e Loxam ney Tetreau	t 1 I	Phone # : 403 540 Phone # : 403 804 Phone # : 403 538 Phone # : 403 804 November 2	8729 6953 4590 6953 4, 2003 07:26

wellcore	Pro	ject [:] Joslyn Cree	Daily Dr k Phase 1	Well Name : DC	DORT	yn Creek 3-33-9	Report # Ops. Date Days From Spud	: 7 : 23/11/200; : 4
Well License : AFE # : Ops. Objective : AM Ops. : Ops. Forecast :	Well T 0295554 054-0303S Drill Horizontal Drilling 216 mm Drill ahead to T	ype : Producer Amoun Producer in McMu production horizo D @ 974mMD, Re	:: \$2,603,270 Irray Intal hole @ 804 eam back to shoe	Main Hole : 10/ Spud : 19/11/200 R.R. : mMD. e, POOH & L/D Too	2/03-33-095- 13 bls, RIH w/ re	GL: 339.70 CF: 0.00 KB: 343.46	Day Cost Cost To Date Est. TD Depth @ 2400hr Progress Day Rot. Hrs.	: \$53,381 : \$648,046 : 967.5 : 637.00 : 262.5 : 6.25
Bit Record Bit # Size 1P 216	Mfg. Model Reed DSX146	RPM WOB 210 12	Daily Progress Hou 262.5 6	Depth urs ROP Ou .25 42.0 637.0	<u>Cum</u> t Depth 0 263	ulative Hours ROP 6.25 42.0	Condition	
Mud Record Time Ty 7:00:00 PM Pc	/pe Den olymer 1	sity Visc. 050 40	<u>Ge</u> PV YP 10 \$ 11 6	I Strength Sec 10 Min W.L. 5.0 5.0 8.0	Solids <u>pH %</u>) 9.5 3.0	Cl (ppm) Oil %) 440 0.0	Mud Loss Volume Formation 18	
Circulation Rec Bit # Nozzles 1P 11.1,11.	:ord 1,11.1,15.9,15.9	Model Strok F800 229	np#1 e Liner Spm I 152 130 I	Pump #2 Model Stroke Lin F800 229 15	<u>er Spm</u> F 2 130	Press. Dens. 0 5200 1050	<u>Average</u> Output DC DP 3.08 128 128	∆P <u>%</u> 62.4
Mud Additivies Mud Item Sodium Bicart Defoam X Defoamer A SAPP Safe-Solv	<u>s</u> Unit # of 2 7 2 3 1	Deviation Reco Depth Incl (d 374.00 89 387.27 89 400.95 90 414.64 90 428.29 90	r <u>d</u> eg) Az (deg) 9.90 182.00 9.80 182.40 9.70 182.00 9.40 180.40 9.20 180.10	BHA Item Bit Motor Float sub Non-mag DC Hang-off sub	# Of O. 1 210 1 177 1 163 3 163 1 163	D. Length 6.0 0.20 1.5 6.54 3.0 0.53 9.0 16.49 8.0 1.70	Geological Formation	Тор
EMI-695 Today's Mud C <u>Solids Control</u> Item Centrifuge Centrifuge	1 Cost : \$0 <u>Make</u> Swaco Swaco	441.95 97 <u>U. Flow</u> 1790 1790	0. Flow 0 1020 1020	Non-mag DC XO sub Jars	2 16 1 16 1 16	7.0 18.43 2.0 0.64 8.0 6.35	<u>Casing</u> Section Surface Intermediate	<u>Set At</u> 41.3 374.5
Desander Shaker :B <u>Time Distributi</u>	Swaco srandt So ion	1040 creens : 50 Total Hours :) 1250 24.00	DP OD : 127.00 DC OD : 127.00	mm E mm String V	3HA : 50.88 m Vgt. : 16.00		
Time From Tir 12:00:00 AM 12 12:15:00 AM 2:10	me To Time 2:15:00 AM Rig S 15:00 AM Run (Category ervice Csg & Cement	Remarks Rig to & cement 1500 kg/m3. Put 22/03. Float & at 374.5mMD. Floa	intermediate casin mp 35.0 tonnes (27 nnulus held okay. h at @ 366.6mMD.	g. Pump 5.0 (.0 m3) slurry lad 9.0m3 ge	m3 H2O ahead. / @ 1885 kg/m3. pod cement retur	Pump 2.0 m3 scaver Plug down @ 0231h ms. Casing landed @	nger @ irs. Nov.)
2:15:00 AM 6:3 6:30:00 AM 8:0 8:00:00 AM 8: 8:15:00 AM 10 10:30:00 AM 1:3	30:00 AM WOC 00:00 AM Misce 15:00 AM Rig S 0:30:00 AM Misce 30:00 PM Direc	; ellaneous ervice ellaneous tional Work	Cut casing & we Install belly pan P.U. directional	ld on 254 mm casi & weld on flow tee. tools.	ng & flow tee	9.		
Contractor : Pre Rig : Pre Lease : Goo Weather : Ove	ecision Drilling ecision #297 od condition/ Icy ercast -10	Rig Manager Pho	ger : Ken Hein ne : 403 850 718	Ge 31 En Superinte Sup	ologist : Dan gineer : Rod endent : Dave ervisor : Rod	e Bridge ney Tetrault e Loxam ney Tetreault	Phone # : 403 540 Phone # : 403 804 Phone # : 403 538 Phone # : 403 804	8729 6953 4590 6953

Wellcore	Pri Well ⁻	oject [∶] Joslyn Cree Гуре ∶ Producer	Daily Dr ek Phase 1	Well Name : E Main Hole : 1 Spud : 19/11/2	PORT DCEL 1P1 Jos 02/03-33-095	lyn Creek 3-33-9 -12-W4M GL : 339.70	Report # : Ops. Date : Days From Spud : Day Cost : Cost To Date :	7 23/11/200: 4 \$53,381 \$648,046
AFE # : 0 Ops. Objective : 1 AM Ops. : 1 Ops. Forecast : 1	054-0303S Drill Horizontal Drilling 216 mr Drill ahead to ⁻	Amour Producer in McM n production horiz ID @ 974mMD, R	nt : \$2,603,270 urray ontal hole @ 804 eam back to sho	R.R. : mMD. e, POOH & L/D T	ools, RIH w/ r	CF : 0.00 KB : 343.46 eamer assembly	Est. TD : Depth @ 2400hr : Progress : Day Rot. Hrs. :	967.5 637.00 262.5 6.25
Bit Record Bit # Size M	ffg. Model	RPM WOB	Progress Hou	urs ROP C	tn <u>Cun</u> Dut Depth	Hours ROP	Condition	
Mud Record Time Type 7:00:00 PM Poly	e Dei mer	nsity Visc. 1050 40	<u>Ge</u> PV YP 10 5 11 6	I <u>Strength</u> Sec 10 Min W. 5.0 5.0 8	Solids <u>L. pH %</u> 3.0 9.5 3.0	; Cl (ppm) Oil % D 440 0.0	Mud Loss Volume Formation 18	
Circulation Recor Bit # Nozzles	r <u>d</u>	Pu Model Stro	mp#1 ke Liner Spm	<u>Pump</u> # Model Stroke L	<u>¢2</u> .iner Spm	Press. Dens.	<u>Average</u> Output DC DP	∆P <u>%</u>
Mud Additivies Mud Item Un Envirofloc 2	iit #of	Deviation Reco Depth Incl (4 455.63 9 469.28 9 482.97 9 496.57 8 510.20 8 523.87 8	ord deg) Az (deg) 11.40 180.10 11.20 179.80 10.40 179.60 19.00 179.70 19.20 179.70 19.20 179.70 19.90 179.80	BHA Item	#Of O	.D. Length	<u>Geological</u> Formation	Тор
Today's Mud Cos	st : \$0						Casing	
Solids Control							Section	Set At
ltem	Make	U. Flow	O. Flow				Sufface	41.3 374.5
Centrifuge	Swaco	179	10 1020				memediace	074.0
Centrituge	Swaco	179	10 1020	DD 0D - 407 (0 mm	DUA · 50.99 m		
Desaliuei	owaco	Coroone : 50	1200	DP OD : 127.0	0 mm String	Nat : 16.00		
Time Distribution	n	Total Hours	24.00	2002.12.1				****
Time From Time			Remarks					
1:30:00 PM 3:15	:00 PM Trip	ping	Run in hole to 3	66mMD (Tag cen	nent top).			
3:15:00 PM 4:00	:00 PM Drill	Out	Drill out float & s	shoe.				
4:00:00 PM 4:15	:00 PM Rig	Service						
4:15:00 PM 4:45	:00 PM Drill	Out	Continue to drill	out.				
4:45:00 PM 11:0	0:00 PM Drill	ng	Drill 216.0 mm p	production hole fr	om 374.5 to 6	37mMD.		
11:00:00 PM 11:5	9:59 PM Dev	ation Survey	Accumulated di	rectional surveys.				
Contractor : Precis Rig : Precis Lease : Good Weather : Overo Report by Wellcore	sion Drilling sion #297 I condition/ Icy cast -10	Rig Mana Rig Manager Ph	ager : Ken Hein one : 403 850 71	C 81 I Superi St Release 12	Geologist : Dar Engineer : Roc ntendent : Dav upervisor : Roc	ne Bridge Iney Tetrault re Loxam Iney Tetreault	Phone # : 403 540 Phone # : 403 804 Phone # : 403 538 Phone # : 403 804 November 24	8729 6953 4590 6953 4, 2003 07:13

Wellcon	e ,	Project [:] Joslyn Cree Well Type : Producer	Daily Dr ek Phase 1	illing Report Well Name : DCEL 1P1 Joslyn Main Hole : 102/03-33-095-12	Creek 3-33-9 -W4M	Report # Ops. Date Days From Spud Day Cost	: 8 24/11/200 : 5 : \$282,420
Well Licen: AFE Ops. Objecti AM Op Ops. Foreca	se: 0295554 # : 054-0303 ve: Drill Horiz os.: POOH to ast:	S Amour contal Producer in McM lay down reamer BHA	nt : \$2,603,270 urray & PU 177.8 mm li	Spud : 19/11/2003 G R.R. : 25/11/2003 C K ner.	SL: 339.70 F: 0.00 B: 343.46	Cost To Date Est. TD Depth @ 2400hr Progress Day Rot. Hrs.	\$954,318 967.5 981.00 607.0 18.50
<u>Bit Record</u> Bit # Size	e Mfg. N	lodel RPM WOB	Daily Progress Hou	rs ROP Out Depth H	ative ours ROP	Condition	
Mud Record Time 2:00:00 PM	<u>j</u> Type Polymer	Density Visc. 1050 42	<u>Gel</u> PV YP 10 S 12 6	<u>Strength</u> Solids sec <u>10 Min W.L. pH %</u> 2.5 4.0 7.5 9.0 3.1	Cl (ppm) Oil % 550 0.0	Mud Loss Volume Formation 47	
Circulation F Bit # Nozz	Record les	Pu Model Stro	mp#1 ke Liner Spm N	Pump #2 /lodel Stroke Liner Spm Pre	ess. Dens. C	<u>Average</u> Dutput DC DP	∆P %
Mud Additiv Mud Item	vies Unit # of	Deviation Reco Depth Incl (0 981.00 9	o <u>rd</u> deg) <u>Az (deg)</u> 0.30 180.00	BHA Item # Of O.D.	Length	Geological Formation	Тор
Today's Mu	d Cost : \$0					Casing	Sot At
Solids Cont	<u>rol</u> Maka		O Flow			Surface	<u>361 AL</u>
Contrifugo	Swaa	<u>0. Flow</u> 106	0. 1020			Intermediate	374.5
Centrifuge	Swace	190	0 1020			Liner	974.8
Desander	Swace Swace	5 104 Screens : 20	0 1190	DP OD : 127.00 mm BH/ DC OD : 0.00 mm String Wg	A: 50.88 m t.: 21.00		
Time Distrib	oution	Total Hours :	24.00				
Time From	Time To	Time Category	Remarks				
12:00:00 AM	12:15:00 AM	Rig Service					
12:15:00 AM	7:00:00 AM	Drilling	Drill 216.0 mm ho	prizontal hole from 637 to 855mM	D.		
7:00:00 AM	8:00:00 AM	Deviation Survey	Accumulated dire	ectional surveys.			
8:00:00 AM	8:15:00 AM	Rig Service		-			
8:15:00 AM	1:45:00 PM	Drilling	Drill 216.0 mm ho	prizontal hole from 855 to 981mM	D.	<i></i>	
1:45:00 PM	2:45:00 PM	Deviation Survey	Accumulated dire	ectional surveys.			
2:45:00 PM	3:45:00 PM	Circ./Condition Mud	Circulate & condi	tion hole.			
3:45:00 PM	4:00:00 PM	Tripping	Hoist to bit.				
Contractor : F Rig : F Lease : C Weather : C	Precision Drilli Precision #297 Good conditior Clear -16	ng Rig Mana 7 Rig Manager Phr n/ Icy	ger : Ken Hein/ Ri one : 403 850 718	ck Geologist : Dane E 1 Engineer : Rodney Superintendent : Dave L Supervisor : Rodney	Bridge y Tetreault oxam y Tetreault	Phone # : 403 540 Phone # : 403 804 Phone # : 403 538 Phone # : 403 804 November 27	8729 6953 4590 6953 7, 2003 12:04

Wellcore	Э р	Project ≑ Joslyn Creel	Daily Dr	Illing Report Well Name : DCEL 1P1 Jo	slyn Creek 3-33-9	Report # : Ops. Date : Days From Spud :	8 24/11/200: 5
	Well	Type : Producer		Main Hole : 102/03-33-09	5-12-W4M	Day Cost	\$282 420
Woll Licons	0295554	1112511-1013511-1111-1		Spud : 19/11/2003	GL: 339.70	Cost To Date :	\$954.318
AFF :	# 054-0303S	Amount	: \$2.603.270	R.R. : 25/11/2003	CF: 0.00	Est. TD :	967.5
Ops. Objective	e: Drill Horizont	al Producer in McMu	rrav		KB: 343.46	Depth @ 2400hr :	981.00
AM Ops	s. : POOH to lav	down reamer BHA 8	. PU 177.8 mm li	ner.		Progress :	607.0
Ops. Forecas	st :					Day Rot. Hrs. :	18.50
Bit Record			Daily	Depth Cu	mulative		
<u>Bit # Size</u>	<u>Mfg. Mode</u>	RPM WOB I	Progress Hou	rs ROP Out Depth	Hours ROP	Condition	
Mud Record Time 2:00:00 PM	Type De Polymer	ensity <u>Visc.</u> 1050 42	<u>Gel</u> PV YP 10 S 12 6	<u>Strength</u> Solic sec <u>10 Min W.L. pH</u> 2.5 4.0 7.5 9.0 3	ls Cl <u>% (ppm) Oil %</u> .1 550 0.0	Mud Loss Volume Formation 47	
Circulation Re	ecord	Pum	<u>p#1</u>	Pump #2	D	Average	ΔP
	<u></u>					<u></u>	
Mud Additivi	ies	Deviation Recor	d	BHA		Geological	
Mud Item	Unit # of	Depth Incl (de	eq) Az (deg)	Item # Of (D.D. Length	Formation	Тор
Today's Mud	l Cost : \$0					<u>Casing</u>	
Solids Contro	ol					Section	Set At
Item	Make	U. Flow	O. Flow			Surface	41.3
Centrifuge	Swaco	1960	1020			Intermediate	374.5
Centrifuge	Swaco	1970	1020			Liner	974.8
Desander	Swaco	1040	1190	DP OD : 127.00 mm	BHA: 50.88 m		
Shaker :	Brandt	Screens : 20		DC OD: 0.00 mm String	Wgt.: 21.00		
Time Distribu	ution	Total Hours :	24.00		199 years and an		
Time From b	Time Te Time	Catanan (Dementica				
		Service					
4.00.00 FIVI 2	4.15.00 PM Rig		1-:				
4:15:00 PW	8:30:00 PM Thp						
8:30:00 PM \$	9:30:00 PM Dire	ectional Work	ay down directio	nai toois.			
9:30:00 PM	9:45:00 PM Saf	ety Meetings	re-job safety me	eting (PU reamer assembly)			
9:45:00 PM 1	10:30:00 PM Slip	/Cut Drilling Line					
10:30:00 PM 1	11:59:59 PM Rea	aming F	PU Reamer asse	mbly & ream/ pump to FTD.]
Contractor D	recision Drilling	Dia Manaa	er : Ken Hein/ Pi		ne Bridge	Phone # - 403 540	8729
	recision #207	Rig Manager Pho		1 Engineer · Po	dnev Tetreault	Phone # : 403 804 (6953
Rig (Pi	and condition/ los		10 . 405 050 / 10	Superintendent · Da	veloxam	Phone # : 403 538	4590
Weather C	lear -16	y		Supervisor · Ro	dnev Tetreault	Phone # : 403 804 6	6953
Report by Wellcore			R	lelease 12		November 27	, 2003 12:04

		Daily Dr	illina	Repo	ort		Report #	: 9
Wellcore	Project : Joslyn Cre Well Type : Producer	ek Phase 1	Well Na Main I	ame : DCEL Hole : 102/0	1P1 Joslyn 3-33-095-12-	Creek 3-33-9 ·W4M	Ops. Date Days From Spud	: 25/11/200(: 6
Well License : 0295554 AFE # : 054-030 Ops. Objective : Drill Hor AM Ops. : Rig relea Ops. Forecast :	Amoun 3S Amoun izontal Producer in McM ased. Moved to DCEL 1	nt : \$2,603,270 Iurray I1 JosyInn Creek ²	Spud : 1 R.R. : 2 10-33-95-1	9/11/2003 5/11/2003 2 W4M.	G CI KI	L: 339.70 F: 0.00 B: 343.46	Day Cost Cost To Date Est. TD Depth @ 2400hr Progress Day Rot. Hrs.	: \$115,242 : \$1,069,559 : 967.5 : 0.00 : 0.0 : 0.00
Bit Record Bit # Size Mfg. I	Model RPM WOB	Daily Progress Hou	irs ROP	Depth Out	Cumula Depth Ho	tive ours ROP	Condition	
Mud Record Time Type 4:00:00 AM Polymer	<u>Density</u> <u>Visc.</u> 1040 52	<u>Ge</u> PV YP 10 S 11 9	I Strength Sec 10 Mi 0.0 0	n <u>W.L.</u> .000	Solids o <u>H %</u> (0.0 0.0	Cl ppm) <u>Oil %</u> 0 0.0	Mud Loss Volume Formation 47	
Circulation Record Bit # Nozzles	Pu Model Stro	mp#1 ke Liner Spm M	F Model Str	Pump #2 roke Liner	Spm Pre	ss. Dens. C	<u>Average</u> Putput DC DP	Δ Ρ <u>%</u>
Mud Additivies	Deviation Reco	ord deg) Az (deg)	BHA	#	Of OD	Length	Geological Formation	Тор
Defoam X 2 Fedzan 5 Poly Plus Dry 1		uey) Az (deg)		**	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00 0.00	romaton	100
Today's Mud Cost : \$0			- manual second		0.0	0.00	Casing	
Solids Control Item Make Centrifuge Swac Centrifuge Swac	0 <u>U. Flow</u> 0 196 0 197	<u>O. Flow</u> 0 1020 0 1020			0.0	0.00	Section Surface Intermediate Liner	<u>Set At</u> 41.3 374.5 974.8
Desander Swac Shaker : Brandt	o 104 Screens : 20	0 1190	DP OD : DC OD :	127.00 mn 0.00 mn	n BHA ⁿ String Wgt.	a: 0.00 m .: 0.00		
Time Distribution	Total Hours :	20.75						
Time From Time To	Time Category	Remarks						
12:00:00 AM 12:15:00 AM	Rig Service	Continue to re-	to hottom	w/ roome-				
2:30:00 AM 4:30:00 AM	Circ /Condition Mud	Continue to rear	ition hole c	lean & mud	(increase L	SRV to 11 000)	
4:30:00 AM 6:45:00 AM	Tripping	POOH & lay dow	n reamer l	BHA.			/-	
6:45:00 AM 7:00:00 AM	Safety Meetings	Pre-job safety me	eeting w/ I	mport liner t	echnician &	Hunting thread	I monitor.	
7:00:00 AM 8:00:00 AM	Run Csg & Cement	Rig to & run 639. 3, Production line	47 m, 47 j er & 37 jts.	ts. (44 slotte HWDP. Lin	ed jts & 3 bla er landed @	nk jts.), 177.8 974.77mMD,	mm, 43.15 kg/ m, L liner top @ 335.3ml	80, Rge MD.
8:00:00 AM 8:15:00 AM 8:15:00 AM 2:45:00 PM	Rig Service Run Csg & Cement	Finish running pr	oduction li	ner. Set pac	ker with 900	0 kPa, release	liner with 12,000 kl	Pa.
Contractor : Precision Drill Rig : Precision #29 Lease : Good conditio Weather : 7	ing Rig Mana 7 Rig Manager Pho n/ Icy	ger : Rick Higgins one : 403 850 718	1 S	Geolog Engine Superintende Supervis	iist : Dane Br eer : Rodney ent : Dave Lo sor : Rodney	idge Tetreault oxam Tetreault	Phone # : 403 540 Phone # : 403 804 Phone # : 403 538 Phone # : 403 804	8729 6953 4590 6953

Wellcore	2	Project [:] Joslyn Cre Well Type : Producer	Daily Dr ek Phase 1	Well Name : DCEL Main Hole : 102/03)rt 1P1 Joslyn Creek 3-33-9 3-33-095-12-W4M	Report # : Ops. Date : Days From Spud : Day Cost :	9 25/11/2003 6 \$115,242
Well Licens AFE Ops. Objectiv AM Op Ops. Foreca	se: 0295554 #: 054-0303 ve: Drill Horiz s.: Rig relea st:	3S Amoun zontal Producer in McN sed. Moved to DCEL 1	nt : \$2,603,270 lurray 1 Josylnn Creek 1	Spud : 19/11/2003 R.R. : 25/11/2003 0-33-95-12 W4M.	GL: 339.70 CF: 0.00 KB: 343.46	Cost To Date : Est. TD : Depth @ 2400hr : Progress : Day Rot. Hrs. :	\$1,069,559 967.5 0.00 0.0 0.0
Bit Record Bit # Size	Mfg. M	Nodel RPM WOB	Daily Progress Hou	Depth rs ROP Out	Cumulative Depth Hours ROP	Condition	
Mud Record Time 4:00:00 AM	I Type Polymer	Density Visc. 1040 52	<u>Gel</u> PV YP 10 S 11 9	<u>Strength</u> ec <u>10 Min</u> <u>W.L.</u> p 0.0 0.0 0.0 0	Solids Cl bH <u>%</u> (ppm) Oil % 0.0 0.0 0 0.0	Mud Loss Volume Formation 47	
Circulation R Bit # Nozz	Record les	Pu Model Stro	mp#1ke Liner Spm N	Pump #2 lodel Stroke Liner	Spm Press. Dens. C	<u>Average</u> Dutput DC DP	∆P %_
Mud Additiv Mud Item	r <u>ies</u> Unit # of	<u>Deviation Reco</u> Depth Incl (ord deg) Az (deg)	BHA Item #	Of O.D. Length	Geological Formation	Тор
Today's Muc	d Cost : \$0					Casing	
Solids Contr	rol					Section	Set At
ltem	Make	U. Flow	O. Flow			Surface	41.3
Centrifuge	Swaco	o 196	0 1020			Intermediate	374.5
Centrifuge	Swaco	o 197	0 1020			Liner	974.8
Desander	Swaco	o 104	0 1190	DP OD : 127.00 mm	n BHA: 0.00 m		
Shaker	:Brandt	Screens : 20		DC OD : 0.00 mm	String Wgt.: 0.00		
Time Distrib	ution	Total Hours :	20.75				
Time From	Time To	Time Category	Remarks				
2:45:00 PM	3:15:00 PM	Circ./Condition Mud	Displace casing	to water.			
3:15:00 PM	3:30:00 PM	Miscellaneous	Blow out top drive	e, winterize rig and rig	lines.		
3:30:00 PM	4:00:00 PM	Tripping	POOH to lay dow	n HWDP & liner relea	se tool.		
4:00:00 PM	4:15:00 PM	Rig Service					
4:15:00 PM	4:45:00 PM	Tripping	Continue to POO	H/ Lay down landing t	ool.		
4:45:00 PM	8:45:00 PM	Rig Up/Tear Down	Tear out rig, clear	n mud tanks, and blow	v suitcases clean.		
			Rig released @ 2	045nrs. Nov. 25/ 03.			
Contractor : P Rig : P Lease : C	Precision Drilli Precision #297 Good conditior	ng Rig Mana 7 Rig Manager Ph n/ Icy	ger : Rick Higgins one : 403 850 718 ⁷	Geolog I Engine Superintende	ist : Dane Bridge eer : Rodney Tetreault ent : Dave Loxam	Phone # : 403 540 Phone # : 403 804 Phone # : 403 538	8729 6953 4590
Weather: 7		···· ,		Supervis	sor : Rodney Tetreault	Phone # : 403 804 (6953
Report by Wellcore	1		R	elease 12	-	November 27	, 2003 12:05

November 27, 2003 12:05 PM

Report by Wellcore

Wellcore

Mud Inventory

Total Mud Cost : \$422 Spud Date : 19/11/2003 R.R. Date : 25/11/2003

Project: Joslyn Creek Phase 1

Well Type: Producer

Well Name : DCEL 1P1 Joslyn Creek 3 Main Hole : 102/03-33-095-12-W4M

Ops. Objective : Drill Horizontal Producer in McMurray

Mud Item	Price/Unit	Unit	Transferred In New Delivery	Used	Cost	Returned	Remaining
	\$0.00			0	\$0		0
Alcomer 74	\$288.96			0	\$0		0
Alkapam 1103	\$288.96			0	\$0		0
Antifoam D47	\$239.20			0	\$0		0
Antifoam M45	\$377.00			0	\$0		0
CI-40	\$86.13			0	\$0		0
Calcium Carbonate	\$4.76			0	\$0		0
Calcium Carbonate 325	\$4.76			0	\$0		0
Calcium Carbonate Poultry	\$4.76			0	\$0		0
Caustic Soda	\$28.58			1	\$29	0	-1
Cellophane	\$38.50			0	\$0		0
Citric Acid	\$196.22			0	\$0		0
DSCO Defoam	\$95.55			0	\$0		0
Defoam X	\$135.30	2		0	\$0		0
Defoamer A	\$137.94			0	\$0		0
Desco	\$54.62			0	\$0		0
Drilling Detergent	\$35.98			0	\$0		0
EMI-695	\$1,495.00			0	\$0		0
Envirofloc	\$28.21			0	\$0		0
Ethylene Glycol	\$0.00			0	\$0		0
Fedzan	\$219.35	5		0	\$0		0
Gel	\$7.15			55	\$393		-55
Green-cide	\$187.39			0	\$0		0
Lime	\$6.33			0	\$0		0
Mix II Fine	\$39.09			0	\$0		0
Mix II Med	\$39.09			0	\$0		0
Poly Plus Dry	\$179.52	1		0	\$0		0
SAPP	\$51.15			0	\$0		0
Safe Surf	\$1,541.00			0	\$0		0
Safe-Solv	\$880.95			0	\$0		0
Sawdust	\$3.67			0	\$0		0
Sodium Bicarb	\$17.26			0	\$0		0
Walnut Plug	\$22.07			0	\$0		0

																3 12					
																November 27, 200					
	Efficiency (%) <u>Model</u> <u>Remarks</u> 95 F800	(%) <u>Model Remarks</u> 95 F800			15 0 0.00	75 0 2.42	10 5592 3.08														
port With Costs	Rod 29.00		RPM	n. Ma	00 c	2 o 12 0 - → →	ş	ন্ত্র													
	np Type lex 2			Max. Mi	4000	ა თ	12 2		Bit Remar												
	Pump Pun Trip		MO	Min.	4 ο φ (\$0															
	•			ROP	42.0	17.7	35.1			/depth	\$0.00	\$0.00	\$0.00	\$0.00							
	3-95-12		lative	Hours	2.0	18.8	24.8		/Hr. :	al \$ Cost	\$0	\$0	\$0	\$0							
	eek 3-3. 4M		Cumu	Out	4 7 7	375	981		ing Cost	\$ Tot	\$0	\$0	\$0	\$0		elease 12					
	oslyn Cr 95-12-W			zle Details #5 #6 Depth	Depth	84 870 870) Operat	Trip						Ϋ́.							
	il. 1P1 J 03-33-0		urray Nozzle Details				#6	0.0	0.0	9 0.0		Rig	Drill \$	\$0	\$0	\$0	\$0				
n Re	le : 102/	r in McMurray			#	.0 0.0	0.0	6.9 15.			\$	\$0	\$0	\$0	\$0						
min	Vell Nam Main Ho				zie Deta	zie Deta	zle Deta	zle Deta	#3	19.0 15 24 0 22	17.5 []	11.1 15	<u>-</u>		Bit Cost						
о С	, > ,			# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ip Hrs.	0.00	0.00	0.00	0.00											
Bit	.		er in McN	r in McN	r in McM	r in McM	r in McM		ŧ	#	19.0 24.0	17.5	11.1			Tr	42.0	0.0	17.7	35.1	
	reek Phase	tal Produce	al Produce	Serial #	HD3082 HD3082	J22115	47259			Made	84	0	333	870	870						
	t : Joslyn C : Produce	rill Horizon	rill Horizon	rill Horizont	rill Horizont	rill Horizont:	rill Horizon	Model	HD3082 S316	X1CXP	DSX146			3it Hrs.	2.0	0.0	18.8	24.8			
	Projec Vell Type	sctive : D		Mfg.	Reed Hughes Reed			_	82		д.	46									
	^ COIE	ion Obje		Size	444	311	216		<u>sts</u>	Model	HD30	S31G	X1CX	DSX1		y Wellcore					
t) V/VII	nvell	Operat	Bits	Bit #	41 A	2 =	đ		Bit Co	Bit #	1A	1S	F	đ		Report b					

Wellcore

Casing Report

Project : Joslyn Creek Phase 1

Well Name : DCEL 1P1 Joslyn Creek 3-33-95-1

Well		Main Hole : 102/03-33-095-12-W4M										
Section												
Section	Hole Size	Hole Depth	Casing Set	At (MD)	Casing	Set At (1	VD)	Leak	Off Gradie	nt Mud Typ	e	
Surface	444.0	42.0		41.3			42.0		C	.0Gel Che	m	
Intermediate	311.0	374.5		374.5			99.5		C	0.0 Polymer		
Liner	216.0	981.0		974.8			0.0		C	0.0 Polymer		
Casing For : Surfa	се		Casing Date	e : 20/11/20	003	03					4	
Run Order Description	#Of Type/Mf	ar (ם חכ) Weigh	Grade	Range	Connect	ion	Lenath	From	То	
1 Shoe Joint	11 onestar	<u>ي.</u> ۲۰	97 3331	71 4	3.155	3	I T&C		13.7	27.5	41.3	
2Casing	21 onestar	33	97 333 (0 714:	3.155	3	LT&C		28.0	-0.5	27.5	
							0.00				0.49	
				Actual Abc			0.00	Above KE			0.45	
Accessories								Tally	Documen	<u>ts</u>		
Item	Туре		Quantity	Spacing	From	n	To					
Centralizers	Semi Rigid		3	13.0	5	.0 3	39.0					
Stop Collars	Screw-On		2	0.0	5	.0 3	39.0					

Torque Monitoring : No

3 Jts. Delivered :

0

Jts. Left On Rack :

Comments

Made up casing w/ rig's top drive. Casing went to bottom 'good'.

3

Torque Company :

Jts. In Hole :

Casing Report

Project : Joslyn Creek Phase 1

Well Name : DCEL 1P1 Joslyn Creek 3-33-95-1 Main Hole : 102/03-33-095-12-W4M

Well Type : Producer

Section	Hole Size	Hole Depth	Casing Set At (MD)	Casing Set At (TVD)	Leak Off Gradient Mud Type
Surface	444.0	42.0	41.3	42.0	0.0 Gel Chem
Intermediate	311.0	374.5	374.5	99.5	0.0Polymer
Liner	216.0	981.0	974.8	0.0	0.0Polymer

Casing	For : Interme	diate		Casin	g Date :						
Run Order De	escription	# Of	Type/Mfgr.	OD	ID	Weight Grade	Range	Connection	Length	From	То
1 Flo	oat Shoe	1		244.5	0.0	69.53			0.6	373.9	374.5
Ca	asing	1Ti	iajin	244.5	0.0	69.53L80	3	Butt	6.8	367.1	373.9
Flo	oat Collar	1		244.5	0.0	69.53			0.5	366.6	367.1
Ca	asing	28Ti	iajin	244.5	0.0	69.53L80	3		367.7	-1.1	366.6

			Actual Above	KB :	0.00	Above KB :	1.11
Accessories						Tally Documents	
Item	Туре	Quantity	Spacing	From	To		
Centralizer	Semi-rigid	1	3.0	371.0	371.0		
Centralizer	Rigid	6	13.0	366.0	40.0		
Torque Monitoring : Ye	es	Torque Company : Hu	unting				
Jts. Delivered :	31	Jts. In Hole :	29			Jts. Left On Rack :	2
Comments							
Jubbin become 'stuck' on on	e ioint ioint laid d	lown and alternate run.	Casing went	in hole 'aor	'd'		
NUMBER DECAME SLUCK OF ON	e joint, joint laid d	iown and alternate fun.	casing went	in noic goo	· · · ·		

Casing Report

Pr Well	oject:Joslyn Creek Type:Producer	Phase 1	Well Name : DCEL 1P1 Joslyn Creek 3-33-95-1 Main Hole : 102/03-33-095-12-W4M										
<u>Section</u> Section Surface Intermediate Liner	Hole Size 444.0 311.0 216.0	Hole Depth Casir 42.0 374.5 981.0	ng Set A	t (MD) Casing 41.3 374.5 974.8	Set At (1	<u>ΓVD) Le</u> 42.0 99.5 0.0	ak Off Gradier 0 0 0	nt Mud Typ .0Gel Che .0Polymer .0Polyme i	e m				
Casing For Liner		Casin	a Date :										
Run Order Description 1 Guide shoe 2 Slotted liner 3 Blank liner 4 Packer 5 HWDP	<u># Of</u> <u>Type/Mf</u> 1 Import 44 Tiajin 3 Tiajin 1 Import pack 37	gr. OD 177.8 177.8 177.8 177.8 er 177.8 127.0	I <u>D</u> 0.0 153.9 153.9 0.0 76.0	Weight Grade 0.00 43.15L80 43.15L80 0.00 74.35	Range 3 2	<u>Connection</u> Butt	Length 0.6 596.7 41.3 0.9 336.0	From 974.2 377.5 336.2 335.3 -0.7	To 974.8 974.2 377.5 336.2 335.3				
Accessories			Ac	tual Above KB :		0.00	Above KB	: 	0.70				
Item	Туре	Qua	ntity S	Spacing Fro	<u>n</u>	<u>To</u>							
Torque Monitoring	Yes	Torque Compan	iy : Hunt	ing									
Jts. Delivered	62	Jts. In Hol	e:	47		Jts	s. Left On Rac	k :	15				
Comments Rotated liner into hole from released liner with 12,000	n ICP to FTD. Liner kPa. Displaced hole	went in hole 'good' to water.	. Droppe	ed ball & circulate	ed with rig	g mud pump to	o set, set pack	er with 900	00 kPa &				

Wellco	ore	Cementing Details											
	Project	: Joslyn Creek Phase 1		Well Na	me : DCEL 1	P1 Joslyn C	reek 3-33-95						
	Well Type	Producer		Main H	ole : 102/03-3	3-095-12 - V	V4M						
Hole Section		Hole Depth	Hole Size	Casing OD	Casing Set .	At (MD)	Casing Set /	At (TVD)					
Surface		42.0	444.0	339.70		41.3		42.0					
Intermed	iate	374.5	311.0	244.50		374.5		99.5					
Liner		981.0	216.0	162.11		974.8		0.0					
<u>Cement</u>	Cement Job Date	e: 19/11/2003					Intony						
Somucheo	Pland	Additio		Volume	Density			Bottom					
Fill	Thermal 40F	3.0% (CaCl2	7.60	1876.0	0 vieigin	0.0	42.0					
			Total	Volume : 7.60	m3								

No Remarks

	Yes	No	<u>Remarks</u>
Reciprocated	: 🗙		Pump 4.0 m3 H2O ahead. Pressure test lines to 17.0 MPa. Pump 10.0 tonnes Thermal 40F + 3.0% CaCl2 (7.6 m3 Slurry). Displace casing w/ 3.39 m3 H2O. Plug down @ 0617Hrs. Nov.19/ 03.
Rotated Casing	:		Float & annulus nelu okay. Hau 4.0 m3 good cement returns.
Bumped Plugs	: X		
Floats Held	: X		
Annulus Held	: 🗙		
Held Back Pressure	•		
Fluid Returns	: X		
Cement Returns	: 🗙		
Loss of Circulation	•		
Cement Return Volume	:	4.00	

Cementing Details

Project : Joslyn Creek Phase 1Well Name : DCEL 1P1 Joslyn Creek 3-33-95Well Type : ProducerMain Hole : 102/03-33-095-12-W4M

Hole Depth	Hole Size	Casing OD	Casing Set At (MD)	Casing Set At (TVD)
42.0	444.0	339.70	41.3	42.0
374.5	311.0	244.50	374.5	99.5
981.0	216.0	162.11	974.8	0.0
	Hole Depth 42.0 374.5 981.0	Hole Depth Hole Size 42.0 444.0 374.5 311.0 981.0 216.0	Hole DepthHole SizeCasing OD42.0444.0339.70374.5311.0244.50981.0216.0162.11	Hole DepthHole SizeCasing ODCasing Set At (MD)42.0444.0339.7041.3374.5311.0244.50374.5981.0216.0162.11974.8

<u>Cement</u>	Cement Job Date : 22/11/2003					Interva	I
Sequence	Blend	Additives	Volume	Density	Weight	Тор	Bottom
Scavenger	Thermal 40	2% CaCl2 + 0.25% CFL-3 + 2% FWCA-H	2.00	1500.0	0	0.0	0.0
Fill	Thermal 40	2% CaCl2 + 0.25% CFL-3 + 2% FWCA-H	33.00	1885.0	0	0.0	374.5

Total Volume : 35.00 m3

Yes No **Remarks** Pump 5.0 m3 H2O (w/ red dye marker ahead). PT lines to 21MPa. Pump 2.0 m3 scavenger @ Reciprocated : 1500 kg/ m3. Pump 27.0 m3 (35 tonnes) Thermal 40 + 2% CaCl2 + 0.25% CFL-3 + 2% FWCA-H @ 1885 kg/ m3. Plug down @ 0231hrs. Nov. 22/ 03. Float & annulus held okay. Had 9.0 m3 good Rotated Casing : cement returns. Bumped Plugs : Floats Held : Annulus Held : Held Back Pressure : Fluid Returns : Cement Returns : Loss of Circulation : 9.00 Cement Return Volume :

APPENDIX 1/C:

Observation wells

← N

FINAL 1P1 & 1I1 Top View

Northings (m)

APPENDIX 2:

Completion operations

APPENDIX 2/A1:

Completion operations

February 2006, ESP workover replacement

			We	II Servic	ing Daily O	peration								
	ΤΟΤΑΙ	F&P Can	ada		• •	Well	Name: 1P	L_102/	03-33-095-12-W4	M		6	tart Dal	a. 2/4/2006
TOTAL			Unit: LWO, Ro	ockwell S70)			_				3	art Dat	e: 2/1/2006 eport #: 1.0
Country : Car	nada	S	lot: Producer 1		Water Depth :		Spud Date):						
Platform : Pa	nd 1		lorth : ast :		Location : ONS	SHORE ertical	Status : C	: Flowing	g Oil d	Days without LTI	Personnel Details Personnel Tota	I Hours (hrs)	Cum Personi	nel Total Hours (hrs)
									-					
Activity Type Pump Change Ou	t	Chrono number 4	Job HW	OType WS	Classifi WO	cation WS	Status WS			Parent Company	Quantity	Cor	nment	
i inp inigi i i	-	1.		-			1							
Rig/WS U	nit and Equi	pment Details								POB	Barant Company	Hood Count	Dur (br	
Rig/Unit Name	ockwell S70	Local Contracto Lyle Aubin	r	Rig/Unit Type		Start Date 2/1/2006	Enc	Date	12/13/2006	Туре	Parent Company	Head Count	Dur (nis	s) Tot time (hrs)
Description		Actual Location	Pressure F	Rating (bars)	Nominal ID (in)	Spool Date	Used Hours (hrs)		Wire Left (m)	Supervisors	;			
Make		Model		Component H	eight (m)	Max Hang Off Weight (tonn	esf) Cer	tification Da	ate		Sut	pervisor		
Daily Ope	ration Detail	s								Safaty Incid	onto			
Daily Field Est C	ost (Local)				Cum Field Est Co	st (Local)	45			Time	Event Type Associa	ted Rig		
Daily Summary		15					15			Number of Fatalities		Number of Lost [avs	
RUSR Planned Operatio	ons													
Pull out CTU Instr	ument string										0			
6 am Status Rig up service rig/	Move equipment from	1 pad 204								Main Stocks	Consumed	Received Re	turned	Stock
Remarks														
Production Loss	s es / MAP									Start and Fu	nd Pressures			
T ime 1										Time	Test Type	Activit	,	
Start Time	End Time	Code	Unsched Type			Comment				Start Time	Pres Tub Start (bars)	Pres Cas Start (b	ars) Pre:	Ann Start (bars)
00:00	07:00	Move In/Rig Up		Spot and Rig up -	Move all equipment from pa	d 204. Clear Snow.						,		<u>, , , , , , , , , , , , , , , , , , , </u>
07:00	07:30	Kill Well		Prepare to kill wel	IC: BOP					End Time	Pres Tub End (bars)	Pres Cas End (ba	rs) Pres	s Annulus End (bars)
08:00	12:00	Wait on Repairs		Power end on rig	pump froze (water and oil) d	ue to not winterizing the equipmer	nt				1		I	
12:00	14:00	Kill Well		Kill the well. SITP: significant temper dead.	=0 , SICP = TSTM. Pump 5n ature change at the heel.	n3 water down tubing (tbg on vac) Pump 30 m3 down 245/89 a	nnulus thru casing well	profile at the . Large tem	e control room showed np change at the toe. Casing					
14:00	19:00	Coiled Tubing Op.		Spot RU CTU and hanger & pack-off	l spool unit. Check guide stri assy.	ng pressure (slight blow TSTM).	Rem Install Rockwell hyd	nove shower Iraulic windo	head &Select Oil tool CT w & annular assembly.					
19:00	19:30	Safety		HA Meeting										
19:30	00:00	Coiled Tubing Op.		Serv Rig crew RU	& get ready for BOP installa	ation. e to select hanger tool packer seal	CTU :A	ttempt to pu	mp down 60.3 guide string -					
				POOH 38.1	mm Instrumentation string - s	string very oily		Rig out CT	ГО					
Work Stri	nas													
	String Description		Run D	ate		Pull Date		Set De	epth (mKB)					
									Poport printed: 0/44/0					
					Page 1/1				Report printed: 9/14/2	507				

			We	II Servici	ng Daily O	peration							
9	TOTAL	E&P Cana	ada		• •	· ·	Well Name:	1P1_10	2/03-33-095-12-W	4M		Stor	Data: 2/2/2006
TOTAL			Unit [.] I WO Ro	ckwell S70				_				Start	Date: 2/2/2006
0					Mater Derth		0	d Data i					Report #. 2.0
Field : Joslyn	ada	N	ot: Producer 1		I ocation : ONS	SHORE	Obi	a Date : active : Flow	vina Oil	Safety and	Personnel Details	•	
Platform : Pa	d 1	Ea	ast :		Well shape : Ve	ertical	Sta	us : Comple	eted	Days without LTI	Personnel Tota	al Hours (hrs) Cum	Personnel Total Hours (hrs)
											c Submitted		
Activity Type Pump Change Out		Chrono number 4	Job HW	Type WS O	Classifi WO	cation WS	Status WS			Parent Company	Quantity	Comment	:
Rig/WS Ur	nit and Equip	pment Details		D: #1 % T							Parent Company	Head Count	Dur (brs) Tot Time (brs)
Rig/Unit Name	ockwell S70	Local Contractor		LWO		Start Date 2/1	1/2006	End Date	12/13/2006		Parent Company		
Description		Actual Location	Pressure F	Rating (bars) N	Iominal ID (in)	Spool Date	Used Hou	s (hrs)	Wire Left (m)	Supervisor	s		
Make		Model		Component Heig	ght (m)	Max Hang Off Weigh	t (tonnesf)	Certification	n Date	-	Su	pervisor	
										-			
Daily Oper	ration Detail	s								Safety Inci	lonte		
Daily Field Est Co	ost (Local)	-			Cum Field Est Co	st (Local)	20			Time	Event Type Associa	ated Rig	
Daily Summary		15					30			Number of Fatalitie	s	Number of Lost Days	
RUSR - POOH w/ Planned Operatio	ESP Assy.									-	-		
Pull out ESP hotling	e pump assy & 114 m	nm tail pipe c/w Import pao	cker										
6 am Status Install BOP										Main Stock De	s Consumed	Received Returned	i Stock
Remarks													
Production Losse	s / MAP									Start and E	nd Pressures		
Timeler										Time	Test Type	Activity	
Start Time	End Time	Code	Unsched Type			Com	ment			Start Time	Pres Tub Start (bars)	Pres Cas Start (bars)	Pres Ann Start (bars)
00:00	02:00	Move In/Rig Up		Spot & RUSR	mm BOB (appular/ 88 0m	m pipe/blind) Proceure too	t to 1400 8 12700 kB		out ESD	End Time	Pros Tub End (bars)	Bros Cas End (bars)	Pros Annulus End (bars)
07:00	07:30	Safety		Held HA meeting - T	opic : wellhead configurati	ion	10 1400 & 137 90 KF		Jul Lor.			Ties Gas Ella (bars)	Tres Annulus End (bars)
07:30 13:30	13:30	Wait on Repairs		Accumulator not fund Hole BOP drill	ctioning. Rockwell respons	sible for time lost.				-			
14:00	19:00	Tripping pipe (in/out)		POOH & lay down w	/ 26 jts of 89mm, L-80 Hyd	drill 533 tubing and ESP as	ssy.	Lay out and b	reakdown pump for Schlumberger	•			
19:00	19:30	Safety		Held HA	ted for storage.					-			
19:30	22:30	Assemble/Disassemble BHA		Lay down & break do	own REDA ESP assy.								
22:30	00:00	BOP/Install/Remove/		Crew installs BOP's,	very hard to remove well	head studs.	Fur	ction test BOP. P	Pull out hanger assy.				
Work Strir	nas												
	String Description		Run D	ate		Pull Date		Set	t Depth (mKB)				
										-			

			We	ell Servic	ing Daily O	peration							
	TOTAL	E&P Ca	anada			Wel	II Name: 1P1_1	102/0	03-33-095-12-W4	M		Start	Date: 2/3/2006
TOTAL	-		Unit: LWO, Ro	ockwell S70)							Star	Report #: 3.0
Country : Can	ada		Slot : Producer 1		Water Depth :		Spud Date :						
Field : Joslyn	d 1		North :		Location : ONSH	HORE	Objective : Fl	lowing	g Oil	Safety and	Personnel Details	S al Hours (brs) Cum	Personnel Total Hours (hrs)
							Status . Com	ipieteu		1			
Activity Type			r Jok	o Type WS	Classifica	ation WS	Status WS			STOP Card	s Submitted	Commen	t
r unp onango our													
Rig/WS Ur	nit and Equi	ipment Deta	nils			1				POB	Derent Company		
Rig/Unit Name Ro	ockwell S70	Local Cont Lyle Aubin	ractor	Rig/Unit Type		Start Date 2/1/2006	End Date	te	12/13/2006	Type	Parent Company	Head Count	Dur (nis) Tot Time (nis)
Description		Actual Loca	ation Pressure I	Rating (bars)	Nominal ID (in)	Spool Date	Used Hours (hrs)	١	Wire Left (m)	Supervisor	S		
Make		Model		Component H	eight (m)	Max Hang Off Weight (ton	nesf) Certifica	ation Da	ate		Su	ipervisor	
Daily Oper	ration Detai	ls								Safety Incid	lents		
Daily Field Est Co	ost (Local)	1	5		Cum Field Est Cost	t (Local)	45			Time	Event Type Associa	ated Rig	
Daily Summary		otring	-							Number of Fatalitie	S	Number of Lost Days	
Planned Operation	ns	sung.											
M-U cyclone Bailer 6 am Status	Assy									Main Stock	s Consumed		
Install BOP's/ POO	0H 60.3mm tubing									Main Stock Des	s Consumed	Received Returned	d Stock
Remarks Accident Free: Yes	5												
Production Losse	es / MAP									Start and E	nd Pressures		
Time I og										Time	Test Type	Activity	
Start Time	End Time	Code	Unsched Type			Comment				Start Time	Pres Tub Start (bars)	Pres Cas Start (bars)	Pres Ann Start (bars)
00:00	07:00	BOP/Install/Remo	ve/	Crew installs BOP	's, very hard to remove wellhe	ead studs.	Function test B	BOP. Pu	Ill out hanger assy.	End Time	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
08:00	12:00	Tripping pipe (in/c	ut)	POOH w/ 60.3mm	tubing								
12:00	14:00	BOP/Install/Remo	ve/	Change pipe rams	on BOP's to 88.9mm		11 1 11 1 100 05		. 10 00 LIM/DD				
14:00	19:00	I ripping pipe (in/c	ut)	120.65 compound	eatherford fishing tools consistent of the consistence of the consiste	and XO's to fish 244.5 mm imp	Hydrill pipe, 120.65 mm bumj ort ESP hanger packer c/w 19	iper sub, 9 jts 114	o, jars, 12 x 89 mm HWDP, 4.3mm tailpipe.				
19:00	19:30	Safety		Crew change - Ha	zard assessment completed a	and handed in w/ SWA	0 1	,					
19:30	00:00	Tripping pipe (in/c	ut)	Continue RIH w/ fin	shing string. Tagged liner top	at 328.5m MD. Pulled up and o	only gained 2000 Dan. try go b	back dov	wn and lost .5 m Repeat same				
				Pull up and still on	ly have 2000 daN over string.	Continue to POOH and lay dov	wn tubing joints. caught string	g 2 jts up	b and had to fire jars @ 30,000				
				DaN to get by. app down on catwalk to	pears to be pieces of hanger a o break down.	and setting tool catching on pack	ker and casing collars. POOH	I to pack	ker. Pull fishing assy and lay				
Work Strin	String Description		Run D	Date		Pull Date		Set Der	pth (mKB)				
	gp								F (
					Page 1/1				Report printed: 9/14/20	007			
					i ugo i/ i								

			Wel	I Servic	cing Dail	l y Operat i	ion								
	TOTAL	E&P Car	nada				Well	Name: 1	IP1_102/	03-33-095-12-W	4M			Stor	+ Data: 2/4/2006
TOTAL			Unit: LWO, Roo	ckwell S7	0									Star	Report #: 4.0
Country : Can	ada		Slot: Producer 1		Water D	epth :		Spud I	Date :				D (11]
Field : Joslyn	d 1		North :		Location	: ONSHORE		Object	tive : Flowing	g Oil d	Safety and		Details	Hours (brs)	Personnel Total Hours (brs)
								Status	. Complete	u	1				
Activity Type		Chrono number	Job T	ype WS		Classification WS		Status WS			STOP Card	ls Submitte	d		
Pump Change Out	1	4	HWO			WO					Parent Company	Quantity		Commer	it
Ria/WS Ur	nit and Equi	oment Detail	S								POB				
Rig/Unit Name		Local Contrac	tor	Rig/Unit Type	9	Start Dat	te		End Date	40/40/0000	Туре	Parent	t Company	Head Count	Dur (hrs) Tot Time (hrs)
Description	ockwell S70	Actual Locatio	n Pressure Ra	ting (bars)	Nominal ID (in)	Spool Da	2/1/2006 ate	Used Hours (I	hrs)	Wire Left (m)	Superviso	rs			
Make		Model		Component F	leight (m)	Max Han	a Off Weight (tonne	esf)	Certification D	late			Sup	pervisor	
				Componenti	,										
Daily One	ration Datail	~													
Daily Field Est Co	ost (Local)	5			Cum Field	Est Cost (Local)					Safety Inci	dents	Associa	tod Pig	
Daily Summary		15						60				Event Type	Associa		
Try cleanout with C	Cyclone bailer										Number of Fataliti	es		Number of Lost Days	
Planned Operatio Clean out horizonta	ns al section														
6 am Status	action w/ bailer assy										Main Stock	ks Consume	ed	Descional Deturns	
Remarks	ection w/ baller assy										Main Stock De	es Con	sumed	Received Returne	d Stock
Accident Free: Yes Production Losse	s / MAP														
												Test Type	les	Activity	
Start Time	End Time	Code					Comment				Start Time	Pres Tub St	tart (bars)	Pres Cas Start (bars)	Pres Ann Start (bars)
00:00	04:00	Tripping pipe (in/out)	(Continue to POO	H and lay down 19 jo	pints 114.3mm	Comment								
04:00	04:30	Safety	-	Hazard Assessme - covered the area	ent meeting with the a with sand after vac	crew and Weatherford couming	hand about the baile	er assy	Water spill arou	und the pump by the truck drive	End Time	Pres Tub E	nd (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
04:30	07:00	Tripping pipe (in/out)	F	RIH w/ Weatherf	ord Cyclone 3 1/8" bank	ailer assy c/w 10 jt 88.9 op of liner hanger, Begir	J-55 EUE chamber	and sawtooth co	llar on bottom on	88.9mm tubing. Land bottom		l.			
07:00	07:30	Safety	(Crew change - H	A meeting	F									
07:30 13:00	13:00 00:00	Tripping pipe (in/out) Wait on Repairs		Continue RIH w/ I Gen set down - a	bailer assy to 510m ccumulator not worki	ing couldn't continue ru	nning the bailer. Also	o pump leaking, C	Order Sanjel cem	ent truck to pump water -	-				
			á	arrived on locatio	n 21:30. Wait on repa	airs for Genset.	-				4				
Work Strir	nas														
	String Description		Run Dat	te		Pull Date	e		Set De	epth (mKB)	-				
											4				
					Decis 4/4					Report printed: 9/14/2	007				
					Page 1/1					Report printed: 9/14/2	007				

			Wel	I Servic	ing Daily O	peration							
	ΤΟΤΔΙ	F&P Cana	nda		• • •	Well	Name: 1	P1 102	2/03-33-095-12-V	V4M		Ctor	
TOTAL			Unit I WO Ro	ckwell S7(1			_				Star	Date: 2/5/2006
													Neport #. 5.0
Country : Can	ada	SIC	ot: Producer 1		Water Depth :		Spud D	ate :	ng Oil	Safety and	Personnel Details		
Platform : Pa	d 1	Ea	ist :		Well shape : Ve	rtical	Status	: Comple	ted	Days without LTI	Personnel Tota	al Hours (hrs) Cum	Personnel Total Hours (hrs)
								•		1			
Activity Type		Chrono number	Job 1	Type WS	Classifica	ation WS	Status WS			STOP Card	s Submitted	Common	
Pump Change Out		4	HWC	,	WO					Parent Company	Quantity	Commen	l
Ria/WS Ur	nit and Equi	pment Details								POB	·		
Rig/Unit Name		Local Contractor		Rig/Unit Type		Start Date		End Date		Туре	Parent Company	Head Count	Dur (hrs) Tot Time (hrs)
Ro Description	ockwell S70	Lyle Aubin Actual Location	Pressure Ra	LWO ating (bars)	Nominal ID (in)	2/1/2006 Spool Date	Used Hours (hr	rs)	12/13/2006 Wire Left (m)	Supervisor			
))	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Supervisor	S	pervisor	
Make		Model		Component H	eight (m)	Max Hang Off Weight (tonne	st)	Certification	Date				
Daily Oper	ration Detail	ls								Safety Incid	lents		
Daily Field Est Co	ost (Local)	15			Cum Field Est Cost	: (Local)	75			Time	Event Type Associa	ted Rig	
Daily Summary										Number of Fatalities	<u> </u>	Number of Lost Days	
Down for generator Planned Operation	r repairs ns												
Wait for	-									Main Chaole			
6 am Status Gen set down - Rig	g shut down									Nain Stock Des		Received Returne	d Stock
Remarks	,												
Production Losse	s/MAP												
											Test Type	Activity	
Time Log													
Start Time 00:00	End Time 07:00	Code Rig Down/Move Out	Unsched Type	Gen set not workir	ng - unable to operate accumu	Comment Ilator properly. Waiting for gen set	to arrive on lease	.		Start Time	Pres Tub Start (bars)	Pres Cas Start (bars)	Pres Ann Start (bars)
07:00	07:30	Safety		HA meeting						End Time	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
07:30	11:00	Wait on Repairs Wait on Repairs		Due to bad road co Genset had wron	onditions gen set arrive with d g end, electricain tried to conn	elay @ 11am. ect but had to order new cable. W	ait for cable to arr	ive.					
19:00	19:30	Safety		HA Meeting	· · · · · · · · · · · · · · · · · · ·								
19:30 00:00	00:00	Wait on Repairs Wait on Repairs		Waiting for Gen Se Fixing Gen set poy	et power cord. wer cord								
Work Strin	ngs		Due De	4-		Dull Data		0					
	String Description		Run Da	te		Puli Date		Set	Depth (MKB)				
							I						
					Page 1/1				Report printed: 9/14	/2007			

			Well S	Servicing Da	aily Operation					
	TOTAL	E&P Can	ada	-	Well N	lame: 1P1_102/03-33-095-1	2-W4M		Stort	Data: 2/6/2006
TOTAL			Unit: LWO, Rockw	vell S70					Start	Report #: 6.0
Country : Cana	ada	S	lot: Producer 1	Wate	r Depth :	Spud Date :	Sofoty and	Dereennel Deteile		
Platform : Pad	11	E	ast :	Wells	shape : Vertical	Status : Completed	Days without LTI	Personnel Tota	al Hours (hrs) Cum F	Personnel Total Hours (hrs)
Activity Type		Chrono number	Job Type V	ws	Classification WS S	atus WS	STOP Card	s Submitted		
Pump Change Out		4	HWO		WO		Parent Company	Quantity	Comment	
Rig/WS Uni	it and Equip	pment Details					POB			
Rig/Unit Name	ckwoll SZ0	Local Contracto	Rig	g/Unit Type	Start Date	End Date 12/13/2006	Туре	Parent Company	Head Count	Dur (hrs) Tot Time (hrs)
Description	ckwell 370	Actual Location	Pressure Rating (I	(bars) Nominal ID (in	n) Spool Date	Used Hours (hrs) Wire Left (m)	Supervisor	 S	II	
Make		Model	Co	omponent Height (m)	Max Hang Off Weight (tonnesf	Certification Date		Sup	pervisor	
Daily Opera	ation Detail	S					Safety Incid	lonts		
Daily Field Est Cos	st (Local)			Cum I	Field Est Cost (Local)	75	Time	Event Type Associa	ted Rig	
Daily Summary	ropaire						Number of Fatalities	6 5	Number of Lost Days	
Planned Operation	is									
Wait on rig repairs 6 am Status							Main Stock	s Consumed		
Waiting for electricia	an to fix gen set						Main Stock Des	consumed	Received Returned	Stock
Accident Free: Yes										
Production Losses	s / MAP						Start and E	nd Pressures		
Time Log							Time	Test Type	Activity	
TIME LOG	End Time	Code	Unsched Type		Comment		Start Time	Pres Tub Start (bars)	Pres Cas Start (bars)	Pres Ann Start (bars)
Start Time			// -							
Start Time 00:00 07:00	07:00	Wait on Repairs Safety	Waitin Crew (ng for electrician to fix gen so Change - HA meeting	et		End Time	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:00 07:30	07:00 07:30 10:00	Wait on Repairs Safety Wait on Repairs	Waitin Crew (Contin	ng for electrician to fix gen so Change - HA meeting nue waiting for Gen set Pow	er Cord		End Time	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:00 07:30 10:00	07:00 07:30 10:00 14:30	Wait on Repairs Safety Wait on Repairs Wait on Repairs	Waitin Crew C Contin Get se	ng for electrician to fix gen so Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:3	er Cord 30 am crew got it working, started back into the ho	le to continue bailing, tagged 11000 KPa at 0.12 m3/	nin.	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:00 07:30 10:00 14:30	07:00 07:30 10:00 14:30 19:00	Wait on Repairs Safety Wait on Repairs Wait on Repairs Tripping pipe (in/out)	Waitin Crew C Contin Get se Decide Starte	ng for electrician to fix gen so Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:3 ed to POOH check bailer, ir d running back in the hole.	er Cord 80 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of	le to continue bailing. tagged 11000 KPa at 0.12 m3/ bitumen on pipe. Cleaned out bailer with zero trace c	nin. f sand.	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:30 10:00 14:30 19:00	07:00 07:30 10:00 14:30 19:00 19:30	Wait on Repairs Safety Wait on Repairs Wait on Repairs Tripping pipe (in/out) Safety	Waitin Crew C Contin Get se Decide Starte Crew C	ng for electrician to fix gen so Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:: do to POOH check bailer, in do running back in the hole. change - HA meeting	er Cord 30 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of	le to continue bailing. tagged 11000 KPa at 0.12 m3/ bitumen on pipe. Cleaned out bailer with zero trace c	nin. f sand.	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:30 10:00 14:30 19:00 19:30	07:00 07:30 10:00 14:30 19:00 19:30 22:00	Wait on Repairs Safety Wait on Repairs Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out)	Waitin Crew C Contin Get se Decide Started Crew c Chang tubing	ng for electrician to fix gen so Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:3 ed to POOH check bailer, ir d running back in the hole. change - HA meeting ge out the shoe on the botto . Soot bottom of tubing @ 5	et er Cord 30 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RII- 10m MD.	le to continue bailing. tagged 11000 KPa at 0.12 m3/i bitumen on pipe. Cleaned out bailer with zero trace o w/ bailer BHA c/w 10 joint 89mm chamber on 89mm	nin. f sand. EUE	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:00 19:30 22:00 00:00	Wait on Repairs Safety Wait on Repairs Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Startec Crew C Chang tubing. RU pu 330L/r	ng for electrician to fix gen so Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:3 ed to POOH check bailer, ir d running back in the hole. change - HA meeting ge out the shoe on the botto J. Spot bottom of tubing @ imp line from Sanjel cement m, Pressure incease to 18.0	er Cord 80 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RIH 10m MD. truck to tubing. Start pumping down tubing. Press Mpa.	le to continue bailing. tagged 11000 KPa at 0.12 m3/i bitumen on pipe. Cleaned out bailer with zero trace o w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:30 22:00 00:00	Wait on Repairs Safety Wait on Repairs Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Startec Crew C Chang tubing. RU pu 330L/n	ng for electrician to fix gen s Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:: ed to POOH check bailer, in d running back in the hole. change - HA meeting ge out the shoe on the botto b. Spot bottom of tubing @ 5 ump line from Sanjel cement m, Pressure incease to 18.0	er Cord 90 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RIH 10m MD. truck to tubing. Start pumping down tubing. Press Mpa.	le to continue bailing. tagged 11000 KPa at 0.12 m3/ bitumen on pipe. Cleaned out bailer with zero trace c w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:00 19:30 22:00 00:00 GS String Description	Wait on Repairs Safety Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Starte Crew C Chang tubing. RU pu 330L/n	ng for electrician to fix gen si Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:: ed to POOH check bailer, in d running back in the hole. change - HA meeting ge out the shoe on the botto b. Spot bottom of tubing @ 5 mp line from Sanjel cement m, Pressure incease to 18.0	et er Cord 30 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RIH 10m MD. truck to tubing. Start pumping down tubing. Press Mpa. Pull Date	le to continue bailing. tagged 11000 KPa at 0.12 m3/i bitumen on pipe. Cleaned out bailer with zero trace of w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r Set Depth (mKB)	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:00 19:30 22:00 00:00 GS String Description	Wait on Repairs Safety Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Started Crew C Chang tubing. RU pu 330L/n	ng for electrician to fix gen si Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:: ed to POOH check bailer, ir id running back in the hole. change - HA meeting ge out the shoe on the botto i. Spot bottom of tubing @ 5 imp line from Sanjel cement m, Pressure incease to 18.0	et er Cord 30 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RIH 10m MD. truck to tubing. Start pumping down tubing. Press Mpa. Pull Date	le to continue bailing. tagged 11000 KPa at 0.12 m3/i bitumen on pipe. Cleaned out bailer with zero trace o I w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r Set Depth (mKB)	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:00 19:30 22:00 00:00 GS String Description	Wait on Repairs Safety Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Started Crew C Chang tubing. RU pu 330L/n Run Date	ng for electrician to fix gen so Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:3 ed to POOH check bailer, ir d running back in the hole. change - HA meeting ge out the shoe on the botto). Spot bottom of tubing @ 5 ump line from Sanjel cement m, Pressure incease to 18.0	et Cord 60 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RIH 10m MD. truck to tubing. Start pumping down tubing. Press Mpa. Pull Date	le to continue bailing. tagged 11000 KPa at 0.12 m3/i bitumen on pipe. Cleaned out bailer with zero trace of w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r Set Depth (mKB)	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:00 19:30 22:00 00:00 GS String Description	Wait on Repairs Safety Wait on Repairs Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Started Crew C Chang tubing. RU pu 330L/n Run Date	ng for electrician to fix gen so Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:3 ed to POOH check bailer, ir d running back in the hole. change - HA meeting ge out the shoe on the botto j. Spot bottom of tubing @ 5 ump line from Sanjel cement m, Pressure incease to 18.0	et Cord 60 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RIH 10m MD. truck to tubing. Start pumping down tubing. Press Mpa. Pull Date	le to continue bailing. tagged 11000 KPa at 0.12 m3/i bitumen on pipe. Cleaned out bailer with zero trace of w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r Set Depth (mKB)	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:00 22:00 00:00 GS String Description	Wait on Repairs Safety Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Started Crew C Chang tubing. RU pu 330L/n Run Date	ng for electrician to fix gen so Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10: ed to POOH check bailer, ir d running back in the hole. change - HA meeting ge out the shoe on the botto). Spot bottom of tubing @ 5 ump line from Sanjel cement m, Pressure incease to 18.0	et er Cord go am crew got it working. started back into the h stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RII- 10m MD. truck to tubing. Start pumping down tubing. Press Mpa. Pull Date	le to continue bailing. tagged 11000 KPa at 0.12 m3/i bitumen on pipe. Cleaned out bailer with zero trace o w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r Set Depth (mKB)	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:00 19:30 22:00 00:00 gs String Description	Wait on Repairs Safety Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Started Crew C Chang tubing. RU pu 330L/n Run Date	ng for electrician to fix gen si Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10: ed to POOH check bailer, ir d running back in the hole. change - HA meeting ge out the shoe on the botto). Spot bottom of tubing @ 5 imp line from Sanjel cement m, Pressure incease to 18.0	et er Cord go am crew got it working. started back into the h stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RII- 10m MD. truck to tubing. Start pumping down tubing. Press Mpa. Pull Date	le to continue bailing. tagged 11000 KPa at 0.12 m3// bitumen on pipe. Cleaned out bailer with zero trace of w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r Set Depth (mKB)	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:00 19:30 22:00 00:00 gs String Description	Wait on Repairs Safety Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Started Crew o Chang tubing. RU pu 330L/n Run Date	ng for electrician to fix gen s Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10: ed to POOH check bailer, ir d running back in the hole. change - HA meeting ge out the shoe on the botto i. Spot bottom of tubing @ 5 imp line from Sanjel cement m, Pressure incease to 18.0	et Cord 80 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RIH 10m MD. truck to tubing. Start pumping down tubing. Press Mpa. Pull Date	le to continue bailing. tagged 11000 KPa at 0.12 m3// bitumen on pipe. Cleaned out bailer with zero trace o w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:00 19:30 22:00 00:00 GS String Description	Wait on Repairs Safety Wait on Repairs Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Started Crew C Chang tubing RU pu 330L/m	ng for electrician to fix gen s Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:: ed to POOH check bailer, ir d running back in the hole. change - HA meeting ge out the shoe on the botto b. Spot bottom of tubing @ 5 ump line from Sanjel cemeni m, Pressure incease to 18.0	er Cord 90 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RIH 10m MD. truck to tubing. Start pumping down tubing. Press Mpa. Pull Date	le to continue bailing. tagged 11000 KPa at 0.12 m3// bitumen on pipe. Cleaned out bailer with zero trace c I w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r Set Depth (mKB)	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:00 19:30 22:00 00:00 gs String Description	Wait on Repairs Safety Wait on Repairs Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Started Crew C Chang tubing. RU pu 330L/n	ng for electrician to fix gen s Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:: ed to POOH check bailer, ir d running back in the hole. change - HA meeting ge out the shoe on the botto p. Spot bottom of tubing @ 5 mp line from Sanjel cemeni m, Pressure incease to 18.0	er Cord 90 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RIH 10m MD. truck to tubing. Start pumping down tubing. Press Mpa. Pull Date	le to continue bailing. tagged 11000 KPa at 0.12 m3/ bitumen on pipe. Cleaned out bailer with zero trace c I w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r Set Depth (mKB)	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:30 22:00 00:00 gs String Description	Wait on Repairs Safety Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Started Crew C Chang tubing. RU pu 330L/n	ng for electrician to fix gen si Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:: ed to POOH check bailer, in d running back in the hole. change - HA meeting ge out the shoe on the botto i. Spot bottom of tubing @ 5 imp line from Sanjel cement m, Pressure incease to 18.0	er Cord 30 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RIH 10m MD. truck to tubing. Start pumping down tubing. Press Mpa. Pull Date	le to continue bailing. tagged 11000 KPa at 0.12 m3// bitumen on pipe. Cleaned out bailer with zero trace of w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
Start Time 00:00 07:00 07:30 10:00 14:30 19:00 19:30 22:00	07:00 07:30 10:00 14:30 19:00 19:30 22:00 00:00 gs String Description	Wait on Repairs Safety Wait on Repairs Tripping pipe (in/out) Safety Tripping pipe (in/out) Circulating	Waitin Crew C Contin Get se Decide Started Crew C Chang tubing RU pu 330L/m	ng for electrician to fix gen s Change - HA meeting nue waiting for Gen set Pow et power cord arrived at 10:3 ed to POOH check bailer, ir d running back in the hole. change - HA meeting ge out the shoe on the botto i. Spot bottom of tubing @ 5 imp line from Sanjel cement m, Pressure incease to 18.0	er Cord 90 am crew got it working. started back into the ho stalled 2nd 6.5mm nozzle. Had a thick coating of m of the bailer assy to 149.86mm wash shoe. RIH 10m MD. truck to tubing. Start pumping down tubing. Press Mpa. Pull Date	le to continue bailing. tagged 11000 KPa at 0.12 m3// bitumen on pipe. Cleaned out bailer with zero trace of w/ bailer BHA c/w 10 joint 89mm chamber on 89mm ure increased to 15.0 MPa, rate 270L/min. Increase r Set Depth (mKB)	EUE ate to	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)

			We	II Servic	ing Daily Op	peration							
	τοται	F&P Cana	da		• • •	2/03-33-095-12-W4	M		01		017/0000		
TOTAL	IUIAL										Sta	irt Date:	2/7/2006
		U	Init: LWO, RO	ckwell 570								кер	ort #: 7.0
Country : Car	nada	Slot	t: Producer 1		Water Depth :		Spud Date :]
Field : Joslyn	ad 1	Nor	th:		Location : ONSH	ORE	Objective : Flowi	ng Oil	Safety and I	Personnel Details	S	m Personnel 7	otal Hours (bra)
Plation : Pa		Eas	st :		weil snape : ver	lical	Status : Complet	ea	Days without LTT	Personnel To	ai Hours (hrs) Ct	im Personnei	otal Hours (hrs)
Activity Type		Chrono number	Job	Type WS	Classifica	tion WS	Status WS		STOP Cards	Submitted			
Pump Change Out	t	4	HWO	D	WO				Parent Company	Quantity	Comn	ient	
									DOD				
Rig/WS UI	nit and Equi	pment Details				Start Data	End Data		Type	Parent Company	Head Count	Dur (hrs)	Tot Time (brs)
Rig/Onit Name	ockwell S70	Lyle Aubin		LWO		2/1/2006	End Date	12/13/2006		i alont company		Dui (IIIO)	
Description		Actual Location	Pressure R	ating (bars)	Nominal ID (in)	Spool Date	Used Hours (hrs)	Wire Left (m)	Supervisors	;			
Make		Model		Component He	ight (m)	Max Hang Off Weight (tonne	esf) Certification	Date		Su	ipervisor		
				-									
	nation Datail												
Daily Field Est Co		IS			Cum Field Est Cost				Safety Incid	ents			
						()	75		Time	Event Type Associ	ated Rig		
Daily Summary	Cyclone bailer								Number of Fatalities		Number of Lost Day	'S	
Planned Operatio	ons												
Perform well clean	nout w/ cyclone bailer								Main Stock	Consumed			
RIH w/ bailer assy	to clean horizontal se	ection							Main Stock Des	Consumed	Received Retu	ned	Stock
Remarks	_												
Production Losse	s es/MAP								Start and E				
										Test Type	Activity		
Time Log				1									-
Start Time	End Time	Code Tripping pipe (in/out)	Unsched Type	Continue to RIH w/	tubing while circulating thru c	Comment	for each joint and work tubing d	own from 510m MD to 681 47m	Start Time	Pres Tub Start (bars)	Pres Cas Start (bar	s) Pres An	n Start (bars)
				MD.	······································				End Time	Pres Tub End (bars)	Pres Cas End (bars	Pres An	nulus End (bars)
05:00	06:00	Circulating		Tag with exessive of dropped to 120l/min	drag @ 681.47m MD. Stop & on Stop pumping and prepare to the stop of the stop	circulate an extra 5m3. Volumetri o POOH	ic flow decreased to 200L/min w	vith same pressure (18MPa) then					
06:00	07:00	Tripping pipe (in/out)		POOH w/ tubing to	empty the bailer.								
07:00	07:30	Safety		Crew change - HA	meeting	a vacum truck and mudean. To	n 7 its full of only water and bea	wy bitumon water mixture was					
07.50	00.00	Tripping pipe (mout)		found in the net bot	tom 2jts with bottom joint of cl	namber being dry?? No sand was	s noticed - sample to be checke	d for BSW cut by plant personell.					
08:30	10:00	Rig/Equip. Maintenance		Check the bailer as	sy. Visually found nothing that	might have caused rate loss							
12:00	17:00	Circulating		Attempt to circulate	300L/min. Pressure increase	to 18 MPa. Had to reduce rate to	o 120 L/min to maintain pressur	e below 18MPa. Pump total of					
				5m3 with no increat	se in flow rate. Disconnect & p	pump lines and pulled tubing up 5	5 joints. RI pump lines and try to	circulate with 120L/min. Tubing					
				followed by produce	ed water. Tubing pressured up	to 21 MPa solid. Attempt to blee	ed back to pumper unit. Started	getting Diluant fumes back. Rig					
				in return lines to rig	tank and to bleed pressure to	o rig tank.							
17:00	19:00	I ripping pipe (in/out)		RIH w/ bailer assy maximum pressure	utilizing pull down system and with no rate.	tag PBTD @ 982m MD. No notio	ceable areas of plugging of sand	d. Attempt to pump thru tool - hit					
19:00	19:30	Safety		Crew change - HA									
19:30	00:00	Tripping pipe (in/out)		POOH w/ bailer as water mixture in ba	sy. Teardown bailer for inspective in the second	tion and found screen clean and ut done in morning.	nothing in nozzles or ports. Tok	k several samples of bitumen					
Work Strin	ngs												
	String Description		Run Da	ate		Pull Date	Set	Depth (mKB)					
								Poport printed: 0/14/20	07]

Page 1/1

			Well Servici	ng Daily Op	peration						
	ΤΟΤΑΙ	F&P Cana	da		Well N	Name: 1P1_102	/03-33-095-12-W4	Μ		Store	Dete: 2/8/2006
TOTAL			Init: I WO Bockwoll S70			_				Start	Date: 2/8/2006
			Sint. LWO, Rockweil 370								Report #: 0.0
Country : Can	ada	Slo	ot: Producer 1	Water Depth :		Spud Date :		Sefety and	Dereennel Deteile		
Field : Joslyn	4 1	N0 Fa	rtn : st ·	Location : UNSH	URE	Objective : Flowin	ng Oll ad	Days without I TI	Personnel Detalls	al Hours (brs) Cum	Personnel Total Hours (brs)
		La	St .				5u	1			
Activity Type		Chrono number	Job Type WS	Classifica	tion WS S	tatus WS		STOP Cards	s Submitted		
Pump Change Out		4	HWO	WO				Parent Company	Quantity	Comment	
								DOD			
RIG/WS UN	lit and Equi		Big/I Init Type		Start Date	End Date		Туре	Parent Company	Head Count	Dur (hrs) Tot Time (hrs)
Ro	ockwell S70	Lyle Aubin	LWO		2/1/2006	Lind Date	12/13/2006				
Description		Actual Location	Pressure Rating (bars) N	ominal ID (in)	Spool Date	Used Hours (hrs)	Wire Left (m)	Supervisors	S		
Make		Model	Component Heig	ht (m)	Max Hang Off Weight (tonnes	i) Certification I	Date		Su	pervisor	
Daily Cield Est Co		IS		Cum Field Est Cost	(Local)			Safety Incid	lents		
Daily Field Est 00					(Local)	75		Time	Event Type Associa	ated Rig	
Daily Summary								Number of Fatalities	jj S	Number of Lost Days	
Planned Operation	ns										
Run scraper and cl	ean out mill								•		
6 am Status Finish cleaning the	horizontal section							Main Stocks	s Consumed	Received Returned	t Stock
Remarks								IMAIN SLOCK Des	Consumed	Received Retuined	JOCK
Accident Free: Yes											
FIGURE LOSSE	S/ WAF							Start and E	nd Pressures		
Time Loa								Time	Test Type	Activity	
Start Time	End Time	Code	Unsched Type		Comment			Start Time	Pres Tub Start (bars)	Pres Cas Start (bars)	Pres Ann Start (bars)
00:00	03:30	Tripping pipe (in/out)	Spott new rig pump t	hat was brought up from roc	kwells yard. Assembled the 244.5	mm shoe and scraper, along w	ith the cyclone bailer and RIH.	End Time	Pros Tub End (bars)	Pros Cas End (bars)	Pros Annulus End (bars)
07:00	07:30	Safety	Crew Change - HA n	eeting							i les Annulus End (bars)
07:30	10:00	Tripping pipe (in/out)	RIH w/ cyclone bailer	assy c/w 220 mm OD wash	shoe and 244.5 mm casing scrap	er to top of 177.8mm hanger					
10:00	13:00	I ripping pipe (in/out)	pressure.	cione baller - pressure up to	18.5 MPa and only able to pump	26 I/min - rig pump unable to p	sump slow enough at this				
13:00	16:00	Tripping pipe (in/out)	POOH lay down tub	ng. lay down Cyclone bailer	and found 1/2 L of hard bitumen t	oalls w/ small pieces of wire and	d unknow material. Try to break				
			Diluant tank.	nt but had to work betwenn t	lingers to break it donw to paste w	very fine grit to materil. Possi	bly asphaltenes from well of				
16:00	19:00	Tripping pipe (in/out)	Assemble 177.8mm	nilling scraper & pump to su	Irface bailer. RIH to bottom, got hu	ng up 177.8 hanger packer una	able to get through with pull				
10.00	10.20	Safaty	downs. decided to P								
19:30	22:30	Tripping pipe (in/out)	Continued to POOH	with 177.8mm Milling scrape	er and pump to surface bailer. Noti	ced drilline cable was sticking c	out so did cut & slip line.				
22:20	00.00		Continue to POOH.	- abaa with flappar value 10	isint shamber 79mm nump to su	rfaan hailar aanamhlu hall aha	ak and dump isint for DLIA DUL				
22.30	00.00	The ping pipe (invour)	to 335m just past line	r hanger packer and start ba	ailling by working each joint severa	I strokes per connection. work	bailer total length of liner.				
Work Strin	gs										
	String Description		Run Date		Pull Date	Set D	Depth (mKB)				
				Page 1/1			Report printed: 9/14/20	007			

			We	Il Servic	ing Daily O	peration							
	TOTAL	_ E&P Car	nada			Wel	II Name: 1P1	L_102/03-3	3-095-12-W4	М		Start	Data: 2/0/2006
TOTAL			Unit: LWO, Ro	ockwell S70)							Start	Report #: 9.0
Country : Can	ada		Slot: Producer 1		Water Depth :		Spud Date	• :		7			
Field : Joslyn			North :		Location : ONS	HORE	Objective :	: Flowing Oil		Safety and F	ersonnel Details	i	
Platform : Pa	d 1		East :		Well shape : Ve	ertical	Status : C	ompleted		Days without LTI	Personnel Tota	al Hours (hrs) Cum F	Personnel Total Hours (hrs)
Activity Type		Chrono number	Job	Type WS	Classific	cation WS	Status WS			STOP Cards	Submitted		
Pump Change Out	1	4	HW	0	WO					Parent Company	Quantity	Comment	
Rig/WS Ur	nit and Foul	inment Details	-							POB			
Rig/Unit Name		Local Contract	s ior	Rig/Unit Type	1	Start Date	End	Date		Туре	Parent Company	Head Count	Dur (hrs) Tot Time (hrs)
R	ockwell S70	Lyle Aubin		LWO		2/1/2006	3	12/13/	/2006				
Description		Actual Locatio	n Pressure F	Rating (bars)	Nominal ID (in)	Spool Date	Used Hours (hrs)	Wire Le	eft (m)	Supervisors			
Make		Model		Component H	eight (m)	Max Hang Off Weight (ton	nesf) Cert	tification Date			Su	pervisor	
Daily Oper	ration Detai	ls								Sefety Incide	n10		
Daily Field Est Co	ost (Local)				Cum Field Est Cos	st (Local)					Event Type Associa	ited Ria	
Daily Summary							75					5	
Pull Bailer - RIH w/	Packer and pressue	e test 219 mm casing - g	ood							Number of Fatalities		Number of Lost Days	
Planned Operatio	ns t packars												
6 am Status	i packers									Main Stocks	Consumed		
POOH w/ bailer as	sy									Main Stock Des	Consumed	Received Returned	Stock
Remarks Accident Free: Yes	6												
Production Losse	es / MAP									Start and En	d Pressures		
T :										Time	Test Type	Activity	
Start Time	End Time	Code				Comment				Start Time	Pres Tub Start (bars)	Pres Cas Start (bars)	Pres Ann Start (bars)
00:00	07:00	Tripping pipe (in/out)	Unsched Type	Tagged 177.8mm	hanger at 329.81m no proble	ems getting by it. Continued to R	IH with 73mm pump to su	urface bailer, Stroki	ing the bailer 3 times		Tres Tub Otart (bars)	1 163 043 0tart (bars)	Tres Ann Gtart (Bars)
07:00	09:20	Tripping pipe (in/out)		each joint.Tagged	bottom at 975.5m	0 time and started POOH				End Time	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
08:30	09:00	Safety		Crew change - HA	A meeting								
09:00	14:00	Tripping pipe (in/out)		POOH & lay down	scraper assy & pump to sur	rface bailer. Took 5 samples fro	m every other chamber jo	oint & gave to DEL f	for testing. The bottom				
14:00	21:00	Tripping pipe (in/out)		Assembled packe	r assv & RIH to the heel - Flu	shed 10 m3 85*C hot produced	water - set packer @ 329	9.0 mMD to do a cas	sing pressure test at				
				5000 kPa. Lost 30	000 KPa in 5 mins. Pull 5000	extra DaN into packer and try pr	ressure test to 5000 Kpa	and lose 3000 KPa	in 5 mins again.				
				300kPa.	or barne reaken again. Oneer				a for one near looning				
21:00	21:30	Safety		Crew Change HA	meeting	0.44	0						
21:30	02:00	I ripping pipe (in/out)		cool wellbore.	& started tripping out of hole.	Got the pump parts for rig pump	 Started putting pump ba 	ack together. Pumpe	ed 10m3 down hole to				
Work Strin	1gs		Rup D	loto		Bull Doto		Sat Dapth (mK					
	String Description		Ruit D	Jale		Full Date		Set Depth (IIIK	(6)				
		I											
								-					
					Page 1/1			Repo	ort printed: 9/14/20	07			

			We	II Servicir	ng Daily Op	peration						
9	ΤΟΤΑΙ	E&P Can	ada			Well	Name: 1P1_102	/03-33-095-12-W4	M		Stort	Data: 2/10/2006
TOTAL			Unit: LWO. Ro	ockwell S70							Start	Report #: 10.0
Country (Con					Water Depth :		Snud Data		_			
Field : Joslvn	laua		North :		Location : ONSF	HORE	Objective : Flowin	a Oil	Safety and	Personnel Detai	s	
Platform : Pa	d 1	E	ast :		Well shape : Ver	rtical	Status : Complete	ed	Days without LTI	Personnel Te	otal Hours (hrs) Cun	n Personnel Total Hours (hrs)
Activity Type		Chrono number	Job	Type WS	Classifica	ation WS	Status WS		STOP Card	s Submitted		
Pump Change Out	1	4	HWO	0	WO				Parent Company	Quantity	Comme	nt
	it and Early								DOP			
RIG/WS UP	hit and Equi	pment Details) pr	Rig/Unit Type		Start Date	End Date		Туре	Parent Company	Head Count	Dur (hrs) Tot Time (hrs)
Ro	ockwell S70	Lyle Aubin		LWO		2/1/2006		12/13/2006				
Description		Actual Location	Pressure R	Rating (bars) No	minal ID (in)	Spool Date	Used Hours (hrs)	Wire Left (m)	Supervisor	5		
Make		Model		Component Heigl	nt (m)	Max Hang Off Weight (tonne	esf) Certification	Date		Ś	Supervisor	
Daily One	ration Detail	e							O o fo tra la o la	1 1		
Daily Field Est Co	ost (Local)	3			Cum Field Est Cost	t (Local)				IENTS	ciated Rig	
Daily Summary							75			Event Type Asso		
Run & Pull Cup To	ol								Number of Fatalities	5	Number of Lost Days	
Planned Operatio	ns										I	
6 am Status		'9							Main Stock	s Consumed		
Pull Bailer Remarks									Main Stock Des	Consumed	Received Return	ed Stock
Accident Free: Yes	3											
Production Losse	es / MAP								Start and E	nd Pressures		
Time Log									Time	Test Type	Activity	
Start Time	End Time	Code	Unsched Type			Comment			Start Time	Pres Tub Start (bars)	Pres Cas Start (bars)	Pres Ann Start (bars)
00:00	07:00	Tripping pipe (in/out)		Assembles 73mm Pu	np to surface bailer RIH. I	Put rig pump together and circulat	ted pump		End Time	Bros Tub End (bars)	Bros Cas End (bars)	Bros Annulus End (bars)
07:30	11:00	Tripping pipe (in/out)		RIH w/ plunge bailer a	assy followed by 88.9mm E	EUE to clean the horizontal sectio	n. Two complete cycles per conr	nection for the low intervals of			Ties Gas Ella (Bars)	
11:00	14:00	Tripping pipe (in/out)		280-300, 370-400, 510)-730, 820-850, 880-900. \$ Ier assv	Stroke for 20 minutes at the very l	bottom of the well (974 mMD).					
14:00	14:30	Prepare/Clear Lease		Move tubing joints to t	he pipe racks. Crew taking	g break						
14:30	17:30	Tripping pipe (in/out)		Continue POOH w/ ba	iler assy. Took 5 samples ottom. Rest of the chambe	from every other chamber joint & er contained 1%-3% sand.	gave to DCEL for testing. Bottor	n joint contained 40% sand				
17:30	19:00	Tripping pipe (in/out)		Assembled & RIH w/	CUP TOOL followed by 88	9.9mm EUE joints. Operators had	to let out the steam from the inje-	ctor well to be able to shut the				
19:00	19:30	Safety		Crew Change HA-Me	etina	oo noisy. Shut down .						
19:30	23:00	Tripping pipe (in/out)		Started to RIH with CL	JP TOOL Measured length	h 5.39m and 88.9mm EUE joints.	run to bottom Tagged bottom at	974.68m				
23:00	00:00	I ripping pipe (in/out)		POOH with CUP TOC	L and 88.9mm EUE joints	i						
Work Strin	ngs											
	String Description		Run Da	ate		Pull Date	Set D	epth (mKB)				
								Demontariat L 0/4//00				
					Page 1/1			Report printed: 9/14/20	JU7			

			We	II Servi	icing Daily O	peration								
	τοται	F&P Cana	nda		• • •	Well	2/03-33-095-12-W4	4M		01.00	Deter			
TOTAL			Unit: LWO, Ro	ockwell S7	70			_				Star	Repo	ort #: 11.0
Country : Can	ada	Slo	ot: Producer 1		Water Depth :		Spud	Date :					•	
Field : Joslyn		No	orth :		Location : ONSI	HORE	Objec	ctive : Flowin	ng Oil	Safety and	Personnel Details	;		
Platform : Pa	d 1	Ea	st :		Well shape : Ve	rtical	Statu	is: Complet	ed	Days without LTI	Personnel Tota	al Hours (hrs) Cu	m Personnel	Fotal Hours (hrs)
Activity Type		Chrono number	Job	Type WS	Classifica	ation WS	Status WS			STOP Cards	s Submitted			
Pump Change Out		4	HW	0	WO					Parent Company	Quantity	Comm	ent	
	it and Earli									BOB				
Rig/WS UP	hit and Equi			Rig/Unit Ty	ne	Start Date		End Date		Type	Parent Company	Head Count	Dur (hrs)	Tot Time (hrs)
Ro	ockwell S70	Lyle Aubin		LWO	pe	2/1/2006		Life Date	12/13/2006				- (- /	
Description		Actual Location	Pressure F	Rating (bars)	Nominal ID (in)	Spool Date	Used Hours	(hrs)	Wire Left (m)	Supervisors	6			
Make		Model		Component	t Height (m)	Max Hang Off Weight (tonne	esf)	Certification	Date	-	Suj	pervisor		
										-				
Daily Oper	ation Detail	ls								Cafaty Incia	lanta			
Daily Field Est Co	st (Local)				Cum Field Est Cost	t (Local)					IENTS Event Type Associa	ited Rig		
Daily Summary							75			-				
Bailer run and sam	ple cut									Number of Fatalities	5	Number of Lost Day	S	
Planned Operation	ns													
6 am Status	production tubing.									Main Stock	s Consumed			
Pull Bailer										Main Stock Des	Consumed	Received Return	ned	Stock
Remarks Accident Free: Yes														
Production Losse	s/MAP									Start and F	nd Pressures			
										Time	Test Type	Activity		
Time Log		0.1								Otant Time	Due a Task Ofent (hana)	Desc Ore Otert (have	Dece Ar	
00:00	02:00	Code Tripping pipe (in/out)	Unsched Type	Continue to PO	OH with CUP TOOL to top of las	Comment st blank joint of 177.8mm hanger.	Rigged up rig p	oump and open to	ool by shearing off pins. Tool	Start Time	Pres Tub Start (bars)	Pres Cas Start (bars) Pres Ar	n Start (bars)
				open at 19.5 MF	Pa					End Time	Pres Tub End (bars)	Pres Cas End (bars)	Pres Ar	nulus End (bars)
02:00	05:00	Circulating		Reverse circulation.	ted hole (30m3), collecting samp	oles of bitumen and sand. Circulat	ted until returns	were fairly clean	i produced water. Minimal loss to					
05:00	07:00	Tripping pipe (in/out)		POOH with CUP	P TOOL and begin to assemble	73mm pump to surface bailer								
07:00	07:30	Safety		Crew change - I	HA meeting	v 88 0ELIE tubing with two comple	oto strokos por d	connection during	a the following intervals : 280-					
07.50	12.50			300 mMD (30 m m) of liner.	nin), 370-400 mMD (45 min), 510)-730 mMD (1.25hr) , 820-850 (30)min), 880-900 ((30min) and 15 (complete strokes at bottom 974.0					
12:30	17:00	Tripping pipe (in/out)		POOH w/ 73mm	n pump to surface bailer & joints	. All chambers empty likely due to	o ball check not	t functioning prop	erly. Tiny amount of oil found in	1				
17:00	18:15	Wait on Orders		Sample cut dete	ermined 19% sand and 2% water	r assembled pump to surface bail	er assy again.			-				
18:15	19:00	Tripping pipe (in/out)		RIH w/ 73mm p	ump to surface bailer & 88.9mm	EUE tubing to clean horizontal se	ectional again.							
19:00 19:30	19:30	Safety Tripping pipe (in/out)		Crew change - I Continued to RI	HA meeting H with 73mm Pump to surface B	Bailer Stoking at the same interval	s as stated abo	ive		-				
		[jjjijjjijijiii .	<u> </u>							4				
Work Strin	igs													
	String Description		Run D	ate		Pull Date		Set I	Depth (mKB)					

			Well S	Servicing Dai	ly Operation						
	τοται	F&P Cana	da	-	W	ell Name: 1P1 1	02/03-33-095-12-W4	1M		Ctort	Dete: 0/40/0000
TOTAL	IOIAL		nit: I WO Bocky			-				Start	Date: 2/12/2006
											Report #: 12.0
Country : Can	ada	Slot	: Producer 1	Water [Depth :	Spud Date :		Safaty and	Porconnol Dotail		
Platform : Pa	d 1	Eas	ur. t:	Well sh	ape : Vertical	Status : Comp	bleted	Days without LTI	Personnel Tot	S tal Hours (hrs) Cur	n Personnel Total Hours (hrs)
								1		. ,	. ,
Activity Type		Chrono number	Job Type V	WS	Classification WS	Status WS		STOP Cards	Submitted		
Pump Change Out		4	HWO		WO			Parent Company	Quantity	Comme	nt
Rig/WS Ur	nit and Foui	nment Details						POB	I		
Rig/Unit Name		Local Contractor	Ri	g/Unit Type	Start Date	End Date	,	Туре	Parent Company	Head Count	Dur (hrs) Tot Time (hrs)
Ro	ockwell S70	Lyle Aubin	LW Prossure Pating (/O (bars) Nominal ID (in)	2/1/20	06	12/13/2006 Wire Loft (m)				
Description		Actual Education	Fressure Rating (Spool Date	Used Hours (III's)	Wire Leit (iii)	Supervisors	Si Si	inervisor	
Make		Model	Co	omponent Height (m)	Max Hang Off Weight (to	onnesf) Certificat	tion Date				
								-			
Daily Oper	ation Detail	s						Safety Incid	onte		
Daily Field Est Co	st (Local)			Cum Fie	ld Est Cost (Local)	75		Time	Event Type Associ	ated Rig	
Daily Summary						/5		Number of Estalition		Number of Lost Day	
Make Bailer Run &	Get BSW done on sa	amples								Number of Lost Days	,
Prepare to run in p	ns roduction string										
6 am Status								Main Stocks	s Consumed		
Remarks								Main Stock Des	Consumed	Received Return	ed Stock
Accident Free: Yes	a: 2/12/2006								I	II	
Production Losse	s/MAP							Start and E	nd Pressures		
								Time	Test Type	Activity	
Time Log								Start Time	Pres Tub Start (bars)	Pres Cas Start (bars)	Pres Ann Start (bars)
Start Time	End Time	Code Tripping pipe (in/out)	Unsched Type	d bottom (975 32) with 73mm	Commer	nt times_Started to POOH		End Time	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
05:00	07:00	Tripping pipe (in/out)	73mm	Bailer assembly at surface, g	rabbed 3 samples, sample # 1 1st joint i	n chamber, sample #2 3rd joint ir	n chamber, Sample #3 last joint in				
07:00	07:30	Safety	chaml	ber Take over to plant for BS&	W			-			
07:30	09:00	Wait on Orders	Waitin	ig for BS&W results, results ar	e as follows samples #1 less than 2%	sand #2 Less than 2% sand &	sample#3 less than 5%.	-			
09:00	10:00	Move In/Rig Up	Clean	& prepare bailer assy for anot	her run. Move pipes.						
10:00	14:45	I ripping pipe (in/out)	RIH w horizo	# 10 its of chamber, pump to s intal section: 280- 300 mMD (3)	0 min), 370-400 mMD (45 min), 510-730	mMD (1.25hr) , 820-850 (30min	i), 880-900 (30min) and 15 complete				
	1		stroke	s at bottom (974.0 m) of liner.							
14:45	19:00	I ripping pipe (in/out)	POOF	1 w/ both bailers & 89mm tubir Change - HA meeting	g.						
19:30	00:00	Tripping pipe (in/out)	Comp	leted POOH with 73mm pump	to surface bailer, Had 4 samples Sample	e#1 top of chamber 0.5% sand, S	Sample #2 middle of chamber 0.5%				
			sand,	Sample #3 joint 8 of chamber	0.5% sand Last Joint of chamber water r	no sano		4			
Work Strin	nas										
	String Description		Run Date		Pull Date	5	Set Depth (mKB)				
								4			
							Report printed: 0/1//2	007			

Page 1/1

			We	II Servic	cing Daily O	peration							
	τοται	F&P Cana	nda			Wel	I Name: 1P1 1	102/03-33-095-12-W4	M		01	Deter	014.010000
TOTAL			linit: I WO Ro	sekwell S70	h						Star	i Date: 7	2/13/2006
					,				_			керо	11 #: 13.0
Country : Can	nada	Sic	ot: Producer 1		Water Depth :		Spud Date :		Safaty and	Porconnol Dotaila			
Platform : Pa	d 1	Fa	st:		Well shape : Ve	ertical	Status : Com	noleted	Days without LTI	Personnel Tota	al Hours (hrs) Cu	m Personnel	Fotal Hours (hrs)
									1		. ,		. ,
Activity Type		Chrono number	Job	Type WS	Classific	cation WS	Status WS		STOP Cards	Submitted			
Pump Change Out	1	4	HW	0	WO				Parent Company	Quantity	Comm	ent	
Rig/WS Ur	hit and Fou	inment Details							POB				
Rig/Unit Name		Local Contractor		Rig/Unit Type		Start Date	End Dat	te	Туре	Parent Company	Head Count	Dur (hrs)	Tot Time (hrs)
R	ockwell S70	Lyle Aubin	Prossure	LWO Rating (bars)	Nominal ID (in)	2/1/2006	Lleed Hours (brs)	12/13/2006 Wire Left (m)	0				
Description		Actual Eocation	Tessure i	(ating (bars)		opoor bate	Used Hours (III's)		Supervisors	S ur	pervisor		
Make		Model		Component H	eight (m)	Max Hang Off Weight (tonr	nesf) Certifica	ation Date					
Daily Oper	ration Detai	ils							Safety Incid	ents			
Daily Field Est Co	ost (Local)				Cum Field Est Cos	t (Local)	75		Time	Event Type Associa	ited Rig		
Daily Summary							75		Number of Estalities		Number of Lost Day		
RIH w/ tail string a	nd 177.8 mm FSV st	tring c/w Sensa & Petrospec	lines.								Number of Lost Day	3	
Run Production str	ing Assy												
6 am Status									Main Stocks	s Consumed			
Remarks									Main Stock Des	Consumed	Received Retur	ned	Stock
Accident Free: Yes													
Troublin Losse									Start and E	nd Pressures	Activity		
Time Log										rescrype	Activity		
Start Time	End Time	Code Rig/Equip Maintonanco	Unsched Type	Started to move p	reduction string on to location	Comment	and with 60 joints of 88 0mm	a casing Had rig grow clean down rig	Start Time	Pres Tub Start (bars)	Pres Cas Start (bars) Pres An	n Start (bars)
00.00	04.00	Trig/Equip. Maintenance		and prepare to rur	in hole with production string	g. Sensa alerted to be here by 06	5:00	r casing. That ng crew clean downing	End Time	Pres Tub End (bars)	Pres Cas End (bars)	Pres Ar	nulus End (bars)
04:00	06:00	Move In/Rig Up		Set up production 34 26 kg/m SLHT	string on pipe racks consistin casing Cleaned rig from top	ng of 66 joints of 88.9mm (8 joints to bottom to ensure properly wo	s are slotted) 13.85kg/m TK0 rk equipment to run in the SI	C 4040, and 34 joints of 177.8mm ENSA fibre optic cable and clamps					
06:00	07:00	Wait on Services		Waiting for Sensa	to set up and RIH								
07:00	07:30	Safety		Crew change HA-	meeting								
07:30	10:00	BOP/Install/Remove/ Safety		Safety meeting wi	at pipe rams could be replace th sensa & rig crew. Discusse	ed for 177.8 mm later.							
10:00	16:00	Tripping pipe (in/out)		RIH w/ Mulesho	bed 88.9mm, 13.85kg/m TKC	4040 Sensa Turnaround sub	9 joints	of blank 88.9mm 13.85kg/m TKC 4040					
				conduit lines into t	urnaround sub and RIH w/ tub	bing while banding Sensa Escap	ulated lines to tubing every of	connection.					
16:00	19:00	BOP/Install/Remove/		Tally & drift pipes.	Change pipe rams & slips to	177.8mm							
19:00 19:30	19:30	Satety Tripping pipe (in/out)		Crew Change HA	-meeting with 177.8mm production strir	ng and running & banding SENS	A escapsulated to tubing.						
							<u> </u>						
Work Strin	ngs		Dur D	-1-		Dull Data							
	String Description		Run D	ate		Pull Date		Set Depth (mKB)					
							1						
L								Poport printed: 0/14/2	07				

Page 1/1

			We	II Servici	ing Daily Op	peration							
	ΤΟΤΑΙ	E&P Can	ada		• • •	Well	Name: 1	P1_102	2/03-33-095-12-W4	Μ		Stort	Data: 2/1 4/2006
TOTAL			Unit: LWO. Ro	ckwell S70								Start	Report # 14.0
	ada		lot : Producer 1		Water Depth :		Spud D	ato :		_			
Field : Joslyn	aua	N	lorth :		Location : ONSH	IORE	Objectiv	/e:Flow	ing Oil	Safety and	Personnel Details	i.	
Platform : Pac	d 1	E	ast :		Well shape : Ver	tical	Status	Comple	ted	Days without LTI	Personnel Tota	Il Hours (hrs) Cum	Personnel Total Hours (hrs)
Activity Type		Chrono number	loh	Type WS	Classificat	tion WS	Status WS			STOP Card	s Submitted		
Pump Change Out		4	HWG		WO					Parent Company	Quantity	Commen	t
	it and Equi	nmont Dotoilo								POB			
Rig/Unit Name	iit and Equi	Local Contracto	r	Rig/Unit Type		Start Date		End Date		Туре	Parent Company	Head Count	Dur (hrs) Tot Time (hrs)
Ro	ockwell S70	Lyle Aubin	Dressure D	LWO		2/1/2006		(a)	12/13/2006				
Description		Actual Eocation	Fressure R	ating (bars)	Nominar ID (III)	Spool Date	Used Hours (III	5)	whe Left (iii)	Supervisor	S Su	pervisor	
Make		Model		Component Hei	ight (m)	Max Hang Off Weight (tonne	sf)	Certification	Date				
							I						
Daily Oper	ation Detail	ls				a				Safety Incid	lents		
Daily Field Est Co	st (Local)				Cum Field Est Cost	(Local)	75			Time	Event Type Associa	ted Rig	
Daily Summary Continue to run and	set ESV production	sring								Number of Fatalities	5 5	Number of Lost Days	
Planned Operation	ns	g											
6 am Status	er & FSV system.					Main Stock	s Consumed						
Run Tail Sting Remarks										Main Stock Des	Consumed	Received Returne	d Stock
Accident Free: Yes	- / MAD												
Production Losses	S/WAP									Start and E	nd Pressures	Activity	
Time Log											Test Type	Activity	
Start Time 00:00	End Time 07:00	Code Tripping pipe (in/out)	Unsched Type	Continue running 17	7.8mm casing and Sensa, ha	Comment ad to splice sensa conduit togethe	er at joint 23 on th	e 177.8mm c	casing	Start Time	Pres Tub Start (bars)	Pres Cas Start (bars)	Pres Ann Start (bars)
07:00	07:30	Safety		Crew change - HA r	meeting	ilu to onguro Songo conduit is not	hoing domogod	noort oonoo	anduit lines thru hangar assy and	End Time	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
07:30	15.00	The pring pipe (in/out)		install split packoff fi	ittings. Land tubing w/ 177.8	tbg c/w 88.9 changeover located	@ 320.09 & 88.9	mm tubing la	anded @ 970.92 m MDKB				
15:00	19:00	Install/Repair Wellhead		Galaxy technicians	install 297.4mm X 177.8 mm	wellhead tubing spool c/w snsa c	onduit lines passe	ed thru and p	acked off w/ split glands.				
19:00	19:30	Safety ROP/Install/Romayo/		Crew change & Sat	fety meeting								
19.30	00.30	BOP/Install/Remove/		Install BOP w/ 88.9	nin pipe rains, prepare to Ri-	w/ weathenord blackcat packe							
Work Strin	igs		Dur D			Dull Data		0	Death (m//D)				
	String Description		Run Da	ate		Pull Date		Set					
									Depart printed - 0/4 1/0/				
					Page 1/1				Report printed: 9/14/20	107			

			We	II Servici	ing Daily Op	peration							
	ΤΟΤΔΙ	F&P Cana	da		• • •	Well	Name: 1P1 102	2/03-33-095-12-W4	М		Ctor.	Deter	
TOTAL		Lar Gana U	Jnit: LWO, Ro	ckwell S70			_				Star	Repc	2/15/2006 ort #: 15.0
Country : Can	ada	Slo	t: Producer 1		Water Depth :		Spud Date :						
Field : Joslyn Platform : Pa	d 1	Nor Eas	rth : st :		Location : ONSH Well shape : Ver	ORE tical	Objective : Flowi Status : Complet	ng Oil ed	Safety and Days without LTI	Personnel Details Personnel Tota	l Hours (hrs) Cu	n Personnel `	Total Hours (hrs)
Activity Type		Chrono number	Job	Type WS		tion WS	Status WS		STOP Cards	s Submitted	Comm	ent	
Fump change Out		[4		5	[₩0					Quantity	Comm		
Rig/WS Ur	nit and Equi	pment Details							POB				
Rig/Unit Name	ockwell S70	Local Contractor		Rig/Unit Type		Start Date 2/1/2006	End Date	12/13/2006	Туре	Parent Company	Head Count	Dur (hrs)	Tot Time (hrs)
Description		Actual Location	Pressure R	ating (bars)	Nominal ID (in)	Spool Date	Used Hours (hrs)	Wire Left (m)	Supervisor	S			
Make		Model		Component Hei	ght (m)	Max Hang Off Weight (tonne	esf) Certification	Date		Sup	pervisor		
Daily Oper	ation Detail	ls				<i>a</i>			Safety Incid	lents			
Daily Field Est Co	st (Local)				Cum Field Est Cost	(Local)	75		Time	Event Type Associa	ted Rig		
Daily Summary									Number of Fatalities	<u> </u> 3	Number of Lost Day	5	
Planned Operation	ns												
Run Blackcat pack	er & FSV system.								Main Stock	s Consumed			
RIH & set Weather	ford Retrievable Seal	Ibore Packer							Main Stock Des	Consumed	Received Retur	ned	Stock
Remarks Accident Free: Yes													
Production Losse	s/MAP								Start and E	nd Pressures			
Time									Time	Test Type	Activity		
Start Time	End Time	Code	Unsched Type			Comment			Start Time	Pres Tub Start (bars)	Pres Cas Start (bars) Pres Ar	n Start (bars)
00:00	01:00	BOP/Install/Remove/		Pressure test BOP's	s, pipe rams and blind rams, "	400KPa for 10 min then 7000KF	Pa for 10min						
01:00	07:00	Tripping pipe (in/out)		Assemble Weatherf off of packer assem	ord """Blackcat"" BHA (6.55m bly at 19.5 MPa while pulling	 start RIH 32 joints to total dept 5 DaN with rig. Started to POOF 	h of 317.73 mMD, set packer he H	eld 16 MPa for ten mins. Sheared	End Time	Pres Tub End (bars)	Pres Cas End (bars)	Pres An	nulus End (bars)
07:00	07:30	Safety		Crew Change - HA	meeting		T 11 <i>11 1</i>						
07:30 10:00	10:00	Tripping pipe (in/out)		Assemble & RIH as	vorking string & lay down w/ H follows: 101.6mm Latch c/w	HPG BlackCat Hydraulic Setting FSV latch into top of Blackcat pa	I ool. Inspect tool on surface ev acker (@316.63mMD). Disconne	erything looks normal ect from on/off tool by slacking of					
15.00	17.00	T 		100 daN then pickin	g up with left hand torque. Fil	casing & pressure test packer &	& 177.8 casing to 3000 kPa solid	d for 5 min.					
17:00	19:00	Tripping pipe (in/out)		Prepare to Assembl	e w/ REDA ESP, Steaming B	h working string. HA and running 88.9mm TKC 40	040 Pipe						
19:00	19:30	Safety		Crew Change - HA	Meeting	Δ.							
21:30	00:00	Tripping pipe (in/out)		RIH in hole with RE	DA ESP	A							
Work Strin	iqs												
	String Description		Run Da	ate		Pull Date	Set	Depth (mKB)					
					Page 1/1			Report printed: 9/14/20	07]

			We	II Servic	ing Daily O	peration							
	ΤΟΤΑΙ	F&P Cana	nda		• • •	Well N	lame: 1	P1_102	2/03-33-095-12-W4	M		Stort F	Note: 2/46/2006
TOTAL			Unit: LWO, Ro	ckwell S70)							Start L	Report #: 16.0
Country : Can	ada	Slo	ot: Producer 1		Water Depth :		Spud Da	ate :		7			
Field : Joslyn		No	orth :		Location : ONSH	HORE	Objectiv	e : Flowi	ng Oil	Safety and	Personnel Details		
Platform : Pa	d 1	Ea	ist :		Well shape : Ve	rtical	Status :	Complet	ed	Days without LTI	Personnel Tota	I Hours (hrs) Cum P	ersonnel Total Hours (hrs)
Activity Type		Chrono number	Job	Type WS	Classifica	ation WS St	tatus WS			STOP Card	s Submitted	·	
Pump Change Out		4	HWO	0	WO					Parent Company	Quantity	Comment	
Rig/WS Ur	nit and Equi	pment Details								РОВ			
Rig/Unit Name	nckwell S70	Local Contractor		Rig/Unit Type	1	Start Date 2/1/2006	I	End Date	12/13/2006	Туре	Parent Company	Head Count [Dur (hrs) Tot Time (hrs)
Description		Actual Location	Pressure R	ating (bars)	Nominal ID (in)	Spool Date	Used Hours (hr	s)	Wire Left (m)	Supervisor	S		
Make		Model		Component H	eight (m)	Max Hang Off Weight (tonnesf) (Certification	Date	-	Sup	ervisor	
Daily Oper	ation Detail	ls								Safety Inci	dents		
Daily Field Est Co	st (Local)				Cum Field Est Cost	t (Local)	75			Time	Event Type Associat	ted Rig	
Daily Summary	inen taat									Number of Fatalitie	lis lister and the second seco	Number of Lost Days	
Planned Operation	ng test												
Run and land ESP 6 am Status										Main Stock	s Consumed		
SET REDA ESP Remarks										Main Stock De	s Consumed	Received Returned	Stock
Accident Free: Yes	6 / MAD												
	5 / IVIAF									Start and E	nd Pressures	Activity	
Time Log			··· · · -	1									
00:00	05:30	Tripping pipe (in/out)	Unsched Type	Continue RIH w/ F	REDA ESP followed by 88.9mr	Comment m tubing running inside 177.8mm ca	sing. Slow rate of	due to cold we	eather & caution to land the pump	Start Time	Pres Tub Start (bars)	Pres Cas Start (bars)	Pres Ann Start (bars)
05:30	11:30	BOP/Install/Remove/		safely while not da Strip off BOP's ov	amaging other downhole equip /er hanger assy.& Pull up extra	oment. Run 1 joint deep w/ cable to a a joint (thermo-coupler folded over i	n casing but test	/al. ted good afte	r straightening) and makeup	End Time	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
11:30	16:30	Install/Repair Wellhead		ESP connector , in Crew change con	nstall ESP pass thru connector	r and insert bubble tube and thermo- stall top end of wellhead. Tie in Rec	-coupler thru har	nger assy.					
16:30	23:30	Tripping pipe (in/out)		Continuing to RIH	with REDA ESP. Cold weath	er playing a part in trying to get wires	s running proper	ly into hole w	ithout Pinching or Crimping the				
23:30	00:00	Safety		Crew Change - H	A meeting								
Work Strin	nae												
	String Description		Run Da	ate		Pull Date		Set I	Depth (mKB)				
1													
									Roport printed: 0/11/00	07			
					Page 1/1				Report printed. 9/14/20	101			

			We	ell Servici	ng Daily Op	eration							
	ΤΟΤΑΙ	E&P Car	nada			Well I	Name: 1P1_	102/03-33-095-12-W4	М		Sto	+ Doto	2/17/2006
TOTAL			Unit: LWO, R	ockwell S70							Star	Rep	ort #: 17.0
Country : Cana	ada		Slot: Producer 1		Water Depth :		Spud Date :						
Field : Joslyn	4 1		North :		Location : ONSH	ORE	Objective : F	lowing Oil	Safety and	Personnel Details	Hours (brs)	Im Porsonno	Total Hours (brs)
Platform : Pad	1		East		weil snape : ven	ICAI	Status : Con	ipieted	Days without ETT	Personner rota	i Hours (hrs)	in Personnel	Total Hours (hrs)
Activity Type		Chrono number	Jo	ob Type WS	Classificat	ion WS S	Status WS		STOP Card	s Submitted			
Pump Change Out		4	(H)	WO	WO				Parent Company	Quantity	Comr	ient	
Rig/WS Un	it and Equi	pment Detail	S						POB	·			
Rig/Unit Name	-	Local Contrac	tor	Rig/Unit Type		Start Date	End Da	te 12/13/2006	Туре	Parent Company	Head Count	Dur (hrs)	Tot Time (hrs)
Description		Actual Locatio	n Pressure	e Rating (bars) N	ominal ID (in)	Spool Date	Used Hours (hrs)	Wire Left (m)	Supervisor	'S			
Make		Model		Component Heig	Iht (m)	Max Hang Off Weight (tonnes	if) Certific	ation Date		Suj	pervisor		
					,		,						
Daily Oper	ation Detail	le								1 4			
Daily Field Est Co	st (Local)	13			Cum Field Est Cost (Local)				Dents Event Type Associa	ted Ria		
Daily Summary							75		Number of Fotolitic		Number of Loot Do		
ROSR and Circulat	e light Oil								Number of Fatalitie	:5	Number of Lost Da	5	
Pump light oil down	177.8mm casing the	ru ESP - ESP test								•			
6 am Status Rig In Sanjel									Main Stock	s Consumed	Received Retu	rned	Stock
Remarks													
Production Losses	s / MAP								Start and E	nd Pressures			
Time Log									Time	Test Type	Activity		
Start Time	End Time	Code	Unsched Type			Comment			Start Time	Pres Tub Start (bars)	Pres Cas Start (bar	s) Pres A	nn Start (bars)
00:00	03:00	Install/Repair Wellhe Wait on Services	ad	Try to function test R	EDA ESP, had power to ESP	P Schlumberger rep. said it was w d. Waited for Saniel number and	vorking, could not flow te	st due to heavy oil at pump.	End Time	Pres Tub Fnd (bars)	Pres Cas End (bars) Pres A	nnulus End (bars)
	07.00			tubing back up the 1	7.8mm annulus to circulate	light crude to ESP.							
07:00 07:30	07:30 07:30	Safety		Crew Change HA-me	eeting								
07:30	09:30	Wait on Services		Wait for Sanjel pump	ing unit to arrive on location	s on location about procedure & h	azards of numping light	oil					
10:00	12:00	Circulating		Rigged in Sanjel to w	ellhead circulated light crude	e down 88.9mm tubing through ES	SP back up the 177.8 and	nular to rig tank. Stop pumping. REDA					
				torque level. Return	Im3. Stop pump. Rig Sanjel	to 244.5mm by 177.8mm annulus	s pumped down 40m3 of	light curde oil . (Specefic gravity=.82,					
12:00	18.00	Rig/Equip Maintenar		Rig out & got welder	to fix loose stairs & handrails	Rigged out Sanjel.	quipment						
	10.00	rigi Equipi mainorial		Thig out a got fronton			qupmont						
Work Strin	String Description		Run	Date		Pull Date		Set Depth (mKB)					
	String Description		Run	Date									
					Page 1/1			Report printed: 9/14/20	07				

APPENDIX 2/A2:

Completion operations

New completion drawing

APPENDIX 2/B:

Completion operation

April 2006, ESP pump replacement

			VVE	ervio	cing Daily O	peration						
	ΤΟΤΑΙ	F&P Can	nada			Well	I Name: 1P1_	102/03-33-095-12-W	4M		Stort I	A 440/2006
TOTAL			Unit: LWO, R	ockwell S7	0						Start	Report #: 1.0
Country : Car	nada		Slot · Producer 1		Water Depth :		Spud Date :					
Field : Joslyn	lada	1	North :		Location : ONSI	HORE	Objective : F	lowing Oil	Safety and F	Personnel Details		
Platform : Pa	ad 1	E	East :		Well shape : Ve	rtical	Status : Com	pleted	Days without LTI	Personnel Tota	I Hours (hrs) Cum F 4.00	ersonnel Total Hours (hrs) 84.00
Activity Type		Chrono number	ol	b Type WS	Classific	ation WS	Status WS		STOP Cards	Submitted		
Pump Change Ou	t	5	HV	NO	WO				Parent Company	Quantity	Comment	
	nit and Fault	amont Dataila	_						POP			
Rig/W3 U	nit and Equip	Local Contract	S cor	Rig/Unit Typ	e	Start Date	End Da	te	Туре	Parent Company	Head Count	Dur (hrs) Tot Time (hrs)
R	ockwell S70	Lyle Aubin		LWO		4/10/2006	;	4/11/2006	Service	Others	7	12 84
Description		Actual Location	n Pressure	Rating (bars)	Nominal ID (in)	Spool Date	Used Hours (hrs)	Wire Left (m)	Supervisors	Sur	onvicor	
Make		Model	l l	Component H	leight (m)	Max Hang Off Weight (tonn	nesf) Certific	ation Date	Lee Getzinger	54	Dervisor	
									Safety Incid	ents		
Daily Ope	ration Details	s							Time	Event Type Associa	ted Rig	
Daily Field Est C	ost (Local)				Cum Field Est Cost	(Local)			Number of Fatalities		Number of Lost Days	
Daily Summary												
Rig to Pull ESP As Planned Operation	ssy. Circulate CaCl2 to	o kill well.							Main Stocks	Consumed		
Pull ESP									Main Stock Des	Consumed	Received Returned	Stock
6 am Status Move from Pad 20)3-P3											
Remarks	kill woll								Start and Er	d Pressures		
Production Loss	es / MAP								Time	Test Type	Activity	
- · ,									Start Time	Pres Tub Start (bars)	Pres Cas Start (bars)	Pres Ann Start (bars)
Start Time	End Time	Code	Unsched Type			Comment			End Time	Pres Tub End (bars)	Pres Cas End (bars)	Pres Annulus End (bars)
00:00	09:00	ON-RURD	PT	Moved rig & set u	ip equipment						,	
10:00	10:00	OC-KILL	PT	Rigged up lines 8	circulated 2m3 of hot water to	clean the well. Filled up the well	II w/ 8m3 of CaCl2 density 1	374kg/m3. FSV already closed due	-			
			PT	heavy oil sitting o	n top.	erv joint had to be cleaned & clar	mos taken off		-			
17:00	00.00	LOC-TOOL		1 0011 ₩/ 00.0111	in production stang & ECF . EVe							
17:00	00:00	OC-TOOL										
17:00 Work Stri	00:00	OC-TOOL	Pup	Dato		Pull Data		Sat Dopth (mKR)				
^{17:00} Work Stri	00:00 ngs String Description		Run	Date		Pull Date		Set Depth (mKB)				
17:00 Work Stri	00:00		Run	Date		Pull Date		Set Depth (mKB)				
^{17:00} Work Stri	00:00 ngs String Description		Run	Date		Pull Date		Set Depth (mKB)				
^{17:00} Work Stri	00:00		Run	Date		Pull Date		Set Depth (mKB)				
17:00 Work Strin	00:00 ngs String Description		Run	Date		Pull Date		Set Depth (mKB)				
17:00 Work Strin	00:00 ngs String Description		Runi	Date		Pull Date		Set Depth (mKB)				
17:00 Work Strin	00:00 ngs String Description		Run i	Date		Pull Date		Set Depth (mKB)				
17:00 Work Stri	00:00 ngs String Description		Run	Date		Pull Date		Set Depth (mKB)				
17:00 Work Strin	00:00 ngs String Description		Run	Date		Pull Date		Set Depth (mKB)				
17:00 Work Strin	00:00 ngs String Description		Run	Date		Pull Date		Set Depth (mKB)				
17:00 Work Strin	00:00		Run	Date		Pull Date		Set Depth (mKB)				
17:00 Work Strin	00:00 ngs String Description		Run	Date		Pull Date		Set Depth (mKB)				
17:00 Work Strin	00:00 ngs String Description		Run	Date		Pull Date		Set Depth (mKB)				
17:00 Work Strin	00:00 ngs String Description		Run	Date		Pull Date		Set Depth (mKB)				

			We	II Servio	cing Daily Op	eration							
	TOTAL	E&P Can	ada Unit: ,			Well	Name: 1P1_10)2/03-33-095-12-W	/4M		Start	Date: 4/ Repo	/11/2006 ort #: 2.0
Country : Cana Field : Joslyn Platform : Pad	ada	S N E	lot : Producer 1 lorth : ast :		Water Depth : Location : ONSH Well shape : Vert	ORE ical	Spud Date : Objective : Flov Status : Compl	wing Oil eted	Safety and P Days without LTI 1	ersonnel Details Personnel Total	Hours (hrs) Cum	Personnel To 84.0	tal Hours (hrs) 0
Activity Type		Chrono number	Jol	Type WS	Classificat	ion WS	Status WS		STOP Cards	Submitted		-	
Pump Change Out		5	HW	0	WO				Parent Company	Quantity	Commer	t	
Rig/WS Un	it and Equip	oment Details							POB	Parant Company	Hood Count	Dur (bro)	Tot Time (bra)
Rig/Unit Name Roc	ckwell S70	Local Contracto	r	Rig/Unit Type LWO	8	Start Date 4/10/2006	End Date	4/11/2006	Type	Parent Company	Head Count	Dui (nis)	Tot Time (hrs)
Description		Actual Location	Pressure	Rating (bars)	Nominal ID (in)	Spool Date	Used Hours (hrs)	Wire Left (m)	Supervisors	0			
Make		Model	I	Component I	leight (m)	Max Hang Off Weight (tonne	esf) Certificatio	on Date	┨┢────	Sup	ervisor		
Daily Opera	ation Detail	S			Cum Field Est Cost (Safety Incide	ents			
Dally Field Est Cos	at (Local)				Cum Field Est Cost (Local)			Time E	vent Type Associat	ed Rig		
Daily Summary Pooh w/ failed ESP a	and RIH partially with	n replacment unit c/w cor	ntrol lines and thermocoup	lers.					Number of Fatalities		Number of Lost Days		
Planned Operation	s	·											
6 am Status									Main Stocks	Consumed			
Remarks									Main Stock Des	Consumed	Received Returne	d	Stock
Production Losses	/ MAP								Stort and En				
									Time T	est Type	Activity		
Start Time	End Time	Code	Unsched Type			Comment			Start Time	Pres Tub Start (bars)	Pres Cas Start (bars)	Pres Ann	Start (bars)
00:00	09:00	OC-TOOL	PT	Continue POOH	w/ 88.9mm tubing.				- End Time	Dree Tub End (bare)	Pres Cas End (hars)	Dree Ann	ulue End (here)
10:30	13:00	ON-ESP ON-RURD	PT	replaced broken l	ESP and got ready to RIH with n	ew pump				Pres Tub End (bars)	Pres Cas End (bars)	Pres Anno	ulus End (bars)
13:00 18:00	18:00 00:00	FN-RURD ON-TOOL	NPT PT	REDA Schlumbe tally pipe, drift an	rger spooler trailer broke down. d load pipe racks 27 joints 88.9m	Take to FORT MC to fix. Spoole nm 40/40 and changeovers Star	r trailer arived on location at 6 t RIH.	δpm					
Moule Stuin		1											
WORK String	String Description		Run I	late		Pull Date	Se	et Depth (mKB)	-				
					Page 1/1			Report printed: 9/17	2007				

APPENDIX 3:

Mud and geological report

APPENDIX 3/A:

Mud and geological report

Injector well

WELL SUMMARY

The horizontal SAGD well DCEL 111 JOSLYN CREEK 3-33-95-12 was the injector well of a single well pair drilled for Deer Creek Energy in November and December 2003. The spud date for the well was November 26, 2003 at 07:00 hours with a slant rig, Precision Drilling Rig #297. A 506 mm surface hole was drilled to 28 m at a 45 degree angle and 406.4 mm surface casing was set at 28.0 m and cemented.

Surface casing was drilled out with a 375 mm bit and directional tools commencing at 05:00 on November 27. Delays were caused by welding difficulties, a misalignment in the surface casing, and difficulties with ranging tools with Heat Seakers. The mud was not changed out in 111 until the well was definitely in McMurray Formation dominated by sand. Based on 1P1, McMurray sand was expected at 113 m MD and occurred at 111 m MD.

Clearwater cavings were common in the intermediate hole through to TD. No McMurray mud lumps were observed as had been in the 1P1 intermediate hole. The shakers became bitumen clogged and many samples had a very minor sand component.

Total time was 2 days 00:10 hours from spud to drilling the heel point of the horizontal injector at 375.0 m.

Total time from drilling to the heel point of the horizontal injector at 375 m to drilling out the shoe for the horizontal leg was 1 day, 19:40 hours. A major delay was waiting for a cementing plug.

The MI surfactant used in the horizontal without cooling the mud system worked well. The shaker screens held most of the bitumen the mud stayed clean and the sand from the centrifuge was clean.

The horizontal leg was drilled from 374.0 to 982.0 m. It was in mainly fine grained quartz sand with inferred good to excellent reservoir quality. This was in contrast to the medium to coarse grained sand in the underlying producer. There was no evidence of intergranular cement.

The following summarizes the reservoir quality in the horizontal leg of 111 from the intermediate casing point at 374.0 m to the end of gamma at TD at 963 m, an interval of 595 m:

Reservoir Type	Gamma in API	Total Length	% of Reservoir
Clean sand	Mainly 15	194.0	32.6
Minor mud interbeds	15-30	314.0	52.8
Total good reservoir	15-30	508.0	85.6
Common mud interbeds	30-45	82.0	13.8
Dominantly mud	>45	5.0	0.8

Total time for drilling the horizontal producer from drilling out the intermediate shoe to TD was 33:15 hours. Instrument problems with Heat Seekers resulted in a delay.

Total time from spud to TD was 4 days, 18:45 hours.

WELL DATA SUMMARY

WELL NAME: DCEL 111 JOSLYN CREEK 3-33-95-12

OPERATOR: Deer Creek Energy Limited

SURFACE LOCATION: 10-33-95-12W4M **BOTTOM HOLE LOCATION:** 03-33-95-12W4M

SURFACE CO-ORDINATES: 432.0m South and 790.2 m West

INTERMEDIATE CO-ORDINATES: 336.81 m South, 66.44 m West (Extrapolated) **BOTTOM HOLE CO-ORDINATES:** 943.26m South, 59.02 m West (Extrapolated)

UNIQUE ID: 103/03-33-095-12W4/00

WELL CLASS: DEV (NC)

LICENCE #: 029554 AFE: 064-0303

ELEVATIONS:	Ground:	339.7m
	Kelly Bushing:	343.6m

CONTRACTOR: Precision Drilling Slant Rig, Rig #297

SPUD DATE:November 26, 2003 @ 07:00 Hrs.T.D. DATE:December 1, 2003 @ 11:45 Hrs.

T.D.: 982.00 m MD 93.87 m TVD 249.7 m SS 943.25 m VS

HOLE SIZE:	Surface:	506 mm to 28.0 m MD
	Intermediate:	374.6 mm to 375.0 m MD
	Final:	269 mm to 982.0 m MD

SURFACE CASING:406.4 mm set at 28.0 m.INTERMEDIATE CASING:298.45 mm set at 374.0 mHORIZONTAL LINER:Information not available

SAMPLE INTERVAL: 10 m intervals in the 45 degree inclined intermediate section from 50 m to 370 m, 15 m intervals in the horizontal section from 390 m to T.D. No samples submitted to E.U.B.

MUD TYPE: Water in Clearwater section, polymer in the McMurray section. **MUD COMPANY:** MI Drilling Fluids Canada, Inc.
INTERMEDIATE HOLE LOGGING: Gamma MWD by Sperry 20.0-356.0 m **MAIN HOLE LOGGING:** Gamma MWD by Sperry 374.0-969.0 m

GEOLOGISTS: Dane Bridge and Esther Visser

DRILLING SUPERVISORS: Rodney Tetreault and Vince Crawchuk

PROGNOSIS AND RESULTS

GL: 339.7 m

KB: 343.6 m

Note: Survey data at target points are extrapolated from the last actual survey.

Item	Prognosis	Prognosis	Prognosis	Drilled	Drilled	Drilled
	SS m	South m	West m	SS m	South m	West m
Heel Target	249.15	327.26	51.74	249.5	336.81	66.44
Toe Target	249.15	943.26	59.02	249.7	943.25	73.58

Note: The toe prognosis for 111 has been changed in this table to the drilled coordinates of 1P1 so that the injector well will directly overlie the producer well.

FORMATION TOPS

Formation	Drilled MD m	Drilled TVD m	Drilled SS m
Clearwater Top	29.2	21.0	322.6
McMurray Top	90.2	59.0	284.6

FORMATION EVALUATION

The McMurray Formation in the 111 intermediate hole was relatively clean bitumen saturated sand to 227 m MD. The section from 227 to 333 m was interbedded with mud and displayed a gamma commonly of 45-60 API and locally 30-45 API. At 333 m to the final gamma at 355 m MD the gamma was mainly 15-20 API indicating clean sands. The sand in this interval was mainly medium to coarse grained with the lower coarse fraction predominating.

The following summarizes the reservoir quality in the intermediate section of 111 from the

DCEL 111 JOSLYN CREEK, UWI: 103/03-33-095-124W4/0

interval of sands with minor mud interbeds starting at 291 m MD, with gamma from the intermediate and horizontal legs:

From	То	Interval	Gamma	Description
m	m	m	API units	
291.0	326.0	35.0	20-25	Clean bitumen saturated sand with sections with minor
				mud interbeds
326.0	363.0	37.0	20-30	Clean bitumen saturated sand with sections with minor
				mud interbeds
363.0	374.0	11.0	15	Clean bitumen saturated sand

From	То	Interval	Gamma	Description
m	m	m	API units	
374.0	385.0	11.0	15	Clean bitumen saturated sand
385.0	405.0	20.0	20-25	Clean bitumen saturated sand with sections with minor
				mud interbeds
405.0	442.0	37.0	15	Clean bitumen saturated sand with minor mud interbeds
442.0	448.0	6.0	20-30	Clean bitumen saturated sand with sections with minor
				mud interbeds
448.0	512.0	64.0	15	Clean bitumen saturated sand
512.0	534.0	22.0	20-25,	Clean bitumen saturated sand with sections with minor
			local 15	mud interbeds
534.0	554.0	20.0	15-20	Clean bitumen saturated sand
554.0	597.0	43.0	15-30	Clean bitumen saturated sand with sections with minor
				mud interbeds
597.0	615.0	18.0	15-20	Clean bitumen saturated sand
615.0	628.0	13.0	20-25	Clean bitumen saturated sand with sections with minor
				mud interbeds
628.0	640.0	12.0	30-45	Bitumen saturated sand with common mud interbeds
640.0	658.0	18.0	20-30	Clean bitumen saturated sand with sections with minor
				mud interbeds
658.0	670.0	12.0	35-45	Bitumen saturated sand with common mud interbeds
670.0	713.0	43.0	15-25	Minor interbedded mud and bitumen saturated sand
713.0	729.0	16.0	30-40	Clean bitumen saturated sand with sections with minor
				to common mud interbeds
729.0	734.0	5.0	45-50	Interbedded mud and minor bitumen saturated sand
734.0	754.0	20.0	35-45	Bitumen saturated sand with common mud interbeds
754.0	774.0	20.0	25-35	Clean bitumen saturated sand with sections with minor
				mud interbeds
774.0	781.0	7.0	35-40	Clean bitumen saturated sand with sections with minor
				to common mud interbeds
781.0	806.0	25.0	20-35	Clean bitumen saturated sand with sections with minor
				mud interbeds
806.0	853.0	47.0	20-30	Clean bitumen saturated sand with sections with minor
				mud interbeds
853.0	868.0	15.0	30-40	Clean bitumen saturated sand with sections with minor
				to common mud interbeds
868.0	908.0	40.0	20-30	Clean bitumen saturated sand with sections with minor
				mud interbeds
908.0	952.0	44.0	15-20	Clean bitumen saturated sand
952.0	969.0	17.0	20-30	Clean bitumen saturated sand with sections with minor
				mud interbeds

The following details the reservoir quality in the horizontal leg of 111 from the intermediate casing point at 374.0 m to 969.0 m at the final gamma reading behind TD at 982.0 m:

The following summarizes the reservoir quality in the horizontal leg of 1P1 from the intermediate casing point at 374.0 m to the end of gamma at TD at 963 m, an interval of 595 m:

Reservoir Type	Gamma in API	Total Length	% of Reservoir
Clean sand	Mainly 15	194.0	32.6
Minor mud interbeds	15-30	314.0	52.8
Total good reservoir	15-30	508.0	85.6
Common mud interbeds	30-45	82.0	13.8
Dominantly mud	>45	5.0	0.8

DAILY OPERATIONS

<u>Date</u>	Depth at Midnight	Progress	Rotating Hrs.	Operations Conducted (00:00 hrs to 24:00 hrs)
Nov. 25, 2003	3 Om	0m	0	Move rig onto location from 1P1, rig up.
Nov. 26	28m	28m	3.00	Continue rip up and pick up tools, 20:45-07:00, spud surface hole at 07:00 hours, drill surface hole at 45 degrees to 28.0 m, POOH, rig to run surface casing, run 16 inch surface casing 12:30-15:45, rig in cementers, cement surface casing 16:00-17:00, wait on cement, cut and weld csg/conductor.
Nov. 27	303m	275m	14.75	Continue welding, pick up tools 01:30, drill out 05:00, drill to 103 m at 11:55 and change out tanks and displace hole to mud, continue drilling at 14:10, drill and survey to 303m.
Nov. 28	375m	72m	6.50	Drill and survey to 275m at 07:10, wiper trip to shoe, back ream to TD and ream out, POOH, lay down directional tools, run intermediate casing 18:25-24:00.
Total time spu	ud to TD of inter	mediate at heel	l: 2 days, 00:10.	
Nov. 29	375m	0	0	Continue to run casing to 05:45, wait on cement plug, cement casing 13:15-14:30 with 11 ³ / ₄ inch plug down, wait on cement, cut conductor and casing, pick up tools.
Nov. 30	864m	489m	14.75	Continue picking up directional tools, drill out float and shoe at 375 m at 02:30, displace hole to mud, drill land survey to 864 m.

Total time from TD at heel of intermediate to drilling out shoe: 1 day, 19:40.

Dec.1	982m	118m	4.25

Drill and survey to 915 m at 02:45, circulate and wait on Heat Seekers, wiper trip 10 singles, drill and survey 07:00 to 11:45 to TD at 982.0 m, POOH, lay down tools, RIH with porcupine reamer.

Total time from drilling out intermediate shoe to TD of Hz leg: 1 day, 9:15 hours.

RECORD OF MUD PROPERTIES

Mud Type: Polymer

Mud Company: MI Drilling Fluids Canada, Inc.

Note: Special reports will be produced by contractors on the mud system. The following table includes only the data entered on the drilling tour sheets on the Pason.

Depth	Den	Vis	Wat/l	pН	Cl	ур	Gels	Solids	Sand	Oil
m								%	%	%
68		38								
155	1060	38		8.5						
221	1110	41		9.5						
287	1100	48		10.0						
312	1050	40		10.5						
335	1050	40		10.0						
357	1050	43		10.0						
370	1065	43								
421	1060	42								
595	1070	38		9.5						
680	1060	41		10.0						
770	1065	41		9.0						
798	1065	40		9.0						
886	1065	40		9.0						
915	1070	49		10.0						
970	1075	70		9.0						

BIT RECORD

Bit#	Size	Mfg.	Туре	Serial#	Jets	In	Out	Int.	Hrs.	Cond.
	mm					m	m	m		
1	508	Hughes	GTX11H	F04DK	3/22.2	0	28	28	3.0	n/a
2	374.6	J&L	S11J	RR00848	3/22	28	375	347	24.25	n/a
3	270	Reed	DS59	H45147	6/12	375	982	607	19.0	n/a

LITHOLOGICAL DESCRIPTIONS FOR INTERMEDIATE HOLE

Note: Sample descriptions are all of unconsolidated sandstone, bitumen saturated with inferred good to excellent intergranular porosity unless otherwise specified. Grain size distributions are displayed graphically on the strip log.

40-50 m: Medium-dark grey mud with trace very fine sand and loose very coarse sand probably from till, rare pyrite, minor cavings from till not shown on grain size histogram.

50-60 m: Medium-dark grey mud and trace siltstone with minor very fine sand to medium grained sand and loose very coarse sand probably from till, rare pyrite, rare glauconite, rare shell fragments, minor cavings from till not shown on grain size histogram.

60-70 m: Medium-dark grey mud and trace dark siltstone and very fine sand-siltstone with a mud matrix, minor very fine to fine grained sand and loose very coarse sand probably from till, rare pyrite, very rare glauconite, minor cavings from till not shown on grain size histogram.

70-80 m: Medium-dark grey mud and rare dark siltstone, trace very fine to fine grained sand and rare loose very coarse sand probably from till, rare pyrite, minor cavings from till not shown on grain size histogram.

80-90 m: Medium-dark grey mud, trace very fine to medium grained sand and rare loose very coarse sand probably from till, rare pyrite, minor cavings from till not shown on grain size histogram.

90-100 m: Medium-dark grey Clearwater mud and 5%, very fine to medium grained claer quartz sand from McMurray, rare loose very coarse sand probably from till, rare pyrite, rare coal, weakly bitumen saturated, minor cavings from till not shown on grain size histogram.

Note: McMurray sample are unconsolidated, bitumen saturated sand with intergranular porosity and inferred good to excellent porosity unless otherwise indicated.

100-110 m: McMurray clear quartz sand mainly fine to medium grained, >50% Clearwater mud and trace coarser sand from till, rare pyrite, weakly bitumen saturated

110-120 m: McMurray clear quartz sand mainly fine to medium grained, ~20% Clearwater mud cavings, minor siltstone cavings, rare to trace pyrite, weakly bitumen saturated

120-130 m: poor sample, McMurray clear quartz sand mainly fine to medium grained, 75% Clearwater mud cavings, rare to trace pyrite, weakly bitumen saturated

130-140 m: McMurray clear quartz sand mainly fine to medium grained, trace very coarse, 5% Clearwater mud cavings, rare pyrite, moderately bitumen saturated

140-150 m: McMurray clear quartz sand mainly fine grained, trace coarse, sample mainly bitumen with 10-15% sand, 2% Clearwater mud cavings, rare pyrite, rare muscovite, bitumen saturated

150-160 m: Murray clear quartz sand mainly fine grained, trace coarse, sample mainly bitumen with 10-15% sand, 2% Clearwater mud cavings, rare pyrite, rare muscovite, bitumen saturated

DCEL 111 JOSLYN CREEK, UWI: 103/03-33-095-124W4/0

160-170 m: McMurray clear quartz sand mainly fine grained, very well sorted, good sample with abundant sand, trace pyrite, trace varicoloured chert, bitumen saturated

170-180 m: McMurray clear quartz sand mainly medium and fine grained, fair sample with abundant sand, 25% Clearwater siltstone and lesser mud, rare pyrite, trace muscovite, bitumen saturated

180-190 m: McMurray clear quartz sand mainly medium grained, rare coarse to very coarse, rare pyrite, trace muscovite, bitumen saturated

190-200 m: McMurray clear quartz sand mainly medium grained, rare coarse to very coarse, rare pyrite, trace muscovite, bitumen saturated

200-210 m: McMurray clear quartz sand, predominantly medium grained, rare pyrite, rare muscovite

210-220 m: McMurray clear quartz sand, mainly medium to lower coarse grained, rare pyrite, bitumen saturated. minor clearwater siltstones less than previous sample

220-230 m: McMurray clear quartz sand, mainly medium grained, rare pyrite, rare, large pieces of coal. bitumen saturated. minor large pieces of siltstone.

230-240 m: McMurray clear quartz sand, mainly medium to coarse grained, rare pyrite, rare multicolored chert. bitumen saturated. minor siltstone (more than previous sample)

240-250 m: McMurray clear quartz sand, mainly medium to lower coarse grained, trace pyrite, rare multicolored chert, rare muscovite and coal. bitumen saturated. minor siltstone

250-260 m: McMurray clear quartz sand, mainly coarse grained, rare pyrite, rare multicolored chert, rare muscovite and coal. bitumen saturated. minor siltstone, one grain appears to be pyrite cemented, probable McMurray silts

260-270 m: sample very bitumen rich, difficult to clean. small amount of sample recovered. McMurray clear quartz sand, mainly medium grained, rare pyrite, rare muscovite and one very large coal grain. minor siltstone, (may be glauconitic?) probably McMurray interbeds.

270-280 m: sample very bitumen rich, difficult to clean. small amount of sample recovered. McMurray clear quartz sand, moderate to well sorted, fine to lower coarse sand, rare pyrite, rare coal. minor glauconotic siltstone, probably Wabiskaw cavings

280-290 m: sample very bitumen rich, difficult to clean. small amount of sample recovered. McMurray clear quartz sand, moderately sorted, mostly upper fine to lower coarse sand, rare pyrite. minor glauconotic siltstone, probably Wabiskaw cavings

290-300 m: sample very bitumen rich, difficult to clean. small amount of sample recovered. McMurray clear quartz sand, moderately sorted, mostly upper fine to lower coarse sand, rare pyrite and coal. trace mica. trace siltstone.

300-310 m: sample very bitumen rich, difficult to clean. small amount of sample recovered. 80% McMurray quartz sand, moderately sorted, mostly upper fine to lower coarse sand, rare pyrite

and coal. trace to minor mica. minor glauconitic siltstone (Wabiskaw cavings)

310-320 m: sample very bitumen rich, difficult to clean. small amount of sample recovered. 80% McMurray quartz sand, moderate to well sorted, mostly medium grained sand, rare pyrite. trace mica. common small coal fragments. minor siltstone

320-330 m: sample very bitumen rich, difficult to clean. small amount of sample recovered. 75% McMurray quartz sand, moderate to well sorted, mostly medium grained sand, rare pyrite, trace mica, abundant small coal fragments, minor siltstone, some is glauconitic.

330-340 m: sample very bitumen rich, difficult to clean. small amount of sample recovered. McMurray quartz sand, moderate to well sorted, mostly fine grained sand, rare pyrite, rare mica, abundant small coal fragments, minor siltstone, some is glauconitic.

340-350 m: sample very bitumen rich, <5% McMurray quartz sand, well sorted, mostly fine grained sand, rare pyrite, trace small coal fragments, minor siltstone, probably cavings.

350-360 m: sample very bitumen rich, about 5% McMurray quartz sand, well sorted, mostly fine grained sand, rare pyrite, minor small coal fragments, rare muscovite, trace siltstone, probably cavings.

360-370 m: sample very bitumen rich, about 10% McMurray quartz sand, well sorted, mostly fine grained sand, rare pyrite, minor small coal fragments, rare muscovite, trace siltstone and glauconite, probably cavings.

LITHOLOGICAL DESCRIPTIONS FOR HORIZONTAL LEG

Note: Sample descriptions are all of unconsolidated sandstone, bitumen saturated with inferred good to excellent intergranular porosity unless otherwise specified. Grain size distributions are displayed graphically on the strip log.

375-390m: abundant coal, rare multi-colored chert, very rare pyrite.390-405m: very abundant coal (20%), rare multi-colored chert, rare mica, rare pyrite.

405-420m: very abundant coal (20%), rare multi-colored chert, rare mica, rare pyrite.420-435m: very abundant coal (20%), trace multi-colored chert, rare mica, rare pyrite.

435-450 m: very abundant coal and casing cement (20% each), ~1% very coarse sand.450-465 m: very abundant casing cement (50%), common coal, rare pyrite, trace very coarse sand, including varicoloured chert.

465-480 m: abundant casing cement (10-15%), minor coal, trace pyrite.480-495 m: trace casing cement, trace pyrite, trace varicoloured chert.

495-510 m: trace pyrite, trace varicoloured chert, minor gray to black siltstone, probably Clearwater cavings.

510-525 m: trace pyrite, minor varicoloured chert, rare coal, minor gray to black siltstone, probably Clearwater cavings.

525-540 m: rare pyrite and varicoloured chert, 1-2% coarse to very coarse grained sand, very rare muscovite, minor gray to black siltstone, probably Clearwater cavings and cement.

540-555 m: rare pyrite and varicoloured chert, <1% coarse to very coarse grained sand, very rare muscovite, trace coal, trace gray to black siltstone, probably Clearwater cavings and 5% cement.

555-570 m: rare pyrite and varicoloured chert, <1% very coarse grained sand, very rare muscovite, rare coal, trace gray to black siltstone, probably Clearwater cavings and trace cement.

570-585 m: rare pyrite and varicoloured chert, trace gray to black siltstone, probably Clearwater cavings and minor cement.

585-600 m: rare pyrite, coal and varicoloured chert, trace gray to black siltstone, probably Clearwater cavings and minor cement.

600-615 m: rare muscovite, trace coal and varicoloured chert, trace gray to black siltstone, probably Clearwater cavings and trace cement.

615-630 m: rare muscovite and pyrite, trace coal and varicoloured chert, trace gray to black siltstone, probably Clearwater cavings and trace cement.

630-645 m: trace coal and varicoloured chert, minor muscovite, trace gray to black siltstone, probably Clearwater cavings and minor cement.

645-660 m: trace chert, coal and muscovite, increase in medium grained sand, trace gray to black siltstone, probably Clearwater cavings and minor cement.

660-675 m: trace chert and coal, increase in medium grained sand, rare gray to black siltstone, probably Clearwater cavings.

675-690 m: very rare chert, rare gray to black siltstone, probably Clearwater cavings, trace cement from casing.

690-705 m: very rare chert and coal, rare black siltstone, probably Clearwater cavings, trace cement from casing.

705-720 m: very rare chert and coal, rare black siltstone, probably Clearwater cavings, trace cement from casing.

735-750 m: very rare chert, coal, and black siltstone, probably Clearwater cavings, very rare cement from casing.

750-765 m: minor coal, rare chert, pyrite and very rare cement from casing.765-780 m: minor coal, very rare chert and pyrite.

780-795 m: minor coal, very rare chert and pyrite. very rare feldspar.

795-810 m: minor coal, rare pyrite. rare chert.

810-825 m: trace coal, rare pyrite. rare chert.

825-840 m: rare coal, rare pyrite. rare chert.

840-855 m: rare coal, very rare pyrite. rare chert.

855-870 m: trace chert, rare coal, rare mica, very rare pyrite.

870-885 m: trace coal, rare chert and mica, very rare pyrite.

885-900 m: trace coal, rare chert, very rare pyrite.

900-915 m: abrupt grainsize change, much higher percentage of finer grained sands, rare coal, rare chert, very rare pyrite, mica and light gray siltstone, rare cement remnants.

915-930 m: abrupt grainsize change to predominately coarse grained, very rare

930-945 m: predominately coarse grained as at 930 m, very rare chert and pyrite

945-960 m: predominately lower coarse and upper medium grained, very rare chert and pyrite

960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite.

APPENDIX 3/B:

Mud and geological report

Producer well

WELL SUMMARY

The horizontal SAGD well DCEL 1P1 JOSLYN CREEK 3-33-95-12 was the producer well of a single well pair drilled for Deer Creek Energy in November and December 2003. The spud date for the well was November 19, 2003 at 19:30 hours with a slant rig, Precision Drilling Rig #297. A 444 mm surface hole was drilled to 42 m at a 45 degree angle and 339.7 mm surface casing was set at 41.3 m and cemented.

Surface casing was drilled out with a 311mm bit and directional tools at 20:15 on November 20. A magnetic storm caused by sun spot activity interfered with the Sperry directional tools and delayed the drill out on November 20.

The mud system became severely aerated at 08:30 November 21 at a MD of 196 m and drilling was delayed until 10:45. Drilling resumed but was frequently delayed in order to reduce foaming caused by the aerated mud again. The aeration was due a mud system that was designed to handle relatively clean oil sand. Due to excessive caving from the Clearwater Formation, the mud system was much more clay rich than expected. The sample caught at 190 m was very mud rich, Clearwater rich and deficient in McMurray sand. The material coming across the shaker at 190m had changed from dark, bitumen dominated to grey and mud dominated. The next sample at 200 m was mainly black bitumen with minor Clearwater cavings and McMurray sand.

Most samples from 250 to 290 m contained lumps of medium grey, soft, pliable mud that probably represents McMurray mud interbeds rather than Clearwater cavings.

Total time was 3 days 1:35 hr from spud to drilling the heel point of the horizontal producer at 374.5 m.

A strip log was produced from sampling on 10 m intervals for the intermediate hole. The strip log is in vertical format but the hole is inclined at 45 degrees at the top and horizontal at the base. The Clearwater interval was drilled with water and about 42 m MD of Clearwater is below the cemented surface casing. Consequently most of the early recovered samples from the shaker were resistant cemented sandstone and siltstone interbeds from the dominantly mudstone of the Clearwater Formation. Some rounded clasts of Clearwater mud were recovered. Clearwater cavings were observed in the samples collected at the shaker while drilling the entire McMurray interval in the intermediate hole.

Total time from drilling to the heel point of the horizontal producer at 374.5 m to drilling out the shoe for the horizontal leg was 1 day, 10:30 hr.

The MI surfactant used in the horizontal without cooling the mud system worked well. The shaker screens stayed clean, and relatively clean sand with minor bitumen came across the shakers. Samples were easy to clean with hot water and a small amount of detergent.

The horizontal leg was drilled from 374.5 to 981.0 m. It was in mainly medium to coarse grained quartz sand with inferred good to excellent reservoir quality. Rare, very fine grains of possible siderite were observed in some samples. The only other evidence of intergranular cements were a few quartz grains cemented by pyrite. Pyrite occurred in most samples but is a very rare component.

The following summarizes the reservoir quality in the horizontal leg of 1P1 from the intermediate casing point at 374.5 m to the end of gamma at TD at 963 m, an interval of 588.5 m:

Reservoir Type	Gamma in API	Total Length	% of Reservoir
Clean sand	Mainly 15, locally to 30	385.5 m	65.5
Minor mud interbeds	Mainly 30	91.0 m	15.5
Total good reservoir	15-30 with minor above 30	476.5	81.0
Common mud interbeds	30-45	103.0 m	17.5
Dominantly mud	>45	9.0 m	1.5

Total time for drilling the horizontal producer from drilling out the intermediate shoe to TD was 24 hours.

44 slotted joints of 177.8 mm production liner and 3 blank joints at the top was landed at 974.77 m. The top of the liner string is at 355.3 m.

The rig was released at 20:45 on November 25.

Total time from spud to rig release was 6 days, 1:15.

WELL DATA SUMMARY

WELL NAME: DCEL 1P1 JOSLYN CREEK 3-33-95-12

OPERATOR: Deer Creek Energy Limited

SURFACE LOCATION: 10-33-95-12W4M **BOTTOM HOLE LOCATION:** 03-33-95-12W4M

SURFACE CO-ORDINATES: 433.0m South and 805.2m West

INTERMEDIATE CO-ORDINATES: 337.02 m South, 51.49 m West (Extrapolated) **BOTTOM HOLE CO-ORDINATES:** 943.26m South, 59.02 m West (Extrapolated)

UNIQUE ID: 102/03-33-095-12W4/00 **WELL CLASS:** DEV (NC)

LICENCE #: 029554 AFE: 064-0303

ELEVATIONS:	Ground:	339.7m	
	Kelly Bushing:	343.6m	

CONTRACTOR: Precision Drilling Slant Rig, Rig #297

DCEL 1P1 JOSLYN CREEK, UWI: 102/03-33-095-124W4/0

SPUD DATE:	November 19, 2003 @ 19:30 Hrs.
T.D. DATE:	November 24, 2003 @ 14:30 Hrs.

T.D.: 981.00 m MD 99.26 m TVD 244.3 m SS 945.08 m VS

HOLE SIZE:	Surface:	444 mm	to 42.0 m MD
	Intermediate:	311 mm	to 374.5 m MD
	Final:	219 mm	to 981.0 m MD

SURFACE CASING:	339.7 mm set at 41.3m.
INTERMEDIATE CASING:	244.5 mm set at 374.5 m
PRODUCTION LINER:	44 slotted joints and 3 blank joints at top of 17.8 mm, 43.15 kg/m
	liner, landed at 974.77m, top at 355.3 m.

SAMPLE INTERVAL: 10 m intervals in the 45 degree inclined intermediate section from 50 m to 374.5 m, 15 m intervals in the horizontal section from 390 m to T.D. No samples submitted to E.U.B.

MUD TYPE: Water in Clearwater section, polymer in the McMurray section. **MUD COMPANY:** MI Drilling Fluids Canada, Inc.

INTERMEDIATE HOLE LOGGING: Gamma MWD by Sperry 21.8-355.2 m **MAIN HOLE LOGGING:** Gamma MWD by Sperry 374.5-962.0 m

GEOLOGISTS: Dane Bridge and Esther Visser

DRILLING SUPERVISORS: Rodney Tetreault and Vince Crawchuk

PROGNOSIS AND RESULTS

GL: 339.7 m

KB: 343.6 m

Note: Survey data at target points are extrapolated from the last actual survey.

Item	Prognosis	Prognosis	Prognosis	Drilled	Drilled	Drilled
	SS m	South m	West m	SS m	South m	West m
Heel Target	244.15	327.26	51.74	244.03	339.36	51.49
Toe Target	244.15	927.26	51.74	244.34	943.26	59.02

FORMATION TOPS

Formation	Drilled MD m	Drilled TVD m	Drilled SS m
Clearwater Top	28.4	19.7	323.9
McMurray Top	89.8	57.3	286.3

FORMATION EVALUATION

The McMurray Formation in the intermediate hole was relatively clean bitumen saturated sand to 227 m MD. The section from 227 to 333 m was interbedded with mud and displayed a gamma commonly of 45-60 API and locally 30-45 API. At 333 m to the final gamma at 355 m MD the gamma was mainly 15-20 API indicating clean sands. The sand in this interval was mainly medium to coarse grained with the lower coarse fraction predominating.

The following summarizes the reservoir quality in the intermediate section of 1P1 from the main interval of poor reservoir quality starting at 227 m MD:

From	То	Interval	Gamma	Description
m	m	m	API units	
227	277	50.0	45-60	Interbedded mud and bitumen saturated sand,
				McMurray mud was recovered in cuttings as rolled
				mud lumps at 260 and 270 m.
277	300	33.0	30-45	Minor to common interbedded mud and bitumen
				saturated sand, McMurray mud was recovered in
				cuttings as rolled mud lumps at 290 m.
300	309	9.0	45-70	Interbedded mud and minor bitumen saturated sand
309	314.5	5.5	35	Minor interbedded mud and bitumen saturated sand
314.5	323	8.5	50-60	Interbedded mud and minor bitumen saturated sand
323	333	10.0	35-45	Minor to common interbedded mud and bitumen
				saturated sand
333	355	22.0	15-20	Clean bitumen saturated sand
355	374.5	19.5	15	Clean bitumen saturated sand

From	То	Interval	Gamma	Description
m	m	m	API units	
374.5	397	22.5	15	Clean bitumen saturated sand
397	403	6.0	30-70	Interbedded mud and minor bitumen saturated sand
403	416	13.0	15-30	Clean bitumen saturated sand with minor mud interbeds
416	442	26.0	30-45,	Interbedded mud and bitumen saturated sand, locally
			locally 55	mainly mud interbeds
442	461	19.0	30-40	Minor to common interbedded mud and bitumen
				saturated sand
461	477	16.0	20-30	Clean bitumen saturated sand with sections with minor
				to common mud interbeds
477	514	37.0	30, local	Minor to common interbedded mud and bitumen
			45	saturated sand
514	663	149.0	15-20,	Clean bitumen saturated sand with sections with minor
			local 30	to locally common mud interbeds
663	693	30.0	35-45	Minor to common interbedded mud and bitumen
				saturated sand
693	802	109.0	15	Clean bitumen saturated sand
802	824	22.0	30, local	Clean bitumen saturated sand with sections with minor
			45	to locally common mud interbeds
824	850	26.0	15	Clean bitumen saturated sand
850	878	28.0	30-50	Interbedded mud and minor to common bitumen
				saturated sand
878	883	5.0	15	Clean bitumen saturated sand
883	893	10.0	30	Minor interbedded mud and bitumen saturated sand
893	939	46.0	15, local	Clean bitumen saturated sand with sections with minor
			20-25	mud interbeds
939	942	3.0	60	Interbedded mud and minor bitumen saturated sand
942	952	10.0	30	Minor interbedded mud and bitumen saturated sand
952	963	11.0	15	Clean bitumen saturated sand
963	981	18.0	n/a	No data due to MWD tool about 20 m behind the bit

The following details the reservoir quality in the horizontal leg of 1P1 from the intermediate casing point at 374.5 m to TD at 981.0 m:

The following summarizes the reservoir quality in the horizontal leg of 1P1 from the intermediate casing point at 374.5 m to the end of gamma at TD at 963 m, an interval of 588.5 m:

Reservoir Type	Gamma in API	Total Length	% of Reservoir
Clean sand	Mainly 15, locally to 30	385.5 m	65.5
Minor mud interbeds	Mainly 30	91.0 m	15.5
Total good reservoir	15-30 with minor above 30	476.5	81.0
Common mud interbeds	30-45	103.0 m	17.5
Dominantly mud	>45	9.0 m	1.5

DAILY OPERATIONS

<u>Date</u>	Depth at Midnight	<u>Progress</u>	<u>Rotating Hrs.</u>	Operations Conducted (00:00 hrs to 24:00 hrs)
Nov. 18, 2003	0m	0m	0	Move rig onto location and rig up.
Nov. 19	42m	42m	1.00	Spud surface hole at 19:30 hours, drill and surface hole at 45 degrees to 42.0 m
Nov. 20	84m	42m	2.75	Condition mud, wait on casing nubbins, POOH, laydown stab, run casing 02:30-04:45, cement casing 05:15-07:00, wait on cement, wait on Sperry tools not functioning due to abnormal sunspot activity, drill out cement and shoe at 39m @ 20:15-20:30, drill and survey to 84m.
Nov. 21, 03	332m	248m	15.00	Displace hole with after encountering oil sands at about 84m, displace mud 00:15-00:45, drill and survey to 322 m.
Nov. 22	374.5m	42.5m	3.00	Drill and survey to 374.5m @ 04:00, circulate bottoms up to 05:15, wiper trip and back ream, POOH run casing 13:45-21:30, circulate casing
Total time spu	d to drilling to he	eel at 374.5 m: 3	3 days, 1:35 hr.	1 0011, fun casing 15.45-21.50, encutate casing.
Nov. 23	637m	252.5m	6.25	Cement 00:15-02:15, wait on cement, cut casing and weld on conductor, pickup directional tools, RIH to drill out float shoe at 366 m, drill out shoe at 14:30, drill and survey to 637 m.
Total time from	m heal to drilling	out shoe for ho	rizontal leg: 1 day,	10:30 hr.
Nov. 24	981m	344m	12.25	Drill and survey 637 to TD at 981m at 14:30, circulate, wiper trip to shoe, POOH, lay down

Sperry tools, pickup porcupine and ream to bottom.

Total time for drilling horizontal leg from drilling out intermediate shoe to TD: 24 hr.

Nov. 25 981m 0 0

Continue reaming, POOH, rig to run casing, run & inch slotted liner 07:00-14:45, displace hole to water, POOH, rig release at 20:45.

Total time spud to rig release: 6 days, 1:15.

RECORD OF MUD PROPERTIES

Mud Type: Polymer

Mud Company: MI Drilling Fluids Canada, Inc.

Note: Special reports will be produced by contractors on the mud system. The following table includes only the data entered on the drilling tour sheets on the Pason.

Depth	Den	Vis	Wat/l	pН	Cl	ур	Gels	Solids	Sand	Oil
m								%	%	%
0	1020	40		9.5						
0	1030	45		9.5						
24	1030	60		9.5						
42	1020	45								
104	1080	54		9.5						
139	1080	55		9.5						
178	1090	53		9.5						
239		44								
312		51								
333		55								
364		60								
417	1050	40								
600	1050	41								
635	1040	42		9.5						
717	1040	41		9.5						
802	1050	43		10.0						
850	1045	42								
874	1050	43								

BIT RECORD

Bit#	Size	Mfg.	Туре	Serial#	Jets	In	Out	Int.	Hrs.	Cond.
	mm					m	m	m		
1	444	Reed	S31G	HD3082	4/20	0	42	42	1.0	n/a
2	311	J&L	L114CXP	52044	3/22	42	374.5	332.5	21.75	n/a
3	219	Hycalog	DSX-146	H47747	4/18	374.5	981.0	606.5	18.5	n/a

LITHOLOGICAL DESCRIPTIONS FOR INTERMEDIATE HOLE

Note: The grain size distribution is shown graphically on the strip log.

Clearwater Top: Estimated at 28.4 m MD, 323.9 m SS, based on gamma.

40-50m: unrepresentative sample (only resistant materials preserved) consists of light gray, very poorly sorted and a well sorted sandstone with clay matrix and a med to dark gray siltstone.

50-60m: unrepresentative sample (mostly resistant materials preserved) consists of med to dark gray siltstone and some well sorted sandstone with clay matrix. pyrite more prevalent. Clearwater muds represented by large mud balls.

60-70m: unrepresentative sample (mostly resistant materials preserved) consists of med to dark gray siltstone, minor well sorted sandstone with clay matrix, minor very coarse to pebble. Clearwater muds represented by large mud balls. One chip glauconitic sandstone.

70-80m: unrepresentative sample (mostly resistant materials preserved) consists of med to dark gray siltstone, minor well sorted sandstone and coarse grained sandstone with clay matrix. Clearwater muds represented by large mud balls. minor amounts of coal and pyrite

84m: Drillers noted tar sand.

McMurray Top: Estimated at 89.8 m MD, 286.3 m SS, based on gamma and cuttings.

80-90m: lithologically diverse sample with Clearwater and McMurray, very abundant pyrite, minor glauconite. Clearwater muds still evident as large mud balls. large range in quartz grainsize and rounding.

90-100m: clear quartz sand with about 50% uphole siltstone. large range in quartz grainsize and rounding but with very fine to fine predominate and overall well sorted to moderately well sorted. minor pyrite.

100-110m: clear quartz sand with about 50% uphole siltstone. large range in quartz grainsize and rounding but with very fine predominating and overall well sorted to moderately well sorted. minor pyrite

110-120m: clear quartz sand with about 50% uphole siltstone. range in quartz grainsize and rounding but with sub-ang/sub-rounded fine grains predominating. overall well sorted. minor pyrite

120-130m: clear quartz sand with about 50% uphole siltstone. range in quartz grainsize and rounding but with upper fine/lower medium grains dominating. overall well to mod well sorted. minor pyrite

130-140m: clear quartz sand with about 30% uphole siltstone. range in quartz grainsize and rounding but with sub-rounded upper fine grains dominating. overall mod-well to well sorted. moderate pyrite

140-150m: clear quartz sand with about 20% uphole siltstone. upper fine/lower medium subangular to sub-rounded grains dominating. overall well sorted. minor pyrite

150-160m: clear quartz sand with about 20% uphole siltstone. mainly lower to upper fine subangular to sub-rounded clear quartz sand grains. overall well sorted. common pyrite. one feldspar grain.

160-170m: clear quartz sand with about 20% uphole siltstone. mainly lower to upper fine subangular to sub-rounded clear quartz sand grains. overall well sorted. common pyrite.

170-180m: clear quartz sand with about 15% uphole siltstone. sample did not wash clean and was dried with still some bitumen causing aggregation of grains, difficult to determine size distribution, appears similar to 170m, possible slightly more coarse, very common pyrite

180-190m: very poor sample, probably due to an aerated mud system caused by excessive Clearwater cavings, abundant wood from mud additive, 70% siltstone amd mud lumps from Clearwater, sand may not be representative of McMurray due to small and poor sample, common pyrite

190-200m: thick black bitumen with minor Clearwater cavings and rare McMurray sand, sand content about 15% of that obtained from samples in the 100-150 m range, minor pyrite.

200-210m: thick black bitumen with minor Clearwater cavings. McMurray sand is mod-well sorted and mostly sub-rounded, sand content about 25% of that obtained from samples in the 100-150 m range, minor pyrite.

210-220m: thick black bitumen with some siltstone cuttings. McMurray sand is well sorted and mostly sub-rounded, sand content about 25% of that obtained from samples in the 100-150 m range, minor pyrite.

220-230m: thick black bitumen with minor siltstone cuttings. McMurray sand is moderately well sorted and mostly sub-angular. minor pyrite. good quantity of sand in sample.

230-240m: sample difficult to wash. lots of mud and several large siltstone chunks. McMurray is moderately well sorted, dominated by sub-angular to sub-rounded lower to upper medium grains. abundant pyrite.

240-250m: clear quartz sand with about 15% uphole siltstone is well sorted, dominated by subrounded to rounded, lower coarse to coarse grains. moderate pyrite.

NOTE: Possible McMurray mud lumps from insitu mud beds in 260 and 270 m samples.

250-260 m: low bitumen and mud rich sample, 50% large clasts and lumps, about half mud lumps, medium grey, soft, pliable, possible McMurray and half Clearwater siltstone and silty sandstone, 50% quartz sand, mainly coarse as above, trace pyrite.

260-270 m: moderate bitumen and moderately mud rich sample, 25% large clasts and lumps, about half mud lumps, medium grey, soft, pliable, possible McMurray and half Clearwater siltstone and silty sandstone, 80% quartz sand, mainly coarse as above, minor pyrite, minor small siltstone fragments, probably cavings.

270-280 m: moderate bitumen with minor mud, 10% large clasts of Clearwater siltstone and silty sandstone, trace granitic and iron stained quartzite, 90% quartz sand, mainly coarse as above, trace pyrite, minor small siltstone fragments, probably cavings.

NOTE: Possible McMurray mud lumps from insitu mud beds in 290 m sample.

280-290 m: moderate bitumen with minor mud, 10% large clasts and lumps, about half mud lumps, medium grey, soft, pliable, possible McMurray and half Clearwater siltstone and silty sandstone, 90% quartz sand, mainly coarse as above, minor pyrite, minor small siltstone fragments, probably cavings.

290-300 m: moderate bitumen saturation with very minor Clearwater siltstone and silty sandstone, mainly quartz sand, mainly coarse with more medium than above, minor pyrite.

300-310m: quartz sand, mainly medium grained with common fine and very fine, <5% very coarse, minor pyrite.

310-320m: quartz sand, mainly medium and coarse grained, minor pyrite, common fragments of black vitreous coal.

320-330m: well sorted quartz sand, predominantly medium grained, minor pyrite, some fragments of black vitreous coal.

330-340m: well sorted quartz sand, predominantly medium to coarse grained, minor pyrite.

340-350m: well sorted quartz sand, predominantly upper medium to coarse grained, minor pyrite.

350-360m: well sorted quartz sand, predominantly coarse grained, minor pyrite and coal. some shale, could be McMurray?

360-370m: well sorted quartz sand, predominantly coarse grained, minor pyrite

370-374.5m: well sorted quartz sand, predominantly coarse grained, percentages the same as the profile for 360m MD

LITHOLOGICAL DESCRIPTIONS FOR HORIZONTAL HOLE

Note: Sample descriptions are all of unconsolidated sandstone, bitumen saturated with inferred good to excellent porosity. Grain size distributions are displayed graphically on the strip log.

374.5-390 m: quartz sand, predominately coarse grained, rare multicoloured chert, rare pyrite (one grain), rare coal (one grain), minor cement from shoe

390-405 m: quartz sand, predominately coarse grained, rare multicoloured chert, rare pyrite (one grain), minor cement from shoe

405-420 m: quartz sand, predominately coarse grained, rare multicoloured chert, trace cement from shoe

420-435 m: quartz sand, predominately upper medium grained to lower coarse grained, rare

DCEL 1P1 JOSLYN CREEK, UWI: 102/03-33-095-124W4/0

multicoloured chert, rare pyrite cementing sand grains

435-450 m: quartz sand, predominately lower coarse and upper medium grained, rare multicoloured chert and siltstone

450-465 m: quartz sand, predominately upper medium grained, rare multicoloured chert and siltstone, rare pyrite

465-480 m: quartz sand, predominately medium grained with abundant lower coarse, rare multicoloured chert and siltstone, rare pyrite

480-495 m: quartz sand, predominately medium grained with abundant lower coarse, rare multicoloured chert, rare pyrite

495-510 m: quartz sand, predominately medium grained with lower coarse, rare multicoloured chert, rare pyrite

510-525 m: quartz sand, predominately coarse and medium grained, rare multicoloured chert, rare pyrite but more than normal, one grain of feldspar

525-540 m: quartz sand, predominately coarse and medium grained, rare multicoloured chert, rare pyrite, rare very fine grained, light to medium brown siderite ?

540-555 m: quartz sand, predominately coarse and medium grained, rare multicoloured chert, rare pyrite, rare very fine grained, light to medium brown siderite, less than in 540 m sample

555-570 m: quartz sand, predominately medium grained, rare multicoloured chert, rare pyrite, rare very fine grained, light to medium brown siderite, much less than in 540 m sample

570-585 m: quartz sand, predominately coarse and medium grained, rare multicoloured chert, rare pyrite, rare very fine grained, light to medium brown siderite, even less than in 570 m sample

585-600 m: quartz sand, predominately coarse and medium grained, rare multicoloured chert, rare pyrite

600-615 m: quartz sand, predominately angular to sub-angular and coarse grained, rare multicoloured chert, very rare pyrite (two grains)

615-630 m: quartz sand, predominately angular to sub-angular and medium to coarse grained, rare multicoloured chert, very rare pyrite (one grain)

630-645 m: quartz sand, predominately coarse grained, rare multicoloured chert, very rare feldspar (one grain)

645-660 m: quartz sand, predominately sub-angular and medium to coarse grained, rare multicoloured chert, very rare pyrite

660-675 m: quartz sand, predominately angular to sub-angular and coarse grained, rare multicoloured chert

675-690 m: quartz sand, predominately angular to sub-angular and medium to coarse grained, rare multicoloured chert, rare pyrite

690-705 m: quartz sand, predominately sub-angular to sub-rounded and medium to coarse grained, rare multicoloured chert

705-720 m: quartz sand, predominately sub-angular to sub-rounded coarse grained

720-735 m: quartz sand, predominately sub-angular to sub-rounded and medium to coarse grained, rare multicoloured chert, rare, very fine grained, light brown siderite. very rare pyrite.

735-750 m: quartz sand, predominately sub-angular to sub-rounded and medium to coarse grained, rare multicoloured chert, rare, very fine grained, light brown siderite. (less than 735 sample) very rare pyrite.

750-765 m: quartz sand, predominately sub-angular to sub-rounded and coarse grained, rare multicoloured chert, very rare pyrite.

765-780 m: quartz sand, predominately sub-angular to sub-rounded and coarse grained, rare multicoloured chert, rare pyrite, rare siderite.

780-795 m: quartz sand, predominately sub-angular to sub-rounded and coarse to medium grained, rare multicoloured chert, rare pyrite, rare siderite.

795-810 m: quartz sand, predominately angular to sub-rounded and predominately coarse grained, rare multicoloured chert, rare pyrite, rare siderite but much less than in previous samples.

810-825 m: quartz sand, predominately angular to sub-rounded and predominately coarse grained, rare multicoloured chert, rare pyrite, rare coal

825-840 m: quartz sand, predominately angular to sub-rounded and predominately coarse grained, rare multicoloured chert, rare pyrite, rare coal

840-855 m: quartz sand, predominately angular to sub-rounded and predominately coarse grained, rare multicoloured chert, rare pyrite

855-870 m: quartz sand, predominately angular to sub-rounded and predominately coarse to medium grained, rare multicoloured chert

870-885 m: quartz sand, predominately angular to sub-rounded, moderately sorted, medium to very coarse grained, rare multicoloured chert, rare pyrite

885-900 m: quartz sand, predominately angular to sub-rounded, well sorted, very coarse grained, rare multicoloured chert, rare pyrite

900-915 m: quartz sand, angular to rounded, predominately, well sorted, very coarse grained, rare multicoloured chert, very rare pyrite

915-930 m: quartz sand, angular to rounded, predominately well sorted, very coarse grained, rare multicoloured chert, very rare pyrite, possibly one grain of limestone. grey with ooids.

930-945 m: quartz sand, angular to rounded. predominately, sub-angular and moderate to well sorted, medium grained, rare multicoloured chert, very rare pyrite.

945-960 m: quartz sand, angular to subrounded. predominately sub-angular, well sorted, rare multicoloured chert, very rare pyrite.

960-975 m: quartz sand, angular to subrounded. predominately sub-angular, well sorted, rare multicoloured chert, very rare pyrite

APPENDIX 3/C1:

Mud and geological report

Injector well – Horizontal lithology strip log

HORIZONTAL LITHOLOGY STRIP LOG WellSight Systems Inc.

Scale 1:240 (5"=100') Metric

Well Name:	DCEL 1I1 JOSLYN	I CREEK 3-33-95-12		
Location:	103/03-33-095-12	V4/0		
Licence Number:	0296169		Region:	Athabasca
Spud Date:	Nov. 26, 2003		Drilling Completed:	Dec. 1, 2003
Surface Coordinates:	LSD 10-33-095-12	W4M		-
	429.9 m South, 790	0.2 m West		
Bottom Hole	943.25 m South, 73	3.58 m West (Extrapo	lated)	
Coordinates:			-	
Ground Elevation (m):339.2	K.B. Elevation (m)	: 343.6	
Logged Interval (m):	374.0 To:969.0	Total Depth (m):	982.0	
Formation:	McMurray	• • • •		
Type of Drilling Fluid	:Polymer			
Printed by W	ellSight Log Viewe	r from WellSight Sys	tems Inc. 1-800-447-1	534 www.wellsight.con

OPERATOR

Company: Address: Deer Creek Energy Limited Bow Valley Square Two 2600, 205 Fifth Avenue SW Calgary, Alberta, T2P 2V7

GEOLOGIST

Name: Company: Address: Dane Bridge, M. Sc., P. Geol. and Esther Visser, B. Sc., GIT Dane A Bridge Consulting 16 Massey Place SW Calgary, Alberta, T2V 2G3 403-259-2826

Comments

The grain size distribution of the McMurray sands appears to be reliable even though very small amonts of sand were recovered from the shaker. Samples every 45 to 60 m from centrifuge starting at at 495 m indicated a similar size distribution but without any lower coarse or coarser sand. Surveys are MWD and not back survey afjusted.

Anhy	ا <mark>ه.م.و.وه.و</mark> Congl	ROCK TYPES	Ss
	Dol Gyp Igne Lmst	Salt Shale Shcol Shgy	Blank
	A	CCESSORIES	
MINERAL ∅ Anhy △ Arggrn □ Arg □ Arg □ Arg □ Bent □ Bit ③ Brecfrag □ Calc □ Carb ▲ Chtdk △ Chtlt □ Dol + Feldspar ● Ferrpel △ Glau ○ Gyp ■ Hvymin K Kaol	 Marl Minxl Nodule Phos Pyr Salt Salt Sandy Silt Silt Sulphur Tuff FOSSIL Algae Algae Amph Belm Belm Bioclst Brach Bryozoa Cephal 	▲ Coral ◎ Crin ● Echin ■ Fish ● Foram F Fossil ● Gastro ● Oolite ● Oolite ● Oolite ● Pelec □ Pellet ● Pisolite Ø Plant ■ Strom STRINGER Anhy ▲ Arg Bent ■ Coal	Dol Gyp Ls TTT Mrst Sltstrg Ssstrg TEXTURE BS Boundst C Chalky CX CryxIn B Earthy FX FinexIn S Grainst Lithogr MicroxIn MS Mudst PS Packst Wackest
POROSITY TYPE E Earthy ■ Fenest F Fracture ⊠ Inter ⊠ Moldic ■ Organic P Pinpoint	OT ✓ Vuggy SORTING ᢂ Well M Moderate P Poor ROUNDING ℝ Rounded └ Subrnd	HER SYMBOLS Image: Subang Image: Subang <t< td=""><td> None Core Dst EVENTS ℝft Sidewall </td></t<>	 None Core Dst EVENTS ℝft Sidewall

	i i i i	l i i i i	i i i i	i i	i i	i i	i i	i i	i i	i i i i	10	i i i i	i i i i	i i i i	i i i i	i i i i	i i
ve to 1P1:	-+-+-+-+-+-+		111 Horiz	zontal	Leg	375.0	0 to 9	982.() m		150	- + - + - + - + - + - + - - + - + - + -					
	-+-+-+-+			¦-⊦-⊦-	+ - + - 	-+-+	+-+-+ 100					- + - + - + - + - + - + - + - + - + - +				- + - + - + - + - + -	
Side			Commei	nce ar	liiin	g out					ROP (min/m)						
Radial Dist	tance		SNOE NO	V. 30,≱ ∣	2003	at 02	2:30				Gamma (API)				$= -\frac{1}{1} - \frac{1}{1} - \frac$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
╶╶╧╶┲╧┹┨					〒 - 〒 - 1 + - +	- - - -	┐ ─ ┐ ─ ┐ ╷										
					-		┝╾┿╾┧ न _{┺─┿──} ┧	 		┝╾┿╾┿╺┿╾┿ ┟╴╶╷╴ _{┲╵╴} ╼╘╴╼╞╸╸		┶╍┿╍┥┓╻					
<u></u>					: : -						0	1 : : 4 :					
36	5 37	70 37	75 3	80	38	35	39	0	3	95 4	00 4	405 4	410 4	15 4	20 42	25 4	430
ck = Slie	de Bla	nk = Rota	ate	380.35-3	884.35:	60 L					TVD (m) 89.2 Sub Sea (+254	407.72-40 4.4)	9.72: 180L		421.36-423.36:	170R	
		ME) 382.03 m									MD 4	09.36 m				
m		HS	5.50 m									HS 5.	62 m				
		RS	5 -0.75 m									RS -1	.09 m				
		DA		n									 5 72 m				
l7 m																	
		• • • • • • • • • • • • • • •				·			Р			· · · · · · · · · · · · · · · · · · ·	+++++++++++++++++++++++++++++++++++++++		P	· · · · · · · · · · ·	
=	•	<u>е</u> р. (•)	i.		. · . · . ·				• • • • • • •		P			P			P
and is pro ollowing s	bably samples.		375-39	0m: abu	undar	nt coal,	, rare		390-⊿ –coal	405m: very a (20%). rare -	bundant	405- coa	-420m: very a I (20%), rare	abundant	420-43 coal (2 multi-	35m: very a 20%), trace colored che	bunda ert, rar
			pyrite.			, .			multi mica	i-colored ch , rare pyrite.	ert, rare	mic	a, rare pyrite		mica,	rare pyrite.	
	in icp a	t 374.0 m															
						• . • . • . • . •			•.•.•.•.	<u> </u>	<u> </u>		• • <u>• </u>				· · · · · · · · · · · · · · · · · · ·
• • • • • • • • • •					· · · ·	· · · · · · · · ·											· · · · ·
		A	Accessori	es:				Mud	in hot	h 1P1 and 1	 1 interprete	d from dam	ma				
		►A	Abundant	: >12%	6			maa									
ed at the	e	C	Common:	9-12%	o												
e		l N	/linor: 3-9	%													
		Т	race: 1-3	%											Grain s	size histogr	am dis
		F	Rare: <1%))							104.2 (+239.4)				bottom	to very coa	arse g
	-+-+-+-+				+ - + - +	- + - + -						- + - + - + - + -				· - + - + - + - + - + -	
		_ J_ J			L _ L _ 				· _//								
				1 1 1	1 1	1 1	ra	1 1	<u> </u>		r,	а		Rar			
							MM				M	1					

gs.

R Μ

bottom to very coarse grained at the top

М

104.2 (+239.4)

М

М

اما اما

А

n

	Sub Sea (+254	1.4)									Sub Sea (+254.	.4)		1
	653.0-655	.0: 140L												
	MD HS 9 RS - RAD	654.92 m 94.75 m -1.51 m DIAL 5.76 m-					_MD 682.11 HS 5.18 m RS -1.53 m RADIAL 5.4	m 0 m				MD 7 HS 4.9 RS -1 RADI	09.42 m 98 m 06 m AL 5.09 m	
645-660 m: trace chert, coal and muscovite, increase in medium grained sand, trace gray to black siltstone, probably Clearwater cavings and minor cement.			660-675 m: trace chert and coal, increase in medium grained sand, rare gray to black siltstone, probably Clearwater cavings.			675-690 m: very rare chert, rare gray to black siltstone, probably Clearwater cavings, trace cement from casing.			690-705 m: very rare chert and coal, rare black siltstone, probably Clearwater cavings, trace cement from casing.			1 705-720 m: very ra and coal, rare blac probably Clearwa trace cement from		
<u></u>	<u></u>	<u></u>	<u></u>						<u></u>		<u> </u>	<u></u>		• <u>• •</u>
N	 lud in both ′	1P1 and 1I1 i	interpreted f	irom gamma										
			1	1	1				1				1	

	104.2 (+239.4)			San pro 435	nple at 690 n duce a full v m.	n is first to ial since		104.2 (+239.4)	Grain botto	size histogra n to very coa	n r:
											Τ.
-+-+-+		 		 		+-+-+-+	 		+ - + - +	- +	-1
-+-+-+-+			╊╶╴┾┓┪╼╍┧╼╍┧	!!!!							
							!!				
											1
			F	 			 				Ξ.

n a

М

a n

Ы

r a

Ы

La1

+ - + - + + - + - +			10, , , , , , , , , , , , , , , , , , ,										10 [']	
			ROP (min/m) Gamma (API)										ROP (min/m) Gamma (API)	
79	90 79	95 8	<u>00 80</u>	05 8 ⁻	10 8	15 82	20 82	25 8	<u>330 8</u>	35 8 [,]	40 8	45 8	50 8	55
	MD 79 HS 4.5	94.88 m 50 m	TVD (m) 89.2 Sub Sea (+254	.4) 806.88-809.8	MD 812.61 RS -0.69 m	m	824	.61-827.61: 18	MD 830.79 m HS 4.89 m RS -0.87 m			MD 84 HS 5.4 RS -0 (TVD (m) 89.2 Sub Sea (+25 851.87-853 8.73 m 8 m 8 m	4.4) 3.87: 170L
	RS -0. RADI <i>A</i>	62 m AL 4.54 m			-HS 4.68 m- RADIAL 4.7	73 m		_	RADIAL 4.97	m 		RADIA	L 5.51 m	
• –	-	P			₽ .P			■ P				P.		
	Р		••••	e in the second se		• . • . • . • . • . • . • . •	·····		• • • • • • • • • • • • • • • •			·····	• .• .• .• .• .• .• .•	
nor coa pyrite	al, very . very rare [—]	795-810 ı pyrite. ra	m: minor coa re chert (+246.9)	al, rare	810-825 ı pyrite. ra	n: trace coa re chert	I, rare	825-840 pyrite. r	m: rare coal, are chert.	rare	840-855 ı pyrite. ra	n: rare coal, re chert.	very rare 96.7 (+246.9)	855-4 coal,
								<u></u>						
													7:	35-870 p
			104.2 (+239.4)	Grain size I bottom to v	histogram d very coarse	isplays very grained at th	fine grained ne top	l at the					Cd Cl 104.2 (+239.4)	barse, si ean, qua
	<u> </u>				•									

		111 Relative to 1P1:	
			ID at 11:45 Dec. 1, 2003
	ROP (min/m)	RS Right Side	Total time from drilling out
	Gamma (API)		
			ICP Shoe to 1D: 33:15
			'hours. ' ' ' ' ' ' ' ' ' ' ' ' ' '
 ╵╍╍╍╴┽╴┼╴┼╴┠╸╌╴┾╧╶┤╴╶╎╴╶┨╴╶╎╴╴╎╴╴╎		╶┲╶╕╴╕╴╕╴╕╴┫╌╔┲╴╓┹╌╔╴╌╔┙╍╅╴┶┍╴╴┍╴╴┝╴╴┾╲╂┟╶╂┼╴┼╴┼╴┤╴┨╴┯╼╝╕╴╡┟╶┫╴╵ ╴╴╴╴╴╴╴╴┨╘╻┛╴╵╴╴╴╴┝┛╍╅╴┶┍╴╴┍╴╴┝╴╴┼╲┨┢┛╵╴╴╴╷╴┨╴┯╼╝╕╴╡┟╶┨╴╵	┫╤┹╫╤╼╷╴╶╷╴╶┝╴╴┝╶┝╶┝╶┝╶┼╴╴┼╴┼╴┽╴┽╴┥╴┥╴┥╴┥╴┥╴┤╴╴┤╴
╵└┛┥┥┙┙┙╴		• ; ; ;] = ; ; ;] ; ; ;] • ; • ; • ; • ; •] • ; •]	

MD 930.70 m MD 942.7944.7m: 180 TUD (m) 892. gits.5956.5m: sol. MD 966.61 m MD 930.70 m MD 948.86 m MD 966.61 m Inclination 30.5 Deg MS 0.27 m RS 0.34 m RS 0.07 m SS 249.7 m ADIAL 5.38 m RADIAL 5.14 m RADIAL 5.23 m VS 946.10 m P P P P P 930-945 m: predominately coarse grained as at 930 m, very rare chert and pyrite 945-960 m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 945-960 m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 910-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 910-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 910-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 910-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 910-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 910-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 910-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 910-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 910-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 910-975m:	93	30 9	<u>)35 9</u>	40 94	45 9	50 9	55 9	60 9	65 9 [.]	70 9	75 9	80 9	85 99	90 99	95 10
MD 930.70 m MD 948.86 m MD 966.61 m MD 966.61 m Inclination 90.5 Deg 15 5.37 m HS 5.13 m HS 5.13 m HS 5.23 m TVD 93.87 m 15 0.27 m RS 0.34 m RS 0.07 m SS 249.7 m ADJAL 5.38 m RADIAL 5.14 m RADIAL 5.23 m VS 946.10 m 10 P P P P P 111 TD 982.0 m SS 249.7 m VS 946.10 m 930-945 m: predominately coarse grained as at 930 m, very rare chert and pyrite 945-960 m: predominately coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 111 TD 981.0 m 104 10 10 10 10 10 10 10 10 10 10 10 10 10)			942.7-944.	.7 m: 180	TVD (m) 89.2 Sub Sea (+254	951.5-956.5 m I.4)	: 90L				Extrapolate	ed Survey:		
S 5.37 m HID 543 m HS 5.13 m HS 5.23 m Inclination 90.5 Deg RS 0.27 m RS 0.34 m RS 0.07 m RS 2.00 m S 2.249.7 m RADIAL 5.38 m RADIAL 5.14 m RADIAL5.22 m VS 946.10 m P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P P Inclination 90.5 Deg TVD 93.87 m S 249.7 m VS 946.10 m Inclination 90.5 Deg P P P P P Inclination 90.5 Deg P P P P P P Inclination 90.5 Deg P	NĽ	930.70 m_				96 m			MD 966 61	 m		MD 982.00	m		
S 0.27 m RS 0.34 m RS 0.07 m SS 249.7 m KADIAL 5.18 m RADIAL 5.14 m RADIAL 5.23 m VS 946.10 m P P P P P g 930-945 m: predominately coarse grained as at 930 m, very rare chert and pyrite 945-960 m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite Image: State of the state of	- IS	5.37 m				0.00 [[]			HS 5 23 m			Inclination	90.5 Deg		
ADIAL 5.38 m RADIAL 5.14 m RADIAL 5.23 m VS 946.10 m 930-945 m: predominately coarse grained as at 930 m, very rare chert and pyrite 945-960 m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower Image: state st	RS	0.27 m			H5 5.13	s m			PS _0 07 m			TVD 93.87	m I		
ADJAL 5.33 m VS 946.10 m P </td <td></td> <td></td> <td> n</td> <td></td> <td></td> <td>• m</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>⁺SS 249.7 m</td> <td>ן</td> <td></td> <td></td>			 n			• m				0		⁺ SS 249.7 m	ן		
930-945 m: predominately coarse grained as at 930 m, very rare chert and pyrite 945-960 m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower lower 960-975m: predominately lower lower 960-975m: predominately lower displays very fine grained at the top 960-975m: predominately lower 960-975m: predominately lower 960-975m: predominately lower	XA ا	DIAL 3.30 I			RADIAL	. 5.14 m 			RADIAL5.2	3 m		VS 946.10	m I		
P P	· · ·	•••		<u> </u>		· · · · · · · · ·		· · · · · · · · · · ·)	
e 930-945 m: predominately coarse grained as at 930 m, very rare chert and pyrite 945-960 m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium graine			•	P	P		P	•••••• P .•		P		11	1 ID 982.0 	Jm	
e 930-945 m: predominately coarse grained as at 930 m, very rare chert and pyrite 945-960 m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 960-975m: predominately lower 104.2 (r239.4)	_														
945-960 m: predominately were coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower to are coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower to are coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower to are coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower to are coarse and upper medium grained, very rare chert and pyrite 990-975m: predominately lower to are coarse and upper medium gr		930-945	 m: predomir	hately											
rare chert and pyrite grained, very rare chert and pyrite coarse and upper medium grained, very rare chert and pyrite grained, very rare chert and pyrite grained, very rare chert and pyrite 1P1 TD 981.0 m image: im	e	coarse g	rained as at	930 m, very	945-960 r	n: predomin	ately per medium	960-975m	n: predomina	ately lower					
pyrite pyrite <td></td> <td>rare che</td> <td>rt and pyrite</td> <td></td> <td>grained,</td> <td>very rare ch</td> <td>ert and</td> <td>coarse al grained.</td> <td>nd upper me verv rare ch</td> <td>ert and</td> <td></td> <td></td> <td></td> <td></td> <td></td>		rare che	rt and pyrite		grained,	very rare ch	ert and	coarse al grained.	nd upper me verv rare ch	ert and					
Image: service of the grained at the top Image: service of the top					pyrite			pyrite							
Image: second at the top Image: second a															
a a	÷			· · · · · · · · · ·					<u></u>	<u></u>	· · · · · · · · · · · · ·		TD 981.0	m	
displays very fine grained at the top and															
a R															
displays very fine grained at he top have been been been been been been been be	_														
displays very fine grained at the top have been been been been been been been be															
displays very fine grained at he top have been at the top have been at t															
arse grained at the top 104.2 (+239.4) 104.2 (+239.4) 104.2 (+239.4) arrow a	di	splays very	/ fine graine	dat											
	oar	se grained	at the top			104.2 (+239.4)									
		+-+-+-	+-+			+-+-+-+-								- + - + - +	
a Ra ar Rr		$\begin{array}{c} - + - + - + - + - + - + - + - + - + - $												- + - + - + - + - + - + - + - + - + - +	
	а		•	R	3	•	a	2	1	RI	·	•	1	1	

APPENDIX 3/C2:

Mud and geological report

Producer well – Horizontal lithology strip log

HORIZONTAL LITHOLOGY STRIP LOG WellSight Systems Inc.

Scale 1:240 (5"=100') Metric

Well Name:	DCEL 1P1 JOSLYN	CREEK 3-33-95-12		
Location:	102/03-33-095-12W4	I/O		
Licence Number:	0295554		Region:	Athabasca
Spud Date:	Nov. 19, 2003		Drilling Completed:	Nov. 24, 2003
Surface Coordinates:	LSD 10-33-095-12 W	'4M		
	433.0m South, 805.2	m West		
Bottom Hole	943.26 m South, 59.0	02 m West		
Coordinates:				
Ground Elevation (m):339.2 m	K.B. Elevation (m)	: 343.6	
Logged Interval (m):		Total Depth (m):	981.0 m	
Formation:	McMurray			
Type of Drilling Fluid	:Polymer			
Printed by W	ellSight Log Viewer f	rom WellSight Sys	tems Inc. 1-800-447-1	534 www.wellsight.com

OPERATOR

Company: Address: Deer Creek Energy Ltd. Bow Valley Square Two 2600, 205 Fifth Avenue SW Calgary, Alberta, T2P 2V7

GEOLOGIST

Name: Company: Address:

Dane Bridge, M.Sc., P. Geol. and Esther Visser, B.Sc., GIT Dane A Bridge Consulting and Deer Creek Energy 16 Massey Place SW Calgary, Alberta, T2V 2G3 403-259-2826

Comments

Production Liner: 44 joints of 177.8 mm slotted liner with 3 blank joints at the top, landed at 974.77 m MD, top at 355.3 m MD.

Anhy	ا <mark>ه.م.و.وه.و</mark> Congl	ROCK TYPES	Ss
	Dol Gyp Igne Lmst	Salt Shale Shcol Shgy	Blank
	A	CCESSORIES	
MINERAL ∅ Anhy △ Arggrn □ Arg □ Arg □ Arg □ Bent □ Bit ③ Brecfrag □ Calc □ Carb ■ Chtdk △ Chtlt □ Dol + Feldspar ● Ferrpel □ Glau □ Gyp ■ Hvymin ₭ Kaol	 Marl Minxl Nodule Phos Pyr Salt Salt Sandy Silt Silt Sulphur Tuff FOSSIL Algae Algae Amph Belm Belm Bioclst Brach Bryozoa Cephal 	▲ Coral ○ Crin ○ Echin ♥ Fish ♥ Foram ▶ Foram ▶ Foram ♥ Foram ♥ Foram ♥ Oolite ♥ Pelec Ø Pellet ● Pisolite Ø Plant ■ Strom STRINGER ▲Anhy ▲Arg ■ Bent ■ Coal	Dol Gyp Ls TTT Mrst Sltstrg Ssstrg TEXTURE BS Boundst C Chalky CX CryxIn B Earthy FX FinexIn S Grainst Lithogr MicroxIn MS Mudst PS Packst Wackest
POROSITY TYPE E Earthy ■ Fenest F Fracture ⊠ Inter ⊠ Moldic ■ Organic P Pinpoint	OT ✓ Vuggy SORTING ᢂ Well M Moderate P Poor ROUNDING ℝ Rounded └ Subrnd	HER SYMBOLS Image: Subang Image: Subang <t< td=""><td> None Core Dst EVENTS ℝft Sidewall </td></t<>	 None Core Dst EVENTS ℝft Sidewall

Data Curves ROP (min/m) Gamma (API)	10 150 ROP (min/m) Gamma (API)										10 15 15 15 15 17 17 17 17 17 17 17 17 17 17	
Cilida/Datata	0 + - + - + - + - + - + - + - + - + - +				+-+-+-+-						0	
Measured Denth	0 30	15 3 [,]	10 31	15 32	20 3	25 3	30 3	35 3	40 3	45 31	50 34	5 360
	TVD (m) 92.6 Sub Sea (+251	.0) DCEL 1P 72-32-05-1 KB: 343.0	1 JOSLYN 6 m	N CREEK							TVD (m) 92.6 Sub Sea (+251	.0)
Well Pere		1P1 Inter 304.51 m MDM and estimate	mediate H MD to 35 d 374.50 m d.	Hole, 5.50 m— n MD								1P1 Hz F m SS
Cross Section											· · · · · · · · · · · · · · ·	
		·.·.·		-		Sand	with interbe	dded mud te) 333 m		400.4	
Lithology Geological Descriptions	(+243.5)	The verti along an	ical section azimuth	on was ca of 180 deg	lculated grees.	Sanu			Sample sandste	e descripti one, bitum	ons: All s nen satura	amples are ated with in
		Grain botto	size histo m to very	ogram dis coarse gr	plays ve rained at	ry fine gra the top	ained at t	he	excelle specifie size his	nt intergra ed. Sorting stograms.	anular poi g and rou	rosity unles nding are p
		Grain coars	sizes are se (500-10	e very coa 00 micror	rse (>10 ns), medi	00 micron um (250-5	s), i00				Acce Abun	ssories: idant: >12% mon: 9-12%
		micro micro The g	ons), fine (ons) grain size	(125-250 r histogran	nicrons) n is plott	, very fine ed at the .	(62-125				Mino Trace	r: 3-9% e: 1-3%
		samp	ple point a	and projec	cts up ho	le					Rare	: <1%
1/16 mm	107.6 (+236.0)			320) m			340	 m 		107.6 (+236.0)	360 m
1/8 mm Grain Size 1/4 mm 1/2 mm 1 mm												
Rounding Sorting				м				i.i	i			ы

ΜW

n/m)													10 150 150 ROP (min/m) Gamma (API)	10 150 150 150 10 150 10 150 10 150 10 10 150 10 150 10 150 10 150 10 150 10 10 150 10 10 10 10 10 10 10 10 10 1	10 150 160 150 170 170 170 170 170 170 170 17	10 150 10 150 10 150 10 150 10 150 10 10 150 10 10 10 10 10 10 10 10 10 1
0 1. 	9 <u>5 5'</u> 0] IS	10	515	520) 5	25 528.2-	530 -529.2 m: 1	<u>5</u> : 150R	3	<u>,5 5</u> 2	1 <u>5 540 5</u> 541.8-542.8 m	<u>5 540 545 5</u> 541.8-542.8 m: 150R	<u>5 540 545 550 55</u> 541.8-542.8 m: 150R TVD (m) 92.6 Sub Sea (+251.	<u>5 540 545 550 555 56</u> 541.8-542.8 m: 150R TVD (m) 92.6 Sub Sea (+251.0)	5 540 545 550 555 560 50 541.8-542.8 m: 150R TVD (m) 92.6 Sub Sea (+251.0) Sub Sea	5 540 545 550 555 560 565 57 541.8-542.8 m: 150R TVD (m) 92.6 Sub Sea (+251.0) 569.0-5 569.0-5
	510.20 89.3 98.6 TVD m SS 474.89	0 m MD 2 deg 84 m 244.8 9 m VS _			523.07 m 89.9 deg 98.95 m 244.6 n 488. _VS	MD g TVD n SS 53 m				537.40 m M 89.4 deg 99.03 m TVD 244.6 m SS	537.40 m MD 89.4 deg 99.03 m TVD 244.6 m SS	537.40 m MD 55 89.4 deg 89 99.03 m 99 TVD 244.6 m SS 5	537.40 m MD 551.03 m MD 89.4 deg 89.0 deg 99.03 m 99.22 m TVD TVD 244.6 244.4 m SS m SS 515.67 m VS	537.40 m MD 551.03 m MD 89.4 deg 89.0 deg 99.03 m 99.22 m TVD TVD 244.6 m SS 515.67 m VS	537.40 m MD 551.03 m MD 89.4 deg 89.0 deg 99.03 m 99.22 m TVD TVD 244.6 SS 515.67 m VS	537.40 m MD 551.03 m MD 89.4 deg 89.0 deg 99.03 m 99.22 m TVD TVD 244.6 SS 515.67 m VS 244.2 m SS
:::: =:::	P					P -		7	-5 · · ·	02.05 m V	02.05 m VS	02.05 m VS	02.05 m VS	02.05 m VS	02.05 m VS 52	02.05 m VS 529.35 m VS VS
• •			— P		 1	·····			· · · ·	-		÷.	<u> </u>	<u> </u>		P
·.·.·	•••••••••••••••••••••••••••••••••••••••	•.•.•.•.•.•.	•.•.	•.•.•.•.•			<u>∠ : : : : :</u>		Progr			<u></u>	<u> 100.1 P 100.1 P (+243.5) (+243.5) (+24</u>	$\frac{100.1}{100.1}$	$\frac{100.1}{(+243.5)}$	
M	lud interpre	ted from	gamma						Progno	JSI			SIS at 244.15 m 55	Sis at 244.15 m 55	Sis at 244.15 m 55	Sis at 244.15 m 55
dua tely th lo	rtz sand, medium wer		510-525 m predomina and mediu	n: quar ately c um gra	tz sand, coarse ained, rare		525-540 predomi medium	m: quar inately	tz sand, coarse and t rare	-	540- prec	540-555 m: quar predominately medium grained	540-555 m: quartz sand, predominately coarse and medium grained, rare	540-555 m: quartz sand, 555- predominately coarse and predominately coarse and grained, rare	540-555 m: quartz sand, predominately coarse and medium grained, rare grained, rare	540-555 m: quartz sand, predominately coarse and medium grained, rare grained, rare
re Ired c	chert, rare		multicolou pyrite but normal, or feldspar	ured cl more t ne grai	hert, rare than in of		multicol pyrite, r grained brown s	loured c are very , light to siderite 3	hert, rare fine medium		muli pyri grai brov	multicoloured c pyrite, rare very grained, light to brown siderite,	multicoloured chert, rare pyrite, rare very fine grained, light to medium brown siderite, less than in	multicoloured chert, rare mul pyrite, rare very fine pyri grained, light to medium grai brown siderite, less than in brow	multicoloured chert, rare multicoloured c pyrite, rare very fine pyrite, rare very grained, light to medium grained, light to medium brown siderite, less than in brown siderite,	multicoloured chert, rare multicoloured chert, rare pyrite, rare very fine pyrite, rare very fine grained, light to medium grained, light to medium brown siderite, less than in brown siderite, much less
			F				lote: P	are Pr	ohable		540 Note	540 m sample	540 m sample	540 m sample than	540 m sample than in 540 m s	540 m sample than in 540 m sample
						S	biderite			-	Side	Siderite	Siderite	Siderite	Siderite	Siderite Siderite
													107.6 (+236.0)	107.6 (+236.0)	107.6 (+236.0)	107.6 (+236.0)
	$- \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1}$					$\begin{array}{c} - + - + - + \\ - + - + - + \\ + - + -$										
	R A		·	•	A R		•		AR	_			A R	A R	A R	A R AR

57	⁷ 5 5	580 <u>5</u>	585 5	90 5	95 6	00 6	605 6 [°]	10 6	15 6	620 6	625 6	630 63	35 640 64
				596	6.3-597.8 m: 150	TVD (m) 92.6 3ub Sea (+25	609.9 1.0)	-610.9 m: 150L					637.3-639.3 m: 90L
	_578.31 m 90.2 deg 99.41 m T 244.2 m S – 542.94 m	MD SS n VS		591.96 m l 90.8 deg 99.29 m T 244.3 m S 556.59 l	MD VD S m	60 89 99 2	05.65 m MD 9.5 deg - 9.26 m TVD 244.3 m SS 57 <u>0.28 m</u> S		619.31 88.6 c 99.48 244. 583 VS	I m MD deg 3 m TVD 1 m SS .93 m		632.94 m MI 89.2 deg 99.7 m TVD 243.86 m SS 597.56	D D D D D D D D D D D D D D
				VS								m VS	v :
	<u>х</u> Р		P		P	100 1			•		· · · · · · · · · ·	, a <u>essa</u>	
			Mud interpro	eted from ga	mma	(+243.5)	· · · · · · · · · · · · · · · · · · ·		····				
)-5 edc dii	85 m: quar ominately oum grained	tz sand, coarse and I. rare	585-0 pred	⊨ 600 m: quart ominately c ium grained	z sand, oarse and rare	60 p	⊣ 00-615 m: qu redominately ub-angular a	artz sand, angular to	6' p	⊣ 15-630 m: qu redominately ub-angular a	iartz sand, y angular to nd medium	6 p	30-645 m: quartz sand, redominately coarse
lti ite in	coloured cl e, rare very ed, light to	hert, rare fine medium	mult	icoloured ch e	ert, rare	g m r	rained, rare nulticoloured are pyrite (tw	chert, very o grains)	to m ra	o coarse grai nulticolourec are pyrite (or	ned, rare l chert, very ne grain)	n ve g	nulticoloured chert, ery rare feldspar (one rain)
n i	n siderite, o in 570 m sa	even less — ample											
_			Grain to ver	 size histogr y coarse gra	am displays and at the t	very fine g	rained at the	bottom					Grain size histogra to very coarse grai
						107.6 (+236.0)							
		AR		1	R A	N N	I `	r A			Rr	A	R ra

А

Ы

R A

М

R ra. W

М

A R

M

	10; ; ; ; ; 150 ⁻										10, , , , , , 150		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ROP (min/m) Gamma (API)										ROP (min/m) Gamma (API)		
· · · · · · · · · · · · · · · · · · ·									┥╴╷╴╷╴╷ ┝╾┪ <u>╴</u> ┿┷┪╲┿				
	0										0		
5 6	50 <u>6</u>	55 6	60	<u>665 67</u>	70 67	75 68	<u>80 6</u>	85 69	<u>90 6</u>	<u>95 7</u>	<u>700 70</u>	<u>5 710</u>	715
6	Sub Sea (+25 50.9-651.9 m: 8	 30L	664.	5-666.0 m: 20L		678.2-680.2 45L	m:		691.8-693.8 m	: 90L	TVD (m) 92.6 Sub Sea (+251.0 700.8-704.8 m:)) 709.6-711.6 n 20L	n:
		660.2	m MD		-673 85 m I		-682.81 m M	D					
6.56 m MD 38.1 deg)0.07 m TVI		88.5 100 TVD	5 deg .47 m 243.1		90.1 deg 100.64 m 2423.0 m	TVD n SS	91.0 deg 100.55 m TVD 243.1	69 ² 91	1.57 m MD .2 deg 0.38 m	700.3 89.7 100.3	88 m MD 7 deg 31 m TVD	709.03 m MD 90.7deg 100.35 m TVI	<u>,</u>
43.5 m SS 611.17 m S		624.8	0 m VS		638.4 VS	5 m 	m SS 647.41 m V	TV S m S 650	D 243.2 SS 6.16 m VS	243. 66 VS	54.96 m	243.3 m 55 673.98 m VS	ו ו
·····	•.•.•			1P1 Hz	2 Prognos	is at 244	.15 m SS⁻						
•	100.1 (+243.5)		<u></u>		-/	— Р					100.1		
P		P		P		·==····=							
	 645-660 m: sand, predc sub-angula	quartz ominately r and		Mud interp	preted from g	gamma M	ud interprete	ed from gam	ima	690-705 m: sand, pred sub-angula	quartz ominately ar to	705-720 predon sub-an) m: quar ninately gular to
	medium to grained, rar multicolour	coarse e ed chert,		660-675 m: 6 sand, predo angular to	quartz ominately		675-690 m: sand, pred angular to	quartz ominately		sub-rounde medium to grained, ra	ed and coarse re red chert	sub-roo grained	unded coa
n displays led at the to	very fine gr	ained at the	bottom	sub-angular coarse grain multicolour	r and ned, rare ed chert		sub-angula medium to grained, ra multicolou rare pyrite	ar and coarse re red chert,		Grain size	histogram dis very coarse g	splays very fine g grained at the top	grained an
	107.6 (+236.0)										107.6 (+236.0)		
$\begin{array}{c} -+-+-+-+$													
1		<u>Ara</u> ы			A a W	r		 			Aarr W		

							10, 150							
72	0 72	25 7	30 7	35 74	0 74	45 7	50 75	57	60 76	65 7	70 775	780	78	5
718.4-719.9 r	m: 20L						Sub Sea (+251.	0)	764.1	-766.1 m: 80R		782.1-7	84.1 m: 8	30R
719.03 n	n MD	728.5 m M	/iD	737.34 m ME	746	6.16 m MD -	755.24	m MD —	764.08 m 90.9 dea	MD	773.09 m MD	781.97 91.8 d	m MD eg	
90.0 de	g	100.14 n	n	99.99 m	91 99	1.0 deg 9.84 m TVD	99.69	m TVD	99.54 m	TVD	91.0 deg 99.39 m TVD	99.17 244_4	m TVD m SS)
100.29 TVD 24	m 42.7	_TVD 243	3.5 m	TVD 243.6 m SS	2	43.8 m SS _	243.9	0 m SS 64 m	244.1 m 728.45	SS m VS	245.2 m SS	74	6.30 m	I
m SS 683 55 n	n VS	692.99 m	vs	701.80 m VS	vs	/10.59 m	VS				VS	VS		
	110						••••••						· · · · · · · · · · · · · · · · · · ·	<u></u>
· · · · · · · · · · · · · ·		·····	•		· · · · · · · · · · · · · · · · · · ·			······································		• • • • • • • • • • • • • •		•••		
				P	· · · · · · · · · · · · · · · · · · ·		100.1	· · · · · · · · · ·		P	<u> </u>		P	<u></u>
		P	, Z				(+2+0.0)						1P1 SS	Hz
tz sand,	720-735 predom	m: quartz s inately sub	sand, o-angular to	735-75 predo to sub	50 m: quartz minately su p-rounded ar	sand, Ib-angular Id		750-765 r sand, pre	n: quartz edominately	-	765-780 m: quartz sa predominately	and,	780-7 predo	'95 m omina b-rou
arse	coarse multico very fin	grained, rar loured cher e grained, l	re rt, rare, ight brown	mediu rare n rare, v	m to coarse nulticoloured ery fine gra	e grained, d chert, ined, light		sub-roun coarse gr multicolo	ded and rained, rare oured chert,	 : 	sub-rounded and co grained, rare multicoloured chert,	arse	to me multi pyrite	ediun colo e, rar
t the	siderite	. very rare p	byrite.	735 sa	imple) very	rare pyrite.		very rare	e pyrite.		rare pyrite, rare side	rite.		
	Note: Sideri	Rare Pro te	bable	Note: F Siderit	Rare Prob	able	107.6 (+236.0)			Note Side	: Rare Probable rite	•		

790 795 800 805 810 815 820 825 830 835 840 845 850 855 791.17786.m TVD (192.6) 809.3610.8m : 180 818.4319.4m 827.4300.4m: 801.4339.4m: 805.843.8m TVD (192.6) 855 801. 815.843.8m TVD (192.6) 855 801. 801.4339.4m: 801.4339				10 150 ROP (mih/m) Gamma (API)										10 150 	
790 795 800 805 810 815 820 825 830 845 855 857 791.7986.m: Sub Sea (+251.0) 803.340.8.m: 160 818.4413.4.m. 901. 863.4433.8.m. 801.3340.m. 863.4433.8.m. 801.3340.m. 801.433.8.m. 801.443.8.m. 801.443.8.m. 801.443.8.m. 801.443.8.m. 801.453.8.m. 801.453.8.m. 801.453.8.m. 801.453.8.m. 801.453.8.m. 801.453.8.m. 801.450.8.m. 801.450.8.m. 801.450.8.m. 801.450.8.m. 801.425.8.m. 801.450.8.m.		┼╶╶┥╴┥╴┥╴┥╴ ╁╴┢╍┲┱╼╋╴╼╡╸	· -iiii		+ - + - + - + - + - + - + - + - + -	┼╶┼╴┽╴┥╴ <mark>┥╴</mark> ╃ ╴╄╾┓╶╷╴╷ ╴								┛ _┙ ┙	
790 795 800 805 810 815 820 825 830 835 840 845 850 855 791.39 m MD Sub See (4251.0) Sub See (4251.0				0										0	
1911/786.m. Sub Sea (x251.0) 2013-391.0 m. 180 2014-493.0 m. 180 2014-493.0 m. 2014 2014-493.0 m. 2014-410.0 m. 2014-4	790	795	80	0 80	5 8	10 8	15 82	<u>20 8</u> 2	<u>25 8:</u>	30 83	85 84	0 845	8	50 8	55
791.39 m MD 800.43 m MD 809.36 m MD 818.82 m MD 827.89 m MD 837.29 m MD 846.17 m MD 855.16 m M 90.8 deg 90.6 deg 90.4 deg 90.0 deg 89.3 deg 89.1 deg 88.0 deg 89.3 deg 90.8 deg 98.76 m TVD 244.7 m SS TVD 244.8 m SS 244.4 m SS 244.2 m S 801.59 m 810.46 m 819.46 m 810.46 m <td></td> <td>791.1-798.61 150R</td> <td>m:</td> <td>Sub Sea (+251.</td> <td>0) 809.3-8[°]</td> <td>10.8 m: 180</td> <td>818.4-819.4 180</td> <td>m:</td> <td>827.4-830.4 90L</td> <td>m:</td> <td>90L</td> <td>845.3- 90L</td> <td>-848.3 m:</td> <td>Sub Sea (+251</td> <td>.0_{20L}</td>		791.1-798.61 150R	m:	Sub Sea (+251.	0) 809.3-8 [°]	10.8 m: 180	818.4-819.4 180	m:	827.4-830.4 90L	m:	90L	845.3- 90L	-848.3 m:	Sub Sea (+251	.0 _{20L}
Prognosis at 244.15 m (*243.5) Prognosis at 244.15 m (*243.5) Mud interpreted from gamma : quartz sand, predominately angular to sub-rounded and predominately angular to sub-rounded and grained, rare grained, rare grained, rare multicoloured chert, rare pyrite, rare siderite but much less than in previous samples. Grain size histogram displays very fine grained at the bottom to very coarse grained at the top (*236.0) A F	791.39 m 90.8 deg 98.96 m 244.62 m 755.7 VS	MD J TVD SS 70 m	800.4 90.5 98.80 244. 70 VS	3 m MD deg 6 m TVD 7 m SS 64.73 m	809.36 90.4 98.79 TVD m SS 773.66	5 m MD deg 9 m 244.8 5 m VS	818.82 90.0 c 98.75 244.8 783 VS	m MD eg m TVD m SS 12 m	827.89 m l 89.3 deg 98.81 m 244.8 m 792.19 VS	MD FVD SS m	837.29 m MI – 89.1 deg 98.94 m TV 244.7 m SS 801.59 m VS	D 846.1 	7 m MD deg 7 m TVD 4 m SS 10.46 m _	855.16 88.9 d 99.14 244.2 81 VS	m MD leg m TVD m SS 9.44 m
Prognosis at 244.15 m 100.1 100.1 equartz sand, tely sub-angular inded and coarse sub-rounded and grained, rare multicoloured chert, rare grained, rare multicoloured chert, rare grained, rare multicoloured chert, rare pyrite, rare coal 810-825 m: quartz sand, predominately angular to sub-rounded and sub	·····			≠		······································		•		P.					
Prognosis at 244.15 m (+243.5) Mud interpreted from gamma 825-840 m: quartz sand, predominately angular to sub-rounded and sub-rou	<u> </u>	P/	• . • . • . • . •	100.1	···. · · ···				• • • • • • • • • • •	·····			<u></u>	100.1	<u></u>
: quartz sand, ately sub-angular inded and coarse or grained, rare inded and coarse e grained, rare multicoloured chert, rare pyrite, rare difference in predominately coarse grained, rare multicoloured chert, rare pyrite, rare in previous samples. 810-825 m: quartz sand, predominately angular to sub-rounded and predominately angular to sub-rounded and coarse grained, rare multicoloured chert, rare pyrite, rare siderite. 840-855 m: quartz sand, predominately angular to sub-rounded and predominately coarse grained, rare multicoloured chert, rare pyrite, rare in previous samples. 840-855 m: quartz sand, predominately angular to sub-rounded and predominately coarse grained, rare multicoloured chert, rare pyrite, rare coal 840-855 m: quartz sand, predominately angular to sub-rounded and sub-rounded and predominately coarse grained, rare multicoloured chert, rare pyrite, rare coal Siderite but much less than in previous samples. Grain size histogram displays very fine grained at the bottom to very coarse grained at the top 977.6 (+236.0) 107.6 (+236.0) 107.6 (+236.0) 107.6 (+236.0) 107.6 (+236.0) 107.6 (+236.0) 107.6 (+236.0)	Prognos	is at 244	.15 m	(+243.5)	Mud inter	preted from	gamma							(+243.5)	Μι
a grained, rare ured chert, rare grained, rare multicoloured chert, rare pyrite, rare coal predominately coarse grained, rare multicoloured chert, rare multicoloured chert, rare pyrite, rare coal predominately coarse grained, rare multicoloured chert, rare pyrite siderite but much less than in previous samples.	: quartz sar ately sub-a inded and c	nd, ngular coarse	795-8 predo sub-re	10 m: quartz minately an ounded and	sand, ngular to	810 presut	- -825 m: quar dominately p-rounded an	tz sand, angular to d	82 pr to	25-840 m: qu edominately sub-rounde	artz sand, / angular d and	840-855 predom sub-rou	5 m: quart ninately a unded and	tz sand, angular to d	
in previous samples. Grain size histogram displays very fine grained at the bottom Grain size histogram displays very fine grained at the bottom Grain size histogram displays very fine grained at the bottom Image: Comparison of the second of the s	n grained, ra ured chert, u e siderite.	are rare	predo graine chert, sideri	minately co ed, rare mult , rare pyrite, te but much	arse icoloured rare less than [–]	pre gra che	dominately o ined, rare mu ert, rare pyrite	oarse Ilticoloured e, rare coal	pr gr m py	edominately ained, rare ulticoloured /rite, rare coa	coarse chert, rare al	predom grainec chert, r	ninately c d, rare mu are pyrite	oarse Iticoloured	
			in pre	vious samp Grai to v	in size histo very coarse	ogram displ grained at t	ays very fine the top	grained at t	he bottom_					107.6	Grain bottor
Ar rA Ar rA															
M [4] [54 10] [0] [4] [1]	•	Ar			A n		•	r A	-		A r			r A	·

									10 150					
									ROP (min/m) Gamma (API)					
	+-+-+													
860 59.3 m:) 80 864.2 20L	65 •867.2 m:	870 8 873.2-875.2 m	75 : 20L	880 8 882-884 m: 18	85 89 30	89 00	95 9	00 90 TVD (m) 92.6 Sub Sea (+251 900.2-902.2 m:130R	05 9 [.] .0) HS	10 9' -911.4 m:	15 92 918.4-921	2 0 .4 m: 20L	925
	864.38 90.3 d 99.47 244.1 828. VS	m MD eg m TVD m SS 64 m	873.14 m 91.4 deg 99.34 m 7 244.3 m 9 837.39 VS	 MD SS m	882.22 m ME 90.9 deg 99.16 m TV 244.4 m SS 846.45 r VS	│	36 m MD 9 deg 1 m TVD .5 m SS 55.57 m	900.3 88.9 99.19 244. VS	 deg 9 m TVD .4 m SS 64.56 m	909.66 r 89.3 de 99.34 TVD 2 m SS 873.84 r	n MD eg m 44.3 n VS	918.75 m 90.0 deg 99.39 m T 244.2 m 882.92 VS	MD VD SS	927.52 m N 90.4 deg 99.36 m T 244.2 m 891.6 m VS
ud inte		om gamma			1P1 H	łz Progno	sis at 244	4.15 m SS	100.1			······································		
855-8 pred sub- pred med mult	870 m: qua lominately rounded a lominately ium graine icoloured	artz sand, angular to nd coarse to ed, rare chert	o prede sub-r sorte coars multi	85 m: quar ominately a ounded, m d, medium se grained, coloured c	tz sand, angular to oderately to very rare hert, rare	885- prec sub- very mult pvrit	900 m: qua lominately a rounded, we coarse grai ticoloured cl	rtz sand, angular to ell sorted, _ ned, rare hert, rare	90 an pr so gr	0-915 m: qua gular to rou edominately orted, very co ained, rare ulticoloured	artz sand, nded. , well parse chert. verv	9 a p s g	15-930 m: ngular to oredomina orted, ver pained, ra nulticolou	quartz san rounded. tely, well y coarse re red chert.
size hi n to ve	istogram d ery coarse	lisplays ve grained a	pyrite ery fine graine t the top	ed at the					107.6	re pyrite		v F li	ery rare p possibly of mestone. poids.	yrite, ne grain of grey with
									(+230.U) -+-+-+-+-+ -+-+-+-+ +-+-++		 			

	+ + + + + + + + + + + + + + + + + + + +				+-+-+		-+
					- + - + - + - + - + - + - +		
_ _	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· - + - + - + - + - + - + - + - + - + -
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		10 Nov. 24. 2003	· _ L _ L _ L _ L _ L _ L _ L _ L _ L _
			ROP (min/m)			·····	
			Gamma (API)		Total time	from drilling out	
	······································				ICP shoe	to ID: 24 nours -	
					+ - <u>+ - + - + - +</u>		
<u>930</u>	<u>935 940</u>	945	<u>950 955</u>	<u>960 965 970</u>	<u> </u>	<u>985 990</u>	<u>995 10</u>
			TVD (m) 92.6 954.3-956.3	m:			
			Sub Sea (+251.180				
-					Extrapolate	1 Surveys:	
ח	936.26 m MD	945.19 m MI	D 954.06 m MD	963.00 m MD	981.00) m MD	
U _	90.4 deg	91.1 deg	89.6 deg	89.4 deg	90.3	dea	
	99.30 m	99.18 m	99.13 m TVD	99.21 m	99.2	6 m	
	TVD 244.3	TVD 244.4	244.5 m SS	TVD	TVD	244 4	
53 5	m SS	m SS	918.18 m	244.4 m SS	m SS		
<u>۲</u>	900.41 m VS	909.33 m VS	S VS	927.11 m	945.08	3 m VS	
				VS	0-10-10		
		<u></u>	and a second				
· .		····				····	
• • • •	· · · · · · · · · · · · · · · · · · ·		teres and the second second second	· · · · · · · · · · · · · · · · · · ·			
					<u></u>		
	Revel inter		(+243.5) 1P1	Hz Prognosis at 244.1	5 m	D 091 m	
	Mud Inter	preted from	SS				
	gamma						
	930-945 m ⁻ quartz	sand	945-960 m: quartz sand	960-975 m: quartz	and		
,	angular to rounde	d	angular to subrounded	angular to subrour	dod		
	nredominately	4.	nredominately	nrodominatoly sub	angular		
	predominatory,	oderate	predominatery	d well corted rare			
	to well sorted me	dium	rare multicoloured che	rt multicolourod obor	Norv		
	arained rare		very rare pyrite		, very		
	multicoloured che	rt vorv	very fare pyrite.				
			ry fine grained at the botto	m to			
	Grain size histog	am displavs ver					
	Grain size histogr very coarse grain	am displays ver ed at the top					
	Grain size histogr very coarse grain	am displays ver ed at the top	107.6				
	Grain size histogr very coarse grain	am displays ver ed at the top	107.6 (+236.0)				
	Grain size histogr very coarse grain	am displays ver ed at the top	107.6 (+236.0)		- +		-+-+
	Grain size histogr very coarse grain	am displays ver ed at the top	107.6 (+236.0)				
	Grain size histogr very coarse grain		107.6 (+236.0)				

A

APPENDIX 3/D1:

Mud and geological report

Injector well – Vertical lithology strip log

LITHOLOGY STRIP LOG WellSight Systems Inc.

Scale 1:240 (5"=100') Metric

Well Name: DCEL 1I1 JOSLYN CREEK 3-33-95-12 Location: 103/03-33-095-12W4/0 Licence Number: 0296169 Region: Athabasca Nov. 26, 2003 Drilling Completed: Heel: Nov. 28 Spud Date: Surface Coordinates: LSD 10-33-095-12W4M 432.9 m South, 790.2 m West **Bottom Hole** Extrapolated: 336.81 m South, 66.44 m West, 340.71 m. **Coordinates:** Ground Elevation (m):339.7 m K.B. Elevation (m): 343.6 m Logged Interval (m): 20.0 m To:356.0 m Total Depth (m): 375.0 m Formation: **Clearwater and McMurray** Type of Drilling Fluid: Water for surface hole, K2SO4-H2O/polymer in McMurray Printed by WellSight Log Viewer from WellSight Systems Inc. 1-800-447-1534 www.wellsight.con

OPERATOR

Company: Address: Deer Creek Energy Ltd. Bow Valley Square Two 2600, 205 Fifth Avenue SW Calgary, Alberta, T2P 2V7

GEOLOGIST

Name: Company: Address: Dane Bridge, M. Sc., P. Geol. and Esther Visser, B. Sc., GIT Dane A Bridge Consulting and Deer Creek Energy 16 Massey Place SW Calgary, Alberta, T2V 2G3 403-259-2826

Comments

Intermediate Hole for DCE 111 Intermediate casing point 374.0m, 1.0 m off bottom.

ROCK TYPES								
Anhy Bent Constant Anhy Bent Brec AAAAA Cht Clyst Coal	Congl Dol Gyp Igne Lmst Meta	Image: The second se	Ss Socococo Till Blank					

APPENDIX 3/D2:

Mud and geological report

Producer well – Vertical lithology strip log

LITHOLOGY STRIP LOG WellSight Systems Inc.

Scale 1:240 (5"=100') Metric

Well Name:	DCEL 1P1 JOSLYN	CREEK 3-33-95-12		
Location:	102/03-33-095-12W4	/0		
Licence Number:	0295554		Region:	Athabasca
Spud Date:	Nov. 19, 2003		Drilling Completed:	Heel: Nov. 22
Surface Coordinates:	LSD 10-33-095-12W4	4	- .	
	433.0 m South 805.2	m West		
Bottom Hole	337.02 m South, 51.4	19 m West, Vertical	Section 339.36 m.	
Coordinates:				
Ground Elevation (m)	:339.7 m	K.B. Elevation (m)	: 343.6 m	
Logged Interval (m):	21.8 m To:355.2 m	Total Depth (m):	374.50 m	
Formation:	Clearwater and McN	lurray		
Type of Drilling Fluid:	Water for surface he	ole, K2S04-H2O/pol	ymer in McMurray	
Printed by We	ellSight Log Viewer f	rom WellSight Sys	tems Inc. 1-800-447-1	534 www.wellsight.con

OPERATOR

Company: Address: Deer Creek Energy Ltd. Bow Valley Square Two 2600, 205 Fifth Avenue SW Calgary, Alberta, T2P 2V7

GEOLOGIST

Name: Company: Address:

Dane Bridge, M. Sc., P.Geol. and Esther Visser, B. Sc., GIT Dane A Bridge Consulting and Deer Creek Energy 16 Massey Place SW Calgary, Alberta, T2V 2G3 403-259-2826

ROCK TYPES

Anhy	<u>ø.o.o.e.</u> Congl	… […] Mrlst	Ss
Bent Bent	Dol 🛛	Salt	<u>>>>>>>></u> Till
Brec	Gyp	Shale	Blank
<u>△△△△</u> Cht	Igne	Shcol	
<u></u> Clyst	Lmst	Shgy	
Coal	Meta	Sltst	

APPENDIX 3/E1:

Mud and geological report

Cross section through Facies model

Phase I - Pilot Cross Section through Facies Model

2	TOTAL E&P CANADA LTD - JOSLYN PROJECT																	
TOTAL	FORMATION	MEMBER	DEPOSITIONAL	DEPOSITIONAL	EACIES	FACIES	FACIES	DCEL	PETREL	COLOUR		GEOTECH	UPSCALED					
AGE	FORMATION	MEMBER	SETTING	ENVIRONMENT	FACIES	SYMBOL	CODE	CODE	CODE	CODE		FLAGS	petrel mode					
ш.			_	Organic	Quaternary (Undifferentiated) Muskeg	Q Ho	1999	90 898	0		Only used if cores do not have auger reports and/or borehole logs.		-					
LOCEN 1,000 YBI	LOCEN 1,000 YBF		Fluvial	Alluvium	Hf	1030	896			Variable Recent creek/river deposited sand, sit, and clay with plant notifel/ organic fragments.		Q						
H ⁽⁰⁾			បី	Lacustrine	Lacustrine Lakeshore / Bottom	н	1020	894			Very soft clay and sit, sandy, grey to brown, sometimes whitish / many with small gastropod shells and florous organic materials; usually saturated.	very soft mud						
				Aeolian	Dune	Hae	1010	892			Fine-graned wind-blown deposits (surface) sand.							
NARY 00 YBP)				Glacio-Lacustrine	Lake Bottom	PI	2090	880	1		Bratified very line grained sandy sitt and clay; minor gravel clasts, grey and/or pick color which is diagnostic; can be till-like. Till, sandy, sitty with trace of day and trace of gravel, brown to dark brown, overlying fluvial sand or basal frebag till, loose to medium firm, non-plastic to medium	soft mud	-					
UATER -1,600,00				Giaciai	Fluvial Sand	Pfs	2000	860	3		plasticity, possible ablation deposits. Glaciofluvial Pfs is mostly clean fg-og sands, well sorted, moderately to poorly graded; deposited as eskers or as fluvial fans.	plasue	-					
(0 000 YBP			rtial	Glacio-Fluvial	Fluvial Gravel	Pfg/Pfsg	2060	840	4		Poorly sorted with pebble and occasional cobble deposits (with > 50% > 4.75mm gradation) as well as gravely sand (with 15-50% >4.75 mm).		-					
EISTO 00-1,600,			Contine		Clayey Till	Pgtc	2050	830	5		Clayey/sitly sill, sandy, with trace of gravet, medium firm to very firm, dark brown to dark grey (with Kc matrix); low to high plasticity; low permeability. Till, brown to dark brown with high sand and sill content; firm to very hard; pritry with up to 15%; graved clasts to cobble size; commonly with bituminous odor and/or	soft mud, plastic	Q					
H (11,0				Glacial	Sandy Till	Pgt	2040	820	7		Ruvial sand lenses or stringers; possible lodgment BI. TII, brown to dark brown with high sit content, limi to very hard, grithy with up to 10% gravel clasts to cobble size; commonly with bituminous odor; possible lodgment BI							
					Rafted Clearwater Clayey and Glauconitic Sand	PgKc	2020	805			Dark grey day with distinted taminations; occasional Ig-cg sand and subround pebble clasts, stiff to hard, low to high plassicaly/0-80% glauconsis fine sand; ice thrustedinated Clearwater clay.	plastic						
					Rafted/Disturbed McMurray Formation	PgKm	2010 EF	800	8 UNCONF	ORMITY	Fined gained sand and mud with <10% pebbles and cobbles, bitumen odor but none to weak stain on fingers; day, structureless; dask brown color; ice thrustedirated Moturing Formation.							
					Clearwater Formation (Undifferentiated)	The Clearwa	ater Formati 3999	on is identi 85	fied by inte 9	rvals of medi	um grey silly clay, low-density dark muds and glauconitic sandy sill lenses/aminae. Tolm fissile, vejo userja paralla bekorf k-bekdet lo horegenea, nor- to bigly plastic, occasionaly sickensided, dark grey to black clay with are to moderate joh greenisi grey, glauconitic, sandy alt laminae/nesses and low density internak. Rare to moderate induzions throughout. This facies is intended exclusively for intervetion to pC-laminet from boreholes on. It is not be used for ore dencified.	plastic, slksd, low-den	0110					
					Offshore Transition "B"	Kc4	3040				Improve y the section them rank constraint rays. If or this die section the constraints of the section provided by black, fastile low-density city. 20 Transversione Marker (TSU 2)	plastic, slksd, low-den	CWS					
				Marine Shelf	Offshore Mud "B"	Kc3	3030				First and the second s	plastic						
	RWATER		rine		Offshore Transition "A"	Kc2	3020				Dark gry shale with moderate to common sitt lenses. Local thin beds of low-density clay. Thin, locally industed beds. Lower contact may be marked by a thin interval o glauconitic shale and capped by a dual industed bed.	af	CWS					
	CLEAF	Wabiskaw	Ma		Offshore Mud "A"	Kc1	3010	Trans	gresive Ma	rker (T21) Max	Back, fasile, low-density day with rare to moderate slit laminae/enses. Upper contact is commonly marked by an industed bed. ximum Flooding Surface - Rapid Relative Sea Level Rise	low-den						
					Wabiskaw Member (Undifferentiated) Offshore Transition "B"	Kcw Kcw3	4999	80	10		This facies is intended exclusively for interpreting the Wabiskaw member from borehole logs. It is not to be used for core description.	plastic, slksd	-					
				Marine Shelf	Offshore Mud	Kcw2	4020	75			Dark grey mud with minor glauconitic sill laminae / lendes and rare burrows. Locally very dark greyblack fissile day.	plastic, slksd	WS					
					Offshore Transition "A"	Kcw1	4010	74	rkor (T10 f	Wayo Pavi	Thinky laminated to churned, medium to dark grey mud with moderate to common glaucontic sit and sand lenses / burrows throughout. Occasional thinky indurated bads, commonly near contacts.							
					Upper McMurray Formation (Undifferentiated)	Kmu	The Uppe 5999	r McMurray 501	is identifie	d by the large	Internets our accession and the waning of glauconite. This facies is intended exclusively for interpreting the Upper McMurray Formation from borehole logs. It is not to be used for core description.	1						
					Foreshore	FS	5060	500	11	_	<1 <10% inud. Clean, fire to coarse grained, well sorted, even parallel to low angle, large-scale x-bedded (10-30°) sand with rare millimetre to centimetre-scale, dark grey day laminas/beds. Rate, relatively large, marine burrows may be present.	gas	UMS					
		cMurray	ine	Shoreface	Upper Shoreface	USF	5050	510	12		10-25% mud. Declimetre interbeds of fine to medium grained, well sorted, massive to vague, small-scale x-bedded sands and millimetre to centimetre-scale, way, parallel to non-parallel bedded, durk grey clay with moderate to common, relatively large marine burrows.	gas						
		Upper M	Mar		Middle Shoreface	MSF	5040	520	13		25-50% mud. Small-scale interbeds of fine to medium grained sand and dark grey, wavy parallel to non-parallel clay with moderate to common, relatively large marine burrows. 50-75% mud. Dark grey clay with narely to moderately interbedded with millimetre to certimetre-scale, wavy to tenticular, very fine to medium grained sand/sill and rare	gas	LIMIS					
					Offshore Transition	OT	5020	540	15		large manufacturous. 76-90% mod. Dark grey clay with thinly interbedded (mm-cm), wavy to lenticular, very fine to fine grained sand/sit and rare to moderate, small and/or large, marine burrows.	plastic	UNITO .					
				Offshore	Offshore Mud	ОМ	5010	550	16		>30% mud. Often fissile, low angle, parallel bedded, dark grey clay with rare sit laminae/tenses and rare marine burrows.	plastic	UMSH					
					Middle McMurray Formation (Undifferentiated)	Kmm	6999	The Middle	Ero McMurray	sional Marke is identified b	er (E10) yn the small estuarine burrows and light grey coloured muds. This facies is inended exclusivel for interventin the Middle McMuray Formation from borehole loos. It is not to be used for core description.	1						
				Flood	Estuarine Backswamp / Marsh / Coal	E BS, M	6130	340	17		Medium grey to black, coaly/carbonaceoux, slight to moderately plastic, rooted, chumed clay with up to 10% silt/sand.	plastic, coal, soft mud,	MMSH					
				Plain	Estuarine Floodplain	E FP	6120	333			>80% mud. Massive to bedded, possibly carbonaceous, light to medium grey, silly clay.	soft mud, coal						
					Muddy Tidal Flat	TFM	6110	440	18		(Festor Final: besit op 42: uget to meating egy, massivectrument to animates strip carly win rate to moterate ow angle, shaa-scale X-desangucurent rippies win way, lenticular or lates ally sand bead usually small however with typically common bioturbation but varies from moderate to abundant. Frequently include rate to common certimetre-scale, sistence cented nodues/bands		1000					
					Mixed Tidal Flat – Water Sand Mixed Tidal Flat	TFXWS	6101	432	19		Same as description before but sindly interfraits have -risk weight oftunee. 25-75% mult. Beds dip <2". Other small scale current rippledix-bedded, contraintere to decimetre-scale, very fine to fine grained sity sand with moderate low angle, light on medium gires, judy clay interbeds and usually small burrows with hypically common bioturbation but varies from moderate to abundarit. Frequently include rare to	watersand gas	MMIS					
				Tidal Flat	Sandy Tidal Flat – Water Sand	TFSWS	6091	422			common certifinetre-scale, siderite comented includesbands Same as description below but sandy intervals have <4% weight bitumen.	watersand	MMS					
					Sandy Tidal Flat	TFS	6090	420	20		1923/m.uz. Beds dp <27. Othen small scale current ripplexit-bedded centimetre to decimetre-scale, very fine to fine grained sity sand with rare low angle, light to medium grey, gith sky interbeds and usually small burrows with typically common bioturbation but varies from moderate to abundant. Frequently include rare to common centimetre-scale, sidentic commented nodules/bands	gas						
S					Tidal Creek - Water Sand	TCSWS	6081	412	21		Same as description below but sandy intervals have <4% weight bitumen.	watersand gas	-					
ACEOL		lurray	Estuarine		Tidal Lateral Accretion Beds – Muddy with Flushed Sand Interbeds	TLABMWS	6071	492	22		are restrance to the ball that environment. Same as description below but sandy intervals have <4% weight bitumen.	flushed	MMSH					
5-144 M		ddle McI			Tidal Lateral Accretion Beds – Muddy	TLABM	6070	492			75-69% mut. Tbps are consistent bit mage from 2 to 10°. Inclined, millimetre to decimente-scalak wavy, non-pamilel to parallel, tight to medium gavy, silly clay and rarrange to moderate interfaced or commerce-scale, similar scale -scaledded, vary fine to medium grained sand. Typically moderate bioturbation but varies from nare to abundant. Mary include rare to common contineetre-scale, ulderite commende doubles/bands							
-OWEF		ž			Tidal Lateral Accretion Beds – Mixed Water Sand	TLABXWS	6061	482	23		Same as description below but sandy intervals have <4% weight bitumen. 26-70% mul. Tips are consistent but range from 2 to 10°, inclined, millimatre to decimete-scale, interheds of way, non-parallel to parallel light to medium gay, stilly relax and multi-are advected and unconstruction and	watersand	MMIS					
-	z					Tidal Lateral Accretion Beds – Sandy Water Sand	TLABSWS	6051	472			entimetre-scale, sidente cemented nodules/bands Same as description below but sandy intervals have <4% weight bitumen.	watersand	MMS				
	RMATIO					Tidal Lateral Accretion Beds – Sandy	TLABS	6050	470	24		T0-25% wat. Topia are consistent but range from 2 to 10°. Continente to docimetre-scale, small scale x-badded, very fine to medium grained sand and new to moderate interbeds of inclined, millimetre to docimetre-scale, wany, non-parallel log parallel logit to medium gray, silly clay. Typically moderate bioturbation but varies from rare to common. May include rare to common continette-scale, idente commend noduleabands						
	RAY FOI						Channel	Tidal Channel Margin (Undifferentiated) – Water Sand	TCMWS	6041	462	25		Same as description below but sandy intervals have <4% weight bitumen. This factes has been replaced by mixed & sandy idal lateral accretion beds and is no longer used for core description. Dips are consistent but range from 2 to 10°.	watersand	-		
	McMURI												Abandoned Channel Fill	ACF	6030	330	26	
					Tidal Channel Breccia – Water Sand	TCBWS	6021	322			Same as description below but sandy intervals have <4% weight bitumen.	watersand	ММВ					
					Tidal Channel Breccia	тсв	6020	320	27		x10% clasts. Massive, chaskic, very fine to medium grained sand with very poorly to moderately sorted, angular to sub-nounded, millimetre to decimetre-scale, light to medium grey, sith day clasts. Clasts are usually ripped-up tidal flat/lateral accretion bed sediments and/or large slump blocks (bank collspse).	gas						
								Tidal Channel	TC	6010	302	28		same as description beew tot samdy intervisis have <-f/s weight bitilities. Massive, homogeneous to small or large-scale x-bedded, low or high angle, may be graded, very fine to coarse grained sand. May include carbonaceous debris, pebbles,	gas,	MMCS		
					The Lower McMurray is	identified by	its cream c	ploured mu	Ero ds, coarse	grained sand	Ichames. ere (E5) is and common carbonaceous debris. Scoyenia ichnofossils, when present, are diagnostic for the formation.							
					Lower McMurray Formation (Undifferentiated)	Kml BS M	7999	201	20		This facies is intended exclusively for interpreting the Lower McMurray Formation from borehole logs. It is not to be used for core description. Low density, variable colour: tight grey to black, moderate to abundant cosh/carbonaceous debristiaminae, waxy, often slickensided, moderate to highly plastic, rooted,	siksd, plastic,	IMOU					
				Floord	Floodplain	FP	7100	240	30		chumed, homogeneous, massive clay with rare to moderate sill content and rare sand grains or nodules. Often slumped and faulted. Vaguely beddet to well lemineted or varved, light to dark brownish grey, silly clay with moderate to common rootlets and carbonaceous debris and rare to common and/alt beds. May be burrowed.	slump, fault	Emorr					
				Plain	Overbank	ОВ	7090	220	31		Massive, homogeneous, chaotic sity clay that may be rooted and/or burrowed with a rare to moderate sit/stand component.							
					Crevasse Splay	CS	7080	210	32		Interbedded to chaolic, poorly sorted, line to coarse grained silly sand and light grey or creamy clay with scattered or interbedded carbonaceous debris and rare clay rip up clasts.	-	LMIS					
				Fluvial Channel	Fluvial Lateral Accretion Beds – Muddy with Fluvial Lateral Accretion Beds – Muddy	FLABMWS	7070	192	33		same as beschlowin denn od sandy mervas iner « n wegin dualitier. 75-90% mud. Dips are consistent but range from 2 to 10°. Indined, millimetre to decimetre-scale, wavy, non-panallel to panallel, light grey or creamy, silly day and rare to moderate interbeds of certificative scale, small scale x-bedded, very fine to medium grained sand. May include rare burrows and rare to common centimetre-scale,	iusneu	LMOH					
		ray	ntinental		Fluvial Lateral Accretion Beds – Mixed Water Sand	FLABXWS	7061	182			sidente cemented nodulesbands. Same as description below but sandy intervals have <4% weight bitumen.	watersand	LMIS					
		er McMui			Fluvial Lateral Accretion Beds – Mixed	FLABX	7060	180	34		25-75% mud. Dips are consistent but range from 2 to 10°. Inclined, millimetre to decimetre-scale, interbeds of wany, non-parallel to parallel, light grey or creamy, sithy day and small scale x-bedded, very fine to medium grained sand. May include rare burrows and rare to common centimetre-scale, sidente cemented nodulesbands.	<u> </u>						
		Low	ŏ		Fluvial Lateral Accretion Beds – Sandy Water Sand Fluvial Lateral Accretion Beds – Sandy	FLABSWS	7051	172 170	35		Same as description below but sandy intervals have <4% weight bitumen. 10-25% mut. Dips are consistent but ange from 2 b 10°. Centimetre to decimetre-scale, smal-scale x-bedded, very fine to medium grained sand and rare to moderal methods of indirect, millimetre to decimente-scale, way, non-parallel to parallel, light gey or creamy, sity clay. May include rare burrows and rare to common	watersand	LMS					
					Fluvial Channel Margin (Undifferentiated) – Water Sand	FLCMWS	7041	162			centimetre-scale, sidentie cemented nodules/bands Same as description below but sandy intervals have <4% weight bitumen.	watersand						
					Fluvial Channel Margin (Undifferentiated)	FLCM	7040	160	36		This facts has been replaced by mixed 8 andy fundial latent accretion beed and is no longer used for core description. Dips are consistent but range from 2 to 107, inclinde, milliment to decometer-scale, interfaced of usary, non-parallel to parallel, fact prey or creams, givel dynued capes and small scale x-bedded, very fine to nedium grained sand. May include rare burroes and rare to common centimetre-scale, sidente cemented nocleis/bands							
					Fluvial Abandoned Channel Fill	F ACF	7030	130	37		Massive, light grey or cream, may be noted, silly clay and rare to moderate, sand splays. Othen slumped and faulted. May include rare to common centimetre-scale, scalence cemented nodules/bands.	high angle, slump, fault	LMSH					
					Fluvial Channel Breccia	FCB	7020	120	38		>10% clasts. Massive, chaotic, line to caree grained sand with very poorly to moderately sorted, angular to sub-rounded, millmetre to decimetre-scale, light to medium gray or cenamy, sity clay clasts. Clasts are usually rip-up lateral accretion bed sedments and/or targe slump blocks (bank collapse).	h	CNID					
					Fluvial Channel – Water Sand	FCWS	7011	102			Same as description below but sandy intervals have «4% weight bitumen.	watersand	LMCS					
					Fluvial Channel	FC	7010 EF	100	39 UNCONF	ORMITY	measure, insuragements to strain or surge-scale x-bedded, low of ringh ange, othen graded, fine to very coarse grained sand and pebbles. May include carbonacous definit, cr(Ms iii) (by r-up class) and laminae/beds and centimetre to decimetre-scale, siderle, pythe or slica centrel intervals. Occasional conglometate near the base of the channel	e rich oilsand						
					Devonian (Undifferentiated)	DEV	8999	50	40	-scale pyrite I	nozuvecemented interval at the Cretaceous-Devonian erosional unconformity. This facies is intended exclusively for interpreting the Devonian from borehole logs. It is not to be devolve the second se							
					Paleosol	PAL	8080	51			Light greying green with variable, usually red or orange, colours if iron stained, waxy, stickensided, angliaceous/limy mud. May be highly plastic and include detember plante nodules. Gel/D Calcium Cataonale. Light for mg/em may on fulf i runally well harded rate to movemate instrumente finate calculation and include in the state of the st	plastic, slksd, fault, slump						
N BP)	XS.				Calcareous Shale	CALC SH	8070	52 53			enses. Fizzes mare to moderate with any environment of the medium grey or bulk, homogeneous to finely bedded, calcareous mud with rare fossil tragments and <25% limestone calcium Calcium Calcium Calculate 20-50%, day (argilite), joint to medium grey or bulk, homogeneous to finely bedded, calcareous mud with rare fossil tragments and <25%.	<u> </u>						
EVONIA -408 MYI	TERWA		Marine	Offshore	Interbedded Limestone	INT LS	8050	59			Intersone menusk. H zizes moderate to wet with add. >25% nodules. Light grey to bult, typically centimetre-scale, limestone nodules interbedded with light/medium grey to bult, calcareous shale. May include rare fossil fragments.		DEV					
(360 E	.wa				Nodular Limestone	NOD LS	8040	54			>25% nodules. Light grey to bult, typically centimetre-scale, limestone nodules in a light/medium grey to bult, calcium carbonate mud matrix. May include rare fosal tragments.	jointed						
					Massive Limestone	MASS LS	8030	55			Massive, light grey to buff, limestone and possibly rare fossil fragments. Moderate to abundant fossil fragments (mostly crinoidal stems and brachiopod shells but may include coral fragments and other marine fossils) in a calcummum mut	jointed	-					
								Fussimerous Limestone (Biomicrite) Karsted Limestone (Collapse Breccia)	KARST LS	8010	эб 58			nodular or massive limestone. Emestone binecia (imestone classis in a microcrystalline, calcareous mud matrix) or slump structures with intermixed carbonate mud, limestone nodules and/or Mal/ump (ormalice sediments.	karst			

Revised: Adel Tammam & Darren Valin, December 2005 Major Revision: Darren Valin, November 2004

Note: This is a general classification of depositional environments and their associated facies. Within any particular environment, any individual facies may occur in any order, be repeated any number of times or may be not present. Only the boundaries between members have time implications.

Sources: Terracon Geotechnique Ltd. 2004, Overburden Soll Classification and Material Utilization Chart for Deer Creek Energy Limited Boggs Jr., S. 1995, Principles of Sedimentology and Stratigraphy 2nd ed, Prentice-Hall Inc., New Jersey, p. 197-211. Walker, R. and James, N., 1992, Facies Models: Response to Sea Level Change, Geological Association of Canada, St. John's, p.179-219 & 265-303. Bates, R. and Jackson, J., 1984, Dictionary of Geological Terms 3rd ed, Doubleday, New York.

APPENDIX 3/E2:

Mud and geological report

Log cross section

	G.A. DIAKIW GEOLOGICAL SERVICES LTD.												LEASE NO. BSL 24 WELL NO. AB/11-33-95-12 WY															
s	STRAT. INTERVAL 60.40 - 115.95 m TOTAL DEPTH 115.95m											Sm	WELL NAME DEEL OV-1 JOSLYN W 11-33-95-12															
GLKBKB								.on LOGGED BY					Davy Diakis DATE					E <u>28 Nov 2</u>					000 PAGE OF					
RONMENT		FACIES	NING	HOR. PERM.	SING CORE	RVAL	GROSS LITHOLOGY FEATURES	SED	NMENTARY AND RUCTURAL	£ Fossus	EE OF BUDILE	SIZ (mi SoE	1E n)	8 mud	NDNESS	JRATION (THP DEPTH)	HUE	ITACTS					DLOGICAL FLAGS	CORE QUALITY R/R <u>10 May ch 2000</u> FROZEN ZYES INO DRYING				
<u><u></u></u>	ENV		STAI	EST.	MISS	INTE				TRAC	Zec	2 C C C	8i 12 5	9, 8, BOS	POL	ĨNŪ	SHAD MINO MAJO	ð 8					GEO	REMARKS				
																								Gre has been depth corrected to geophysical logs				
																								00.40-61.40, sandy tided Hax.				
																		-						61.40-62.65, mixed tidal flar.				
hm		Sand Flat	2	<u>-</u> \		-60.40-	,	- ≫ -U^∧	してん	CX SK WOj	4		-5	45	1-4	ļ		GR						Upper and lewer contacts rapidly				
		Mixed Flar	1			62.65		æun		SKPLCY .	प {		3	5	1-4	6cm		GR				ļ		62.65-65.0 sandy tidel flat.				
	peritidal	Sand Flat	² 3					TN Vague A	mo	3				1-4								nd service of we	Bottom 0.50m closer to a mixed flar.					
			41 0			<u>65.0</u>		্র ম⊐	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u>भ</u> 2		-17			1	411	vs				orani oscali	2	00.40-65.0, Saturation poor pately, metiled throughour				
		Mud Flat	Ľ							1	-	1			i anticorde									50-68 U, muddy tidal flar				
		Mixed Flat	1			68.0 68.55	<u> </u>	HAN	T THEN	PL .	2				1-4	-	411	SC	lenin - a len a					Bottom 0.5m Manery Hulted - minor sumpting				
			5 5					U rd)	<u></u>	sk,PA ? ⊃	1		Ŧ	4	1-4			-				-	19	in places due to drilling. Unable to accurately determine dips.				
		Channel Sand	5 e									120	so it-it-	Non-watch could be seen	1			and other un								A State of the second		08.0-68.53 mixed tides ther, rapidly grading down to send that at have contract.
) 5			1310			-₩-₩_ }		<u> </u> 			3	1-4			4						SS-T3.D Changel sand				
			۶ų		_		· · · · · · · · · · · · · · · · · · ·		HUA	n 3	Z)		1			<u></u>					areasesty.	Very gradational with overlying unot.				
		Sanud Flast	Ч ₄ З.,			= 75 =			7 15-15°	PL^{2}	3		++	4	1-4			-				Sec.	, dan fin k	13.10 - 91.10, tidal flat complex.				
			4			าแาร	a	×17.0	miniby or	PL 2	<u>د</u>		1					<u>l</u> er						Alternative sand that and much that, our by premierous small titled access?				
			3 ₂ 2							PL 3	2		+					weeters.				a constant	and so the	13.10-76.75 sandue tidal flat.				
		Mixed Flat	<u>3</u> יי				E	1	niñor 200 W	2	2		4	<u> </u>	I- 4			and have proved in the				and survey	7	Maybe closer to a channel marrie				
	-		4 <u>3</u>		Stationius	- 90 -			≥/Av	2	3		Π.							[1. 25-85-25 readom is at missed + dal Flat				
			42 37		- Annala			$ \rightarrow $	· <u>\3-5°</u>	CY,7¥ ⁶ 7	3		\parallel		1.11			an she she she						Tidal creek sounds to SScin.				
- Contraction			33		<u></u>				minier A	PL 3	2				1-4	ĩcm	83.85	and the second second						Dips extremely variably - range from 0 to 10°.				
CONTRACTOR OF STREET, ST			23			-85.25-				R_ Z	2		<u> </u>			4		GA						5.25-91.10, interval ranges from oniced				
1000012100			<u>Рч</u> 5 3	 	_	·····			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CY CO?	2 2			<u> </u>	[-4							arrian P		Fairly consistent dip = 5-8°.				
ADV MAN TO POSSA		Sound Floor	³ 5						×/h=V	TH CO?	2		7	- y	1-4			- AVAILAND					9	1.10-96.15 channel marsin Sediments,				
		Land , can	5 35					100	(+0go 1)	PL	2		\mathbf{h}		150			•						Very dinse carbonacions lamina in Dottom Zm.				
			4 ₄			91.10		15	Minor Or	-	2		<u> </u>					GL				F		Very steep deps throughout.				
			5				r i i i i i i i i i i i i i i i i i i i		H=V == // v		2		1	u	1-4								9	a.15-97.90, mixed tidel Flar sedimenes				
		Channel Marsin	5								2											Carlor Maria		Abundant Carbonaccous formice and tric gravited carbonaccous Aebris				
Concernation of		2	5 5					\$~. +_}	N/2-3V									1 So/Te					2	Soft Sediment deformation in bottom 1.25m. Milids are very sandy, convoluced.				
NTTO COLUMN			<u>ч</u> 2 ₁			96.15			-)u=d-t				$\frac{1}{1}$		<u>1-4</u>			GR				2		190-10162, predominantly a channel				
	Deviatidal.	Mixed Hat	2		-	47.90		11	A= 105	•			Ļ			Į		N٧					1	98.30, 37 cm mixed sidel Plat unrebed -				
		<i>/</i> 1 , 7 ,	' <u>5</u> 5 _ц		d. Jack			ZH.		PL 1			\downarrow	- 5	FY									appears to be intert and in-place Not a class. 26cm muddy interbod as basal conneces				
		Channel Breccu.	4			= 100 =	200 5			1					1 1							un vier		appears to be a large clast. Clasts elemente sub-rounded to very				
			- E			01-60		H)							02-0		sc					į	angular, dark grey silty mids.				
Ś	stuarine		<u>-</u> 5				00000 00000	(т н			+09.		- 5	1-4		3-5					New Andrews	_]]0	4.60-106.70 channel sand.				
and the second second		Urannel Sand	4			= 105=	2000									104.5p						-		Sequences				
holy in a starting			5 106-70 B		" 1125° GB	1 7 to 9 min				5	1-4			vs					2.50 m public constance weeking consisted throughout Coming apples interview interbadded.									
~	Ş	Mixed Flat	3 5			107.45		H .	こか 日 至	2			E	5	1-4 1-4			se.		F		-	T N	Xo. 70-107.45 ? Dossibly mixed tidal				
		Channel Sand 34 Boood			102	/+019m	m	_ 5	I-YI	5em	20.80	in the second second				Survey V.		Flat Sectioneirs. Heavily faulted through set, with seathered										
	ontrineural	? Flood dain ?	2			110.15		PH=V#	= HANY &							4		NV		1 (<u></u>	-	claste! May be a channel ful of sorts.				
Ť	······	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	5			10:52	<u></u>	۲	2		1				- I			212										

)

-				§	-			<u>k</u>			. <u> </u>			~ }				IVING THUID CHANNEL SAMOL
w			0	-	<u>∤</u>		· ·					110000					201	Us in the second of 3 forms the second
		C 1	0		<u> </u>	[]		8		111				7 1			1	Sequences.
	marine	Calcareous Shale	<u> </u>	J	4	<u> </u>	<u> </u>			┿┷┿								
1			0		<u></u>		'										d d	Dense peblele lass at beep of each sequence.
				atan ana	1							1 i	-i i f				1	REPOURPMEIDMERATIA WORKIN CAMENTER
<u></u>	1	-				ļ J											i i	
																		10.15-11.25 possible continental
1												514						
Į										+-+-+				- +				Strong muddy tedal that appearances
					1													
1														7 [111			
ł						<u> </u>					++++	<u>r i</u>		- -			- 11	*
1												2.4.02					-many	L
1										1 1 1	1 1 1	2		7 1				
									┉┼┉┼┙	┼╌┼╶┼				- -				
1					4 .													
								1										
						ļ		ļ		<u> </u>	┥┥┛╟				+			
				-								1000 M					27420410	
				<u> </u>						111				-	111		i i	
			<u> </u>														_	
}				·														
										+++			╶╫╌┼╌┼╌	-1 -		┿┽		
[<u></u>								
												54440						
													╶╢╾┞╾┠╴┠			++++		
					. 1			1						1 1		1 []	1	

.

•

METRIC 975935 89/02

APPENDIX 3/F1:

Mud and geological report

Core pictures

C03-13841 2003-03-31

C03-13841 2003-03-31

C03-13841 2003-03-31

C03-13841 2003-03-31

C03-13841 2003-03-31

LSD: OB1C 100/03-33-095-12W4

C03-13841 2003-03-31

LSD: OB1C 100/03-33-095-12W4

C03-13841 2003-03-31

LSD: OB1C

CORES: 1-18 INT. 53.15-103.15 m REC. 46.85/50.00 m

C03-13841 2003-03-31

100/03-33-095-12W4 × 35 92 96 **DS89** DS96 94.95 I< × DS94 DS92 DS98 × × * 20 × DS86 3 3 40 4 42 43 44 45 **OB7** < 94 97 × ~ × B **DS90** DS88 25 26 27 26 20 21 2 OB5 DS95 ×

C03-13841 2003-03-31

APPENDIX 4:

Geophysics simulations

2005 - Geological Model

Objectives

Use the available Petrel package as a geological tool to build a geostatistical model for validating and quality checking the well data as well as to use as input for reservoir simulation.

Petrel Input data (NAD83)

- Log data from over 200 core holes
 - o Gamma ray
 - Density porosity
 - Neutron porosity
 - o Resistivity
- Petrophysical curves
 - o Lithological facies
 - o Effective porosity
 - o Oil / Water Saturation
 - Bulk bitumen weight percent
- Stratigraphic picks
 - o Clearwater
 - o Wabiskaw
 - McMurray (top, middle, lower)
 - o Devonian
 - GPP (top & base)
- Seismic Data
 - Reflective and refractive interpreted 2D lines
- LiDAR
 - Surface topography for SAGD PDA area
- Horizontal well trajectories
 - Phase I single well pair
 - Phase II 17 well pairs
 - Phase IIIA 26 well pairs
- Culture Data
 - o Lease boundary
 - o Grid (TWP, RGE, Sections, LSD)
 - o Hydrology
 - o Plant site

Structural Modeling

- Model area is approximately 4.4 km (east-west) and 6.6 km (north-south) [Does not cover entire Phase IIIA PDA]
- 3D Grid block dimensions are 20m x 20m x 1m
- Stratigraphic horizons were generated using surfaces created via well picks [Petrel surface were compared to Geographics mapping]
- Surfaces were generated in high resolution 2D grids (10m x 10m) using the available convergent interpolation algorithm
- Model zonations were defined using structural horizons
- McMurray zone was further sub divided into three sub-zones to represent the difference in depositional environments

Zone	Type of Layer	Number of Layers	Average layer thickness
Clearwater	Proportional	1.0	30.0
Wabiskaw	Proportional	1.0	8.0
Upper McMurray	Proportional	10.0	0.5
McMurray	Proportional	100.0	0.5
Lower McMurray	Top Conforming	Various	0.5

Scale Up Well Logs

- Facies description for each well is grouped to reduce the number to something more manageable to be handled by Petrel. For the middle McMurray (productive zone) there was 5 grouped facies:
 - Channel Sand (<10% shale)
 - o Sand (10 25% shale)
 - Interbedded Sand (25 75% shale)
 - Shale (>75% shale)
 - o Breccia
- Scaling up of detailed logs from 0.15m to grid size of approximately 0.5m in the McMurray zone
 - o Facies "Most of" method
 - o PHIE Arithmetic average
 - o Oil Saturation Arithmetic average

Data Analysis

- Log grouped facies were used to generate horizontal and vertical variograms
- Variogram model parameters were adjusted to fit the experimental variogram (spatial continuity of geological property)
- Variograms in the vertical direction were better defined than in the horizontal direction
- The range of variograms in the horizontal directions were defined with collaboration with project geologist

Facies Modeling

- Facies population was generated using the stochastic method via the sequential indicator simulation algorithm
- Clearwater and Wabiskaw zones are assumed a constant facies type
- McMurray zones are populated based on variogram results established in the data analysis

Petrophysical Modeling

- Petrophysical distribution for porosity and oil saturation was generated using the stochastic method via the sequential Gaussian simulator algorithm
- Clearwater and Wabiskaw zones are assumed a constant porosity and oil saturation
- McMurray zones are populated based on variogram results conditioned to facies
- Property distribution for permeability, water saturation and net to gross were generated using property calculator (note: net-to-gross ratio was calculated based on a cut off from the product of effective porosity and oil saturation)
- A total of 10 realizations were generated for each of the 10 facies realizations created

Upscale / Downscale for Simulation

- From the 100 realizations created, bitumen in place volumes was calculated to generate a statistical distribution. From there, the P10, P50 and P90 models were selected for numerical simulation input
- Simulation model grid:
 - Upscaled areal (perpendicular to well 20m to 2m)
 - Downscaled areal (parallel to well 20m to 100m)
 - Downscaled vertical (perpendicular to well 0.5m to 2m)

Petrel Model Results

- An iterative procedure is used between the geo-model, the basic geological maps, and the surface constraints to obtain the optimal horizontal well placement
- A hard bottom target depth is determined as the lowest depth in which the well can be placed without intercepting the GPP base
- The producer target midpoint depth is picked 1.0 meter above the GPP base
- From the gamma ray log that was run in each of the lateral section the overall effective well length was estimated to be 95%

Geomodel Methodology - Future Development

- Declustering assigning the data weights that account for the proximity to surrounding coreholes
- Two models with different resolutions would be used:
 - \circ Coarse model over the entire SAGD PDA area (40x40x1)
 - Refined model for flow simulation for PAD area (5x5x0.5)
- The horizontal and vertical Variogram parameter range will be adjusted to match regional values
- Continue updating the model with data from the 2005/2006 winter wells
- Conduct a channel lag study outside of the geomodel to determine
 - Chance of occurrence and lateral continuity
 - o Quantify the impact on existing geomodel and reservoir model results

2005 Phase I - Dynamic Model

Objectives

- Validate deterministic forecasts generated using Dr. Butler's GravDrain analytical model and Dr. Ken Kisman's simple 3D Exotherm model
- Establish an expected recovery factor for Regulatory Application
 - Sensitivities Analysis
 - Well spacing
 - Pay zone thickness
 - Upper Transition Zone (UTZ) and Lower Transition Zone (LTZ)
- Monitor performance and troubleshoot for Phase I well pair

Basis of Generic Forecast

As indicated above prior to any detailed static and dynamic modeling a simple approach was taken to generate the generic forecast that was to be expected from each well pair. There was an analytical calculation using Dr. Butler's GravDrain software and a simple 3D Exotherm numerical model (constant rock properties) by Dr. Ken Kisman. The two methods were combined to generate an estimated average forecast to be used in the EUB application. Below is a summary of the forecasts.

3D CMG STARS Model Input for Single Well Pair

- Rectangular grid with 100x2x2 m block dimensions
- Areal extent is 700 m along the well length and 100m perpendicular to the well
- Range of gross vertical thickness is 15 to 35 m
- Porosity and Saturation are upscaled from a detailed geostatistical Petrel geological model
- Permeability is determined using a transform from porosity-permeability cross-plot generated from core data
- Fluid and thermal properties are based on UTF field data and industry standard

PARAMETER	VALUE						
Bitumen Gravity (API)	8						
Bitumen Viscosity at TRES (cp)	>1,000,000						
Initial Reservoir Temperature	5 C						
Initial Reservoir Pressure at 100 mKB	800 kPa						
Net Pay Thickness	21 m (15-35 m)						
Porosity in pay zone	32% (30 - 35%)						
Oil Saturation in pay zone	84% (70 - 90%)						
Gas Saturation	0 %						
Horizontal Permeability	6000 mD (4800 - 8000 mD)						
Vertical Permeability	4800 mD (400 - 5000 mD)						

PVT and Relative Permeability Data

- Fluid viscosity verified on lease through samples taken from core hole in Jan-99
- Relative permeability data is based on the available UTF data and industry standard

Reservoir Model – Sensitivities

- For Regulatory Application there were four reservoir sensitivities analyzed using simplified geological models with constant porosity of 34%, So of 84% and Kh at 7000 mD:
 - Well Spacing (80, 90, 100, 110 & 120m)
 - o Pay Thickness (12, 15, 18, 20m)
 - Upper Transition Zone (Sw at 25, 50 & 75%)
 - o Lower Transition Zone (Kv/Kh at 0.1, 0.3 & 0.5)
- Fluid rate was the primary simulator constraint with BHP as the secondary constraint

Reservoir Model - Sensitivities Results

- The 100 m well spacing for the Phase II PADs was chosen based on:
 - o the average pay thickness
 - the general width of the geological trends
 - o the physical ability to drill and complete the well pairs
 - o overall economics.
- Pay zone results were very much dependent on the economic model we applied to the forecast
- The presence of the UTZ and LTZ intervals will have minimal impact on the overall performance on the SAGD well pairs.

Reservoir Model – Phase I

- Original modeling for the pilot in early 2005 was focused on history matching between September 2004 to August 2005 (as illustrated below) and performance forecast to the end of the year 2005.
- By mid 2005 the focus was shifted to understanding operational issues and investigating possible causes and remedies. One of the issues was a possible solid bridge at the end of the tail pipe in the producer lateral section (as illustrated below). The 3D view illustrates a remedial scenario model of the temperature profile with steam chamber development from the toe to mid section of the well only.
- Early 2006 a well clean out was implemented on the pilot well pair. Recovered samples indicate the presence of fine sand (mud) at the expected locations along the linear.
- Currently there is not enough steady state production data to adequately generate a reliable history match and production forecast for the Pilot.

APPENDIX 5:

Production data

APPENDIX 5/A:

Production data

Observation wells temperatures

APPENDIX 5/B:

Production data

Oil analysis

 Job/Sample
 Analysis Type
 Well Name/Sample ID

 A426009/
 676090
 Certificate of Analysis
 DEER CREEK ENERGY JOSLYN CREEK

Sample Point

JOSLYN CREEK BITUMEN

Report Distribution

Reports(A426009)DARCY DERDAK
 Reports(A426009)DARYL WARK

BEATA KARPINSKA, MSc CARMEN TOKER, CT BRANKO BANJAC, B.Sc.

Date of Issue

DEER CREEK ENERGY DEER CREEK ENERGY

Manager, Compositional Analysis Laboratory Manager, Inorganics and Toxicology Laboratory Manager, Petroleum Properties Laboratory

2004/11/03

2600, 205 - 5 AVENUE S.W. 2600, 205 - 5 AVENUE S.W. CALGARY, CANADA CALGARY, CANADA

Beata.Karpinska@MaxxamAnalytics.com Carmen.Toker@MaxxamAnalytics.com Branko.Banjac@MaxxamAnalytics.com

CERTIFICATE OF ANALYSIS

							A4	26009:676090			
	Sample F	Point I.D.	Client I.D.		Meter Numbe	ər	Lat	ooratory Number			
DEER CREEK ENERGY											
Operator Name			NTS (BC Su	rvey)	Well ID	ell ID					
DEER CREEK ENERGY JOS	LYN CREEK		DARYL		DEER CH	DEER CREEK					
				NI	Company						
		or Zono			CREEK DITUME	IN	Glass	tity			
Field of Area	FOOT	JI ZONE		Sample Form			Container iden	uty	Fercent Full		
Test Recovery	From:	Interval 2	2 —— Interval 3 —	E	Elevations (m)	Sample Gathering F	Point	Solution	Gas		
Test Type No. Multiple Recovery To:				КВ	GRD	Well Fluid Status		Well Status Mode			
Production Rates		Gaug	ge Pressures kPa	Ten	23.0	Well Status Type		Well Type			
Water m3/d Oil m3/d Ga	s 1000m3/d	Source	As Received	Source	As Received	Gas or Condensate	Project	Licence No.			
2004/10/25		2	004/10/27	2004/11/03	2004/11/0	3	SK1,CM4				
Date Sampled Start Date	Sampled End		Date Received	Date Reported	Date Revision F	Reported	Analyst				
PARAMETER DESCRIPT	ION		RESULTS	Units	Method			MDL			
Density Analysis											
Measured Relative Density	y @ 15 °C		0.9926	N/A	ASTM D5002	2					
Physical Properties											
Absolute Density @ 15 °C Acid Number API Gravity @ 15 °C			991.7 2.20 11.1	kg/m3 mgKOH/g N/A	ASTM D5002 ASTM D664	2		0.1 0.01			
			** Information n	ot supplied by client d	ata derived from LSD info	rmation		Results relate onl	y to items tested		

APPENDIX 6:

Economics

APPENDIX 6/A:

Economics

Statement of operating income / 2006

Deer Creek Energy Limited

Statement of Operating Income Twelve Months Ended December 31

(Unaudited)

	Janu	ary	February	March	April	May	June	July	August	September	Octobe	November	December	YTD			
(by accounting month)	2	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006	2006			
Operating Statistics		31	28	31	30	31	30	31	31	30	31	30	31	365			
Blend Sales (m3/d)	2	2.8		40.8	52.3	02.1	48.9	58.6	35.2	123.8	106.5	84.3	135.2	74.8			
Blend Sales (hbls/d)	1/	13.3		256.6	320.1	579.0	307.7	368.8	221.1	778.8	1 235 7	530.4	850.3	470.4			
Diluont (included in Pland Salas) (m2/d)	14	0.2	•	200.0	323.1	373.0	307.7	15 1	16.1	110.0	1,233.7	22.0	20.3	470.4	20%		
Bitumen sales (m3/d)	1	3.5		30.6	31.1	68.8	20.0	13.1	10.1	79.6	138.6	62.4	104.9	52.1	50%		
Bitumen sales (hbls/d)	1	24.7		102.5	195.9	432.9	178.1	273.7	120.1	500.6	871.6	302.3	659.6	327.0			
Bitumen sales (\$/bbl)	¢ (167	¢ .	\$ 3.05	\$ 3.34	\$ 16.86	\$ 9.74	\$ 42.67	\$ 0.42	\$ 18.00	\$ 15.11	\$ (26.47)	\$ 25.67	\$ 12.83			
Produced Bitumen (m3/d)	÷ 0	222	Ψ - -	40 8	φ 3.54 31.1	68.8	φ 3.74 28.3	43.5	9 0.4 <u>2</u> 191	79.6	φ 13.11 138.6	φ (20.47) 59.1	98.4	52.9			
Produced Bitumen (hbls/d)	13	19.9		256.6	195.9	432.9	178.1	273 7	120.1	500.6	871.6	371.8	619.0	332.9			
Produced Bitumen (m3)	68	9.6		1 265 0	934.4	2 134 0	849.5	1 349 0	592.0	2 388 0	4 296 0	1 773 5	3 051 0	19 322 0			
Produced Bitumen (hb)	4 33	87.1		7 956 0	5 876 7	13 421 4	5 342 8	8 484 3	3 723 3	15 018 9	27 018 9	11 154 1	19 188 7	121 522 0	SAGD - Prd - Wellhead YTD		
Operating expenses (\$/bbl)	\$ 262	2.03	\$-	\$ 251.32	\$ 434.85	\$ 223.66	\$ 230.26	\$ 156.53	\$ 536.24	\$ 149.88	\$ 90.36	\$ 195.80	\$ 212.70	\$ 213.81			
Bevenue															Phase 1 partian		
Revenue																Gross revenue	
Blend Sales	\$ 289,3	343	\$ (16,731)	\$ 386,299	\$ 315,595	\$ 1,109,728	\$ 561,188	\$ 837,289	\$ 413,538	\$ 1,184,128	\$ 1,510,632	\$ (28,325)	\$ 1,351,872	7,914,557	\$ 4,397,991	phase 1	
Pipeline/Terminal expense	(3.)	051)	1.620	(2.846)	(2,122)	(6.402)	(4.210)	(4.716)	(2,565)	(10.003)	(16.076)	-		(50.372)	\$ (27,991)		
Trucking	32.4	430	(149,701)	(79.098)	(54,998)	(235,406)	(95,850)	(149.679)	(74,752)	(253,256)	(460.675)	(40.087)	(177.132)	(1.738.206)	\$ (965,893)	Direct operating costs	1
Diluent	(315.)	763)	107.289	(280.097)	(225,539)	(565,203)	(371,177)	(195.031)	(271.653)	(500,315)	(454,973)	(352,803)	(498,118)	(3,923,384)	\$ (2,180,161)		
	(0.0)		,	()	()	(000)200/			(=: :,:::)	(000,010)	(101,010)		()	(0,0-0,000.)	Total	(3.174.045)	1
Bitumen Sales	2,9	959	(57,523)	24,258	32,935	302,716	89,951	487,862	64,568	420,554	578,908	(421,215)	676,622	2,202,595	\$ 1,223,946	(1
Data Sharing									-	-		-	-	-			
Marketing fee		-		-		-	-	-	-	-				-	-		Phase 1 fra
Royalty paid		813)	1,083	(77)	77	(3,384)	(3,722)	(2,554)	(606)	(1,269)	(3,419)	484	(11,111)	(25,311)	(14,065) Royalties paid in total	\$25,311.00	14,065
Net Revenue	2,	146	(56,440)	24,181	33,012	299,332	86,229	485,308	63,962	419,285	575,488	(420,731)	665,511	2,177,284	1,209,881	\$1,209,881.34	
Royalty received							2,500,000							2,500,000	2,500,000	Net revenue	1
Fypenses																	
Operations Staff	288.1	858	389,810	696.724	773,706	1.098.215	675.801	420.538	631,419	1,124,959	917 330	468 495	1.084.292	8.570 145	857.015		1
Eacility Costs	79.	482	107,176	70,133	18,782	70.355	61.362	72,050	200.495	191.150	215 637	697 598	741.568	2,525 787	252.579		
Consumables	(1)	000)	6.050	11,733	4,531	15,728	10,100	3.455	10,000	15.461	5 598	8 898	68,430	158 984	15.898		1
Fuel	490.0	099	501.648	703,426	766.348	701.377	227,651	268,180	508,169	499,842	520.577	288.256	502,000	5,977,574	597.757		
Utilities	141.4	437	252,716	82.305	310.205	318.512	71.473	265.319	169.244	199.818	256.061	149.084	530,552	2,746,726	274.673		1
Chemicals	9.9	903	56.256	95.408	72.835	230.824	90.623	(17,155)	75.000	73,158	88,167	69,103	121.058	965.181	96.518	Indirect costs	1
Transportation	91.	590	335.972	225,980	366.026	288.235	12.504	(24,444)	100.884	78,199	131.851	80,117	252,485	1,939,400	193.940		
Repairs and Maintenance	43,	502	136,821	113,799	(6,920)	73,588	75,937	74,132	53,976	68,450	301,324	437,162	769,754	2,141,526	214,153		
															1 workover not in		
Workovers		400)	(9,700)		250,000	205,000	4,753	266,000	247,377		4,746	(14,746)	11,284	957,314	707,314 phase 1 subtracted		
	1 126	470	1 776 740	1 000 500	2 555 512	2 001 925	1 220 205	1 229 074	1 006 564	2 251 026	2 441 201	2 192 069	4 091 424	25 092 627	2 200 947	3,209,847	1
	1,130,4	470	1,770,749	1,999,509	2,000,010	3,001,635	1,230,205	1,326,074	1,990,504	2,251,030	2,441,291	2,103,900	4,001,424	25,962,637	3,203,047		
Net operating income (loss)	\$ (1.134.3	324)	\$ (1,833,190)	\$ (1,975,328)	\$ (2,522,501)	\$ (2,702,503)	\$ 1,356,024	\$ (842,766)	\$ (1,932,601)	\$ (1,831,751)	\$ (1,865,803)	\$ (2,604,698)	\$ (3,415,913)	\$ (21,305,354)	\$ 500,035		

Notes

1.	
Facility costs increased due to yearly insurance costs booked	
	84% Op Stmt
2.	Per GL
Over accrual of oil sales in Oct by \$500,000	
(Volume was estimated at 6091m3 based on	
actual volume to Oct 21 of 4126m3.	Difference
There only an actual additional volume	
shipped of 44m3	Gross
3	

Trucking charges are reduced in Nov due to a price reduction in shipping costs being routed through the Enbridge terminal
APPENDIX 6/B:

Economics

Capital 2006

						Closing Balances	Closing Balances	Actuals	Actuals	Adjustments	Total	Actuals :lju	stmen Total	Actuals	Adjustments	Total	Actuals	Adjustments	Total	Actuals	Adjustments	Total	Actuals
					AFE	Dec-04	Dec-05	Jan-06	Feb-06	Feb-06	Feb-06	Mar-06 M	ar-06 Mar-06	Apr-06	Apr-06	Apr-06	May-06	May-06	May-06	Jun-06	Jun-06	Jun-06	Jul-06
AFE Number	SALSA WBS	AFE Description	WI%	Status	Budget	Gross	Gross	Gross 100%	Gross 100%	Gross 100%	Gross 100%	ross 100'ros	s 100'ross 10	OGross 100	% Gross 100%	Fross 100	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	o ross 100
SAGD Phase I						-																	
002-0001-0002-0015		Storage Charges for Steam Generators	84%	Inactive	11,350	7,400	350		200		200	008 0	80) (400	1)	(400)	1,600		1,600	(2,000)		(2,00	.a) -
002-0001-0003-0020		1P1 ESP Installation	84%	Inactive	884,742		890,662	(1,581)) -														
002-0001-0003-0022		Phase 1 Production Well Workover	84%	Inactive	825,635				900,158		900,158	3 (192)	(19	2) (98,11)	9	(98,118)	88,195		88,195	51,057		51,05	7 800
002-0001-0002-0024	CAOA3081542122420000	Phase I Decommission	84%	Active	250,000									100,000	j	100,000				10		1	0 (24,908)

Adj	ustments	Total	Actuals	Adjustments	Total	Total	Gross Ca	oital Costs	Net													
,	Jul-06	Jul-06	Aug-06	Aug-06	Aug-06	Sep-06	Sep-06	Sep-06	Oct-06	Oct-06	Oct-06	Nov-06	Nov-06	Nov-06	Dec-06	Dec-06	Dec-06	L-T-D	Current	Current	Current	Supplemental
Gro	oss 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Gross 100%	Month	Year	Year	Required
		•						•		#REF!	#REF!											
								•										7,950	•	200	168	•
																		889,081	-	(1,581)	(1,328)	100 C
		800				510		510	321		321							942,731	-	942,731	791,894	100 A
		(24,908)	650		650	44,357		44,357	49,955		49,956	35,424		35,424	132,485		132,486	337,976	132,486	337,976	283,900	87,976
			-															2,177,739	132,486	1,279,327	1,074,635	

APPENDIX 7:

Facilities

APPENDIX 7/A:

Facilities

Process Flow Sheet

SHEET NUMBER	DRAWING NUMBER	REV
4 OF 4	D-33359-F-00-02	7

APPENDIX 7/B1:

Facilities

P&IDs: Phase 1

\bowtie	GATE VALVE (GA)	- C	INSULATION (H-HOT, C-COLD)	\bigcirc	LOCALLY MOUNTED INSTRUMENT
	BALL VALVE (BA)	<u></u> _	INSULATION & HEAT TRACE	$\widetilde{\ominus}$	MOUNTED ON MAIN CONTROL ROOM PANEL
×	PLUG VALVE (PL)		PROCESS PIPING	$\overline{\ominus}$	LOCAL PANEL MOUNTED
D X 1		<u> </u>	PNFLIMATIC SIGNAL	\bigcirc	DISTRIBUTED CONTROL SYSTEM ITEMS
				\bigcirc	DISTRIBUTED CONTROL SYSTEM AUXILIARY OPERATOR'S INTERFACE
	GLOBE VALVE (GL)	* * *	CAPILLARY TUBING	\bigcirc	DISTRIBUTED CONTROL SYSTEM
\sim	CHECK VALVE (CH)		ELECTRICAL SIGNAL	\bigcirc	PROGRAMMABLE LOGIC CONTROL SYSTEM
	BUTTERFLY VALVE (BU)	+	HYDRAULIC SIGNAL	\bigcirc	PROGRAMMABLE LOGIC CONTROL SYSTEMS ACCESSIBLE TO OPERATOR
	SOCKET WELD VALVE	$\sim \sim$	ELECTROMAGNETIC/SONIC SIGNAL	\bigcirc	AUX. PROGRAMMABLE LOGIC CONTROL SYSTEMS ACCESSIBLE TO OPERATOR
$-\bowtie$	SCREWED VALVE	-00	SOFTWARE OR DATA LINK	AT	ANALYZER TRANSMITTER
	FLANGED VALVE	A.O.	AIR TO OPEN (FAIL CLOSED)	BDV	BLOWDOWN VALVE
Å	CONTROL VALVE WITH DIAPHRAGM ACTUATOR	A.C.	AIR TO CLOSE (FAIL TO OPEN)	BCS	BURNER CONTROL STATUS
Яа	CONTROL VALVE WITH	C.S.O.(C)	CAR SEAL OPEN (CLOSED)	BE	BURNER ELEMENT
Ĩ	PRESSURE REGULATOR	E.S.D.	EMERGENCY SHUTDOWN	(BZ)	BURNER IGNITOR
		ED		(cv)	CONTROL VALVE
	SULENUID VALVE	F.P.	FULL PURI		DIFFERENTIAL PRESSURE INDICATOR
<u>R</u> 1	ANGLE CHOKE	R.P.	REGULAR PORT		DIFFERENTIAL PRESSURE SWITCH
<u>) </u>	INLINE CHOKE	N.C.	NORMALLY CLOSED	ESDV	EMERGENCY SHUTDOWN VALVE
\vdash	Y-STRAINER	N.O.	NORMALLY OPEN	(FAH)	FLOW ALARM HIGH, L-LOW
k. Italia itali	PRESSURE SAFETY VALVE	S.R.	SPRING RETURN	(FC)	FLOW CONTROLLER
	ORIFICE METER RUN		SPEC BREAK	(FCV)	FLOW CONTROL VALVE
	TURBINE METER OR POSITIVE DISPLACEMENT METER		SUPPLIED BY OTHERS	(FDSD)	FIRE DETECTION SHUTDOWN
ų	SPECTACLE BLIND, OPEN (CLOSED)	\bigcirc	TIE IN NUMBER	(FSDH)	FLOW SHUTDOWN HIGH, L-LOW
•	CHANGE IN PIPE SIZE		TIE IN LOCATIONS	(FE)	FLOW ELEMENT
				(FFSD)	FLAME FAILURE SHUTDOWN
И	INLINE STRAINER		PNEUMATIC TO CURRENT		FLOW INDICATOR
*	HIGH TEMPERATURE VALVE		CURRENT TO PNEUMATIC	FIR	FLOW INDICATOR RECORDER
					FLOW RECORDER
					FLOW SWITCH (H-HIGH, L-LOW)
13 VSEP TAKE-OFF	S ADDED/METER ADDED TO BFW PUMP DISCHARGE 4376	6 CT 04.07.07			

FT FLOW TRANSMITTER FY FLOW CONTROL HOA HAND/OFF/AUTOMATIC H2S H2S GAS DETECTION LAH LEVEL ALARM HIGH, L-LOW LC LEVEL CONTROLLER LCV LEVEL CONTROL VALVE (LEL) COMBUSTIBLE GAS DETECTION LG LEVEL GAUGE U LEVEL INDICATOR LIC LEVEL INDICATOR CONTROLLER LIR LEVEL INDICATOR RECORDER LR LEVEL RECORDER LS LEVEL SWITCH (H-HIGH, L-LOW) (LSDH) LEVEL SHUTDOWN HIGH, L-LOW LT LEVEL TRANSMITTER LY LEVEL CONTROL ME MOISTURE ELEMENT MI MOISTURE INDICATOR OSS OVERSPEED SWITCH OSSD OVERSPEED SHUTDOWN (PAH) PRESSURE ALARM HIGH, L-LOW PC PRESSURE CONTROLLER PCV PRESSURE CONTROL VALVE PDM POSITIVE DISPLACEMENT METER PI PRESSURE INDICATOR PIC PRESSURE INDICATOR CONTROLLER PIR PRESSURE INDICATOR RECORDER PR PRESSURE RECORDER PRV PRESSURE REGULATING VALVE

	·													
13	VSEP TAKE-OFFS ADDED/METER ADDED TO BFW PUMP DISCHARGE	43766	СТ	04.07.07		CENERAL NOTES		BY	DA1	TE				
12	FE-45 ADDED TO BITUMEN INLET	33359	СТ	04.06.23			. D	RN. CT	03.06	6.12			DEER CREEK	
11	V-104 MANUAL BYPASS REVISED	33359	СТ	04.06.15		CONSTRUCTION CHANNE INFORMATION FORMATION FORMATION FORMATION TO BOWER DAMAGERORY ROLLETH ENGINEERING LTD. BY	· _ c	HK. RDE	3 04.01	1.23			Energy Limited	
10	FE-4035;V-104 MANUAL BYPASS ADDED	33359	CT	04.05.26		THE OWNER'S FELD SUPERVISORS AND OR HIRED CONTRACTORS, ANY CHANGES NOT DOCUMENTED WILL ANY OPERATION OF THE DEVICES OF THE DEVICES OF THE	AP	P'D.						
9	POST CONSTRUCTION	33359	CT	04.04.27		THE DRAWING MAY NOT BE AN ACCURATE REPRESENTA OF THE CONSTRUCTED FACILITY.	10N L.S	S.D. 10-33	-95-12	W4M		JUSLIN PR	ASE #1 DEMONSTRATION FACILITY	
8	GENERAL REVISIONS	33359	CT	04.03.26		2. PROR TO THE COMMENCEMENT OF ANY CONSTRUCTION	~						AECHANICAL FLOWSHEET	
7	GENERAL REVISIONS	33359	СТ	04.02.24 J	G 04.02.24	THE COMMENTS REPRESENTATIVE TO VERIFY THE LOCATIO AND STATUS OF ANY PHYMR, ELECTRICAL, EQUIPMENT	۳				Rewer Damberger Beleeth			
6	GENERAL REVISIONS	33359	СТ	04.02.11		OR BUILDINGS.					power namperger kolsem	SHEET NUMBER	DRAWING NUMBER	REV
5	ISSUED FOR CONSTRUCTION	33359	CT	04.01.28 R	DB 04.01.23	OR ELECTRICAL ON A FACILITY NOT DESIGNED BY B.D.R. ENG. LTD. IS ONLY SHOWN AS A REPRESENTATI	M I				Engineering Ltd.	1 05 27	E_33350_E_00_01	13
NO.	REVISION	PROJ. No	BY	DATE CI	IK.	OF WHAT EXISTS AND MUST BE VENIFIED BY THE OWN	R				=	1 OF 27	F=33339=F=00=01	13

<u>LEGEND</u>

PS	PRESSURE SWITCH (H-HIGH, L-LOW)
PSDH	PRESSURE SHUTDOWN HIGH, L-LOW
PSV	PRESSURE SAFETY VALVE
PT	PRESSURE TRANSMITTER
PVB	PRESSURE VACUUM BREATHER
PY	PRESSURE CONTROL
PZ	PRESSURE TRANSDUCER
RO	RESTRICTING ORIFICE
SY	SOLENOID ACTUATED VALVE
SC	SURGE CONTROLLER
SCV	SURGE CONTROL VALVE
SDV	SHUTDOWN VALVE
TAH	TEMPERATURE ALARM HIGH, L-LOW
ТС	TEMPERATURE CONTROLLER
TCV	TEMPERATURE CONTROL VALVE
Т	TEMPERATURE INDICATOR
TIR	TEMPERATURE INDICATOR RECORDER
TS	TEMPERATURE SWITCH (H-HIGH, L-LOW)
TSDH	TEMPERATURE SHUTDOWN HIGH, L-LOW
Π	TEMPERATURE TRANSMITTER
Тү	TEMPERATURE CONTROL
TW	THERMO WELL
VI	VALVE ACTUATION INDICATOR
vs	VIBRATION SWITCH
VSD	VIBRATION SHUTDOWN
VSDH	VIBRATION SHUTDOWN HIGH
УТ	VIBRATION TRANSMITTER
Z	TRANSDUCER
ZS	LIMIT SWITCH

SHEET NUMBER	DRAWING NUMBER	REV
4 OF 27	F-33359-F-00-01	13

<u>T-700</u> OIL SLOP TANK 4648 O.D. x 7315 HIGH 119m³ (750bbl) SERIAL # 1079 114-150SPSX-270 SLOPE (DO NOT POCKET) VRU HEADER SHEET 4 OF 27 , 25H&ET - PRESSURE RELIEF HATCH - TBA 4-20 ma 700017000170001 70001 LEVEL TRANSMITTER 89-150# BLIND 8-12 oz PRESSURE/0.4 VAC. THIEF HATCH LSH 7149mm 70002 60 NPT NORRISEAL 1001A-2SM60NELD LSDH 70002 <u>T-700</u> 50 H 33-150PX-309 SY 70004 ASCO EF8320 G202-24 33x21↓ FISHER 67 CFR 17 SAMPLE BOX 150PX KIMRAY T12 21CH-153SX -Z 60CH-153SX 21BA-153SX 1 (S.R.) 114BA-155SX (DB&B) C.S.O. ¥ 60BA−153SX ¥ (S.R.) KIMRAY 112 SMT 70003 PI 70011 60BA-1535X 60CH-1535X Correction Correcti KIMRAY 112 SMT SDV 70004 112 SMT TCV PI 70003 PI 70007 T12 T12 T12 T0004 T12 T12 T0004 T12 T12 T0004 T12 T12 T0004 T12 T0005 T12 T0005 T12 T0007 T0007 T12 T0007 T0007 T12 T0007 T0007 T0007 T12 T0007 T007 A 33BA-153SX A (DRAIN/PURGE GAS) PRV 70006 PI 70005 21NE 33BA -153X 21CH-153X 21BA-153X 21BA-153X 33-150PX-308 FUEL GAS FROM HEADER SHEET 26 OF 27 TBA mm LSL LSDL 70000 70000 60 NPT NORRISEAL 1001A-2SM60MELR 610x914 M/W SPLIT (FFSD) 70015 ı¥1 21BA-153X Ъ 21BA-153X ┥┝╴ .____. പ്പ33BA– |153SX |-1001≉ _____ ዋ ASC0 70009 EFB320G202-24 TAH 70013 - TSH 70013 33BA-2 153SX FISHER PRV 912 70008 89BA-151SX c/w TRUCK QUICK CONNECT 60CH-151SX 60BA-155SX (DB&B) 60CH-151SX 60BA-155SX (DB&B) 89CH- 4 151SX / 7 89CH-151SX /8CS 70012 114BA-155SX (DB&B) 4 89BA-155SX (DB&B) 89BA- 7 155SX 9 (DB&B) 4 X NAGY FQI-100 BURNER CONTROL SYSTEM 122 134 114-150PSX-50PSX-60-150P 89-1 g <u>, 25H&ET)</u> 0/S UTILIDOR ONLY o/S UTILIDOR ONLY <u>, 25H&ET)</u> 0/S UTILIDOR ONLY <u>, 25H&ET 1,</u> 0/S UTILIDOR ONLY 0/S UTILIDOR ONLY 33-150PSX-137 P-525 PUMP DISCHARGE SHEET 25 OF 27 0/S UTILIDOR ONLY 60-150PSX-144 OIL FROM IGF SKID SHEET 11 OF 27 60-150PSX-242 FROM BITUMEN INLET LINE SHEET 3 OF 27 -{25 H}-60-150PSX-401 FROM P-512 DISCHARGE SHEET 25 OF 27 60-150PSX-106 OIL FROM V-100 OIL DUMP SHEET 6 OF 27 FUTURE TIE-IN FROM TORR FILTER 60-150PSX-135 SLOP HEADER TO STORAGE SHEET 5 OF 27

	114-150PSX-121 OIL RECYCLE	
	HEADER SHEET 8 OF 27	
	89–150PSX-128 OIL TRANSFER TO STORAGE SHEET 8 OF 27	
	60-150PSX-106 OIL TO STORAGE TANKS SHEET 8 OF 27	
	89-150PSX-167 V-102 OIL TO T-700	
	SHEET 14 OF 27	
SHEET NUMBER	DRAWING NUMBER	REV
7 OF 27	F-33359-F-00-01	13
-		

114-150SPSX-270 VRU HEADER SHEET 8 OF 27

<u>T-701</u> OIL PRODUCTION TANK 4648 0.D., x 7315 HIGH 119m³ (750bbl) SERIAL ¥ 1089

<u>T-702</u> OIL SHIPPING TANK 4648 0.D., × 7315 HIGH 119m³ (7505b1) SERIAL # 1087 <u>T–704</u> DESAND TANK 4724 O.D. x 4877 HIGH 79m ³ (500bbl) INTERNALLY COATED CONED BOTTOM 114-150SPSX-270 SLOPE (DO NOT POCKET) VRU HEADER SHEET 8 OF 27 25H&ET <u>म् 25मक्ष्टा न</u>् <u>125H&ET 1-</u> 33-150PX-314 FUEL GAS FROM HEADER SHEET 26 OF 27 219-150# ENARDO 1000 SERIES LOCK DOWN HATCH 7023,7023,7023 LT GML FLUID LEVEL TRANSMITTER 7040 7040 7040 - LT GML FLUID LEVEL TRANSMITTER 89-150# <u>BLI</u>ND 8-12 oz PRESSURE/0.4 VAC. THIEF HATCH 82 283 50SPSX LSDH 7024 14-1 <u>T-704</u> <u>T-702</u> LSDH 7042 LSH 4406mm 7042 50 H 60 NPT NORRISEAL 1001A-2SM60NELD 33-150PX-312 SY ASCO 7020 EF8320 G202-24 114BA-155SX (DB&B) C.S.O. 33x21℃ 33x21℃ SAMPLE BOX SAMPLE BOX
 1
 1

 1
 1

 1
 1

 2
 1

 2
 1

 2
 1

 2
 1

 2
 1

 3
 2

 1
 1

 3
 2

 1
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1

 3
 1
150PX KIMRAY T12 21CH-153SX -I 112 TC 7022 H 7022 TU 7022 7022 7022 7 60CH-153SX 33BA-153SX (DRAIN/PURGE GAS) ☆ 60BA-153SX ♀ (S.R.) FISHER 67 CFR Ъ KIMRAY 112 SMT KIMRAY 112 SMT 610x914 M/W SPLIT 12 Sm. TCV 7022 3X 7027 KIMRAY TSHH בייישים (<u>שורטיי</u> 219øx900 LG. BLOW CASE BLOW CASE (PRV 7026 (PI 7028 (PI 7025 60BA-153SX 60CH-153SX 153SX 27BA[−] 153SX (SDV 7020 27BA-153SX ----21NE 33-150PX-312 FUEL GAS FROM HEADER SHEET 26 OF 27 21NE _153X BE 70211 BZ 70211-TBAmm TO21 610x914 M/W SPLIT FFSD 70213 33BA-153X 1Å1 21BA-21BA-153X 21BA-153X 21BA-153X 21BA-153X п 60BA-151SX 21BA-153X -60-150PSX-414 0,33BA-153SX -1200⊈≉ 0,33BA-153SX |-DOCI≉ ∩ 33BA-153SX -DXM≉ Ģ SY ASCO 70210 EF8320G202-24 -IXXI--E DESAND TRUCK WASH 60BA-60 QUICK CONNECT 151SX FISHER PRV 912 7029 33BA-153SX 42001-B9BA-151SX c/w TRUCK QUICK CONNECT 33BA-153SX ₽ (DRAIN/PURGE GAS) bm-<u>м/w</u> [г===л] 60CH- = 89CH-151SX 114x89 \ **ÆCS** 70012 60BA-155SX (DB&B) 4 89BA-155SX (DB&B) 89BA- 155SX 0 (DB&B) 스 89BA- ↓ 155SX 0 (DB&B)↓ 89BA-155SX (DB&B) 89BA-155SX (DB&B) <u>8</u> 1! NAGY FQI-100 BURNER CONTROL SYSTEM 109 13 124 60-150PSX-1 - <u>(25H&ET)</u> 0/S UTILIDOR ⁷ /S UTILIDOR (7 89CH-151SX 114BA--155SX (DB&B) C.S.O. 89BA-155SX (DB&B) 60ø -----CLEAN OUT s/٥ ģ ģ 89-150PSX-111 OIL TANK OVERFLOW SHEET 8 OF 27 <u>, {25H&ET },</u> 89BA-155SX 89-150SPSX-196 <u>, 25H&ET</u>, O/S UTILIDOR ONLY DESAND DRAIN 89-150SPSX-195 DESAND DRAIN TO STORAGE SHEET 5 OF 27 O/S UTILIDOR ONLY - <u>, [25H&ET</u>], 0/S UTILIDOR ONLY , <u>25H&ET</u>, 89-150PSX-116 0/S UTILIDOR ONLY FROM OIL STORAGE TANKS SHEET 8 OF 27 114-150PSX-121 OIL RECYCLE HEADER SHEET 8 OF 27 89-150PSX-128 OIL TRANSFER TO STORAGE SHEET 8 OF 27

60-150PSX-106 OIL TO STORAGE TANKS SHEET 8 OF 27

89-150PSX-111 OIL TANK OVERFLOW SHEET 8 OF 27

114-150SPSX-270
SHEET 15 OF 27

SHEET NUMBER	DRAWING NUMBER	REV
12 OF 27	F-33359-F-00-01	13

		60-150PSX-293 FROM PSV-10204 ON ORF SKID SHEET 14 OF 27
168x89	89×60	60-150PSX-294 FROM GLYCOL SKID PSV-1031 SHEET 23 OF 27

SHEET NUMBER	DRAWING NUMBER	REV
13 OF 27	F-33359-F-00-01	13

P-501 SKIM PUMP TARBY PROGRESSIVE CAVITY MODEL # 2TL6-CDF-AAA RATED FOR 25M³/D ♥ 900 kPa c/w 2 H.P. ♥ 1150 RPM 3/60/600 X.P. MOTOR c/w VFD DESIGN : 1241 kPa ♥ 148°C

			60-150PSX-401 P-512 DISCH. TO SLOP TANK HEADER SHEET 7 OF 27	
(AE) (5251) (AE) (5252) (4)	AT DETECTION LSDH 12 5251 5251 5251 52 AT DETECTION LSDH 12 5252 5252 5252 52 5252 5252 52	- - - - - - - - - - - - - -		
~~~~				
	SHEET NUMBER 25 OF 27	<u></u>	<u>ing number</u> 99-F-00-01	REV 13

757 LITRES



89-150PX-302 FUEL GAS HEADER FROM V-101 SHEET 3 OF 27






### **APPENDIX 7/B2:**

Facilities

P&IDs: PAD 204

### LEGEND

$\bowtie$	GATE VALVE (GA)	┥	INSULATION (H-HOT, C-COLD)	$\bigcirc$	LOCALLY MOUNTED INSTRUMENT	<u>LSD</u>	LEVEL SHUTDOWN (H-HIGH, L-LOW)
				$\bigcirc$	MOUNTED ON MAIN	LI	LEVEL TRANSMITTER
$\sum $	BALL VALVE (BA)	<del>}_</del>	INSULATION & HEAT TRACE	$\bigcirc$	CONTROL ROOM PANEL	LII	LEVEL INDICATOR TRANSMITTER
				$\bigcirc$	LOCAL PANEL MOUNTED	LY	LEVEL TRANSDUCER
$\bowtie$	PLUG VALVE (PL)		PROCESS PIPING	$\Box$	INSTRUMENT	ME	MOISTURE ELEMENT
						MI	MOISTURE INDICATOR
					CONTROL SYSTEM	<u>PA</u>	PRESSURE ALARM (H-HIGH, L-LOW)
	NEEDLE VALVE (NE)	<del>11 11 11</del>	PNEUMATIC SIGNAL			PC	PRESSURE CONTROLLER
				$\longleftrightarrow$	SYSTEMS ACCESSIBLE TO OPERATOR	PCV	PRESSURE CONTROL VALVE
$\bowtie$	GLOBE VALVE (GL)	$\times \times \times$	CAPILLARY TUBING			PDM	POSITIVE DISPLACEMENT METER
				$ \longleftrightarrow $	AUX. PROGRAMMABLE LOGIC CONTROL SYSTEMS ACCESSIBLE TO OPERATOR	PI	PRESSURE INDICATOR
	CHECK VALVE (CH)		ELECTRICAL SIGNAL		STSTEMS ACCESSIBLE TO OF ENATOR	PIC	PRESSURE INDICATOR CONTROLLER
	CHECK VALVE (CH)		ELECTRICAL SIGNAL	ACV	ANALYTIC CONTROL VALVE	PIR	PRESSURE INDICATOR RECORDER
				AE	ANALYTIC ELEMENT	PIT	PRESSURE INDICATOR TRANSMITTER
	BUTTERFLY VALVE (BU)		HYDRAULIC SIGNAL	AIC	ANALYTIC INDICATING CONTROLLER	PR	PRESSURE RECORDER
				ΔΤ		PRV	PRESSURE REGULATING VALVE
1×1	SOCKET WELD VALVE	- <del>~, ~,</del>	ELECTROMAGNETIC/SONIC_SIGNAL			DS	
~ ~			,				DRESSURE SHITTOWN (H HIGH I LOW)
				BDV	BLOWDOWN VALVE	<u>F SU</u>	PRESSURE SHUTDOWN (H-HIGH, L-LOW)
	SCREWED VALVE	00	SOFTWARE OR DATA LINK	BCS	BURNER CUNIRUL STATUS	PSV	PRESSURE SAFETY VALVE
				BF	BURNER ELEMENT	PT	PRESSURE TRANSMITTER
	FLANGED VALVE	A.O.	AIR TO OPEN (FAIL CLOSED)	BZ	BURNER IGNITOR	PVB	PRESSURE VACUUM BREATHER
			× , , ,	CV	CONTROL VALVE	PY	PRESSURE TRANSDUCER
	CONTROL VALVE WITH			dPl	DIFFERENTIAL PRESSURE INDICATOR	RO	RESTRICTING ORIFICE
$\bowtie$	DIAPHRAGM ACTUATOR	A.C.	AIR TO CLOSE (FAIL TO OPEN)	dPS	DIFFERENTIAL PRESSURE SWITCH	SAV	SOLENOID ACTUATED VALVE
				dPT	DIFFERENTIAL PRESSURE TRANSMITTER	SC	SURGE CONTROLLER
$\overline{\bowtie}$	CONTROL VALVE WITH	C.S.O.(C)	CAR SEAL OPEN (CLOSED)	ESDV	EMERGENCY SHUTDOWN VALVE	SCV	SURGE CONTROL VALVE
<u></u>	PISTON ACTUATOR			FA	FLOW ALARM (H-HIGH, L-LOW)	SDV	SHUTDOWN VALVE
, T				FC	FLOW CONTROLLER	TA	TEMPERATURE ALARM (H-HIGH, L-LOW)
$\bowtie$	PRESSURE REGULATOR	E.S.D.	EMERGENCY SHUIDOWN	FCV	FLOW CONTROL VALVE	TC	TEMPERATURE CONTROLLER
				FDSD		TCV	TEMPERATURE CONTROL VALVE
₩	SOLENOID VALVE	F.P.	FULL PORT	FSD		TE	
					FLOW ELEMENT	TL	
<b>P</b> 1	ANCLE CHOKE	PD	RECULAR PORT			тю	
221	ANGLE CHORE	1.1.	REGULAR FORT	FFSD	FLAME FAILURE SHUTDOWN	TIC	TEMPERATURE INDICATOR CONTROLLER
				FI	FLOW INDICATOR	IR 	TEMPERATURE RECORDER
	INLINE CHOKE	N.C.	NORMALLY CLOSED	FIC	FLOW INDICATOR CONTROL	ΠR	TEMPERATURE INDICATOR RECORDER
				FIR	FLOW INDICATOR RECORDER	<u>TS</u>	TEMPERATURE SWITCH (H-HIGH, L-LOW)
		N.O.	NORMALLY OPEN	FR	FLOW RECORDER	<u>TSD</u>	TEMPERATURE SHUTDOWN (H-HIGH, L-LOW)
				FS	FLOW SWITCH (H-HIGH, L-LOW)	TT	TEMPERATURE TRANSMITTER
				FQI	FLOW QUANTITY INDICATOR	TIT	TEMPERATURE INDICATOR TRANSMITTER
$\vdash$	Y-STRAINER	S.R.	SPRING RETURN	FT	FLOW TRANSMITTER	TW	THERMO WELL
· >				FIT	FLOW INDICATOR TRANSMITTER	ΤY	TEMPERATURE TRANSDUCER
. *			SPEC BREAK	FY	FLOW TRANSDUCER	VI	VIBRATION INDICATOR
$\square$	PRESSURE SAFETY VALVE			HIC	HAND INDICATING CONTROLLER	VR	VIBRATION RECORDER
				HR	HAND RECORDER	VS	VIBRATION SWITCH
	ORIFICE METER RUN		SUPPLIED BY OTHERS	HS	HAND SWITCH	VSD	VIBRATION SHUTDOWN
				ну	HAND TRANSDUCER	VSDH	VIBRATION SHUTDOWN HIGH
	TURRINE METER OR	$\bigcirc$	TIE IN NUMBER	1125		VUT	VIDRATION TRANSMITTED
	POSITIVE DISPLACEMENT METER			ПZ3	HZS GAS DETECTION TRANSMITTER	VI	VIBRATION TRANSMITTER
		~		HZSI	H2S GAS DETECTION TRANSMITTER	VII	VIBRATION INDICATOR TRANSMITTER
		~	THE IN LOCATIONS	LA	LEVEL ALARM (H-HIGH, L-LOW)	XVPI	VALVE POSITION INDICATOR
				LC	LEVEL CONTROLLER	XVPS	VALVE POSITION SWITCH
¥	SPECTACLE BLIND, OPEN (CLOSED)	P/	PNEUMATIC TO CURRENT	LCV	LEVEL CONTROL VALVE	<u>ZS</u>	LIMIT SWITCH (O-OPEN;C-CLOSED)
ĕ	· · ·	<u> </u>		LEL	COMBUSTIBLE GAS DETECTION	•	
_			CURRENT TO RNEUMATIC	LELT	COMBUSTIBLE GAS DETECTION TRANSMITTER	•	
$\Box$	CHANGE IN PIPE SIZE	P	CURRENT TO PNEUMATIC	LG	LEVEL GAUGE		
h~				LI	LEVEL INDICATOR		
<u></u>	INLINE STRAINER		INSTRUMENT AIR	LIC	LEVEL INDICATOR CONTROLLER		
Щ				LR	LEVEL RECORDER		
Ŷ	RESTRICTING ORFICE	(T	STEAM TRAP	LIR	LEVEL INDICATOR RECORDER		
II.					I EVEL SWITCH (H-HIGH I -LOW)		

											_
							CENERAL NOTES		B	Y DA	ł
							GENERAL NOTES;	DF	<b>₹N.</b> C	T 04.02.	2
0	POST CONSTRUCTION ISSUE	33500	HL	06.09.13	CT	06.09.22	CONSTRUCTION CHANGE INFORMATION FORWARDED FROM CONSTRUCTION CHANGE INFORMATION FORWARDED TO BOWER DAMBERGER ROLSETH ENGINEERING LTD. BY	CH	HK. RI	)B 05.06.	6.
9	JULY 2006 HAZOP GENERAL REVISIONS	64297	CT	06.07.23			THE OWNER'S FIELD SUPERVISORS AND OR HIRED CONTRACTORS, ANY CHANGES NOT DOCUMENTED WILL NOT POPULATION ON THE DOMINION AND APPENDENT	AP	Ρ'D.		
8	GENERAL REVISIONS	43581	CT	06.03.06			THE DRAWING MAY NOT BE AN ACCURATE REPRESENTATION OF THE CONSTRUCTED FACILITY.	L.S	<b>i.D.</b> 15−7	2-95-12 W	W4
7	D.C.E.L. VALVE TAGGING REVISIONS	43581	GC	06.01.04			2. PRIOR TO THE COMMENCEMENT OF ANY CONSTRUCTION				_
6	GENERAL REVISIONS	43581	KN	06.01.04	CT	06.01.04	THE OWNERS REPRESENTATIVE TO VERIFY THE LOCATION AND STATUS OF ANY PPING, ELECTRICAL, EQUIPMENT				
5	CASING GAS TAKE-OFF POINT ON PRODUCERS REVISED	43581	CT	05.09.20			OR BUILDINGS.				
4	ISSUED FOR CONSTRUCTION	43581	CT	05.06.20	RDB	05.06.10	OR ELECTRICAL ON A FACILITY NOT DESIGNED BY BLD.R. ENG. LTD. IS ONLY SHOWN AS A REPRESENTATION				
0.	REVISION	PROJ. No.	BY	DATE	CHK.		OF WHAT EXISTS AND NUST BE VERIFIED BY THE OWNER.				

PLUG BASKET STRAINER ALTA "Y" STRAINER ALTA

NEEDLE

GLOBE

CHECK GATE

BUTTERFLY

BALL









	I/S UTILIDOR 1/S UTILIDOR 51 H I/S UTILIDOR 38 H	60-300PX-146 FUEL GAS HEET 11 89-300PSY-107 GROUP SHEET 7 89-300PZ-169 STEAM TO LONG STRING SHEET 7 89-300PZ-168 STEAM TO SHORI STRING SHEET 7 60-300PSY-131 ANNULUS GAS SHEET 7	
SHEET NUMBER	DRAWING NUMBER		REV
4 OF 14	F-43581-F-00	)—01	10



SHEET NUMBER	DRAWING NUMBER	REV
5 OF 14	F-43581-F-00-01	10



SHEET NUMBER	DRAWING NUMBER	REV
6 OF 14	F-43581-F-00-01	10



	BLDG. LIMITS
]	219-300PSY-100
L	SHEET 8 89-300PSY-113
	TEST HEADER SHEET 10 273-300PZ-165 STEAM
	HEADER SHEET 12 168-300PSY-130
	SHEET 9

BLDG. LIMITS

SHEET NUMBER	DRAWING NUMBER	REV
7 OF 14	F-43581-F-00-01	10













SHEET NUMBER	DRAWING NUMBER	RE\
13 OF 14	F-43581-F-00-01	10



SHEET NUMBER DRAWING NUMBER	REV
14 OF 14 F-43581-F-00-01	10

## APPENDIX 7/C:

Facilities

**Facilities plot** 





LOCATION PLAN NTS

NOTE:_ - PLANT DATUM IS AT COORDINATES N.135+000 & E.90+000 HAVING AN ASSUMED ELEVATION OF 340+000.ALL COORDINATES & ELEVATIONS ARE TO BE REFERENCED BACK TO THIS POINT.

BOWER DAMBERGER ROLSETH ENGINEERING LTD.

FEB 2 5 2004

FOR INFORMATION ONLY NOT FOR CONSTRUCTION

		DEER CREEK Energy Limited	
leath	JOSLYN PI	HASE #1 DEMONSTRATION FACILITY PLOT PLAN	
	SCALE	DRAWING NUMBER	REV
ering Lta.	1:500	D-33359-A-00-01	9

## APPENDIX 7/D:

Facilities

Major Equipment Listing



#### DEER CREEK ENERGY LIMITED

Joslyn Phase I, Heavy Oil Facility Design Basis Memorandum AFE # 053-0311 Project No: 33359 December 18, 2003

Page 33 of 39

## JOSLYN PHASE I, HEAVY OIL FACILITY

#### MAJOR EQUIPMENT LISTING Rev. 2

Equipment	Status
High Temperature Separator Package	New
Inlet Heat Exchanger	New
Inlet Header/Fuel Gas Separator Building Package	New
Lab/Air Compressor Package	New
Recycle/Skim/Diluent/Chemical Injection Pumps, VRU Blower & KO Bldg. Pkg.	New
Hydromation Deep Bid Filtration Unit	DCEL Stock
Filter Skid Building Package	New
Produced Water Disposal/Blow Down/ORF Feed/Softener Feed Pumps Package	New
BFW Exchanger	New
BFW Pump Package	New
Steam Separator Exchanger	New
Water Softening Package	New
Steam Separator Package	New
Steam Generator (50 mmbtu/hr)	DCEL Stock
Glycol Heater Pkg.	New
Glycol Air Cooler	New
Chemical Pump Building Package	New
CO2 Storage Bullet and Refrigeration Unit	Rental
Oil Production Tank (119 m ³ )	DCEL Stock
Two (2) Oil Shipping Tanks (119 m ³ )	DCEL Stock
Source Water Tank (159 m ³ )	DCEL Stock
Slop Tank (119 m ³ )	DCEL Stock
Desand Tank, Cone-bottom (119 m ³ )	New
Two (2) Produced Water Tanks (236 m ⁷ )	New
Two (2) Diluent Storage Tank (63 m ³ )	DCEL Stock
Steam Blow Down Tank (119 m ³ )	DCEL Stock
Chemical Storage tanks c/w Secondary Containment	New
Pop Tank (32 m ³ )	New
Floor Drain Pump System	New
Pipe Rack	New
Tank Farm Dike	New
Office #1/ Septic System	New
Office #2	DCEL Stock
Garage	New
Storage Tent	New
Two (2) Power Generators c/w Diesel Drivers	New
MCC / Control Building	New

## APPENDIX 7/E1:

Facilities

**Process description** 

# Joslyn Phase 1, Heavy Oil Facility



Brian Harll Aug 2005

#### Phase 1: Joslyn Plant Overview

The plant at Joslyn Creek includes not only equipment intended for steam generation and injection, but also equipment to handle production of oil, sour gas, and water from a well pair located at 11-33-95-12W4M. Included in the design are water disposal pipelines, a source water pipeline, a fuel gas pipeline, an oil processing facility, a steam generation facility, glycol utility system, and liquid storage tanks. Phase 1 is a pre-commercial phase, designed to run on a 24 hour, 365 days a year basis, and although small scale in nature, the plant at Joslyn Creek is focused on optimizing design, operating, and production parameters.

The oil recovery technique being utilized in Phase 1 is Steam Assisted Gravity Drainage (SAGD-Figure1). Two horizontal wells are drilled, one 5 m above the other. Steam injected into the reservoir through the upper well (injector) heats and mixes with the oil, reducing its viscosity to the point where it drains down through the reservoir and is pumped to the surface through the lower well (producer). In order for the technique to be successful, high quality steam must be continuously injected into the reservoir. Joslyn Creek Phase 1 is designed to inject steam into the well pair and process the returns. The returns (emulsion), made up of a combination of water, oil, and gas has to be separated before it is useful. Once separated, gas is flared, oil is blended and trucked away to a sales facility at Hardisty, and the water is de-oiled and disposed of.

#### **Source Water**

Source water for steam generation is provided via pipeline from a number of source water wells. Dual 4" plastic pipes, approx 10.3 km in total length, run directly from the plant to the source water well located at 6-4-96-11W4M. Here, the pipeline branches off into laterals connecting source water wells 9-5, 8-5, 7-5, and 5-4. Originally, additional source water was planned to be drawn from the Ells River, but due to area resident objection, this plan was not integrated. From the source or supply wells, the water flows through an ESD valve into the source water storage tank (T-710). Run Time on, pressure, and totalized flow measurements are captured at each source water well and sent to the plant via a SCADA system. Historically, source water usage for Phase 1 has been higher than originally estimated and so an additional meter at inlet would be a valuable addition.

Before this water can be pumped through the steam generator, it must be treated and filtered so that it meets the input requirements for the boiler: hardness less than 1 ppm, total dissolved salts (TDS) less than 5000 ppm, and pH between 7.5-8.5. Oxygen scavenger, a chemical designed to remove dissolved oxygen, is added to the source water stream before it enters the supply tank. This chemical minimizes pitting and corrosion potential. From the source water supply tank the water is boosted to 300 kPag by a

softener feed pump (P-508), then passes through a source water filter (M-902). Here, the feed water (60 ppm hardness, 2.7 ppm iron) has Potassium Permanganate (T-715) pumped into the stream and then it passes through a static mixer before reaching the Greensand Filters.

## Water Treatment: Greensand Filters (M-903 A-E), Primary Softeners (M-904A/B), and Polishing Water Softeners (M-905 A/B)

The AMG 36" Manganese Greensand filters are designed to remove excess iron from the water while the softeners are designed to remove hardness from the water. Water is considered "hard" if it contains a lot of calcium or magnesium dissolved in it. Hard water can cause major problems such as scaling on the inside of the steam generator tubes and heat exchanger tubes. Calcium and magnesium precipitate out of the water forming scale which hinders heat conduction and flow through the pipes. Phase 1 has five Manganese Greensand units in a parallel configuration which remove iron by adding potassium permanganate upstream of the filters. The potassium permanganate acts as an oxidant, forcing the iron out of the solution. Now, iron-free water from the greensand filters, pass through two water softening systems: Primary Water Softeners, and Polishing Water Softeners. Both systems are equipped with brine storage tanks for regeneration.

The Primary Softeners are designed to remove the hardness from the water and this is achieved with a sodium zeolite medium. This medium consists of a bed of small plastic beads covered with sodium ions. As the water flows past the sodium ions, sodium ions are replaced with the calcium and magnesium ions. Eventually, the beads have exchanged all of the sodium and are saturated with calcium and magnesium and at this point water softening is discontinued, the softener is taken offline, and softener regeneration is initiated. Regeneration involves soaking the zeolite in a stream of sodium ions or brine that is pumped in from the brine tank. The brine displaces all of the calcium and magnesium that has built up in the zeolite and replaces it again with sodium. Deer Creek's Phase 1 facility has two primary softener units and they are configured in a duplex alternation system. One unit produces soft water until it needs to be regenerated and then alternates to the other stand by unit.

The Polishing Softeners serve as insurance since they remove any residual hardness remaining after the Primary units. They operate in the same way by alternating between an online and stand-by unit but do not need to regenerate quite as frequently due reduced amount of softening. Backwash water from the greensand filters, and softeners are pumped to the water shipping tank (T-703) and then trucked off the lease to a NewAlta facility for waste processing. The softened and iron free water is now pre-heated in two sets of exchangers before entering the steam generator.

## Pre-Heat: Boiler Feed Water Heat Exchangers (E-406 A/B), Blow Down Heat Exchangers (E-403 A/B/C)

A heat exchanger is a device for transferring heat from one fluid to another. Two fluids are separated and never mix inside the heat exchanger. For efficiency, they are designed to maximize surface area of the boundary between the two fluids, while minimizing resistance to fluid flow through the exchanger. The BFW exchangers (E-406 A/B) and the BD exchangers (E-403 A/B/C) are all shell and tube design (see Figure 2) consisting of a shell (a large tube) with a series of smaller tubes inside of it. A fluid passes through the smaller tubes while another fluid (shell-side) rushes over the smaller tubes either heating or cooling the fluid within, based on the temperature of the respective fluids. In the boiler feed water exchangers (E-406), feed water (tube-side fluid) is heated from 10 °C by glycol (the shell-side fluid) to 72 °C. From here, it gets boosted in pressure from 300 kPag to 4860 kPag by the steam generator feed pump (P-506), then travels through the blow down heat exchangers. The BD exchangers (E-403) heat the feed water (tube-side fluid) from 72 °C to 113 °C using a different shell-side fluid then the BFW exchangers. As mentioned earlier, the E-403 exchangers use glycol while the E-406 exchangers use the blow down liquid at 180 °C from the separator (V-104) as the shell-side medium. This is a very effective use of energy and just one example of how the Phase 1 plant is designed to be energy efficient. After passing through the greensand filters, the softeners, and two sets of heat exchangers, the feed water is now ready to enter the steam generator.

#### Steam Generation: Once-Through Horizontal Steam Generator (H-801)

In a once-through boiler, feed water is pumped into a single pass of tubes and exits as superheated steam. As this feed water passes through the tubes it is first heated to saturation temperature and then transformed into steam. This steam is then superheated as it passes through the remainder of each tube. The feed water is heated, evaporated, and superheated in one passage through the unit as shown in Figure 3. Inside the boiler, many tubes are mounted in parallel and are joined by headers thus providing a common inlet for feed water and a common outlet for steam. The economizer section, found in the stack of the generator, is the first section feed water enters and it is designed to recover the "waste heat" from the boiler's hot stack gases. The evaporator section of the boiler is next and here, water changes phase into steam. The last section in the boiler is the superheating section which further heats the steam. Since feed water enters the boiler as water and leaves as superheated steam, any solids remaining in the feed water, either suspended or dissolved, will form deposits on the OTSG tubing or exit the system in the blow down stream. To reduce this deposition, feed water is treated and filtered upstream of the steam generator.

Joslyn Phase 1 uses the greensand filters, softeners, and chemical injection to meet the input requirements of the steam generator.

To accommodate the varied steam demands for start-up, normal operation, and design optimization, OTSGs are simple in that the only control variable is the amount of feed water being supplied. Deer Creek Energy has installed a 50 MMBTU/hr steam generator and a smaller unit (22 MMBTU/hr) currently utilized in alternative fuel experiment (MSAR). Considering the sizes of each boiler and a steam quality of 80%, these two boilers can produce a maximum of about 400 m3 and 170m3 CWE (Cold Water Equivalent) dry steam respectively. Either generator or a combination of both can be used in the Phase 1 plant in order to achieve required steam injection rates. Boiler turndown is the ratio between full boiler output and the boiler output when operating at low fire. Typical boiler turndown is 4:1. Considering the sizes of each boiler, a steam quality of 80%, and a turndown ratio of 4:1, the 50MMBTU/hr and the 22 MMBTU/hr boilers can produce a minimum of 100 m3 and 45 m3 CWE steam respectively before cycling off. These two boilers have been able to meet the changing steam demands for Phase 1. Ideally, no steam should have to be vented to the atmosphere (Blue-Sky), but the plant does have the ability if conditions dictate. Output from the steam generators is high pressure wet steam at 264 °C and 4860 kPag. Steam Assisted Gravity Drainage requires dry steam so this boiler output must go through the steam separator (V-104-Figure 4) before being injected down-hole.

#### **Steam Separator** (V-104) (Figure 4)

Of the total fluid fed into the steam generator, 80 wt % is converted into dry steam suitable for injection and the remaining 20 wt % known as steam blow down is made up of condensate, dissolved salts and other contaminants. The steam separator (V-104) splits theses two streams: one stream made up of dry steam and the other, steam blow down. Baffle plates arranged inside the vessel catch entrained moisture as it passes through. Heavy droplets fall to the bottom of the separator carrying impurities with them. The liquid in the bottom of the vessel (blow down liquid), still considerably hot at 80 °C, passes through the blow down heat exchangers (403's) as the shell-side heating fluid, before entering the blow down tank (T-711). Off the top of the separator, 100% quality dry steam at 199 °C and 1380 kPag flows into a line going to the injection well head where it is injected down-hole. From the storage tank, BD liquid travels through a blow down disposal pump (P-510) where it is boosted to 1960 kPag before moving out through disposal pipeline to wells dedicated to the disposal of steam blow down liquid. Before disposal however,  $C0_2$  required for pH neutralization, is pumped into T-711 from the  $C0_2$  storage bullet (T-724).

#### **Blow down Water Disposal**

The blow down water disposal pipeline consists of 2" steel main line with a HDPE liner running from the plant to a junction located on the south boundary of sec 17-95-12W4M. From there, laterals extend to include 4-16, 5-16, 7-13 and 15-12 disposal well bores. Like the source water wells, these blow down disposal wells have SCADA systems and time on, disposal rate, wellhead pressure, and totalized flow measurements are gathered and sent to the plant.

#### **Summary** (Boiler Feed water $\rightarrow$ Injection)

Source water from nearby water wells travels via a pipeline to the facility and into a tank. The water is then sent through a bag filter, a water softening system, and then is boosted in pressure by the steam generator feed pump, preheated in the BFW and BD exchangers, and then converted to steam in the steam generator.

#### Inlet : Heat Exchangers E-400, E-408

In addition to the steam injection demands, Phase 1 is also capable of processing the returns. Oil, gas, and water from the producer flow together through an ESD valve and then are cooled from 165 °C through an a pair of heat exchangers (Heat Exchanger E-400, Heat Exchanger E-408). These heat exchangers differ from the other exchangers discussed earlier in that, they are intended to cool rather then heat the inlet emulsion transferring heat to the glycol which is at a temperature lower than the inlet emulsion. Heat exchanger E-400 is a shell and a tube type while E-408 is a spiral type design. This spiral exchanger however, was recently removed from the inlet skid and is being used with the MSAR alternative fuel experiment. Diluent can be added either upstream or downstream of these exchangers .After the emulsion is cooled in the exchangers, diluent at 10 °C and XX API is added to further cool and raise the specific gravity from about 8 API to approximately 12 API. After this, the emulsion flows through a static mixer before entering the High Temperature Separator (HTS V-100).

#### Emulsion Processing: Oil Transport Specifications & High Temperature Separator

The HTS is a 3 phase separator designed to remove contaminants (gas, water, and solids) from crude oil so that transport requirements are met. Each of the three phases are separated and metered in the separator skid. In order to produce oil suitable for transport, it must be treated to achieve a final blend of 0.5% or less BS&W (Basic Sediment & Water), and have a gravity measurement between 12-14 API. On an average day, 45 m3 of oil, and 125 m3 or water is expected from the HTS oil and water outlets

respectively (FT-10018, FT-10020). Diluent addition is based on 20-25 % wt bitumen so 10-15 m3/ day of diluent is needed to bring the gravity to an acceptable number. The separator's design rate is 827 kPag @  $165 \,^{\circ}$ C.

#### Specification oil: 0.5 % BS&W and 12-14 API

Oil that meets or is close enough to transport specifications from the oil dump off the high temperature separator is level controlled to an oil production tank (T-701). Here, small amounts of water will separate from the oil. The lighter oil will overflow into the oil shipping tank (T-702). Oil from the shipping tank is trucked away at regular intervals for processing at the Hardisty facility.

#### **Off spec oil Slop Tank**

Off specification oil from the separator is diverted to the slop tank (T-700). The HTS can be produced to any tank with the manifold system in place. Fluid can even be moved from tank to tank or from a particular tank (i.e. Slop tank) back through the separator via the recycle pump (P-500).

#### High Temperature 3 Phase Separator (V-100)

The high temperature separator (see Figure 5) is a complex vessel and an essential component in the Phase 1 process. The HTS utilizes gravity to separate the lighter components from the heavier ones. Designed so that flow through the separator is horizontal, water droplets coalesce and fall out perpendicular to flow. If gravity alone was responsible then this process would take an extremely long time but chemicals are added to accelerate the process. Demulsifier chemicals reduce surface tension around the water droplets such that when they collide they coalesce. Coalescing elements enlarge water droplets which allow water to drop through the oil faster due their greater mass. The emulsion is hot coming in and temperature affects viscosity which in-turn affects the rate at which emulsified water can coalesce and separate. For convenience, 5 sample taps are strategically placed across the front of the separator with an AGAR probe unit enabling the operators to see into the vessel and identify the oil/water interface. The AGAR probe is made of two basic components: antenna and the power supply. By measuring the energy absorption of the fluid surrounding the antenna, the interface detector senses the water concentration in an emulsion regardless of fluid density, viscosity, temperature, pressure or pH. The sample taps are used to determine where in the vessel the interface between water and oil exists and to test both the water and the oil. A 4/5 interface for example, therefore represents a situation in the treater with water showing in the 4th sample tap and oil showing in the 5th sample tap. This interface can grow depending on the inlet emulsion, chemicals present and heat, creating a "rag layer". This layer, also known as pad build up is common to heavier crudes. This rag layer is stripped or removed from the

system by using an internal pipe that extends across the vessel and is located slightly higher than the water/oil interface at three specified heights. This fluid can then be piped back into the treater as recycle. Another component of the high temperature separator at Phase 1 is the Desand System.

#### **Desand System and Desand Tank (T-704)**

Heavier solids like sand fall out of the emulsion and settle to the bottom of the vessel. The bottom of the vessel is equipped every 1.5 m with a desand station or sand jet. These jets collect to a desand pan and exits into the external desand manifold. When a desand valve is opened, a vacuum is created which causes sand, solids, and water to discharge from around the pan and into the manifold. From the manifold, this debris flows to the desand tank (T-704). The tank is cone bottomed and complete with a skim float system and wash rings. Any water or oil that accumulates in the tank can be skimmed back into the facility process (front end).

#### **Produced Water Treatment: De-Oiling**

From the separator, produced gas is directed to the flare knockout drum and burned. Produced oil is cooled through the sales oil exchangers and then either shipped or recycled to the front end for further treatment. Before being disposed of, produced water from the separator is cooled through the water dump exchangers, then de-oiled and treated so it meets BS&W (basic sediment and water) and salt specifications. Water carries sand, silt, dissolved salts and various other constituents with it so removal is very important. The Phase 1 Joslyn plant has equipment designed specifically for the proper handling and disposal of produced water. Water, with about 200 ppm oil from the separator, is leveled controlled to the skim tank and from there, small amounts of oil will separate from the water as a function of retention time. The water then enters the IGF or Induced Gas Floatation unit for further oil removal.

#### **IGF** (Induced-Floatation units)

The IGF is used to remove a large portion of free oil from produced water. These systems use gas bubble attachment to float and lift oil and solids particles from the produced water. The froth created by gas bubbles is then skimmed from the flotation unit and pumped with the skimmed oil pumps (P-518 A/B) to the slop tank (T-700). The resulting water from the IGF, containing about 20 ppm oil, is pumped into the produced water storage tank (T-706) with the IGF discharge recycle pumps (P-517 A/B). Any oil that separates out in the skim or produced water storage tanks is drawn off the top through skim floats and

pumped via a skim pump (P-501) back into the HTS for processing. Water in the skim tank (T-705) is now pumped with the ORF feed pump (P-507) directly into the ORF or Oil Removal Filter unit.

#### **ORF** (Oil Removal Filter Unit)

The final oil removal is carried out in the ORF system. The water is pumped by the water booster pump or ORF feed pump (P-507) into the top of the vessel and flows through the walnut shell filter media and out the bottom of the vessel. The walnut shells have a natural affinity for oil droplets, and are retained on the media surface. Once the nut shell media is saturated with oil, it is fluidized using a backwash mechanism, and circulated out of the vessel through a scrub pump. The scrub pump "shears" the oil off the media and separates it from the system. The media is pumped back into the vessel and is once again placed into service. Water out the bottom of the vessel should now be almost free of oil. The filtered water flows to the water disposal pump where it is boosted to disposal pressure (P-503) and directed into the produced water disposal pipeline. Oil from the walnut shell media recovered from a backwash, is directed to the slop tank (T-700).

#### **Produced Water Disposal**

The produced water disposal mainline, consisting of 3"steel with a HDPE liner runs from the Joslyn Phase 1 facility to a well located at 05-04-96-11W5M. Along the way, a 3" steel branch includes the well 14-36 and from 14-36, a 4" steel pipe with no liner connects to a well at 11-36. Also included in the 3" steel pipe are wells at 14-20, and 03-29. Total length of the produced water disposal system is approx 9.2km. The produced water disposal wells, all except 14-20, are equipped with SCADA capabilities.

#### **Chemical Treatment**

Chemical injection is extremely important. Phase 1 has a chemical injection pump building with storage tanks and drums of a number of chemicals from caustics and clarifiers, to polymers and reverse demulsifiers. Chemicals are used in all areas of the plant involving water, from the treatment of the boiler feed water before steam generation, to the treatment of both produced water and blow down water before disposal. Chemicals are also used to increase the rate of oil and water separation or treat emulsion. A list of typical chemicals used for these purposes are listed below. Due to the vast differences in characteristics of crude oils produced and production treatment systems used, a chemical treatment plan is usually formulated on an individual field basis.

- o Caustic
- o Clarifier
- o Demulsifier
- o O2 Scavenger
- o Polymer
- o Reverse Demulsifier

#### **Source water Treatment**

Oxygen scavenger, potassium permanganate, and scale inhibitor are injected into various points in the steam generator feed water. O2 scavenger is added directly to the source water tank (T-710) to remove oxygen and therefore reduce the risk of corrosion and pitting. Potassium Permanganate designed to remove iron is added before the greensand filters and a filming agent is injected into the dry steam pipeline before injection.

#### **Emulsion treatment**

To enable the produced oil to meet BS&W (basic sediment and water) and salt specifications, all water must be separated from the oil. The high temperature separator does this assisted by gravity but chemicals are added to increase the rate of oil and water separation. Demulsifier and reverse demulsifier are added on either side of inlet heat exchangers to the emulsion before it enters the separator. These chemicals are surface active, specifically targeting the emulsion, with a component attracted to the water phase and another attracted to the oil phase. This allows the chemical to penetrate and disrupt the emulsifying film, thus breaking the emulsion.

#### **Produced Water and Blow Down Water Treatment: Chemicals**

Phase 1 has disposal pipelines for the disposal of the steam blow down liquid and the disposal of produced water from the separator. These streams need to be treated before they meet disposal requirements. As far as the steam blow down liquid, only  $CO_2$  is added to neutralize pH. Produced water, on the other hand, requires a number of chemicals to be added before it can be disposed of. One of the

more recent chemical injection plans at the Joslyn facility has polymer, surfactant and RBw being added to the produced water stream leaving the separator. These chemicals remove oil and water soluble organics, reduce turbidity or cloudiness, and remove small particles of matter that can plug up disposal systems. Regardless of the chemical used, and where along the process it is injected the aim, as far as chemical treatment, is to produce oil suitable for transport and to produce clear effluent water suitable for disposal or re-use.

#### <u>Utilities</u>

Utilities at the Joslyn facility include a glycol heating/cooling system, a fuel gas system, vapor recovery/flare system, a pressure relief system, an air compressor, a laboratory, diesel fired electrical generation systems, and office building and a shop. The pipe racks are covered by a utilidor system which helps protect the pipes from freezing.

#### **Glycol Heating / Cooling System**

A 50/50 wt % ethylene glycol/water mix is supplied to the various process heat exchangers as the cooling medium. After the glycol has been heated in the process exchangers, it will flow through a glycol heater. The heated glycol is used in building heaters and piping heat tracing. The glycol is then cooled in the boiler feed water exchanger, then further cooled to 43°C in an air cooler. The cool glycol is then pumped back through the process exchangers completing the circuit.

#### Fuel gas system

A 15.3 km fuel gas pipeline exists running from an ATCO meter station to the plant and it provides the plant with sweet, dry ATCO gas. This gas is used in the facility in numbers of places for a number of different reasons. The gas, entering the facility at 10°C and 1035 kPag, is heated in a fuel gas line heater and then flows, through an ESD valve, pressure control valve, and into a fuel gas scrubber (V-101). Any liquids that separate out in the fuel gas scrubber are level controlled to the produced water tank (T-706). Dry fuel gas from the scrubber enters a fuel gas header where it splits and is used in various places throughout the facility. The steam generator, glycol heater, fuel gas line heater, blanket gas system, IGF unit, office, garage, and flare pilot are all consumers of fuel gas. Casing gas from the injector, gas that separates out of the emulsion in HTS, and gas from the Vapor Recovery Unit (VRU: V-105) are directed to Flare Knockout Drum (T-713).

#### Vapor Recovery and Flare Systems

Vapors from the knockout drum will feed a vapor recovery blower VRU (K-600). The blower will boost the tank vapors into the facility flare header which will flow to an above ground flare knockout drum (T-713) and then to a flare stack (M-900) complete with an automatic electric igniter. Any liquids that collect in the VRU knockout drum are pumped automatically with the VRU drain pump (V-502) into the skim tank (T-705).

#### Tank Farm

The Phase 1 pre-commercial plant requires a number of storage tanks. The larger tanks are all located in a tank farm complete with impervious liner and concrete containment dike. Smaller tanks for chemicals are in the laboratory or throughout the plant at the skid where they are being utilized. The water and oil tanks are complete with piping to allow the contents of any tank to be pumped via the recycle pump (P-500) to any of the other tanks, or into the HTS. The tanks are interconnected and if a tank fills to 2 meters from the top, they spill into the next tank via overflow lines. Water that separates out in the bottom of the tanks is pumped back into the separator via a recycle pump (P-500). All tanks are insulated and complete with blanket gas. Any vapors of the top of the tanks are sent to the vapor recovery unit. All the storage tanks included in the Phase 1 design and their maximum capacity is listed below. Maximum product storage temperature is 90°C.

0	T-700 Slop Tank	119 m3
0	T-701 Oil Production Tank	119m3
0	T-702 Oil Shipping Tank	119m3
0	T-703 Water Shipping Tank	119m3
0	T-704 Desand Tank	79m3
0	T-705 Skim Tank	238m3
0	T-706 Produced Water Tank	238m3
0	T-707 Diluent Tank	64m3
0	T-708 Diluent Tank	64m3
0	T-709 Pop Tank	32m3
0	T-710 Source Water Tank	159m3
0	T-711 Blowdown Tank	159m3

We have examined the surface equipment at Phase 1 Joslyn Creek plant in some detail. Although emphasis was on the components of the system involved in the steam generation, boiler feed water treatment, emulsion treating, and the disposal of blow down and produced water, we did touch on the other integral systems at work. Chemicals present in the plant, where they are used, and for what purpose was covered. The extensive utility system was examined. Fuel gas enters the facility through and pipeline and is used throughout. We traced the glycol system, where it is heated and cooled and what equipment it is utilized in. The vapor recovery unit was described and finally, the important storage tanks were discussed, what purpose they served and how they fit into the overall system. Basically, a fairly detailed description of all the major components of Joslyn Creek Phase 1 facility and how those components work and relate to one another is provided here. Together, these systems, and a dedicated staff have not only proved that SAGD is an effective means to recover bitumen, but so much has been learned and is still being learned about improvements and innovations for future operations.



SAGD Schematic

Figure 1: Steam Assisted Gravity Drainage Schematic



Figure 2: Typical Shell and Tube design Heat Exchanger



Figure 3: Once Through Steam Generator



Figure 4: Typical Steam Separator



Figure 5: Typical Horizontal 3 Phase Separator
# APPENDIX 7/E2:

Facilities

Pilot overall description



Joslyn Phase I, Heavy Oil Facility Design Basis Memorandum AFE # 053-0311 Project No: 33359 December 18, 2003

Page 1 of 39

# JOSLYN PHASE I, HEAVY OIL FACILITY AFE # 053-0311

# Design Basis Memorandum Rev. 2

**Prepared For** 



No	Revision	By	Date	Appr.	Date	Client	Date
0	Issued for approval	NAG	July 8, 2003	STA	July 8, 2003		
1	Issued for approval	NAG	August 22, 2003	RDB	August 22, 2003		
2	Issued for construction	NAG	December 18, 2003	RDB	December 18, 2003		

The information contained in this document is confidential in nature and may not be reproduced, used or transmitted in any way without prior written consent from Bower Damberger Rolseth Engineering Ltd.

J:\SECRETARIAL\2003 FILES\33359\PROPOSALS\DBM REV 2.DOC



#### DEER CREEK ENERGY LIMITED

Joslyn Phase I, Heavy Oil Facility Design Basis Memorandum AFE # 053-0311 Project No: 33359 December 18, 2003

Page 2 of 39

#### **TABLE OF CONTENTS**

#### **1.0 Introduction**

- 1.1 Project Description
- 1.2 Project Objectives
- 1.3 Operations Criteria

#### 2.0 Design Basis

- 2.1 Site Conditions
- 2.2 Fluid Parameters
- 2.3 Storage
- 2.4 Process Description
- 2.5 Mechanical
- 2.6 Electrical
- 2.7 Instrumentation and Control
- 2.8 Safety
- 2.9 Civil

#### 3.0 Project Engineering & Management

- 3.1 General Scope Of Work
- 3.2 Engineering Scope Of Work Detailed
- 3.3 Procurement
- 3.4 Management
- 3.5 Deliverables
- 3.6 Project Management & Managers

#### 4.0 Cost Estimate

4.1 Notes Applicable To Cost Estimate

#### 5.0 Technical Guidelines

- 5.1 Codes and Standards
- 5.2 Abbreviations and Definitions

#### 6.0 Appendices

- I. Table I AFE Estimate
- II. Major Equipment Listing
- III. Project Schedule
- IV. Plot Plan
- V. Process Flowsheet

.



Joslyn Phase I, Heavy Oil Facility Design Basis Memorandum AFE # 053-0311

#### **1.0 Introduction**

# **1.1 Project Description**

Deer Creek Energy Limited (DCEL) intends to install a demonstration facility to inject steam and produce oil, sour gas, and water from a well pair located at 11-33-95-12 W4M.

The project consists of wellhead pipelines, processing facility, steam generation facility, liquid storage tanks, glycol utility system, and instrument air system. Other pipelines and down hole pumps associated with the project are not included in this scope.

# **1.2 Project Objectives**

To provide a well designed sour oil production facility:

- To enable DCEL to inject steam into the well pair and process the returns during startup;
- To enable DCEL to produce oil from the production well and inject steam into the injection well during regular operation;
- To enable DCEL to process sour oil, water and gas and associated sand and fines during regular facility operation;
- To meet a schedule that enables the facility to be online by the end of March 2004.

# 1.3 Operations Criteria

The system will be designed to run on a 24 hour, 365 days a year basis. Oil emulsion will be received from the production well. Processed oil will be trucked to a different facility for refining.

Source water for steam generation will be provided via pipeline. Produced water and steam blow down water will exit the facility via pipeline.

Fuel gas will be provided to the facility via pipeline. Solution gas will be captured from the process and burned in a flare stack.

# DEER CREEK ENERGY LIMITED

Joslyn Phase I, Heavy Oil Facility Design Basis Memorandum AFE # 053-0311

Page 4 of 39

# 2.0 Design Basis

# 2.1 Site Conditions

LSD:	11-33-95-12 W4M
Location:	Aprox. 50 km NW of Fort McMurray, AB
Maximum ambient temperature:	32 Celsius
Minimum ambient temperature:	-41 Celsius
Altitude:	338 m.a.s.l.
Rainfall:	1/25 year, 24 hour, 83 mm
Maximum Average Wind Velocity:	90 km/hr

# 2.2 Fluid Parameters

	Inlet Oil	-	$125 \text{ m}^{3}/\text{d}$	
	Inlet Water	-	$375 \text{ m}^{3}/\text{d}$	
	Inlet Gas	-	$250 \text{ m}^3/\text{d}$ @ std. cond	itions
	Inlet Oil API	-	8.2	
	Inlet Water S.G.	-	1.05	
	Inlet Gas S.G.	-	1.00	
	$H_2S$ in Gas	-	2%	
	Inlet Sand	-	0.3% vol. oil	
	Design Inlet Pressure	-	800 kPag	
	Design Inlet Temperature	-	165°C	
	Diluent Usage	-	30 to 50 $m^3/d$	
	Source Water Usage	-	$470 \text{ m}^3/\text{dav}$	
	Separator Outlet Oil Quality	-	0.5% BS&W	
	Sales Oil Quality	-	<0.5% BS&W	
	Separator Oil API	-	12.4 to 14	
	Separator Outlet Water Quality	-	200 ppm oil in water	
	Produced Water Quality			
	Upstream of Oil Filter	-	50 ppm oil in water	
	Produced Water Quality		F F	
	Downstream of Oil Filter	-	5 ppm oil in water	
	Steam Generator Discharge Quality	-	80%	
	Injected Steam Quality	-	95%	
	Steam Generator Feed Water			
	Hardness	-	<1ppm	
	Steam Generator Feed Water		11	
	TDS	-	<5000 ppm	
	Steam Generator Feed Water pH	-	7.5 to 8.5	
	Steam Generator Operating			
	Pressure	-	4800 kPag	
	Steam Injection Pressure		-	
	at Wellhead	-	1900 kPag	
J:\SECRI	ETARIAL\2003 FILES\33359\PROPOSALS\DBM REV	2.DOC		

	DEER CREEK ENERGY LIMITED		Project No: 33359 December 18, 2003 Page 5 of 2	
<b>bdr</b> Bower Damberger Rolseth Engineering Ltd.	Joslyn Phase I, Heavy Oil Facility Design Basis Memorandum AFE # 053-0311			
Droduced Water I				
Produced water I	Jisposai		1500 L D	
Pressure at well	head	-	1500 kPag	
Steam Blow Dow	'n			
Disposal Pressur	e at Wellhead	-	1500 kPag	
Fuel Gas Pressure	2	-	689 kPag	
Fuel Gas Temper	ature	-	10°C	

Produced Oil	-	18 hours, based on 125 m ³ /d oil, $30m^3/d$ diluent
Sales Oil	-	36 hours, based on 125 m ³ /d oil, $30m^3/d$ diluent
Produced Water	-	15 hours, assumes tank operates ¹ / ₂ full.
Blow Down Water	-	15 hours, assumes tank operates 1/2 full.
Source Water	-	8 hours
Diluent	-	100 hours, based on $30 \text{m}^3/\text{d}$ rate

#### 2.4 Process Description

#### 2.4.1 Inlet

Sour oil, gas, and water will flow from the production wellhead through an inlet emergency shutdown (ESD) valve and through an inlet heat exchanger. The inlet heat exchanger cools the inlet emulsion by cross exchanging heat with a glycol cooling loop. Note that two (2) inlet exchangers are provided for this purpose, a shell and tube type and a spiral type. The cooled emulsion is mixed with a diluent to lower the density of the bitumen to 12.4 API. This emulsion and diluent flow through a static mixer into the high temperature three (3) phase separator.

#### 2.4.2 High Temperature 3 Phase Separator

The high temperature separator provides separation for the inlet emulsion. Each of the three (3) phases are separated and metered in the separator skid. The sour gas is back pressured controlled to the flare system. The water is cooled by heat exchange with a glycol water mix then level controlled to a skim tank. The oil and diluent is cooled in a heat exchanger cooled by glycol then level controlled to the oil production tank. The separator will be complete with a manual desand system.

	DEER CREEK ENERGY LIMITED	Project No: 33359
		December 18, 2003
Dar	Joslyn Phase I, Heavy Oil Facility	
Bower Damberger Rolseth	AFE # 053-0311	Page 6 of 39

#### 2.4.3 Oil Storage

Oil from the high temperature separator will be level controlled to an oil production tank. Here, small amounts of water will separate from the oil. The lighter oil will overflow into two (2) oil shipping tanks. Oil from the shipping tanks will be trucked away at regular intervals for processing at a nearby facility.

Off specification oil from the separator can be diverted to the slop tank. This can occur during start up, during a change in the chemical injection program, or from drawing the "rag" layer off the separator oil/water liquid interface.

The separator can dump to any of the three (3) oil tanks or the slop tank. The tanks can be operated in series or parallel or any other combination as the operators can change the sequence via manual tank farm valves. If the tanks are operated in series, a tank will fill to 2 meters then spill into the next tank via the overflow line. Any water that separates out in the bottom of the tanks will be pumped back into the separator via a recycle pump.

#### 2.4.4 Produced Water

Water from the high temperature separator will be level controlled to the skim tank. Here, small amounts of oil will separate from the water. The water phase will be pumped to an induced gas flotation (IGF) unit for further oil removal. The resulting outlet water from the unit will contain approximately 20 ppm oil. The oil separated out in the IGF unit will be pumped to the slop tank. The water from the IGF will be pumped into a second storage tank. Water from the second tank will be pumped to a filter skid for final oil removal. Any oil that separates out in the skim or produced water storage tanks will be drawn off the top through skim floats and pumped via a skim pump back into the high temperature separator for processing. If necessary, the skim can also be directed to the slop tank.

The filter skid contains a walnut shell filter vessel. The water is pumped by the water booster pump into the top of the vessel and flows through the walnut shell filter media and out the bottom of the vessel. The filtered water flows to the water disposal pump where it is boosted to disposal pressure and into the produced water disposal pipeline. Periodically the water injection is stopped and the filter bed is back washed to remove the build up of oil. The backwash stream is directed the skim tank.



#### 2.4.9 Glycol System

A 50/50 wt.% ethylene glycol mix will be supplied to various process heat exchangers as the cooling medium. After the glycol has been heated in the process exchangers, it will flow through a glycol heater. The heated glycol will be used in building heaters and piping heat tracing. The glycol is then cooled in the boiler feed water exchanger, then further cooled to 43°C in an air cooler. The cool glycol is then pumped back through the process exchangers completing the circuit.

### 2.4.10 Fuel Gas

A DCEL pipeline transporting sweet, dry ATCO gas will supply fuel gas for the facility. The gas will be heated in a fuel gas line heater, then flow through an ESD valve, pressure control valve, and into a fuel gas separator. Gas from the separator will be metered and flow to a fuel gas header for use in the facility. The steam generator, glycol heater, fuel gas line heater, blanket gas system, office, garage, and flare pilot gas are consumers of fuel gas. Any liquids that separate out in the fuel gas scrubber will be level controlled to the produced water tank.

### 2.4.11 Vapor Recovery and Flare Systems

Tank vapors will free flow to a vapor recovery header and on to an above ground vapor recovery knock out drum. Vapors from the knockout drum will feed a vapor recovery (VRU) blower. The blower will boost the tank vapors into the facility flare header which will flow to an above ground flare knockout drum. The vapors from the knockout drum will flow to a flare stack complete with an automatic electric igniter. Any liquids that collect in the VRU knockout drum will be pumped automatically into the produced water tank. Liquid that accumulates in the flare knockout drum will be removed by truck. Both vessels will be equipped with high level alarms to protect against liquid carry over.

# 2.4.12 Chemical Injection

A chemical injection pump building c/w storage tanks and drums will be supplied. Demulsifier, reverse demulsifier, and polymer will be injected into various points in the oil production process. Oxygen scavenger, potassium permanganate, and scale inhibitor will be injected into various points in the steam generator feed water. A filming agent will be injected into the dry steam pipeline.

In addition to the chemical pumps listed above, a  $CO_2$  storage bullet will be included in the design.  $CO_2$  will be flow controlled into the steam blow down tank to lower the PH of the water prior to disposal.

#### 2.4.13 Pressure Relief

J:\SECRETARIAL\2003 FILES\33359\PROPOSALS\DBM REV 2.DOC



#### 2.4.5 Desand Tank

Water and sand from the high temperature separator desand outlet line flows to the desand tank. The tank is cone bottomed and complete with skim float system and wash rings. Any water or oil that accumulates in the tank can be skimmed back into the facility process. The facility wash water header connects to the wash rings and is used to slurry the sand to aid in unloading into a vacuum truck.

# 2.4.6 Tank Farm

All the storage tanks are located in a tank farm complete with impervious liner and concrete containment dike. The water and oil tanks are complete with piping to allow the contents of any tank to be pumped via the recycle pump to any of the other tanks, or into the high temperature separator.

All tanks will be insulated and complete with blanket gas and a vapor recovery header. Maximum product storage temperature is 90°C.

#### 2.4.7 Diluent System

Diluent will be trucked into the facility and off loaded into two (2) diluent storage tanks. The diluent will be pumped from the tanks into the inlet emulsion via the diluent pump. The diluent tanks will be complete with VRU header and blanket gas.

#### 2.4.8 Steam Generation

Source water from nearby source water wells or the Ells River will flow via a pipeline to the facility. The water will flow through an ESD valve and a flow meter and into the source water storage tank. The water will be pumped from the tank through a bag filter and into a low pressure water softening system. The water from the softening system will be boosted in pressure by the steam generator feed pump, preheated in the BFW and steam separator exchangers then converted to steam in the steam generator. The steam generator will produce approximately 80 wt.% steam that will flow through a steam separator vessel. Water that separates out in the separator vessel will be level controlled through the steam separator exchanger to the steam blow down tank or directly into the disposal pipeline. The dry steam will be pressure controlled in to a pipeline going to disposal wells dedicated to disposing of the steam blow down liquid. Producing wet steam and blowing down the liquids as described above is effective in removing most of the impurities from the steam, which are introduced with the source water.

Joslyn Phase I, Heavy Oil Facility Design Basis Memorandum AFE # 053-0311

Gas pressure safety valves will relieve into the flare header.

Steam pressure safety valves will relieve to the steam blow down tank.

Liquid pressure safety valves will relieve to the pop tank

# 2.4.14 General

The site will be graded level to permit installation of all equipment. Steel pipe piles will be driven on site, cut to elevation and foundation steel welded on top. The pipe rack will be pre-fabricated as modules shipped to site to be bolted together and connected to the skids with pre-fabricated spools. The skids and modules will be mounted on the piles and foundation steel.

The pipe rack will be covered by a utilidor to prevent freezing. Glycol heaters will supply building and utilidor heat. The utilidor internal temperature will be maintained at approximately 60°C.

Pipes not enclosed in the utilidor will be insulated and heat traced as freeze protection.

Building floor drains will drain to the rack then to an above ground vessel. The vessel will be pumped out automatically on level control to the slop tank.

An air compressor and laboratory will be mounted on a single skid with a building and divider wall to keep vapors from the lab entering the air compressor building.

Electrical equipment including the MCC, main control panel, and UPS will be housed in its own skidded building. All mounting of electrical gear and inter-wiring will be completed in Calgary prior to shipping to the field.

An office trailer will house the HMI computer, three (3) operator desks, furnace room, washroom, and a senior operator office. The office trailer will be pre-fabricated and set on a pipe pile foundation. Also, an office from Deer Creek stock will be installed.

A garage sized to house spare equipment, work bench, and pick-up truck is included. The garage is pre-fabricated and set on a pipe pile foundation. A large storage tent is also included.



Page 25 of 39

- National Building Code
- 5.1.5 Environmental
  - Environmental Protection and Enhancement Act (EPEA)

#### 5.2 Abbreviations and Definitions

The abbreviations and definitions below have been listed in order of first use within the document wherever possible.

°C	Degrees Celsius
°F	Degrees Fahrenheit
ANSI	American National Standards Institute
BPD	Barrels per Day
BS&W	Basic Sediment & Water
CFM	Cubic feet per minute
Ckt	Circuit
сP	Centipoise
cSt	Centistoke
CSA	Canadian Standards Association
CT	Current Transformer
c/w	Complete with
DBM	Design Basis Memorandum
EPF	Early Production Facility
FVNR	Full Voltage Non-Reversing
HID	High Intensity
HL	Hazardous Location
HMI	Human Machine Interface
Нр	Horsepower
Hz	Hertz (frequency)
IFA	Issued for Approval
IFB	Issued for Bid
IFC	Issued for Construction
IPCIT	Internal Pipeline Construction Inspection Tool
ka	Kilo-amps
kPa	Kilopascal
kPag	Kilopascal Gauge Pressure
kVa	Kilo Volt-amps
kV	Kilo-volts
LBV	Line Block Valve
LEL	Lower Explosive Limit
LUX	Lumens per square foot
m³/day	Cubic meters per day

J:\SECRETARIAL\2003 FILES\33359\PROPOSALS\DBM REV 2.DOC

	DEER CREEK ENERGY LIMITED	Project No: 33359
		December 18, 2003
Dar	Joslyn Phase I, Heavy Oil Facility Design Basis Memorandum	
Bower Damberger Rolseth Engineering Ltd.	AFE # 053-0311	Page 26 of 39
MAWP	Maximum Allowable Working Pre	ssure
MCC	Motor Control Center	
mm	Millimeter	
m/s	Meters/Second	
MVa	Mega Volt-amps	
NGR	Neutral Ground Resistor	
PFD	Process Flow Diagram	
ph	Phase	
PLC	Programmable Logic Controller	
psig	Pounds per square inch gauge press	sure
PT	Potential Transformer	
Q.C.	Quality Control	
RPO	Request for Purchase Order	
RSView	Rockwell Software HMI Station	
RTU	Remote Transmission Unit	
SCADA	Supervisory Control and Data Acqu	isition system
SLC	Allen Bradley PLC model	-
SSNRV	Soft Start Non-Reversing	
UPS	Un-interruptable Power Supply	
Vac	Voltage – Alternating current	
Vdc	Voltage – Direct Current	
VFD	Variable Frequency (speed) Drive	

Where applicable, CSA standard abbreviations will be used for all instrumentation.