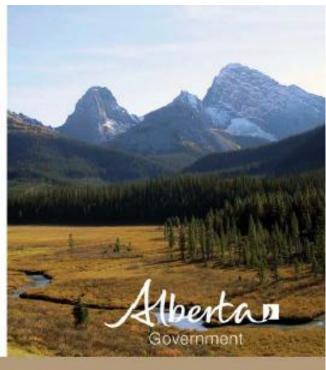
South Saskatchewan Region Status of Surface Water Quality

April 2016 – March 2017


Reporting on the Surface Water Quality Management Framework

Alberta Environment and Parks
Environmental Monitoring and Science Division

Jason Kerr, PhD; Natalie Kromrey, MSc; and Soroush Abbasi, MSc ISBN 978-1-4601-3583-9

Status of Surface Water Quality, South Saskatchewan Region, Alberta for April 2016 – March 2017

Statistical analysis provided by Natalie Kromrey and Soroush Abbasi Technical writing provided by Jason Kerr

This publication is part of the Status of Ambient Environmental Condition series.

Any comments, questions, or suggestions regarding the content of this document may be directed to:

Environmental Monitoring and Science Division Alberta Environment and Parks 10th Floor, 9888 Jasper Avenue NW Edmonton, Alberta T5J 5C6

Tel: 780-229-7200

Toll Free: 1-844-323-6372

Fax: 780-702-0169

Email: EMSD-Info@gov.ab.ca

Media Inquiries: <u>AEP.Mediainquiries@gov.ab.ca</u>
Website: http://environmentalmonitoring.alberta.ca/

Recommended citation:

Kerr, J., Kromrey, N., and Abbasi, S. 2018. Status of Surface Water Quality, South Saskatchewan Region, Alberta for April 2016 – March 2017. Government of Alberta, Environment and Parks., ISBN 978-1-4601-3583-9. Available at: https://open.alberta.ca/publications/9781460135839.

This publication is issued under the Open Government Licence – Alberta (http://open.alberta.ca/licence)

This publication can be found at: https://open.alberta.ca/publications/9781460135839.

© Her Majesty the Queen in Right of Alberta, as represented by the Minister of Alberta Environment and Parks, 2018.

April 2018

ISBN 978-1-4601-3583-9

Table of Contents

About EMSD4
Executive Summary5
Background5
Methodology5
2016–2017 (April 1–March 31) Resu t s5
South Saskatchewan Regional Plan6
Monitoring Stations
Water Quality Indicators, Triggers and Limits
Water Quality Indicators8
WaterQualityTriggers8
Water Quality Limits9
StatisticallySignificant Exceedances of Water Quality Triggers, 2016–201710
Exceedances of Water Quality Limits,2016–201711
Secondary Indicators,2016–201711
References
Appendix A. Descriptive Statistics for the Nine Long Term River Network Stations

About EMSD

The Environmental Monitoring and Science Division (EMSD) is responsible for monitoring, evaluating and reporting on key air, water, land and biodiversity indicators. The division's mandate is to provide open and transparent access to scientific data and information on the condition of Alberta's environment, including specific indicators as well as cumulative effects, both provincially and in specific locations.

EMSD provides provincial environmental monitoring, evaluation and reporting:

- Based on sound science and evidence.
- Presented in a timely, open and transparent manner.
- That respects and incorporates community and Traditional Ecological Knowledge (TEK) from First Nations and Métis people.

This includes providing the information necessary to understand cumulative effects, and to inform the public, policy makers, regulators, planners, researchers, communities, and industry.

The role of environmental monitoring and science is to provide proactive, objective reporting of scientific data and information on the condition of Alberta's environment, including:

- Baseline environmental monitoring.
- Cumulative effects monitoring.
- Data evaluation and management.
- On-going condition of environment reporting in all regions of Alberta.
- Credible data, evaluation, knowledge and reporting to inform policy and regulatory decisionmaking.

Learn more at http://environmentalmonitoring.alberta.ca

Executive Summary

Background

This report was prepared by the Environmental Monitoring and Science Division (EMSD) to fulfill reporting requirements mandated by the <u>South Saskatchewan Region Surface Water Quality Management Framework</u>, which supports the <u>South Saskatchewan Regional Plan</u> (SSRP). Reporting requirements for the SSRP are determined by the Government of Alberta and EMSD has a responsibility for monitoring, evaluation and reporting under the Environmental Management Frameworks, including the Surface Water Quality Management Framework. This is a report that communicates whether water quality triggers or limits were exceeded in 2016 – 2017.

Methodology

All statistical methods used in this report are described in the <u>South Saskatchewan Region</u> Surface Water Quality Management Framework: Statistical Methods Final Report (2011).

The Surface Water Quality Management Framework includes 15 primary indicators and six secondary indicators. In 2016–2017 (April 1–March 31), these water quality indicators were measured monthly at nine water quality monitoring stations. Using methodology described in the South Saskatchewan Region (SSR) Surface Water Quality Management Framework (SWQMF), the resulting data for the 15 primary indicators were compared to the historic record (1999–2009) to determine if median and 90th percentile concentrations deviated in an undesirable direction from the historic median or peak trigger values. Those values that deviated from historic triggers in an undesirable direction were statistically assessed for changes in the central tendency or peak concentration. In addition, the 2016–2017 data were compared to water quality limits as defined in the SSR SWQMF. 2016–2017 data for each primary indicator at each station were compared to historic data for both the open water (April–October) and winter (November-March) seasons. Finally, median values for each of the 6 secondary indicators, for each season, were calculated and compared to existing Alberta surface water quality guidelines.

2016–2017 (April 1–March 31) Results

A significant exceedance of the following trigger values occurred:

- The peak sulphate trigger at Bow River (Carseland) during the open water and winter seasons
- The median total dissolved solids trigger at Bow River (Cluny) during the open water and winter seasons
- The peak sulphate trigger at Bow River (Cochrane) during the open water and winter seasons

As defined in the SSR SWQMF, total dissolved solids at Milk River Hwy 880 exceeded water quality limits during the 2016-17 winter season.

South Saskatchewan Regional Plan

The <u>South Saskatchewan Regional Plan</u> (SSRP) applies to the South Saskatchewan Region, an area approximately 83,764 square kilometres in size located in southern Alberta (see the South Saskatchewan Regional Plan). The SSRP is a regional plan developed by the Government of Alberta under the <u>Land Use Framework</u>. The plan sets outcomes that describe what the Government of Alberta wants to accomplish at a regional level, and is given legislative authority under the *Alberta Land Stewardship Act*. EMSD is responsible for monitoring, assessing and reporting on the condition of the environment in the South Saskatchewan Region, while the Government of Alberta is responsible for management of activities and resources in response to environmental conditions.

Figure 1: Land Use Frameworks in Alberta

Monitoring Stations

In this report, water quality in the South Saskatchewan Region is assessed based on data derived from monthly water quality sampling at nine Long-Term River Network (LTRN) stations within the South Saskatchewan Region (Fig 2). The nine LTRN stations are located within four major river systems:

- The Bow River Bow River at Cochrane, Bow River at Carseland, Bow River at Cluny and Bow River at Ronalane
- The Milk River Milk River at Hwy 880
- The Oldman River Oldman River at Brocket, Old Man River at Hwy 3 in Lethbridge and Oldman River at Hwy 36
- The South Saskatchewan River South Saskatchewan River at Medicine Hat-Hwy 1

Additional details on the four major river basins and the nine LTRN stations are given in the South Saskatchewan Region: Surface Water Quality Management Framework (SSR SWQMF).

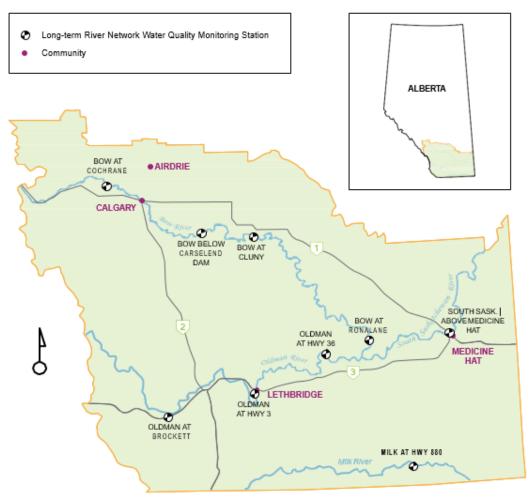


Figure 2: Location of water quality stations in the South Saskatchewan Region

Water Quality Indicators, Triggers and Limits

Water Quality Indicators

Twenty-one water quality parameters measured at the LTRN stations are indicators in the SSR SWQMF. Fifteen primary indicators (Table 1) and six secondary indicators (Table 2) were used to assess 2016–2017 water quality at the nine LTRN stations. Justification for indicator selection is given in the SSR SWQMF.

Table 1: List of primary indicators for the SSR: SWQMF

Total Ammonia	Specific Conductance	
Chloride	Total Dissolved Solids	
Nitrate	Total Organic Carbon	
Total Nitrogen	Total Suspended Solids	
Total Dissolved Phosphorus	Turbidity	
Total Phosphorus	рН	
Sulphate	Escherichia coli	
Sodium Adsorption Ratio (SAR)		

Table 2: List of secondary indicators for the SSRP: SWQMF

Mercury	Dicamba
Selenium	Methylchlorophenoxyacetic acid (MCPA)
2,4-Dichlorophenoxyacetic acid (2,4-D)	Mecoprop (MCPP)

Water Quality Triggers

Median and 90th percentile values from the historic record (1999–2009¹) are the "median triggers" and "peak triggers" in the SSR SWQMF. Exceedances of peak triggers reflect changes in the frequency of observed extreme values in relation to historic data while exceedances in median triggers are used to identify shifts in the central tendency of annual data relative to the historic record. Both are intended to act as early warning systems of potential changes in surface water quality and a signal to do statistical assessments. In this report, seasonal 2016–2017 medians and 90th percentiles were first compared with historic trigger values to determine if they deviated from the triggers in an undesirable direction. If an indicator deviated from its trigger value in an undesirable direction, a statistical assessment was then performed. A median trigger exceedance was defined as a significant shift in the central tendency (mean or median) of the 2016-17 data relative to the historic record. A peak trigger exceedance was reported when the frequency of observations in the 2016-17 data which exceeded the trigger value was higher than the expected frequency given no significant change.

¹ The historic data set for some indicators were based on shorter time series. See the SSR SWQMF for a description of the specific time period used for each indicator at each station

All statistical methods used in this report are described in the South Saskatchewan Region Surface Water Quality Management Framework: Statistical Methods Final Report (2011). Statistical assessments were performed using custom statistical software developed by GranDuke Geomatics² following the sequence of steps outlined in Figures 6 and 7 of the Saskatchewan Region Surface Water Quality Management Framework: Statistical Methods Final Report (2011).

Water Quality Limits

Surface water quality limits were derived from the Canadian Council of Minister's for the Environment (CCME) and provincial water quality guidelines, for 9 of the 15 primary water quality indicators. Details of the specific water quality limits used for each indicator are given in the SSR SWQMF.

² Now FarmersEdge (http://www.farmersedge.ca/)

Statistically Significant Exceedances of Water Quality Triggers, 2016–2017

Table 3 compares median and 90th percentile values from the 2016-17 data with the historical record (1999-2009) at stations where significant median or peak trigger exceedances occurred. Trigger exceedances during 2016–2017 were observed at three stations for two primary indicators. A significant exceedance of the median trigger value was observed for total dissolved solids at Bow River (Cluny) during both the open and winter seasons. Significant exceedances of peak trigger values were observed for sulphate at the Bow River (Carseland) and Bow River (Cochrane) stations during both the open water and winter seasons. There were no exceedances for any of the other stations or indicators. Summary statistics of 2016–2017 data for the remaining stations and indicators are shown in Appendix A.

Table 3: Median and 90th percentile values for primary indicators exhibiting a statistically significant trigger exceedance (shaded in blue) in the South Saskatchewan Region during 2016–2017

STATION	INDICATOR	PERIOD	SEASON	MEDIAN	90 TH PERCENTILE	n
		1999-2009	open	42.9	51.5	70
Bow River	Sulphate (mg/L)	(trigger)	winter	53.9	58.0	50
(Carseland)	Carseland)	2016-17	open	55.0	60.0	7
	2016-17	winter	66.0	73.0	5	
		1999-2009 (trigger)	open	211	245	48
Bow River	Total Dissolved		winter	257	290	32
(Cluny)	Solids (mg/L)	2016-17	open	220	234	7
			winter	300	312	5
		1999-2009	open	33.6	40.4	70
Bow River	Sulphata (ma/l.)	(trigger)	winter	42.2	45.8	50
(Cochrane) Sulphate (mg/	Sulphate (Ilig/L)	2016-17	open	38.0	45.0	7
		2016-17	winter	49.0	51.2	5

Exceedances of Water Quality Limits, 2016–2017

Median values for 9 of the 15 primary indicators were compared to surface water quality limits described in the SSR SWQMF. Median total dissolved solids concentration at Milk River Hwy 880 exceeded the water quality limit during the winter season. There were no other exceedances of surface water quality limits as defined in the SSR SWQMF.

Secondary Indicators, 2016–2017

The median seasonal concentrations of secondary indicators at each site were compared to chronic guidelines where available. Median concentrations did not exceed chronic guideline values at any of the sites. Summary statistics for all secondary indicators are provided in Appendix A. Note that summary statistics shown for secondary indicators are for information purposes only as there are no triggers or limits assigned to these indicators.

References

Alberta Environment and Sustainable Resource Development. (2014). South Saskatchewan Region, Surface Water Quality Management Framework. https://open.alberta.ca/publications/9781460118603.

Alberta Environment and Sustainable Resource Development. (2014). South Saskatchewan Regional Plan.

https://landuse.alberta.ca/LandUse%20Documents/South%20Saskatchewan%20Regional%20Plan%202014-2024%20-%20February%202017.pdf.

HDR Corporation. (2011). South Saskatchewan Regional Plan Surface Water Quality Management Framework: Statistical Methods Final Report. Prepared for Alberta Environment https://open.alberta.ca/publications/9781460125397.

Appendix A. Descriptive Statistics for the Nine Long Term River Network Stations

Table A1: Median and 90th percentile values for primary indicators in the Oldman River (Brocket)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90 TH PERCENTILE	n
Total Ammonia (mg/L)	1999-2009	open	0.010	0.060	91
		winter	0.010	0.039	52
	2016-17	open	0.025	0.025	7
		winter	0.025	0.025	5
Chloride (mg/L)	1999-2009	open	0.9	1.8	70
		winter	1.2	1.9	50
	2016-17	open	1.3	1.6	7
		winter	1.8	2.0	5
Nitrate (mg/L)	1999-2009	open	0.078	0.128	91
		winter	0.092	0.132	52
	2016-17	open	0.052	0.079	7
		winter	0.1	0.134	5
Total Nitrogen (mg/L)	1999-2009	open	0.23	0.35	70
		winter	0.19	0.32	50
	2016-17	open	0.16	0.302	7
		winter	0.14	0.384	5
Total Dissolved	1999-2009	open	0.003	0.006	91
Phosphorus (mg/L)		winter	0.003	0.005	52
	2016-17	open	0.007	0.008	7
		winter	0.002	0.003	5
Total Phosphorus (mg/L)	1999-2009	open	0.007	0.018	91
		winter	0.005	0.010	52
	2016-17	open	0.005	0.006	7
		winter	0.005	0.006	5
Sulphate (mg/L)	1999-2009	open	22.1	29.4	70
		winter	29.6	36.0	50
	2016-17	open	25.0	30.0	7
		winter	34.0	36.8	5
Sodium Adsorption Ratio	1999-2009	open	0.16	0.22	70
		winter	0.18	0.20	50
	2016-17	open	0.18	0.23	7
		winter	0.16	0.18	5

Table A1: Median and 90th percentile values for primary indicators in the Oldman River (Brocket) (continued)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	276	313	91
Specific Conductance	1999-2009	winter	308	342	52
(μS/cm)	2046 47	open	280	334	7
	2016-17	winter	350	350	5
	1999-2009	open	156	181	70
Total Dissalved Salida (ma/l.)	1999-2009	winter	179	202	50
Total Dissolved Solids (mg/L)	2016-17	open	160	188	7
	2010-17	winter	180	190	5
	4000 0000	open	2.0	3.7	70
Total Organia Carban (mg/l)	1999-2009	winter	1.6	2.2	50
Total Organic Carbon (mg/L)	2016-17	open	1.4	1.6	7
	2010-17	winter	1.4	2.0	5
Total Suspended Solids	1999-2009	open	3	10	84
		winter	1	6	47
(mg/L)	2046 47	open	1	2	7
	2016-17	winter	1	1	5
	1999-2009	open	4.5	18.8	91
Turbidity (NTU)	1999-2009	winter	2.3	8.5	52
Turbialty (NTO)	2016-17	open	1.7	2.7	7
	2016-17	winter	1.6	2.8	5
	4000 2000	open	8.26	8.35	91
mII.	1999-2009	winter	8.26	8.34	52
рН	2016-17	open	8.28	8.43	7
	2010-17	winter	8.33	8.34	5
	1999-2009	open	3	14	70
Escherichia coli (cfu/100ml)	1999-2009	winter	2	27	49
Escherichia con (cru/100ml)	2016-17	open	3	8	7
	2010-17	winter	27	83	5

Table A2: Median and 90th percentile values for secondary indicators in the Oldman River (Brocket)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.0025	0.0032	39
2,4-D (μg/L)	1999-2009	winter	0.0025	0.0025	4
2,4-υ (μg/L)	2016-17	open	0.0025	0.0106	4
	2010-17	winter			
	1999-2009	open	0.0025	0.0068	39
Dicamba (μg/L)	1999-2009	winter	0.0025	0.0025	4
Dicamba (µg/L)	2016-17	open	0.0025	0.0025	4
	2010-17	winter			
MCPA (μg/L)	1999-2009	open	0.0025	0.0025	39
	1999-2009	winter	0.0025	0.0025	4
	2016-17	open	0.0025	0.0099	4
		winter			
	1999-2009	open	0.0025	0.0025	39
Mecoprop (μg/L)		winter	0.0025	0.0025	4
Wecopi op (μg/L)	2016-17	open	0.0025	0.0025	4
	2010-17	winter			
	1999-2009	open	0.30	1.40	18
Total Mercury (ng/L)	1999-2009	winter	0.33	0.62	8
Total Mercury (119/L)	2016-17	open	0.62	0.82	7
	2010-17	winter	0.49	0.62	5
	1999-2009	open	0.52	0.76	14
Total Pacayarable Salanium (ug/l)	1999-2009	winter	0.73	0.85	7
Total Recoverable Selenium (μg/L)	2016-17	open	0.38	0.52	7
	2010-17	winter	0.66	0.75	5

Table A3: Median and 90th percentile values for primary indicators in the Oldman River (Hwy 3 in Lethbridge)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.020	0.070	94
Total Ammonia (mg/l)	1393-2003	winter	0.020	0.059	52
Total Ammonia (mg/L)	2046 47	open	0.025	0.025	7
	2016-17	winter	0.053	0.123	5
	1999-2009	open	1.5	3.2	70
Chloride (mg/L)	1333-2003	winter	2.1	3.0	50
Chloride (hig/L)	2016 17	open	2.1	2.7	7
	2016-17	winter	2.9	8.9	5
	1999-2009	open	0.023	0.138	94
Nitrate (mg/L)	1000 2000	winter	0.219	0.348	52
	2016-17	open	0.027	0.050	7
	2016-17	winter	0.240	0.266	5
Total Nitrogen (mg/L)	1999-2009	open	0.25	0.64	72
	1333-2003	winter	0.40	0.59	50
	2016-17	open	0.21	0.44	7
		winter	0.36	1.08	5
	1999-2009	open	0.003	0.009	93
Total Dissolved Phosphorus (mg/L)		winter	0.003	0.006	52
Total Dissolved Filosphorus (mg/L)	2016-17	open	0.007	0.008	7
	2010-17	winter	0.004	0.093	5
	1999-2009	open	0.012	0.151	94
Total Phosphorus (mg/L)	1000 2000	winter	0.008	0.022	52
rotai i nospiioras (mg/2)	2016-17	open	0.010	0.024	7
	2010-17	winter	0.022	0.141	5
	1999-2009	open	35.8	52.1	70
Sulphate (mg/L)		winter	45.0	58.0	50
Carpitato (iiigra)	2016-17	open	42.0	49.6	7
	2010-17	winter	46.0	56.0	5
	1999-2009	open	0.42	0.59	70
Sodium Adsorption Ratio		winter	0.46	0.60	50
Couldin Adoorption Natio	2016-17	open	0.48	0.60	7
	2010-17	winter	0.43	0.61	5

Table A3: Median and 90th percentile values for primary indicators in the Oldman River (Hwy 3 in Lethbridge) (continued)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	323	397	91
Specific Conductance (µS/cm)	1333-2003	winter	358	437	52
opeome conductance (porom)	2016-17	open	330	384	7
	2010-17	winter	370	404	5
	1999-2009	open	182	224	69
Total Dissolved Solids (mg/L)	1000 2000	winter	217	256	50
	2016-17	open	190	208	7
	2010-17	winter	200	232	5
	1999-2009	open	2.4	3.9	70
Total Organic Carbon (mg/L)	1000 2000	winter	1.7	2.5	50
	2016-17	open	1.6	2.2	7
	2010-17	winter	1.2	2.9	5
	1999-2009	open	9	189	93
Total Suspended Solids (mg/L)		winter	7	34	52
retai euopenuou eenuo (mg/2)	2016-17	open	11	26	7
	2010-17	winter	59	112	5
	1999-2009	open	10.0	153.0	91
Turbidity (NTU)	.000 2000	winter	6.3	27.5	52
	2016-17	open	8.7	14.0	7
	20.0	winter	30.0	59.6	5
	1999-2009	open	8.34	8.57	91
pH	.000 2000	winter	8.20	8.28	52
F	2016-17	open	8.40	8.43	7
	2010-17	winter	8.18	8.20	5
	1999-2009	open	13	71	72
Escherichia coli (cfu/100ml)	.000 2000	winter	2	13	48
Loonerona con (ora/ room)	2016-17	open	37	64	7
	2010-17	winter	12	126	5

Table A4: Median and 90th percentile values for secondary indicators in the Oldman River (Hwy 3 in Lethbridge)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
		open	0.0060	0.0310	46
	1999-2009	winter	0.0025	0.0025	4
	0046.47	open	0.0145	0.0185	4
2,4-D (μg/L)	2016-17	winter			
		open	0.0025	0.0100	46
	1999-2009	winter	0.0025	0.0025	4
	2016-17	open	0.0025	0.0025	4
Dicamba (μg/L)	2010-17	winter			
		open	0.0025	0.0100	46
	1999-2009	winter	0.0025	0.0025	4
	2016-17	open	0.0025	0.0057	4
MCPA (μg/L)	2016-17	winter			
		open	0.0025	0.0028	46
	1999-2009	winter	0.0025	0.0025	4
	2016-17	open	0.0025	0.0064	4
Mecoprop (μg/L)	2010-17	winter			
		open	0.30	2.06	18
	1999-2009	winter	0.30	1.35	8
	2016-17	open	1.75	3.24	7
Total Mercury (ng/L)	2010-17	winter	2.02	7.85	5
		open	0.61	0.85	14
	1999-2009	winter	0.90	1.20	7
	2016-17	open	0.60	0.77	7
Total Recoverable Selenium (μg/L)	2010-17	winter	0.76	0.85	5

Table A5: Median and 90th percentile values for primary indicators in the Oldman River (Hwy 36)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.020	0.110	91
Total Ammonia (mg/L)	1000 2000	winter	0.030	0.134	57
Total Allinolla (iligre)	2016-17	open	0.025	0.025	7
	2010-17	winter	0.063	0.111	5
	1999-2009	open	4.0	6.1	70
Chloride (mg/L)		winter	6.0	8.1	50
omoride (mg/L)	2016-17	open	3.6	5.8	7
	2010-17	winter	4.7	8.4	5
	1999-2009	open	0.006	0.140	91
Nitrate (mg/L)	1000 2000	winter	0.317	0.495	57
	2016-17	open	0.036	0.066	7
	2010-17	winter	0.290	0.384	5
Total Nitrogen (mg/L)	1999-2009	open	0.31	0.75	70
	1933-2009	winter	0.59	0.96	55
rotal Nitrogen (mg/L)	2016-17	open	0.27	0.35	7
		winter	0.60	0.69	5
	1999-2009	open	0.003	0.010	91
Total Dissolved Phosphorus (mg/L)		winter	0.003	0.007	57
Total Dissolved Filosphorus (mg/L)	2016-17	open	0.008	0.009	7
		winter	0.004	0.008	5
	1999-2009	open	0.015	0.173	91
Total Phosphorus (mg/L)	1999-2009	winter	0.009	0.019	57
rotar ricophorus (mg/2)	2016-17	open	0.019	0.029	7
	2010-17	winter	0.015	0.027	5
	1999-2009	open	44.8	61.4	70
Sulphate (mg/L)	1000-2000	winter	58.1	77.4	50
Carpitate (mg/L)	2016-17	open	51.0	70.4	7
	2010-17	winter	48.0	64.0	5
	1999-2009	open	0.56	0.78	70
Sodium Adsorption Ratio	1999-2009	winter	0.65	0.80	50
- Coulain Adoorption Hallo	2016-17	open	0.54	0.74	7
	2010-11	winter	0.54	0.65	5

Table A5: Median and 90th percentile values for primary indicators in the Oldman River (Hwy 36)(continued)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	357	425	91
Specific Conductance (µS/cm)	1933-2003	winter	414	502	52
Specific Conductance (po/cm)	2016-17	open	350	420	7
	2010-17	winter	390	446	5
	1999-2009	open	200	243	70
Total Dissolved Solids (mg/L)	1000 2000	winter	246	296	50
Total Dissolved Jolius (Hig/L)	2016-17	open	210	240	7
	2010-17	winter	230	246	5
	1999-2009	open	2.9	4.4	70
Total Organic Carbon (mg/L)	1999-2009	winter	2.2	3.0	55
	2016-17	open	2.1	2.6	7
	2016-17	winter	1.6	1.7	5
	1999-2009	open	11	200	90
Total Suspended Solids (mg/L)		winter	3	17	57
Total casponada conac (mg/2)	2016-17	open	21	23	7
		winter	9	67	5
	1999-2009	open	9.9	180.0	91
Turbidity (NTU)	1000 2000	winter	4.9	19.9	52
Tanana, (Tro)	2016-17	open	11.0	15.0	7
	20.0	winter	8.6	28.4	5
	1999-2009	open	8.37	8.52	91
pH		winter	8.21	8.33	57
F	2016-17	open	8.41	8.50	7
	2010-17	winter	8.21	8.28	5
	1999-2009	open	14	151	70
Escherichia coli (cfu/100ml)		winter	3	17	53
	2016-17	open	12	50	7
	20.0	winter	7	43	5

Table A6: Median and 90th percentile values for secondary indicators in the Oldman River (Hwy 36)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.0135	0.0802	44
	1333-2003	winter	0.0025	0.0025	4
		open	0.0655	0.0858	4
2,4-D (µg/L)	2016-17	winter			
	1999-2009	open	0.0025	0.0117	44
	1000 2000	winter	0.0025	0.0025	4
		open	0.0025	0.0025	4
Dicamba (μg/L)	2016-17	winter			
	1999-2009	open	0.0025	0.0184	44
	1333-2003	winter	0.0025	0.0025	4
		open	0.0095	0.0155	4
MCPA (μg/L)	2016-17	winter			
	1999-2009	open	0.0025	0.0070	44
		winter	0.0025	0.0025	4
		open	0.0065	0.0238	4
Mecoprop (μg/L)	2016-17	winter			
	1999-2009	open	0.43	2.37	18
	1000 2000	winter	0.80	1.73	8
		open	1.40	2.01	7
Total Mercury (ng/L)	2016-17	winter	1.03	2.56	5
		open	0.59	1.00	14
	1999-2009	winter	1.12	1.25	7
		open	0.54	0.84	7
Total Recoverable Selenium (μg/L)	2016-17	winter	0.64	1.00	5

Table A7: Median and 90th percentile values for primary indicators in the South Saskatchewan River (Medicine Hat-Hwy 1)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.020	0.060	70
Total Ammonia (mg/L)	1000 2000	winter	0.090	0.253	48
Total Allinonia (mg/L)	2016-17	open	0.025	0.056	7
	2010-17	winter	0.025	0.220	5
	1999-2009	open	6.4	9.8	70
Chloride (mg/L)	.000 =000	winter	12.6	19.9	48
	2016-17	open	10.0	12.0	7
	2010-17	winter	13.0	18.2	5
	1999-2009	open	0.103	0.497	69
Nitrate (mg/L)	.000 =000	winter	1.015	1.258	48
mulate (mg/L)	2016-17	open	0.120	0.524	7
	2010-17	winter	0.890	1.260	5
Total Nitrogen (mg/L)	1999-2009	open	0.55	1.01	70
	1000 2000	winter	1.33	1.72	48
	2046 47	open	0.49	0.82	7
	2016-17	winter	1.40	2.10	5
	1999-2009	open	0.004	0.009	70
Total Dissolved Phosphorus (mg/L)	1999-2009	winter	0.004	0.010	48
Total Dissolved Filosphorus (mg/L)	2016-17	open	0.009	0.010	7
	2010-17	winter	0.005	0.024	5
	1999-2009	open	0.023	0.098	70
Total Phosphorus (mg/L)	1000 2000	winter	0.011	0.042	48
rotar ricopnorae (ing.2)	2016-17	open	0.016	0.026	7
	2010-17	winter	0.014	0.228	5
	1999-2009	open	56.5	76.9	70
Sulphate (mg/L)	.000 2000	winter	62.4	77.6	48
Carpilate (mg/L)	2016-17	open	67.0	83.0	7
	2010-17	winter	66.0	86.2	5
	1999-2009	open	0.60	0.79	70
Sodium Adsorption Ratio		winter	0.59	0.88	48
Couldin Adoorphion Natio	2016-17	open	0.63	0.80	7
	2010-17	winter	0.61	0.76	5

Table A7: Median and 90th percentile values for primary indicators in the South Saskatchewan River (Medicine Hat-Hwy 1) (continued)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	369	436	68
Specific Conductance (µS/cm)	1333-2003	winter	462	519	48
Openie Gonductance (poreni)	2016-17	open	400	444	7
	2010-17	winter	480	538	5
	1999-2009	open	221	252	70
Total Dissolved Solids (mg/L)	1000 2000	winter	268	316	48
Total Dissolved Solids (Hig/L)	2016-17	open	230	252	7
	2016-17	winter	280	310	5
	1999-2009	open	2.7	4.0	34
Total Organic Carbon (mg/L)	1333-2003	winter	1.7	3.0	13
Total Organic Carbon (mg/L)	2016-17	open	2.5	2.8	7
	2010-17	winter	1.4	5.7	5
	1999-2009	open	19	105	70
Total Suspended Solids (mg/L)	1999-2009	winter	5	32	48
Total Suspended Solids (mg/L)	2016-17	open	15	43	7
	2010-17	winter	6	377	5
	1999-2009	open	16.4	80.5	70
Turbidity (NTU)	.000 2000	winter	4.0	28.3	48
Turblandy (NTO)	2016-17	open	7.4	14.6	7
	2010-17	winter	4.5	546.8	5
	1999-2009	open	8.32	8.47	70
pH	1000 2000	winter	8.14	8.27	48
F	2016-17	open	8.40	8.52	7
	2010-11	winter	8.14	8.24	5
	1999-2009	open	13	99	68
Escherichia coli (cfu/100ml)	1000 2000	winter	1	7	48
Leonericina con (cia/ room)	2016-17	open	14	24	7
	2010-17	winter	3	53	5

Table A8: Median and 90th percentile values for secondary indicators in the South Saskatchewan River (Medicine Hat-Hwy 1)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.0245	0.1049	44
2,4-D (μg/L)	1000 2000	winter	0.0025	0.0025	3
2,4-0 (µg/L)	2016-17	open	0.024	0.0858	4
	2010-17	winter			
	1999-2009	open	0.0025	0.0170	44
Dicamba (μg/L)	1393-2003	winter	0.0025	0.0025	3
Dicamba (μg/L)	2016-17	open	0.0025	0.0071	4
	2010-17	winter			
MCPA (μg/L)	1999-2009	open	0.0025	0.0168	44
	1999-2009	winter	0.0025	0.0025	3
MOFA (µg/L)	2016-17	open	0.0025	0.0025	4
	2010-17	winter			
	1999-2009	open	0.0025	0.0132	44
Mecoprop (μg/L)	1999-2009	winter	0.0025	0.0025	3
wecoprop (µg/L)	2016-17	open	0.0025	0.0218	4
	2010-17	winter			
	1999-2009	open	0.55	2.61	18
Total Maraury (ng/l)	1999-2009	winter	0.30	0.41	5
Total Mercury (ng/L)	2016-17	open	1.75	3.05	7
	2010-17	winter	0.73	6.28	5
	1999-2009	open	0.57	0.85	14
Total Recoverable Selenium (µg/L)	1555 2005	winter	1.00	1.07	4
Total Necoverable Selemani (µg/L)	2016-17	open	0.63	0.71	7
	2010-17	winter	0.78	1.01	5

Table A9: Median and 90th percentile values for primary indicators in the Bow River (Cochrane)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.005	0.041	70
Total Ammonia (mg/L)	1000 2000	winter	0.008	0.025	50
Total Allinollia (mg/L)	2016-17	open	0.025	0.025	7
	2010-17	winter	0.025	0.025	5
	1999-2009	open	1.9	2.9	70
Chloride (mg/L)	1000 2000	winter	2.0	2.6	50
Cilionae (ilig/L)	2016-17	open	2.2	3.0	7
	2010-17	winter	2.3	4.0	5
	1999-2009	open	0.074	0.108	69
Nitrate (mg/L)	1000 2000	winter	0.109	0.130	50
Mittate (mg/L)	2016-17	open	0.092	0.118	7
	2010-17	winter	0.15	0.176	5
Total Nitrogen (mg/L)	1999-2009	open	0.18	0.40	70
	1999-2009	winter	0.17	0.23	50
	2016-17	open	0.16	0.23	7
		winter	0.21	0.24	5
	1999-2009	open	0.002	0.004	35
Total Dissolved Phosphorus (mg/L)		winter	0.002	0.004	25
Total Dissolved Filosphorus (mg/L)	2016-17	open	0.004	0.008	7
	2010-17	winter	0.002	0.006	5
	1999-2009	open	0.005	0.009	35
Total Phosphorus (mg/L)	1000 2000	winter	0.003	0.006	25
Total Thosphorus (mg/L)	2016-17	open	0.002	0.006	7
	2010-17	winter	0.002	0.005	5
	1999-2009	open	33.6	40.4	70
Sulphate (mg/L)	1333 2003	winter	42.2	45.8	50
Calphate (mg/L)	2016-17	open	38.0	45.0	7
	2010-17	winter	49.0	51.2	5
	1999-2009	open	0.07	0.12	70
Sodium Adsorption Ratio	1999-2009	winter	0.07	0.10	50
Socialii Ausorption Ratio	2016-17	open	0.06	0.22	7
	2010-17	winter	0.07	0.08	5

Table A9: Median and 90th percentile values for primary indicators in the Bow River (Cochrane) (continued)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	289	317	70
Specific Conductance (µS/cm)	1933-2003	winter	330	349	50
Specific conductance (µ3/cm)	2016-17	open	290	330	7
	2010-17	winter	360	360	5
	1999-2009	open	165	190	70
Total Dissolved Solids (mg/L)	1999-2009	winter	190	200	50
	2016-17	open	160	180	7
	2010-17	winter	200	200	5
	1999-2009	open	1.0	1.6	34
Total Organic Carbon (mg/L)	1999-2009	winter	0.8	0.9	14
Total Organic Carbon (mg/L)	2016 17	open	0.8	1.0	7
	2016-17	winter	0.3	0.6	5
	1999-2009	open	2	8	70
Total Suspended Solids (mg/L)		winter	1	2	50
Total Suspended Solids (mg/L)	2016-17	open	1	4	7
	2010-17	winter	1	1	5
	1999-2009	open	1.8	10.1	70
Turbidity (NTU)	1933-2003	winter	0.8	1.7	50
raibiaity (NTO)	2016-17	open	1.1	3.4	7
	2010-17	winter	0.5	0.7	5
	1999-2009	open	8.23	8.38	70
рН	1999-2009	winter	8.17	8.30	50
, pri	2016-17	open	8.30	8.35	7
	2010-17	winter	8.21	8.31	5
	1999-2009	open	2	13	70
Escherichia coli (cfu/100ml)	1999-2009	winter	1	2	49
Escribilitina con (ciù roomi)	2016-17	open	1	5	7
	2010-17	winter	1	360	5

Table A10: Median and 90th percentile values for secondary indicators in Bow River (Cochrane)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.0025	0.0025	44
2,4-D (μg/L)	1000 2000	winter	0.0025	0.0025	3
2,4-D (μg/L)	2016-17	open	0.0025	0.0176	4
	2016-17	winter			
	1999-2009	open	0.0025	0.0100	44
Dicamba (μg/L)		winter	0.0025	0.0025	3
(r o -/	2016-17	open	0.0025	0.0025	4
	2010-17	winter			
MCPA (μg/L)	1999-2009	open	0.0025	0.0025	44
	1000 2000	winter	0.0025	0.0025	3
Moi Α (μg/L)	2016-17	open	0.0025	0.0025	4
	2010-17	winter			
	1999-2009	open	0.0025	0.0025	44
Mecoprop (μg/L)		winter	0.0025	0.0025	3
Mecoprop (µg/L)	2016-17	open	0.0025	0.0078	4
	2010-17	winter			
	1999-2009	open	0.30	0.92	22
Total Mercury (ng/L)	1000 2000	winter	0.34	0.50	10
rotal moroary (rig.L)	2016-17	open	0.40	0.85	7
	2010-17	winter	0.29	0.34	4
	1999-2009	open	0.50	0.59	18
Total Recoverable Selenium (µg/L)	.000 2000	winter	0.61	0.80	9
rotal (topoverable deletinam (pg/L)	2016-17	open	0.40	0.59	7
	2010-17	winter	0.53	0.61	5

Table A11: Median and 90th percentile values for primary indicators in the Bow River (Carseland)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.045	0.160	70
Total Ammonia (mg/L)	1000 2000	winter	0.250	0.472	50
Total Allinollia (llig/L)	2016-17	open	0.025	0.184	7
	2010-17	winter	0.17	0.292	5
	1999-2009	open	7.6	13.1	70
Chloride (mg/L)	.000 2000	winter	12.7	20.4	50
omonido (mg/L)	2016-17	open	13.0	14.0	7
	2010-17	winter	22.0	23.0	5
	1999-2009	open	0.601	0.990	69
Nitrate (mg/L)	1000 2000	winter	1.130	1.403	50
· · · · · · · · · · · · · · · · · · ·	2016-17	open	0.810	1.068	7
	2010-17	winter	1.200	1.520	5
Total Nitrogen (mg/L)	1999-2009	open	1.02	1.72	70
	1999-2009	winter	1.68	2.17	50
	2016-17	open	1.20	1.30	7
		winter	1.70	2.04	5
	1999-2009	open	0.007	0.016	35
Total Dissolved Phosphorus (mg/L)		winter	0.017	0.028	25
rotal bissolved i nospilorus (mg/L)	2016-17	open	0.010	0.016	7
	2010-17	winter	0.016	0.027	5
	1999-2009	open	0.021	0.083	35
Total Phosphorus (mg/L)	.000 2000	winter	0.030	0.062	25
rotar ricopnorus (mg/L)	2016-17	open	0.015	0.036	7
	2010-17	winter	0.030	0.052	5
	1999-2009	open	42.9	51.5	70
Sulphate (mg/L)	1000 2000	winter	53.9	58.0	50
carpilate (iiig/L)	2016-17	open	55.0	60.0	7
	2010-17	winter	66.0	73.0	5
	1999-2009	open	0.30	0.45	70
Sodium Adsorption Ratio	1999-2009	winter	0.39	0.58	50
Couldn't Adderption Natio	2016-17	open	0.38	0.44	7
	2010-11	winter	0.50	0.54	5

Table A11: Median and 90th percentile values for primary indicators in the Bow River (Carseland) (continued)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	346	398	69
Specific Conductance (µS/cm)	1333-2003	winter	422	443	50
Specific Conductance (po/cm)	2016-17	open	410	420	7
	2010-17	winter	500	538	5
	1999-2009	open	201	232	70
Total Dissolved Solids (mg/L)		winter	246	260	50
1 otal 2.0001100 001100 (g, 2)	2016-17	open	220	234	7
	2010-17	winter	290	306	5
	1999-2009	open	2.0	3.6	34
Total Organic Carbon (mg/L)		winter	1.5	1.9	14
	2016-17	open	1.8	2.0	7
	2010-17	winter	1.5	1.8	5
	1999-2009	open	6	64	70
Total Suspended Solids (mg/L)		winter	5	14	50
Total Suspended Solids (ilig/2)	2016-17	open	3	10	7
	2010-17	winter	4	15	5
	1999-2009	open	4.0	48.4	70
Turbidity (NTU)	1000 2000	winter	2.6	9.3	50
Turbialty (NYO)	2016-17	open	1.6	3.9	7
	2010-17	winter	2.8	5.2	5
	1999-2009	open	8.20	8.39	70
рН		winter	8.06	8.20	50
F	2016-17	open	8.33	8.43	7
	2010-11	winter	8.11	8.18	5
	1999-2009	open	28	144	67
Escherichia coli (cfu/100ml)		winter	10	25	47
(2.2)	2016-17	open	4	98	7
	20.0-17	winter	7	15	5

Table A12: Median and 90th percentile values for secondary indicators in Bow River (Carseland)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.0075	0.0260	44
2,4-D (μg/L)	1999-2009	winter	0.0025	0.0025	3
2,4-D (µg/L)	2016-17	open	0.0110	0.0619	4
	2010-17	winter			
	1999-2009	open	0.0025	0.0100	44
Dicamba (μg/L)		winter	0.0025	0.0025	3
	2016-17	open	0.0025	0.0025	4
	2010 17	winter			
	1999-2009	open	0.0025	0.0071	44
MCPA (μg/L)	1393-2003	winter	0.0025	0.0025	3
MOFA (µg/L)	2016-17	open	0.0025	0.0025	4
		winter			
	1999-2009	open	0.0050	0.0167	44
Mecoprop (μg/L)	1999-2009	winter	0.0025	0.0025	3
wecoprop (µg/L)	2016-17	open	0.0110	0.0340	4
	2010-17	winter			
	1999-2009	open	0.30	4.81	22
Total Maraumy (mg/l.)	1999-2009	winter	0.35	0.69	10
Total Mercury (ng/L)	2016-17	open	0.64	1.46	7
	2010-17	winter	0.84	5.33	5
	1999-2009	open	0.59	0.88	18
Total Recoverable Selenium (μg/L)	1333-2003	winter	0.83	0.98	9
Total Recoverable Seletifulli (µg/L)	2016-17	open	0.58	0.69	7
	∠U10-17	winter	0.72	0.89	5

Table A13: Median and 90th percentile values for primary indicators in the Bow River (Cluny)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.025	0.120	71
Total Ammonia (mg/L)	1000 2000	winter	0.195	0.372	48
Total Allinollia (Ilig/L)	2046 47	open	0.025	0.055	7
	2016-17	winter	0.150	0.246	5
	1999-2009	open	8.0	13.0	71
Chloride (mg/L)	1333-2003	winter	13.0	20.9	43
Chloride (hig/L)	2016-17	open	12.0	13.4	7
	2010-17	winter	20.0	27.2	5
	1999-2009	open	0.520	0.837	59
Nitrate (mg/L)	1000 2000	winter	1.195	1.455	40
Tricate (mg/L)	2016-17	open	0.670	0.880	7
	2010-17	winter	1.400	1.780	5
Total Nitrogen (mg/L)	1999-2009	open	0.94	1.52	71
		winter	1.68	2.07	48
	2016-17	open	0.83	1.38	7
	2010-17	winter	1.80	2.26	5
	1999-2009	open	0.005	0.014	35
Total Dissolved Phosphorus (mg/L)	1999-2009	winter	0.012	0.020	22
retai Dieservea i neopherae (mg/2)	2016-17	open	0.010	0.013	7
	2010-17	winter	0.017	0.020	5
	1999-2009	open	0.017	0.128	35
Total Phosphorus (mg/L)		winter	0.017	0.025	22
rotar risoprioras (iiig/2)	2016-17	open	0.010	0.015	7
	2010 11	winter	0.024	0.051	5
	1999-2009	open	47.9	58.1	48
Sulphate (mg/L)	.000 2000	winter	57.2	63.1	32
Carpitate (mg/L)	2016-17	open	58.0	61.8	7
	2010-17	winter	71.0	78.0	5
	1999-2009	open	0.35	0.58	48
Sodium Adsorption Ratio		winter	0.42	0.72	32
Couldin Adoorphion Natio	2016-17	open	0.40	0.47	7
	2010-17	winter	0.53	0.62	5

Table A13: Median and 90th percentile values for primary indicators in the Bow River (Cluny) (continued)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	360	425	47
Specific Conductance (µS/cm)	1000 2000	winter	441	490	32
Specific conductance (µ3/cm)	2016-17	open	370	414	7
	2010-17	winter	510	550	5
	1999-2009	open	211	245	48
Total Dissolved Solids (mg/L)	1000 2000	winter	257	290	32
Total Dissolved Collas (Hig/L)	2016-17	open	220	234	7
	2010-17	winter	300	312	5
	1999-2009	open	2.2	4.3	23
Total Organic Carbon (mg/L)	1333-2003	winter	1.3	1.8	16
Total Organic Carbon (mg/L)	2016-17	open	1.7	2.0	7
	2010-17	winter	1.4	1.8	5
	1999-2009	open	11	80	71
Total Suspended Solids (mg/L)	1000 2000	winter	4	9	48
Total Gaspenaca Gonas (mg/L)	2016-17	open	6	8	7
	2010-17	winter	7	15	5
	1999-2009	open	8.5	62.7	48
Turbidity (NTU)	1000 2000	winter	2.8	7.1	32
randally (RTO)	2016-17	open	2.4	4.3	7
	2010-17	winter	2.7	5.2	5
	1999-2009	open	8.30	8.46	48
pH		winter	8.00	8.23	37
Pi.	2016-17	open	8.40	8.53	7
	2010-17	winter	8.11	8.26	5
	1999-2009	open	8	56	67
Escherichia coli (cfu/100ml)	.000 2000	winter	1	6	48
Loonerionia con (cia/roomi)	2016-17	open	7	23	7
	2010-17	winter	3	5	5

Table A14: Median and 90th percentile values for secondary indicators in the Bow River (Cluny)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
		open	0.0065	0.0384	32
	1999-2009	winter	0.0025	0.0025	3
	0040.47	open	0.00825	0.0266	4
2,4-D (μg/L)	2016-17	winter			
		open	0.0025	0.0100	32
	1999-2009	winter	0.0025	0.0025	3
	2040.47	open	0.0025	0.0025	4
Dicamba (μg/L)	2016-17	winter			
		open	0.0025	0.0097	32
	1999-2009	winter	0.0025	0.0025	3
	2046 47	open	0.0025	0.0025	4
MCPA (μg/L)	2016-17	winter			
		open	0.0055	0.0209	32
	1999-2009	winter	0.0025	0.0025	3
	2016-17	open	0.0090	0.0201	4
Mecoprop (μg/L)	2016-17	winter			
		open	0.30	2.53	17
	1999-2009	winter	0.30	0.37	5
	2046 47	open	0.95	1.37	7
Total Mercury (ng/L)	2016-17	winter	0.64	2.57	5
, ,		open	0.70	0.93	10
	1999-2009	winter	0.79	0.82	4
	2046 47	open	0.56	0.71	7
Total Recoverable Selenium (µg/L)	2016-17	winter	0.80	0.88	5

Table A15: Median and 90th percentile values for primary indicators in the Bow River (Ronalane)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
Total Ammonia (mg/L)	1999-2009	open	0.020	0.081	70
		winter	0.130	0.292	49
Total Allinollia (llig/L)	2016-17	open	0.025	0.025	7
	2010-17	winter	0.099	0.354	5
	1999-2009	open	8.4	12.0	70
Chloride (mg/L)	1000 2000	winter	13.0	19.7	49
Chloride (hig/L)	2016-17	open	14.0	17.0	7
	2010-17	winter	20.0	49.8	5
	1999-2009	open	0.302	0.747	69
Nitrate (mg/L)	1000 2000	winter	1.190	1.440	49
Wildle (mg/L)	2016-17	open	0.091	0.820	7
	2010-17	winter	1.400	1.520	5
	1999-2009	open	0.68	1.26	70
Total Nitrogen (mg/L)	1000 2000	winter	1.58	1.91	49
	2016-17	open	0.41	1.14	7
		winter	2.00	2.10	5
	1999-2009	open	0.005	0.010	35
Total Dissolved Phosphorus (mg/L)		winter	0.005	0.017	24
Total Dissolved Filosphorus (mg/L)	2046 47	open	0.007	0.010	7
	2016-17	winter	0.008	0.028	5
	1999-2009	open	0.025	0.138	35
Total Phosphorus (mg/L)		winter	0.012	0.027	24
rotai i nospiicius (mg/L)	2016-17	open	0.010	0.020	7
	2010-17	winter	0.015	0.110	5
	1999-2009	open	62.2	78.2	70
Sulphate (mg/L)	1000 2000	winter	60.9	70.5	49
Sulpnate (mg/L)	2016-17	open	73.0	84.6	7
	2010-17	winter	75.0	85.4	5
Sodium Adsorption Ratio	1999-2009	open	0.55	0.80	70
		winter	0.48	0.67	49
	2016-17	open	0.65	0.73	7
	2010-17	winter	0.53	1.21	5

Table A15: Median and 90th percentile values for primary indicators in the Bow River (Ronalane) (continued)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
Specific Conductance (μS/cm)	1999-2009	open	386	431	70
		winter	448	499	49
	2016-17	open	420	454	7
	2010-17	winter	560	570	5
	1999-2009	open	228	260	70
Total Dissolved Solids (mg/L)	1999-2009	winter	263	291	49
Total Dissolved Solids (Hig/L)	2016-17	open	250	264	7
	2010-17	winter	310	338	5
	1000-2000	open	3.0	4.8	34
Total Organic Carbon (mg/L)	1999-2009	winter	1.5	2.5	14
Total Organic Carbon (mg/L)	2016-17	open	2.4	3.1	7
	2010-17	winter	1.6	4.0	5
Total Suspended Solids (mg/L)	1999-2009	open	12	72	70
		winter	6	18	49
Total Suspended Solids (mg/L)	2016-17	open	7	29	7
		winter	3	102	5
	1999-2009	open	10.4	73.3	70
Turbidity (NTU)		winter	3.8	17.4	49
Tarbianty (1410)	2016-17	open	2.2	9.6	7
	2010-17	winter	3.3	51.2	5
	1999-2009	open	8.32	8.58	70
nH	1999-2009	winter	8.06	8.30	49
pH	2016-17	open	8.50	8.61	7
	2010-17	winter	8.11	8.21	5
Escherichia coli (cfu/100ml)	1999-2009	open	14	77	69
		winter	1	6	49
	2016-17	open	6	78	7
	2010-17	winter	3	11	5

Table A16: Median and 90th percentile values for secondary indicators in the Bow River (Ronalane)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
2.4 D (vall)	1999-2009	open	0.0325	0.1443	44
	1333-2003	winter	0.0025	0.0025	3
2,4-D (μg/L)	2016-17	open	0.0260	0.0771	4
	2010-17	winter			
	1999-2009	open	0.0095	0.0354	44
Dicamba (µg/L)	1333-2003	winter	0.0025	0.0025	3
Dicamba (μg/L)	2016-17	open	0.0025	0.0260	4
	2010-17	winter			
MCPA (μg/L)	1999-2009	open	0.0025	0.0629	44
	1999-2009	winter	0.0025	0.0025	3
	2016 17	open	0.0025	0.0057	4
	2016-17	winter			
	1999-2009	open	0.0055	0.0160	44
Mecoprop (μg/L)		winter	0.0025	0.0025	3
Mecoprop (μg/L)	2016-17	open	0.0070	0.0325	4
	2010-17	winter			
	1999-2009	open	0.90	4.24	18
Total Moreury (ng/L)	1333-2003	winter	0.30	0.51	6
Total Mercury (ng/L)	2016-17	open	1.28	2.18	7
	2010-17	winter	0.78	4.83	5
Total Recoverable Selenium (μg/L)	1999-2009	open	0.69	0.94	14
	1999-2009	winter	0.83	1.00	5
	0046.47	open	0.61	0.69	7
	2016-17	winter	0.87	0.94	5

Table A17: Median and 90th percentile values for primary indicators in the Milk River (Hwy 880)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.025	0.070	81
Total Ammonia (mg/L)	1000 =000	winter	0.040	0.130	31
rotal / allinollia (ilig/2)	2016-17	open	0.025	0.054	7
	201011	winter	0.072	0.133	5
	1999-2009	open	1.3	6.2	81
Chloride (mg/L)	1000 2000	winter	8.0	14.3	31
omoride (mg/L)	2016-17	open	1.4	4.2	7
	2010-17	winter	9.1	13.6	5
	1999-2009	open	0.031	0.123	81
Nitrate (mg/L)	1999-2009	winter	0.382	0.807	31
Nitrate (mg/L)	2016-17	open	0.031	0.058	7
	2010-17	winter	0.300	0.618	5
T-11 N(1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	1999-2009	open	0.32	0.59	78
		winter	0.82	1.22	31
Total Nitrogen (mg/L)	2016-17	open	0.32	0.43	7
		winter	0.63	1.90	5
	1999-2009	open	0.003	0.006	81
Total Dissalved Dhaanhamus (marll)		winter	0.003	0.010	31
Total Dissolved Phosphorus (mg/L)	2016-17	open	0.008	0.023	7
		winter	0.004	0.097	5
		open	0.079	0.193	81
Total Discoul and County	1999-2009	winter	0.007	0.039	31
Total Phosphorus (mg/L)	0040.47	open	0.059	0.114	7
	2016-17	winter	0.009	0.204	5
	4000 0000	open	22.3	170.0	81
Sulphate (mg/L)	1999-2009	winter	197.0	316.0	31
	0040.47	open	22.0	107.8	7
	2016-17	winter	180.0	344.0	5
Sodium Adsorption Ratio	1999-2009	open	0.43	2.26	81
		winter	2.54	3.80	31
	2016-17	open	0.42	1.65	7
		winter	2.89	3.60	5

Table A17: Median and 90th percentile values for primary indicators in the Milk River (Hwy 880) (continued)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	4000 0000	open	248	733	81
	1999-2009	winter	916	1380	31
Specific Conductance (µS/cm)	2016-17	open	240	540	7
	2010-17	winter	840	1360	5
	1000 2000	open	140	488	81
Total Dissolved Solids (mg/L)	1999-2009	winter	606	900	31
Total Dissolved Solids (Hig/L)	2016-17	open	130	320	7
	2010-17	winter	510	910	5
	4000 2000	open	2.1	4.2	39
Total Organia Carbon (mg/l.)	1999-2009	winter	3.7	4.8	26
Total Organic Carbon (mg/L)	2016-17	open	1.3	2.2	7
	2010-17	winter	4.3	13.2	5
	1999-2009	open	107	304	81
Total Suspended Solids (mg/L)		winter	3	12	31
Total Suspended Solids (mg/L)	2016-17	open	95	178	7
		winter	6	181	5
	1999-2009	open	60.0	170.0	81
Turbidity (NTU)		winter	3.7	17.5	31
Turbidity (NTO)	2016-17	open	33.0	67.0	7
	2010-17	winter	5.1	46.4	5
	4000 2000	open	8.23	8.43	81
mU	1999-2009	winter	8.30	8.41	31
рН	2016-17	open	8.21	8.40	7
	2010-17	winter	8.32	8.43	5
	1000 2000	open	57	230	79
Escherichia coli (cfu/100ml)	1999-2009	winter	1	9	30
	2016 17	open	45	164	7
	2016-17	winter	2	5	5

Table A18: Median and 90th percentile values for secondary indicators in the Milk River (Hwy 880)

INDICATOR	TIME PERIOD	SEASON	MEDIAN	90TH PERCENTILE	n
	1999-2009	open	0.0025	0.0114	24
2,4-D (μg/L)	1999-2009	winter			0
2;4-0 (µg/L)	2016-17	open	0.00375	0.012	4
	2010-17	winter			
	1999-2009	open	0.0025	0.0025	24
Dicamba (µg/L)	1999-2009	winter			0
Dicamba (μg/L)	2016-17	open	0.0025	0.0025	4
	2010-17	winter			
	1999-2009	open	0.0025	0.0030	24
MCPA (μg/L)	1999-2009	winter			0
MCFA (µg/L)	2016-17	open	0.0025	0.0025	4
		winter			
	1999-2009	open	0.0025	0.0025	24
Mecoprop (μg/L)		winter			0
wecoprop (µg/L)	2046 47	open	0.0025	0.0025	4
	2016-17	winter			
	1999-2009	open	2.15	9.50	18
Total Maraury (ng/L)		winter	0.30	0.70	6
Total Mercury (ng/L)	2016-17	open	3.91	7.30	7
	2010-17	winter	0.97	7.41	5
Total Recoverable Selenium (μg/L)	1999-2009	open	0.35	0.89	14
		winter	1.20	1.51	5
	2016-17	open	0.21	0.59	7
	2010-17	winter	0.90	1.71	5